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Abstract. This article addresses the stabilizability of a perturbed quintic defocusing Schrödinger
equation in R3 at the H1–energy level, considering the influence of a damping mechanism. More
specifically, we establish a profile decomposition for both linear and nonlinear systems and use them
to show that, under certain conditions, the sequence of nonlinear solutions can be effectively lin-
earized. Lastly, through microlocal analysis techniques, we prove the local exponential stabilization
of the solution to the perturbed Schrödinger equation in R3 showing an observability inequality for
the solution of the system under consideration, which is the key result of this work.
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1. Introduction

1.1. Addressed issue. This article is devoted to the stabilization properties of the quintic defo-
cusing Schrödinger equation in R3+1

(1.1)

{
i∂tu+∆u = |u|4u, (t, x) ∈ [0,+∞)× R3,
u(x, 0) = u0(x) ∈ H1(R3), x ∈ R3,

where u(t, x) is a complex-valued field in spacetime [0,+∞) × R3 and the subscripts denote the
corresponding partial derivatives. Semilinear Schrödinger equations - with and without potentials,
and with various nonlinearities - arise as models for diverse physical phenomena, including Bose-
Einstein condensates [21, 34] and as a description of the envelope dynamics of a general dispersive
wave in a weakly nonlinear medium1.

Equation (1.1) has a Hamiltonian structure, namely

(1.2) E(u(t)) :=

∫
1

2
|∇u(t, x)|2dx+

1

6
|u(t, x)|6dx,

which is preserved by the flow (1.1). We shall often refer to it as the energy and write E(u) for
E(u(t)). Our interest here in the defocusing quintic equation (1.2) is motivated mainly by the fact
that the problem concerning the energy norm is critical.

To be precise, we are interested in internal stabilization for the perturbed defocusing critical
nonlinear Schrödinger equation (C-NLS) on R3

(1.3)

{
i∂tu+∆u− u = |u|4u, (t, x) ∈ [0,+∞)× R3,
u(x, 0) = u0(x) ∈ H1(R3), x ∈ R3,

where u = u(t, x) is a complex-valued function of two variables x ∈ R3 and t ∈ [0,+∞). We are
mainly concerned with the following stabilizability problem for system (1.3).

Stabilization problem: Can one find a feedback control law f(x, t) = Ku so that the resulting
closedloop system

i∂tu+∆u− u− |u|4u = Ku, (t, x) ∈ [0,+∞)× R3

is asymptotically stable as t→ +∞ ?

Note that, similarly to the system (1.1), system (1.3) preserves the L2–mass, defined as
∥u(t)∥2L2 , and the H1–Hamiltonian (energy) given by

E(u) =
1

2

∫
R3

|u(t)|2 dx+
1

2

∫
R3

|∇u(t)|2 dx+
1

6

∫
R3

|u(t)|6 dx.

Thus, to answer the previous question appropriately, we need to present an operator K that trans-
forms the energy E(u) into a decreasing function. For this, consider a non-negative function
a ∈ C∞(R3; [0, 1]) satisfying, almost everywhere,

(1.4) a(x) =

{
0, if |x| ≤ R,
1, if |x| ≥ R+ 1,

for some R > 0 and η > 0 such that

a(x) ≥ η > 0 for |x| ≥ R.

From now on, the stabilization system in consideration is

(1.5)

{
i∂tu+∆u− u− |u|4u− a(x)(1−∆)−1a(x)∂tu = 0, (t, x) ∈ [0,+∞)× R3,
u(x, 0) = u0(x) ∈ H1(R3), x ∈ R3,

where a(x) is given by (1.4) and the solution u = u(t, x) of the system satisfies the energy identity

E(u)(t2)− E(u)(t1) = −2

∫ t2

t1

∥∥∥(1−∆)−
1
2a(x)∂tu

∥∥∥2
L2
dt,

1For details, see the survey [38, Chapter 1].
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where E(u)(t) is now decreasing and, therefore, system (1.5) is dissipative. Before presenting the
contributions of this work, let us give a brief state of the art concerning the system and problems
under consideration.

1.2. Literature review. The Cauchy problem associated with system (1.1) has been extensively
investigated, see for instance, [12, 20, 4, 5, 18, 23]. It has been established [13, 12] that when the
initial data u0(x) possesses finite energy, the Cauchy problem is locally well-posed. This implies

the existence of a local-in-time solution to (1.1) belonging to the space C0
t Ḣ

1
x ∩ L10

t,x, and such a
solution is unique within this class. Moreover, the mapping taking initial data to its corresponding
solution exhibits local Lipschitz continuity in these norms. In cases where the energy is small, the
solution exists globally in time and scatters to a solution u±(t) of the free Schrödinger equation
(i∂t +∆)u± = 0. This scattering behavior is characterized by ∥u(t)− u±(t)∥Ḣ1(R3) → 0 as t →
±∞. However, for large initial data, the arguments presented in [13, 12] fail to establish global
well-posedness, even with the conservation of the energy (1.2). This limitation arises because the
duration of existence predicted by the local theory depends on the data profile and the energy.
This is in contrast to sub-critical equations like the cubic equation

(1.6) iut +∆u = |u|2u,
where local well-posedness theory ensures global well-posedness and scattering even for large energy
data, as discussed in [19, 11].

For large finite energy data, particularly for those assumed to be radially symmetric, Bourgain
[4] demonstrated global existence and scattering for (1.1) in Ḣ1

(
R3
)
. Subsequently, Grillakis [20]

presented an alternative argument that partially recovered the results of [4], focusing on global
existence from smooth, radial, finite energy data. Recently, Colliander et al. [14] obtained global
well-posedness, scattering, and global L10 space-time bounds for energy-class solutions to the quintic
defocusing Schrödinger equation in R1+3, which is energy-critical. Notably, they established the
global existence of classical solutions2.

While the well-posedness theory for system (1.1) has been extensively explored, the study
of control properties concerning the quintic critical defocusing Schrödinger equation in R3+1 is
less advanced. Most research efforts have concentrated on the cubic Schrödinger equation (1.6),
which has been a focal point in the past few decades. For instance, concerning control aspects,
relevant literature includes [33, 35, 36] and related works. In terms of Carleman estimates and
their applications to inverse problems, references such as [2, 8, 9, 31, 39, 42] are noteworthy, along
with their respective bibliographies. A comprehensive overview of contributions up to 2003 can be
found in [43].

Concerning the stabilization problem, there are several results considering the equation (1.6).
Some similar results were obtained in dimension 2 in the article of Dehman et al. [15], where the
stabilization in H1 is proved for the defocusing equation (1.6) on compact surfaces considering the
feedback law as K = a(x)(1 −∆)−1a(x)∂t. Employing the same techniques for a one-dimensional
case, Laurent [27] showed global internal controllability in large time for the system (1.6) in an
interval, however, in this case, with a physically relevant damping term K = ia(x). The strategy
combines stabilization and local controllability near 0. More recently, in a very nice article in [28],
the same author gave contributions to the stabilization problem for the equation (1.6) on some
compact manifolds of dimension 3. It is important to point out that in both works [15, 28], the
main ingredients to achieve the results are some geometrical assumptions: geometric control and
unique continuation. These are necessary due to the characteristics of the function a(x). For more
details about these questions, see [30]. The authors also suggest the following two references [10]
for the 2−D case of the defocusing Schrödinger equation with locally distributed damping and [3]
for the case of noncompact Riemannian manifolds and exterior domains.

