

MANUAL DE USO DO CLUSTER LAMAD

Caruaru, PE 2025

Uso do Cluster LAMAD 01

Acesso

- 1. Requisitar a abertura de sua conta e de seus alunos, colaboradores etc., de acordo com as regras de utilização do LAMAD, através <u>deste link</u>.
- 2. Requisitar bibliotecas e aplicativos que precisam ser instalados para seu uso.
- 3. Acesso direto: Há terminais físicos de acesso direto ao cluster no laboratório, com interface gráfica.
- 4. Acesso indireto: Pode ser feito por aplicativos como ssh ou AnyDesk.
- 5. Acesso externo: É necessário usar o AnyDesk ou ssh com uma VPN.
- 6. IP de Acesso indireto ou externo: 150.181.132.x, onde x entre 17 e 30;

Uso

- 1. É necessário um conhecimento prévio sobre computadores, arquivos, pastas, etc.
- 2. O acesso por ssh requisitará conhecimento sobre linha de comando
- 3. Transferir seus arquivos para o cluster.
- 4. Manter cópias des segurança sempre atualizadas em lugar seguro.
- 5. Preparar as estratégias de execução dos trabalhos.
- 6. Sempre submeta seus trabalhos pela fila.
- 7. Nunca submeta trabalhos diretamente.
- 8. Trabalhos fora da fila serão interrompidos assim que descobertos.
- 9. **Submeter** um trabalho à fila
 - Adotamos o servidor Slurm para gerenciar trabalhos.
 - Manual do Slurm (aqui) para detalhes e uso avançado.

Guia super rápido e direto para iniciantes

- 1. Testes e execuções rápidas:
 - a. prepare seu programa;
 - b. srun <seu_programa> [argumentos];
 - c. aguarde o final da execução.
- 2. Execução final:
 - a. Prepare um *script* de submissão;
 - b. Submeta com **sbatch** <seu_script>;
- 3. Verificar fila de execução: squeue;
- 4. Cancelar execução: scancel <job_id>;
- 5. Verificar partições e nós disponíveis: sinfo;
- 6. Verificar detalhes: scrontrol <o que você quer saber>;;

Exemplo de Script para executar um aplicativo

#!/usr/bin/bash # Script em Bash
#SBATCH --partition=nivel2 # Define a partição
#SBATCH --job-name=renormalize # Nome da tarefa
#SBATCH --cpus-per-task=4 # Define o número de cpus para cada tarefa
#SBATCH --mem=1M # Define a memória necessária para cada tarefa

Excrever o comando como seria feito normalmente ./renormalize 0.3 0.6 0

Exemplo de Script para o Gaussian 09

#!/usr/bin/bash # Script em Bash
#SBATCH --partition=nivel2 # Define a partição
#SBATCH --job-name=agua.gjf # Nome da tarefa
#SBATCH --output=agua.out # Arquivo de saída
#SBATCH --error=agua.err # Arquivo de saída de erros
#SBATCH --cpus-per-task=4 # Define o número de cpus para cada tarefa
#SBATCH --mem=1M # Define a memória necessária para cada tarefa

Excrever o comando do gaussian como seria feito normalmente g09 agua.gjf agua.out

Exemplo de Script para o Orca 6.0

#!/usr/bin/bash # Script em Bash
#SBATCH --partition=nivel2 # Define a partição
#SBATCH --job-name=agua.inp # Nome da tarefa
#SBATCH --output=agua.out # Arquivo de saída
#SBATCH --error=agua.err # Arquivo de saída de erros
#SBATCH --cpus-per-task=4 # Define o número de cpus para cada tarefa
#SBATCH --mem=1M # Define a memória necessária para cada tarefa

Escrever o comando do orca como seria feito normalmente orca agua.inp

Observações:

- 1. Os exemplos foram escritos em linguam bash (shell do linux), podem ser escritos em Python também.
- 2. Lembre-se sempre que o Gaussian usa a extensão de arquivo .gjf, enquanto o Orca usa a extensão .inp.

