Resumo da Tese apresentada à UFPE como parte dos requisitos necessários para a obtenção do grau de Doutor em Engenharia Elétrica.

DIAGNÓSTICO DE FALHAS ESTRUTURAIS EM HASTES DE ÂNCORA POR MEIO DA ANÁLISE DE SINAIS ELETROMAGNÉTICOS POR FERRAMENTAS DE INTELIGÊNCIA ARTIFICIAL

Douglas Contente Pimentel Barbosa

Agosto/2020

Orientador: Marcos Tavares de Melo, Ph.D.

Área de Concentração: Comunicações.

Palavras-chave: Detecção de falhas. Inteligência artificial. Aprendizado de máquina.

Parâmetros eletromagnéticos. Linhas de transmissão.

Número de Páginas: 116.

As hastes de âncora são elementos estruturais que garantem a estabilidade das torres estaiadas das linhas de transmissão de energia elétrica. No entanto, falhas durante a instalação, associadas à má qualidade do solo, podem levar à corrosão dessas hastes. Os danos gerados na estrutura dessas hastes por tais processos corrosivos são um problema crítico que, em casos extremos, pode provocar a queda da torre. Por esse motivo, a ação de monitorar e manter a integridade estrutural das hastes de âncora é um fator chave para evitar acidentes e a interrupção de serviço de fornecimento de energia elétrica. De um lado, o método tradicional de verificar a condição dessas estruturas é complexo, arriscado, caro e demorado, pois requer a escavação das âncoras para realização de inspeção visual nas hastes. Por outro lado, é sabido que parâmetros eletromagnéticos são capazes de transportar informação sobre a constituição de um meio no qual uma onda de alta frequência se propaga. Neste trabalho, essa característica é explorada com o objetivo de propor um sistema inteligente para detecção e falhas estruturais em hastes de âncora. Uma abordagem por aprendizado de máquina é apresentada para extração de características

subjacentes dos dados e estabelecer relações entre esses parâmetros e a presença de falhas nas hastes, sem a necessidade de modelos físicos. Um banco de dados híbrido é construído com amostras medidas e simuladas dos parâmetros perda de retorno, impedância de entrada e relação de tensão de onda estacionária para vários exemplos de hastes normais e defeituosas para treinamento dos modelos. Uma série de análises comparativas é realizada para avaliação da configuração dos classificadores baseados em aprendizado de máquina propostos que seja mais adequada para detecção das falhas nessas hastes. Os resultados experimentais obtidos mostram que a estratégia inovadora proposta neste trabalho, de utilizar algoritmos de aprendizado de máquina na análise de parâmetros eletromagnéticos para detecção de falhas estruturais em hastes de âncora, supera o desempenho obtido pelas metodologias similares conhecidas e permite o desenvolvimento de um sistema de detecção viável e de alta confiabilidade.