We also mention that Rosier and Zhang [41] (see also [37]) considered the equation (1.6) in
the R = (0, l1)× · · · × (0, ln) and investigated the control properties of the semi-linear Schrödinger

2For details about global well-posedness, scattering, and blow-up for the nonlinear Schrödinger equation in the
radial case, see [25].
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equation

i∂tu+∆u+ λ|u|αu = ia(x)h(x, t), x ∈ Tn t ∈ (0, T ),

where λ ∈ R and α ∈ 2N∗ by combining new linear controllability results in the spaces Hs(R) with
Bourgain analysis. In this case, the geometric control condition is not required (see [41] for more
details).

Finally, another recent work [7] extended the results from [15]. Therein, the authors stud-
ied global controllability and stabilization properties for the fractional Schrödinger equation on
d−dimensional compact Riemannian manifolds without boundary (M, g). Using microlocal analy-
sis, they showed the propagation of regularity, which, together with the geometric control condition
and a unique continuation property, allowed them to prove global control results.

1.3. Main result and heuristics. Our main theorem states that we can obtain an exponential
decay for the energy of this system with a perturbation term for some solutions that are bounded
in the energy space but small in a lower norm. The local stabilization result is the following.

Theorem 1.1. Let λ0 > 0. There exist constants C, γ > 0 and δ > 0 such that for any u0 in
H1(R3), with ∥u0∥H1(R3) ≤ λ0 and ∥u0∥H−1(R3) ≤ δ, the unique strong solution of problem (1.5)
satisfies

(1.7) E(u)(t) ≤ Ce−γtE(u)(0), ∀ t ≥ 0.

Let us give a brief general idea of how we obtain our results, which provide a (local) answer
to the stabilization problem. Initially, it is important to acknowledge that the primary concern is
to establish the stabilization of the energy linked with (1.1). However, due to technical challenges,
more specifically, due to the difficulty in identifying suitable embeddings between nonhomogeneous
Sobolev spaces, we perturb this system, transforming it in the system (1.5). Our inspiration for this
approach comes from a result concerning the Klein-Gordon equation on a 3-dimensional compact
manifold obtained by Laurent [29].

To obtain Theorem 1.1, we use a profile decomposition to describe how linear and nonlinear
solutions approach each other in some sense, applying the same methodology used for the Klein-
Gordon equation in the three-dimensional case. Precisely, to show that the energy of the system
(1.5) decays exponentially (even locally), it is necessary to show the observability inequality

(1.8) E(u)(0) ≤ C

∫ T

0

∫
R3

|(1−∆)−
1
2a∂tu|2 dxdt,

which is obtained through propagation results for the microlocal defect measure through the strat-
egy used in [16]. Before that, we need to prove that solutions for the nonlinear system (1.3) behave
similarly to the solutions for the linear system associated with system (1.3). To this end, we intro-
duce a decomposition into profiles for both linear and nonlinear solutions as carried out by Keraani
[26].

Note that, even with the addition of a perturbation term, our approach will not undergo any
significant modification. Indeed, the unknown w = eitu is a solution of{

i∂tw +∆w = |w|4w, (t, x) ∈ R× R3,

w(x, 0) = u0 ∈ Ḣ1(R3), x ∈ R3,

which is the original system. Therefore, it is possible to use, in our new system, the entire profile
decomposition theory developed by Keraani in [26] as well as the scattering property.

Finally, with this decomposition of profiles in hand combined with the propagation results,
which involves arguments from microlocal analysis, we show the observability inequality (1.8),
ensuring the decay of the energy in the sense of estimate (1.7).

Remark 1. The following observations are worth mentioning:

i. Theorem 1.1 completes the analysis begun in [6], where local controllability was shown.
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ii. Our result here gives a first step to understanding the stabilization properties of system
(1.5). Since our result is local, it is necessary to prove global stabilization (see, for instance,
[15, 28]) to get global controllability. In conclusion, global controllability reduces to proving
that system (1.5) is globally exponentially stabilizable, which remains an open problem (see
Figure 1).

H1(R3)

t

ϕ

ϕT

ϕ̃

ϕ̃T

T1 T2 T

Global Stabilization

Local Controllability

Figure 1. Global controllability result

iii. Note that a ∈ C∞(R3) satisfying (1.4) act in ω :=
(
R3\BR(0)

)
. Thus, as opposed to [29],

the function ω satisfies a unique geometrical assumption: There exists T0 > 0 such that
every geodesic travelling at speed 1 meets ω in a time t < T0, for some T0 > 0.

iv. As mentioned in [28], the most physically relevant damping term for system (1.5) would be
ia(x)u instead of a(x)(1−∆)−1a(x)∂tu, as used in the one-dimensional case [27]. For this
damping term, the analysis remains open.

1.4. Structure of the work. We conclude our introduction by providing an outline of this work.
In Section 2, we introduce the profile decomposition of the H1-critical Schrödinger equation in
three spatial dimensions. The nonlinear profile decomposition is detailed in Section 3, following
Keraani’s approach in [26]. Additionally, we present a result ensuring that sequences of solutions
for the nonlinear system behave similarly to sequences of solutions for the linear system, following
ideas from [29]. Section 4 is dedicated to proving the observability inequality associated with the
solutions of system (1.5), thereby providing the proof of Theorem 1.1. Finally, two appendices are
included: Appendix A reviews the Cauchy problem (1.5), while Appendix B compiles some results
on the propagation of solutions of the linear Schrödinger equation, based on the ideas from [15].

2. Profile decomposition

In this section, we will consider theH1-critical Schrödinger equation in three spatial dimensions

(2.1)

{
i∂tu+∆u− |u|4u = 0, (t, x) ∈ [0, T ]× R3

u(0, x) = φ(x), x ∈ R3.

Considering φ ∈ Ḣ1(R3), the solution of the linear system associated with (2.1) is given explicitly

by v = eit∆φ, which belongs to the class C(Rt, Ḣ
1(R3

x)), and satisfies the conservation law

E0(v)(t) :=

∫
R3

|∇v(t)|2 dx = E0(φ).

The small data theory explored by [12] ensures that there exists λ > 0 such that, if

(2.2) ∥φ∥Ḣ1(R3) ≤ λ,
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then there exists a unique maximal solution u(t, x) of system (2.1) satisfying

u ∈ C(R; Ḣ1(R3)), u ∈ L10(R4), ∇u ∈ L
10
3 (R4).

Our first goal in this section is to prove that every sequence of solutions associated with the
linear Schrödinger equation (2.1) with bounded data in Ḣ1(R3) can be written, up to a subsequence,
as an almost orthogonal sum of sequences of the type

h
− 1

2
n φ

( t− tn
h2n

,
x− xn
hn

)
,

where φ is a solution of the linear Schrödinger equation with a small remainder term in Strichartz
norms. Using this decomposition, we show a similar one for system (2.1), assuming that the initial
data belong to a ball in the energy space where the equation is solvable. This implies, in particular,
the existence of an a priori estimate for the Strichartz norms in terms of energy. Let us begin with
the following definition.

Definition 1. Let λ0 be the supremum of all λ in (2.2) for such that one has global existence of a

maximal solution u for (2.1), with u ∈ C(R; Ḣ1(R3) ∩ L10(R4) and ∇u ∈ L
10
3 (R4).