Exemplo de verificação da fila: squeue

@rosalind:~\$	squeue						
JOBID F	PARTITION	NAME	USER	ST	TIME	NODES	NODELIST(REASON)
4861_33	nivel2	refiname	gustavo	R	2-18:54:44	1	rosalind
4861_36	nivel2	refiname	gustavo	R	2-18:54:44	1	rosalind
4861_16	nivel2	refiname	gustavo	R	2-18:54:47	1	heisenberg
4840_3	nivel2	refiname	gustavo	R	2-18:55:28	1	elion
4840_4	nivel2	refiname	gustavo	R	2-18:55:28	1	elion
4840_5	nivel2	refiname	gustavo	R	2-18:55:28	1	elion
4840_6	nivel2	refiname	gustavo	R	2-18:55:28	1	elion
4840_8	nivel2	refiname	gustavo	R	2-18:55:28	1	heisenberg
4840_12	nivel2	refiname	gustavo	R	2-18:55:28	1	heisenberg
4840_14	nivel2	refiname	gustavo	R	2-18:55:28	1	heisenberg
4840_0	nivel2	refiname	gustavo	R	2-18:55:29	1	elion
4840_1	nivel2	refiname	gustavo	R	2-18:55:29	1	elion
4840_2	nivel2	refiname	gustavo	R	2-18:55:29	1	elion

- NAME: Nome atribuído ao job, geralmente especificado no script de submissão (--job-name). Essa coluna ajuda a distinguir jobs com propósitos diferentes quando há muitos cálculos na fila.
- **USER:** Nome do usuário que submeteu o job. É útil para filtrar jobs específicos em ambientes com múltiplos usuários.
- ST: Estado atual do job, indicado por uma abreviação de duas letras. Os estados mais comuns são:
 - **R** (Running): Job está em execução.
 - **PD** (Pending): Job está aguardando para ser iniciado.
 - **CG** (Completing): Job está terminando, mas alguns processos ainda estão ativos.
 - CD (Completed): Job foi concluído com sucesso.
 - **F** (Failed): Job falhou durante a execução.
- NODES: Número de nós (ou CPUs) alocados para a execução do job. Indica quantos recursos de hardware estão sendo utilizados.
- TIME: Tempo total de execução do job até o momento, no formato dias-horas:minutos:segundos. Se o job ainda estiver na fila (PD), o valor exibido será 0:00.
- TIME_LEFT: Tempo restante de execução até atingir o limite máximo especificado para o job. É útil para monitorar jobs de longa duração e saber quanto tempo resta até o encerramento.
- NODELIST (REASON): Exibe o nome dos nós onde o job está sendo executado. Para jobs pendentes (PD), essa coluna mostra o motivo pelo qual o job ainda não começou a rodar (por exemplo, Resources indica que ele está aguardando recursos, e Priority indica que há jobs com maior prioridade na fila).

Essas colunas fornecem uma visão abrangente do status e progresso dos cálculos, permitindo gerenciar e acompanhar facilmente a execução dos jobs no cluster.

Exemplo de como cancelar um trabalho:

scancel 4861 (este jobid está ali no exemplo anterior)

Exemplo de informações detalhadas sobre as partições: scontrol

william@rosalind:~\$ scontrol show partitions
PartitionName=terminais
AllowGroups=ALL AllowAccounts=ALL AllowQos=ALL
AllocNodes=ALL Default=NO QoS=N/A
DefaultTime=NONE DisableRootJobs=NO ExclusiveUser=NO GraceTime=0 Hidden=NO
MaxNodes=UNLIMITED MaxTime=00:15:00 MinNodes=0 LLN=NO MaxCPUsPerNode=UNLIM
ITED MaxCPUsPerSocket=UNLIMITED
Nodes=bohr,fittipaldi
PriorityJobFactor=1 PriorityTier=1 RootOnly=NO ReqResv=NO OverSubscribe=NO
OverTimeLimit=NONE
State=UP TotalCPUs=8 TotalNodes=2 SelectTypeParameters=NONE
JobDefaults=(null)
DefMemPerNode=UNLIMITED MaxMemPerNode=UNLIMITED
TRES=cpu=8,mem=17848M,node=2,billing=8
PartitionName=nivel1
AllowGroups=ALL AllowAccounts=ALL AllowQos=ALL
AllocNodes=ALL Default=YES QoS=N/A
DefaultTime=NONE DisableRootJobs=NO ExclusiveUser=NO GraceTime=0 Hidden=NO
MaxNodes=UNLIMITED MaxTime=UNLIMITED MinNodes=0 LLN=NO MaxCPUsPerNode=UNLI
MITED MaxCPUsPerSocket=UNLIMITED
Nodes=dirac,ferreira,lages,planck
PriorityJobFactor=1 PriorityTier=1 RootOnly=NO ReqResv=NO OverSubscribe=NO
OverTimeLimit=NONE PreemptMode=OFF

Exemplo de informações sobre as partições e nós: sinfo

william@rosalind:~\$ sinfo									
PARTITION	AVAIL	TIMELIMIT	NODES	STATE	NODELIST				
terminais	up	15:00	2	idle	bohr,fittipaldi				
nivel1*	up	infinite	4	idle	dirac,ferreira,lages,planck				
nivel2	up	in <u>f</u> inite	3	mix	elion,heisenberg,rosalind				