Remark 2. If ∥φ∥Ḣ1(R3) < λ0, then system (2.1) admits a complete scattering theory concerning

its associated linear problem. However, it is an open problem to prove that λ0 = ∞, i.e., to prove
global well-posedness of the IVP (2.1) for any initial data in Ḣ1(R3)3.

The following definition will be useful in the first part of the proof of the linear profile decom-
position, which consists of the extraction of the scales of oscillation hn.

Definition 2.

i) We call scale every sequence h = (hn)n≥0 of positive numbers and core every sequence
[x, t] = (xn, tn)n≥0 ⊂ R3 × R. We denote a scale-core by [h, x, t].

ii) We say that two sequences of scale-core [h(1), x(1), t(1)] and [h(2), x(2), t(2)] are orthogonal if
either

h
(1)
n

h
(2)
n

+
h
(2)
n

h
(1)
n

−→ +∞, as n→ ∞,

or, h
(1)
n = h

(2)
n = hn and∣∣∣∣∣ t(1)n − t

(2)
n

h2n

∣∣∣∣∣+
∣∣∣∣∣x(1)n − x

(2)
n

hn

∣∣∣∣∣ −→ +∞, as n→ ∞.

In each respective case above, we denote either [h(1), x(1), t(1)] ⊥ [h(2), x(2), t(2)] or (x(1), t(1)) ⊥hn

(x(2), t(2)).

2.1. Concentrating solutions. Now, we will introduce the concept of concentration solution,
which will be extremely important for the study of the asymptotic behavior of our system.

Definition 3.

i) Let f ∈ L∞(R; Ḣ1(R3)), h = hn ∈ R∗
+, x = xn ∈ R3 and t = tn ∈ R such that

limn(hn, xn, tn) = (0, x∞, t∞). A linear concentrating solution associated to [f, h, x, t] is
a sequence (vn)n∈N of solutions to

i∂tvn +∆vn = 0, (t, x) ∈ R× R3,

of the form

vn(t, x) =
1√
hn
f
( t− tn

h2n
,
x− xn
hn

)
;

3Bourgain solved this problem in the particular case of radially symmetric data [4].
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ii) The associated nonlinear concentrating solution is a sequence (un)n∈N of solutions to{
i∂tun +∆un − |un|4un = 0, (t, x) ∈ R× R3,
un(0) = vn(0), x ∈ R3,

of the form

un(t, x) =
1√
hn
f
( t− tn

h2n
,
x− xn
hn

)
,

where f(−tn/h2n) = f(−tn/h2n).
The next definition is the tool that will be used to “track back” the concentrations.

Definition 4. Let x∞ ∈ R3, t∞ ∈ R, h = hn ∈ R∗
+, x = xn ∈ R3 and f ∈ L∞(R; Ḣ1(R3)) such

that limn(hn, xn, tn) = (0, x∞, t∞). Given a bounded sequence (fn)n∈N in L∞(R; Ḣ1(R3)), we write

Dhnfn ⇀ f if h
1
2
nfn(tn + h2nt, xn + hnx)⇀ f(t, x) weakly in Ḣ1(R3), for all t ∈ R.

Of course, this definition depends on the core of concentration hn, xn and tn. When several

rates of concentration [h(j), x(j), t(j)], j ∈ N, are used in a proof, we use the notation D
(j)
h to

distinguish them.

Lemma 2.1. If fn is a linear concentrating solution associated to [f, h, x, t], then Dhnfn ⇀ f.

Proof. Since fn has the form

fn(t, x) =
1√
hn
f
( t− tn

h2n
,
x− xn
hn

)
,

the change of variables √
hnfn(tn + h2ns, xn + hny) = f(s, y)

yields that

Ln =
√
hn

∫
R3

∇yfn(tn + h2ns, xn + hny) · ∇yφ(s, y) dx =

∫
R3

∇yf(s) · ∇yφ(s) dy.

Thus, ∫
R3

∇xfn(tn + h2ns) · ∇xun(tn + h2ns) dx =

∫
R3

∇yf(s) · ∇yφ(s) dy,

which gives Dhnfn ⇀ f . □

Lemma 2.2. If un is a linear concentrating solution associated to [φ, h, x, t], then

∥un∥L∞Ḣ1 = ∥φ∥L∞Ḣ1 , ∥un∥L10
t L10

x
= ∥φ∥L10

t L10
x

and ∥∇un∥
L

10
3

t L
10
3

x

= ∥∇φ∥
L

10
3

t L
10
3

x

.

Proof. We prove only the first equality since the other two are similarly obtained. Using Definition
3 and the change of variables t−tn

h2
n

= s and x−xn
hn

= y, we get

∥∇un(t)∥L2 =
1√
hn

(∫
R3

∣∣∣∇xφ
( t− tn

h2n
,
x− xn
hn

)∣∣∣2 dx) 1
2

=
1√
hn

(∫
R3

|∇xφ(s, y)|2 h3ndy

) 1
2

= ∥∇φ(s)∥L2 .

□
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2.2. Scales. On the Hilbert space H1(R3), we define the self-adjoint operator A by Au = (−∆)
1
2u,

with domain D(A) = H2(R3). The next definition is from [17].

Definition 5. Let A be a self-adjoint (unbounded) operator on a Hilbert space H. Let hn be
a sequence of positive numbers converging to 0. A bounded sequence (un) in H is said to be
hn-oscillatory with respect to A if

(2.3) lim sup
n→∞

∥∥∥1|A|≥ R
hn

un

∥∥∥
H

−→ 0, R→ ∞,

and strictly hn-oscillatory with respect to A if it satisfies (2.3) and

lim sup
n→∞

∥∥∥1|A|≤ ϵ
hn
un

∥∥∥
H

−→ 0, ϵ→ 0.

Moreover, (un) is said to be hn-singular with respect to A if∥∥∥1 a
hn

≤|A|≤ b
hn

un

∥∥∥
H

−→ 0, n→ ∞, for all a, b > 0.

The next result ensures that the Schrödinger equation conserves hn-oscillation.

Proposition 2.3. Let T > 0. Let φn be a bounded sequence in H1(R3) that is (strictly) hn-
oscillatory with respect to A. If un is the solution of

(2.4)

{
i∂tun +∆un = 0, (t, x) ∈ [0, T ]× R3

un(0) = φn, x ∈ R3,

then, (un(t)) is (strictly) hn-oscillatory with respect to A, uniformly on [0, T ]. If (φn) is hn-singular
with respect to A, then (un(t)) is hn-singular with respect to A, uniformly on [0, T ].

Proof. Consider the cut-off function χ ∈ C∞
0 (R) such that 0 ≤ χ(s) ≤ 1 and χ(s) = 1 for |s| ≤ 1.

The hn-oscillation (respectively strict oscillation) is equivalent to

lim sup
n→∞

∥∥∥∇(1− χ)(
h2n∆

R2
)un

∥∥∥
L2

−→ 0, R→ ∞

(respectively lim supn→∞ ∥∇χ(R2h2n∆)un∥L2 −→ 0, R→ ∞). Note that vn = (1− χ)(h
2
n∆
R2 )un is a

solution of {
i∂tvn +∆vn = 0,

vn(0) = (1− χ)
(
h2
n∆
R2

)
φn,

and the conservation of the energy gives

∥∇vn(t)∥L2 = ∥∇vn(0)∥L2 =
∥∥∥∇(1− χ)

(
h2n∆

R2

)
φn

∥∥∥
L2
.

Therefore, taking the lim sup in n, we get the expected result uniformly in 0 ≤ t ≤ T . Strict
oscillation and singularity follow analogously. □

The following result gives us an estimation of Besov spaces.

Proposition 2.4. For every bounded sequence (φn) in H
1(R3), there exists CT > 0 such that

lim sup
n→∞

∥∇un∥L∞([0,T ];Ḃ0
2,∞(R3)) ≤ CT lim sup

n→∞
∥∇φn∥Ḃ0

2,∞(R3),

where un is the solution of system (2.4). Here, Ḃ0
2,∞(R3) denotes the Besov space defined by

Ḃ0
2,∞(R3) =

{
u = u(x) : ∥u∥2

Ḃ0
2,∞(R3)

= sup
k∈Z

∫
2k≤|ξ|≤2k+1

|û(ξ)|2 dξ < +∞
}
.

Proof. Since un is the solution of system (2.4), the function σk(D)un is also a solution to the same
system, where σk(ξ) = 12k≤|ξ|≤2k+1 . The conservation law for all σk(D)un(t) gives

∥∇un(t)∥Ḃ0
2,∞(R3) = ∥∇un(0)∥Ḃ0

2,∞(R3) = ∥∇φn∥Ḃ0
2,∞(R3), for k ∈ Z,

showing the result. □



CRITICAL NLS: STABILIZATION RESULT 9

2.3. Linear profile decomposition. The main result of this section is a combination of theories
developed by Bahouri and Gerard [1], Keraani [26], and Laurent [29] and is given by the following
theorem.

Theorem 2.5. Let (vn) be a sequence of solutions to the Schrödinger equation (2.4) on [0, T ] with
an initial data φn, at time t = 0, bounded in H1(R3) and such that lim supn→∞ ∥φn∥H1 < λ0,
where λ0 was given in Definition 1. Then, up to extraction, there exists a sequence of linear
concentrating solutions (p(j)) associated to [φ(j), h(j), x(j), t(j)] such that, for any l ∈ N∗, vn(t, x) =∑l

j=1 p
(j)
n (t, x) + w

(l)
n (t, x) satisfies

(2.5) lim sup
n→∞

∥w(l)
n ∥L∞

t L6
x∩L10

t L10
x

−→ 0, l → ∞,

for all T > 0, and

(2.6) ∥∇vn∥2L2 =
l∑

j=1

∥∇p(j)n ∥2L2 + ∥∇w(l)
n ∥2L2 + o(1), n→ ∞.

Moreover, we have (h(j), x(j), t(j)) ⊥ (h(k), x(k), t(k)) for any j ̸= k.

We split the proof of this theorem into four steps as follows.

Proof. Step 1. Extraction of scales. In this first part, we present the determination of the
family of scales. The next result is paramount for our analysis and can be found in [1, Proposition
3.4].

Proposition 2.6. If (fn) is a bounded sequence in L2(R3), then, up to a subsequence, there exists

a family (hjn) of pairwise orthogonal scales and a family (gjn) of bounded sequences in L2(R3) such
that

i) for every j, gjn is hjn-oscillatory;
ii) for every l ≥ 1 and x ∈ R3,

fn(x) =
l∑

j=1

gjn(x) +Rl
n,

where (Rj
n) is h

j
n-singular for every j ∈ 1, ..., l, and

lim sup
n→∞

∥Rl
n∥Ḃ0

2,∞
−→ 0, l → ∞;

iii) for every l ≥ 1,

∥fn∥L2 =
l∑

j=1

∥gjn∥2L2 + ∥Rl
n∥2L2 + o(1), n→ ∞.

With this result in mind, let us present the following proposition.

Proposition 2.7. Let T > 0. Let (φn) be a bounded sequence in H1(R3) and (vn) be the solution
of system (2.4). Then, up to an extraction, vn can be decomposed in the following way: for any
l ∈ N∗

(2.7) vn(t, x) =
l∑

j=1

v(j)n (t, x) + ρ(l)n (t, x),

where v
(j)
n is a strictly (h

(j)
n )-oscillatory solution of the linear Schrödinger equation (2.4) on R3.

The scales h
(j)
n satisfy h

(j)
n → 0, n→ ∞, and are pairwise orthogonal. Additionally, we have

(2.8) lim sup
n→∞

∥ρ(l)n ∥L∞([0,T ];L6(R3))∩L10([0,T ];L10(R3)) −→ 0, l → ∞
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and

(2.9) ∥∇vn(t)∥2L2 =
l∑

j=1

∥∇v(j)n (t)∥2L2 + ∥∇ρ(l)n (t)∥2L2 + o(1), n→ ∞.

Proof. Applying Proposition 2.6 to the sequence (∇φn), we obtain a family of scales h
(j)
n and a

family (φ
(j)
n ) of bounded sequences in Ḣ1(R3), such that φn(x) =

∑l
j=1 φ

(j)
n (x) + Φ

(l)
n (x), where

φ
(j)
n is hjn-oscillatory with respect to A for every j ≥ 1. Moreover, Φ

(l)
n is h

(j)
n -singular with respect

to A for every j ∈ 1, 2, ..., l, and

(2.10) lim sup
n→∞

∥∇Φl
n∥Ḃ0

2,∞
−→ 0, l → ∞.

Furthermore, the following almost orthogonality identity

∥∇φn∥2L2 =

l∑
j=1

∥∇φ(j)
n ∥2L2 + ∥∇Φ(l)

n ∥2L2 + o(1),

holds for all l ≥ 1, and the h
(j)
n are pairwise orthogonal. This decomposition for the initial data

can be extended to the solution vn(t, x) =
∑l

j=1 v
(j)
n (t, x) + ρ

(l)
n (t, x), where each v

(j)
n is a solution

of {
i∂tv

(j)
n +∆v

(j)
n = 0, (t, x) ∈ [0, T ]× R3,

v
(j)
n (0) = φ

(j)
n ,

and ρ
(l)
n is a solution to the same system with initial data Φ

(l)
n .

Due to Proposition 2.3, each v
(j)
n (t) is strictly h

(j)
n -oscillatory and ρ

(l)
n (t) is h

(j)
n -singular for

1 ≤ j ≤ l. So,

⟨∇ρ(l)n (t),∇v(j)n (t)⟩L2 −→ 0,

as n→ ∞, uniformly in [0, T ]. This is also true for the product between v
(j)
n and vkn, j ̸= k, by the

orthogonality of the scales, i.e.,

⟨∇v(j)n (t),∇v(k)n (t)⟩L2 −→ 0, n→ ∞.

Then, we get

∥∇vn(t)∥2L2 =

l∑
j=1

∥∇v(j)n (t)∥2L2 + ∥∇ρ(l)n (t)∥2L2 + o(1),

which is the desired equation (2.9).
Let us now show (2.8). First of all, note that the convergence (2.10) gives the convergence to

zero of ∇ρ(l)n (0) = ∇Φ
(l)
n in Ḃ0

2,∞. We extend this convergence for all time using Proposition 2.4 to
get

sup
t∈[0,T ]

lim sup
n→∞

∥∇ρ(l)n (t)∥Ḃ0
2,∞

−→ 0, l → ∞.

Using [1, Lemma 3.5], we have

lim sup
n→∞

∥ρ(l)n (t)∥L6 ≤ C lim sup
n→∞

∥∇ρ(l)n (t)∥
1
3

L2 lim sup
n→∞

∥∇ρ(l)n (t)∥
2
3

Ḃ0
2,∞

.

Observe that

∥∇ρ(l)n (t)∥2L2 ≤ ∥∇vn(t)∥2L2 ≤ ∥∇φn∥2L2 ≤ C.

Therefore,

lim sup
n→∞

∥ρ(l)n ∥L∞
t L6

x
−→ 0, l → ∞.

Now, by an interpolation inequality, we obtain

∥ρ(l)n ∥L10
t L10

x
≤ ∥ρ(l)n ∥αL∞

t L6
x
∥ρ(l)n ∥β

L7
tL

14
x
.
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Since
(
7, 4217

)
is a L2-admissible pair and by Sobolev’s embedding, one has

∥ρ(l)n ∥L7
tL

14
x

≤ ∥∇ρ(l)n ∥
L7
tL

42
17
x

≤ ∥∇eit∆Φ(l)
n ∥

L7
tL

42
17
x

≤ ∥∇Φ(l)
n ∥

L7
tL

42
17
x

≤ C∥∇Φ(l)
n ∥L2 ,

which means
lim sup
n→∞

∥ρ(l)n ∥L10
t L10

x
−→ 0, l → ∞.

This shows (2.8) and completes the proof of Proposition 2.7. □

Step 2. Description of concentrating solutions. Now, we describe the “non-reconcentration”
property for linear concentrating solutions. The main result can be read as follows.

Lemma 2.8. Let v = [φ, h, x, t] a linear concentrating solution and consider the interval I =

[−T, T ] of R containing t∞. Set I1,Λn = [−T, tn − Λhn] and I
3,Λ
n = (tn + Λhn, T ]. One has

(2.11) lim sup
n→∞

∥vn∥L∞(I1,Λn ∪I3,Λn ,L6(R3))
−→ 0, Λ → ∞,

and

(2.12) lim sup
n→∞

∥vn∥L10(I1,Λn ∪I3,Λn ,L10(R3))
−→ 0, Λ → ∞.

Proof. Convergence (2.12) follows directy from (2.11) by interpolation. To prove (2.11), we argue
by contradiction: Suppose that (2.11) is not valid. In this case, there exists a constant C > 0, a
real subsequence (Λj)j tending to +∞, and a subsequence (tnj )j of (tn)n convergent to τ such that

(2.13) |tnj − t∞| > Λjhnj and lim
j

∥vnj (tnj , .)∥L6(R3) −→ C.

Let us consider separately the cases τ ̸= t∞ and τ = t∞. In case τ ̸= t∞, we have{
i∂tvnj +∆vnj = 0,

vnj (t∞) = 1√
hnj

φ
(

x
hnj

)
.

Then,

vnj (t, x) = ei(t−t∞)∆ 1√
hnj

φ
( x

hnj

)
,

and so

vnj (tnj , x) = ei(tnj−t∞)∆ 1√
hnj

φ
( x

hnj

)
.

By Definition 3, we have

∥vnj (tnj , x)∥L6 ≤ C

(∫
R3

∣∣∣∣∣(tnj − t∞)−
3
2h

5
2
nj

∫
R3

e
i

h2nj
|z|2

2(tnj−t∞) · e
−ihnj ⟨z,x⟩
(tnj−t∞) φ(z) dz

∣∣∣∣∣
6

dx

) 1
6

≤ (tnj − t∞)−1h2nj

(∫
R3

∣∣∣∣∣
∫
R3

e
i

h̃2j |z|
2

2(tnj−t∞) · e−i⟨z,w⟩φ(z) dz

∣∣∣∣∣
6

dw

) 1
6

≤ (tnj − t∞)−1h2nj

(∫
R3

|φ̂(w)|6 dw

) 1
6

→ 0, j → ∞,

i.e., the right-hand side of this inequality converges to 0 as j goes to ∞, which contradicts (2.13).

Now, in case τ = t∞, let ε2j = |t∞ − tnj |, h̃j =
hnj

εj
, and define the sequence f̃j(s, y) =

ε
1
2
j vnj (t∞ + ε2js, εjy). Since |t∞ − tnj | ≥ Λjhnj and limj Λj = +∞, one has limj h̃j = 0. Moreover,

the sequence (f̃j) is the solution of {
i∂sf̃j +∆yf̃j = 0,

f̃j(0) =
1√
h̃j

φ
(

y

h̃j

)
,
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Note that f̃j(1, y) is bounded, since

f̃j(1, y) =e
i∆ 1√

h̃j

φ
( y
h̃j

)
=

1√
h̃j

∫
R3

ei
|y−x|2

2 φ
( x
h̃j

)
dx = h̃

5
2
j

∫
R3

ei
|h̃jz−y|2

2 φ(z) dz

=h̃
5
2
j

∫
R3

ei
h̃2j |z|

2

2 · e−ih̃j⟨z,y⟩ · e
i|y|2
2 φ(z) dz ≤ C

∣∣∣∣∣h̃ 5
2
j

∫
R3

ei
h̃2j |z|

2

2 · e−ih̃j⟨z,y⟩φ(z) dz

∣∣∣∣∣.
Therefore,

∥f̃j(1, y)∥L6 ≤

(∫
R3

∣∣∣∣∣h̃ 5
2
j

∫
R3

ei
h̃2j |z|

2

2 · e−ih̃j⟨z,y⟩φ(z) dz

∣∣∣∣∣
6

dy

) 1
6

≤ h̃2j

(∫
R3

∣∣∣∣∣
∫
R3

ei
h̃2j |z|

2

2 · e−i⟨z,x⟩φ(z) dz

∣∣∣∣∣
6

dx

) 1
6

≃ h̃2j

(∫
R3

|φ̂(x)|6 dx

) 1
6

→ 0, j → ∞.

Hence, ∥f̃j(1, y)∥L6 → 0, as j → ∞. Therefore, since ∥f̃j(1, y)∥L6 = ∥vnj(tnj , .)∥L6 , this contradicts
(2.13), which finishes the proof of step 2. □

Step 3. Extraction of times and cores of concentration. Let hn be a fixed sequence in R∗
+

converging to 0.
Before presenting the main result of this step, we state and prove two auxiliary lemmas.

Lemma 2.9. Let (x(1), t(1)) ̸⊥hn (x(2), t(2)). Let vn be an (strictly) hn-oscillatory sequence of so-

lutions to the linear Schrödinger equation such that D
(1)
hn
vn ⇀ φ(1) as n → ∞. There exists φ(2)

such that D
(2)
hn
vn ⇀ φ(2) as n→ ∞. Moreover, ∥φ(1)∥L∞Ḣ1 = ∥φ(2)∥L∞Ḣ1 .

Proof. Let x
(2)
n = x

(1)
n + (

−→
D + o(1))hn and t

(2)
n = t

(1)
n + (

−→
C + o(1))h2n, where

−→
D ∈ R3,

−→
C ∈ R are

constants. We have
√
hvn(t

(1)
n + h2ns, x

(1)
n + hny)⇀ φ(1)(s, y), s ∈ R. Then,√

hnvn(t
(2)
n + h2ns, x

(2)
n + hny) =

√
hnvn(t

(1)
n + (

−→
C + o(1))h2n + h2ns, x

(1)
n

+ (
−→
D + o(1))hn + hny)

=
√
hnvn(t

(1)
n + (

−→
C + s)h2n, x

(1)
n + (

−→
D + y)hn)

⇀ φ(1)(
−→
C + s,

−→
D + y), (s+

−→
C ) ∈ R.

Taking φ(1)(
−→
C + s,

−→
D + y) = φ(2)(s, y), we have

D
(2)
hn
vn ⇀ φ(2), s ∈ R.

Moreover,

∥∇φ(2)(s)∥L2 = ∥∇φ(1)(s+
−→
C )∥L2 ≤ sup

s′∈R
∥∇φ(1)(s′)∥L2 = ∥∇φ(1)(s)∥L∞L2 ,

and

∥∇φ(1)(s+
−→
C )∥L2 = ∥∇φ(2)(s)∥L2 ≤ sup

s∈R
∥∇φ(2)(s)∥L2 = ∥∇φ(2)(s)∥L∞L2 ,

showing the lemma. □

The second lemma is the following one, where we keep the notation of the construction that
allowed us to extract the scales and cores.



CRITICAL NLS: STABILIZATION RESULT 13

Lemma 2.10. Let {j, j′} ∈ {1, ...,K}2 be such that

(x(j), t(j)) ̸⊥hn (x(K+1), t(K+1)) and (x(j), t(j)) ⊥hn (x(j
′), t(j

′)).

If D
(K+1)
hn

w
(K+1)
n ⇀ 0, then D

(j)
hn
w

(K+1)
n ⇀ 0.Moreover, D

(j)
hn
p
(j′)
n ⇀ 0 for any concentrating solution

p
(j′)
n associated with [φ(j′), h, x(j

′), t(j
′)].

Proof. The first part of this lemma is a particular case of Lemma 2.9. So, it remains to show that

D
(j)
hn
p
(j′)
n ⇀ 0 or, equivalently,√

hnp
(j′)
n (t(j)n + h2ns, x

(j)
n + hny)⇀ 0 in Ḣ1(R3).

Since p
(j′)
n is a concentrating solution associated to [φ(j′), h, x(j

′), t(j
′)], we have

p(j
′)

n (t, x) =
1√
hn
φ(j′)

( t− t
(j′)
n

h2n
,
x− x

(j′)
n

hn

)
,

and √
hnp

(j′)
n (h2ns, x

(j)
n + hny) = φ(j′)

( t(j)n − t
(j′)
n

h2n
+ s,

x
(j)
n − x

(j′)
n

hn
+ y
)
.

Assuming (x(j), t(j)) ⊥hn (x(j
′), t(j

′)), without loss of generality, let us assume that φ(j′) is continuous
and compactly supported. Thus,∫

R3

∇
√
hnp

(j′)
n (t(j)n + h2ns, x

(j)
n + hny) · ∇ψ(y) dy =∫

R3

∇φ(j′)
( t(j)n − t

(j′)
n

h2n
+ s,

x
(j)
n − x

(j′)
n

hn
+ y
)
· ∇ψ(y) dy,

which tends to 0 as n tends to ∞ if
∣∣∣ t(j)n −t

(j′)
n

h2
n

∣∣∣ → ∞ or
∣∣∣x(j)

n −x
(j′)
n

h2
n

∣∣∣ → ∞, since φ(j′) is compactly

supported. This proves the lemma. □

Now, we prove the main result of this step. Precisely, the following proposition will ensure
the profile decomposition for hn-oscillatory sequences.

Proposition 2.11. Let (vn)n∈N be an (strictly) hn-oscillatory sequence of solutions to the linear
Schrödinger equation (2.4). Then, up a subsequence, there exist linear concentrating solutions pkn,

as defined in Definition 3, associated to [φ(k), h, x(k), t(k)] such that for any l ∈ N∗, one has

(2.14) vn(t, x) =

l∑
j=1

p(j)n (t, x) + w(l)
n (t, x),

(2.15) lim sup
n→∞

∥w(l)
n ∥L∞([0,T ];L6(R3) −→ 0, l → ∞,

for all T > 0, and

(2.16) ∥∇vn(t)∥2L2 =

l∑
j=1

∥∇pn(t)(j)∥2L2 + ∥∇wn(t)
(l)∥2L2 + o(1), n→ ∞,

for t ∈ [0, T ]. Moreover, for any j ̸= k, we have (x(k), t(k)) ⊥ (x(j), t(j)).

Proof. Using the notation of Definition 4, if vn ∈ L∞([0, T ], Ḣ1(R3)), consider ṽn its extension in
R by zero outside [0, T ] and denote

δ(v) = sup
(tn,xn)

{
∥∇φ(0)∥2L2 ;Dhn ṽn ⇀ φ,up to a subsequence, φ ∈ L∞(R; Ḣ1(R3))

}
,

where (tn, xn) are sequences in [0, T ]×R3 and this means that h
1
2
n ṽn(tn + h2nt, xn + hnx)⇀ φ(t, x)

in Ḣ(R3).
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So, in this scenario, we consider φ some type of weak limit of the translated sequence ṽn. Let
pn be a linear concentrating solution associated to φ

pn(t, x) =
1√
hn
φ
( t− tn

h2n
,
x− xn
hn

)
and p̃n be its extension in R by zero outside [0, T ]. Let V(vn) be the set of such functions φ. If

δ(v) = 0, we take p
(j)
n = p̃

(j)
n = 0, for all j. If δ(v) > 0, we choose φ(1) ∈ V(vn) such that

∥∇φ(1)(0)∥L2 ≥ 1

2
δ(v) > 0.

This means that there exists (x(1), t(1)) ∈ [0, T ] × R3 → (x
(1)
∞ , t

(1)
∞ ) satisfying Dhn ṽn ⇀ φ(1) as

n→ ∞. Equivalently√
hnṽn(t

(1)
n + h2ns, x

(1)
n + hny)⇀ φ(1)(s, y), s ∈ R, as n→ ∞.

Now, choose p
(1)
n as the linear concentrating solution associated with [φ(1), h, x(1), t(1)] and let p̃

(1)
n

be its the extension to R by zero outside [0, T ]. Note that the assumption t
(1)
n ∈ [0, T ] ensures

t
(1)
∞ ∈ [0, T ], which will always be the case for all the concentrating solutions we consider.

To proceed, we first state a lemma that will be used for the orthogonality of energies.

Lemma 2.12. Let w
(1)
n = ṽn − p̃

(1)
n . One has

∥∇ṽn(t)∥2L2 = ∥∇p̃(1)n (t)∥2L2 + ∥∇w(1)
n (t)∥2L2 + o(1)as n→ ∞.

Proof. Observe that√
hnw

(1)
n (t(1)n + h2ns, x

(1)
n + hny) =

√
hnṽn(t

(1)
n + h2ns, x

(1)
n + hny)

−
√
hnp̃

(1)
n (t(1)n + h2ns, x

(1)
n + hny)

=
√
hnṽn(t

(1)
n + h2ns, x

(1)
n + hny)− φ(1)(s, y)⇀ 0, n→ ∞,

which means that Dhnw
(1)
n ⇀ 0. Then,

∥∇ṽn(t)∥2L2 = ∥∇w(1)
n (t)∥2L2 + 2⟨∇w(1)

n (t),∇p̃(1)n (t)⟩+ ∥∇p̃(1)n (t)∥2L2 .

A change of variables yields

⟨∇w(1)
n (t),∇p̃(1)n (t)⟩ =

∫
R3

∇xw
(1)
n (t, x) · ∇xp̃

(1)
n (t, x) dx

=

∫
R3

∇xw
(1)
n (t, x) · ∇x

1√
hn
φ(1)

( t− t
(1)
n

h2n
,
x− x

(1)
n

hn

)
dx

=

∫
R3

∇xw
(1)
n (t(1)n + h2ns, x

(1)
n + hny) · ∇x

1√
hn
φ(1)(s, y) h3ndy

=

∫
R3

∇y

√
hnw

(1)
n (t(1)n + h2ns, x

(1)
n + hny) · ∇yφ

(1)(s, y) dy,

which goes to 0, as n→ ∞, proving Lemma 2.12. □

The previous lemma ensures that we can get the expansion of vn announced in Proposition
2.11 by induction iterating the same process. To this end, let us assume that

ṽn(t, x) =

l∑
j=1

p̃(j)n (t, x) + w(l)
n (t, x).

Hence,

vn(t, x) =

l∑
j=1

p(j)n (t, x) + w(l)
n (t, x),
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and

∥∇vn(t)∥2L2 =

l∑
j=1

∥∇p(j)n (t)∥2L2 + ∥∇w(l)
n (t)∥2L2 + o(1), n→ ∞,

where p
(j)
n is a linear concentrating solution associated with [φ(j), h, x(j), t(j)], which are mutually

orthogonal due to Lemma 2.12. We now argue as before: If δ(w(l)) = 0, we just choose p
(l+1)
n = 0.

If δ(w(l)) > 0, choose [φ(l+1), x(l+1), t(l+1)] such that

(2.17) ∥∇φ(l+1)(0)∥2L2 ≥ 1

2
δ(w(l)),

and

Dhnw
(l)
n ⇀ φ(l+1), as n→ ∞.

Define p
(l+1)
n as a linear concentrating solution associated to [φ(l+1), h, x(l+1), t(l+1)]. Again, Lemma

2.12 applied to w
(l)
n and p̃

(l+1)
n gives (2.16) with w

(l+1)
n = w

(l)
n − p̃

(l+1)
n .

Let us now show the convergence (2.15). Using Lemma 2.2 and energy estimates, we have

∥∇φ(j)(0)∥2L2 = ∥∇p(j)n (t(j)n )∥2L2 = ∥∇p(j)n (0)∥2L2 .

Using (2.16), we have that, for some C(T ) = C > 0,

l∑
j=1

∥∇φ(j)(0)∥2L2 =

l∑
j=1

∥∇p(j)n (0)∥2L2 ≤ lim sup
n→∞

∥∇vn(0)∥2L2 ≤ C.

So, the series with general term ∥∇φ(j)(0)∥2L2 converges and, therefore,

∥∇φ(j)(0)∥2L2 → 0, as l → ∞.

Using estimate (2.17), one obtains

δ(w(l)) → 0, as l → ∞.

To show that

lim sup
n→∞

∥w(l)
n ∥L∞

t L6
x
−→ 0, l → ∞,

introduce a family of functions χR(t, x) = χ1
R(t) · χ2

R(x) ∈ C∞
0 (R × R3) satisfying the following

properties: 
|χ̃1

R|+ |χ̂2
R| ≤ 2, with supp(χ̂2

R) ⊂
{

1
2Rhn

≤ |ξ| ≤ 2R
hn

}
;

χ̂2
R(ξ) ≡ 1, for

{
1

Rhn
≤ |ξ| ≤ R

hn

}
;

χ̃1
R

(
|ξ|2
)
= 1, on supp(χ̂2

R);

supp(χ1
R) ⊂ [−T, 0],

where ˜ and ̂ denote de Fourier transform in time and space, respectively. One has

(2.18) ∥w(l)
n ∥L∞([0,T ];L6(R3)) ≤ ∥χR ∗ w(l)

n ∥L∞([0,T ];L6(R3)) + ∥(δ − χR) ∗ w(l)
n ∥L∞([0,T ];L6(R3))

where ∗ denotes the convolution in (t, x) and δ denotes the Dirac distribution. Let us bound each
term on the right-hand side of inequality (2.18).

1. Bound for ∥χR ∗ w(l)
n ∥L∞([0,T ];L6(R3)).

Note that

∥χR ∗ w(l)
n ∥L∞([0,T ];L6(R3)) ≤ ∥χR ∗ w(l)

n ∥
1
3

L∞([0,T ];L2(R3))
· ∥χR ∗ w(l)

n ∥
2
3

L∞([0,T ]×R3)
.

The function χR ∗w(l)
n is a solution to the linear Schrödinger equation (2.4) on R and, in particular,

the L2-conservation law gives

∥χR ∗ w(l)
n ∥2L∞([0,T ];L2(R3)) =∥(χR ∗ w(l)

n )(0)∥2L2
x
=

1

(2π)3
∥Fx→ξ((χR ∗ w(l)

n )(0))(ξ)∥2L2
ξ
.(2.19)
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On the other hand, we write

(χR ∗ w(l)
n )(0, x) =

∫
R
χ1
R(−s)

∫
R3

χ2
R(x− y)w(l)

n (s, y) dyds.

By the Plancherel inversion formula, we get

(χR ∗ w(l)
n )(0, x) =

1

(2π)3

∫
R
χ1
R(−s)

∫
R3

χ2
R(x− y)

∫
R3

eiyξŵ
(l)
n (s)(ξ)e−ixξeixξ dξdyds

=
1

(2π)3

∫
R
χ1
R(−s)

∫
R3

e−i(x−y)ξχ2
R(x− y)

∫
R3

ŵ
(l)
n (s)(ξ)eixξ dξdyds

=
1

(2π)3

∫
R
χ1
R(−s)

∫
R3

χ̂2
R(ξ)ŵ

(l)
n (s)(ξ)eixξ dξds.

Since ŵ
(l)
n (s)(ξ) = eis|ξ|

2
ŵ

(l)
n (0)(ξ), we obtain

(χR ∗ w(l)
n )(0, x) =

1

(2π)3

∫
R
χ1
R(−s)

∫
R3

χ̂2
R(ξ)ŵ

(l)
n (0)(ξ)eis|ξ|

2
eixξ dξds

=
1

(2π)3

∫
R3

χ̃1
R

(
|ξ|2
)
χ̂2
R(ξ)ŵ

(l)
n (0)(ξ)eixξ dξ

= F−1
ξ→x

[
χ̃1
R

(
|ξ|2
)
χ̂2
R(ξ)ŵ

(l)
n (0)(ξ)

]
(x).

Consequently

(2.20) Fx→ξ((χR ∗ w(l)
n )(0))(ξ) = χ̃1

R

(
|ξ|2
)
χ̂2
R(ξ)ŵ

(l)
n (0)(ξ).

Using the properties of (2.19) and (2.20), we get

∥χR ∗ w(l)
n ∥2L∞([0,T ];L2(R3)) =

1

(2π)3

∥∥∥χ̃1
R

(
|ξ|2
)
χ̂2
R(ξ)ŵ

(l)
n (0)(ξ)

∥∥∥2
L2
ξ

≤C 1

(2π)3

∫
1

2Rhn
≤|ξ|≤ 2R

hn

|χ̂2
R(ξ)ŵ

(l)
n (0)(ξ)|2 dξ

≤C1(R)h
2
n∥ξŵ

(l)
n (0)∥2L2

≤C1(R)h
2
n∥∇w(l)

n (0)∥2L2
x
,

where C1 is an R-dependent constant. Now, observe that

lim sup
n→∞

∥χR ∗ w(l)
n ∥L∞([0,T ]×R3) = sup

(tn,xn)
lim sup
n→∞

∣∣∣(χR ∗ w(l)
n )(tn, xn)

∣∣∣.
Let φ ∈ V(w(l)

n ) such that
√
hnw

(l)
n (tn + h2ns, xn + hny) ⇀ φ(s, y) and p̃n be the rescaled function

p̃n(t, x) =
1√
hn
φ
(

t
h2
n
, x
hn

)
. We have that p̃n satisfies the linear Schrödinger equation and

w(l)
n (tn + t, xn + x)⇀ p̃n(t, x).

Hence,

(χR ∗ w(l)
n )(tn + t, xn + x)⇀ (χR ∗ p̃n)(t, x)

and

(χR ∗ w(l)
n )(tn, xn)⇀ (χR ∗ p̃n)(0, 0).

Thus,

lim sup
n→∞

∥χR ∗ w(l)
n ∥L∞([0,T ]×R3) ≤ sup

{∣∣∣∣∣
∫
R

∫
R3

χR(−t,−x)p̃n(t, x) dxdt

∣∣∣∣∣
}
.
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Therefore, by Hölder’s inequality, it follows that

lim sup
n→∞

∥χR ∗ w(l)
n ∥L∞([0,T ]×R3) ≤ C2(R) sup

{
∥p̃n∥L∞

t L6
x

}
,

where C2(R) = ∥χR∥
L1([0,T ];L

6
5 (R3))

. Since

∥p̃n(t)∥L6
x
≤ ∥p̃n(t)∥Ḣ1

x
= ∥p̃n(0)∥Ḣ1

x
= ∥φ(0)∥Ḣ1

x
≤ Cδ(w(l)

n ),

it follows that

∥χR ∗ w(l)
n ∥L∞([0,T ]×R3) ≤ C2(R)δ(w

(l)
n )

for every l ≥ 1. Putting these estimates together, we conclude that

∥χR ∗ w(l)
n ∥L∞([0,T ];L6(R3)) ≤C1(R)h

1
3
n∥∇w(l)

n ∥
1
3

L2 · C2(R)δ(w
(l)
n )

2
3 ≤ C(R)h

1
3
nδ(w

(l)
n )

2
3 ,(2.21)

which is the desired bound.

2. Bound for ∥(δ − χR) ∗ w(l)
n ∥L∞([0,T ];L6(R3)).

The function (δ − χR) ∗ w(l)
n is a solution to the linear Schrödinger equation in R. Therefore,

∥(δ − χR) ∗ w(l)
n ∥2L∞([0,T ];L6(R3)) ≤ C∥∇(δ − χR) ∗ w(l)

n (t)∥2L2 ≤ C∥∇(δ − χR) ∗ w(l)
n (0)∥2L2 .

By Plancherel’s theorem and identity (2.20), one has

∥∇(δ − χR) ∗ w(l)
n (0)∥L2 =

1

(2π)3

∫
R3

|ξ|2
∣∣∣ŵ(l)

n (0)(ξ)
[
1− χ̃1

R

(
|ξ|2
)
χ̂2
R(ξ)

]∣∣∣2 dξ.
Observe that [

1− χ̃1
R

(
|ξ|2
)
χ̂2
R(ξ)

]
= 0, for

1

hnR
≤ |ξ| ≤ R

hn
,

and, consequently,

(2.22) lim sup
n→∞

∥(δ − χR) ∗ w(l)
n ∥2L∞([0,T ];L6(R3)) ≤ C lim sup

n→∞

∫
{|ξ|≤ 1

hnR
}∪{|ξ|≥ R

hn
}
|ξ|2|ŵ(l)

n (0)|2 dξ,

which is the desired bound for the second term on the right-hand side of inequality (2.18).
With these bounds in hand, let us analyze (2.18). From estimates (2.21) and (2.22), one has

lim sup
n→∞

∥w(l)
n ∥L∞([0,T ];L6(R3)) ≤ C(R) lim sup

n→∞

[
h

1
3
nδ(w

(l)
n )

2
3 +

∫
{|ξ|≤ 1

hnR
}∪{|ξ|≥ R

hn
}
|ξ|2|ŵ(l)

n (0)|2 dξ

]
.

So, taking l, R → ∞, using that δ(w
(l)
h ) −→ 0 and w

(l)
n is (strictly) hn-oscillatory (Remark 3), it

follows that

lim sup
n→∞

∥w(l)
n ∥L∞([0,T ];L6(R3)) −→ 0 as l → ∞.

Therefore, by interpolation, one gets

lim sup
n→∞

∥w(l)
n ∥L10([0,T ];L10(R3)) −→ 0 as l → ∞,

since ∥w(l)
n ∥L7

tL
14
x

≤ C∥wn(0)∥Ḣ1 . This completes the proof of the first part of Proposition 2.11. It

remains only to show the orthogonality of cores. We show it by contradiction. To this end, assume
that the index

jK = max
{
j ∈ {1, ...,K}; (t(j)n , x(j)n ) ̸⊥hn (t(K+1)

n , x(K+1)
n )

}
exists. The following are consequences of the construction at the beginning of the demonstration
of Proposition 2.11:

(2.23) D
(l+1)
hn

w(l)
n ⇀ φ(l+1) with φ(l+1) ̸= 0 if l ≤ K,

(2.24) w(l)
n = p(l+1)

n + w(l+1)
n ,
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and

(2.25) w(jK)
n =

K+1∑
j=jK+1

p(j)n + w(K+1)
n .

Moreover, the definition of p
(l)
n and Lemma 2.1 implies D

(l)
hn
p
(l)
n ⇀ φ(l). Then, we get, from (2.23)

and (2.24), that D
(l+1)
hn

w
(l+1)
n ⇀ 0. Applying this to l + 1 = jK gives us D

(K+1)
hn

w
(jK)
n ⇀ 0, due to

the first part of Lemma 2.10 and the definition of jK , since (t
(jK)
n , x

(jK)
n ) ̸⊥hn (t

(K+1)
n , x

(K+1)
n ).

The definition of jK and the second part of Lemma 2.10 giveD
(K+1)
hn

p
(l)
n ⇀ 0 for jK+1 ≤ l ≤ K.

“Applying” D
(K+1)
hn

to equality (2.25), one gets

D
(K+1)
hn

w(jK)
n =

K+1∑
j=jK+1

D
(K+1)
hn

p(j)n +D
(K+1)
hn

w(K+1)
n

=

K∑
j=jK+1

D
(K+1)
hn

p(j)n +D
(K+1)
hn

p(K+1)
n +D

(K+1)
hn

w(K+1)
n .

Therefore,

D
(K+1)
hn

w(jK)
n ⇀ φK+1 ̸= 0,

which is a contradiction since we have already proven that

D
(K+1)
hn

w(jK)
n ⇀ 0.

This completes the proof of the Proposition 2.11. □

Remark 3. Observe that w
(l)
n is (strictly) hn-oscillatory.

Indeed, being w
(1)
n = ṽn− p̃(1)n for l = 1, we apply the operator σR(D) to equation (2.18), where

σR = 1{hn|ξ|≤ 1
R
}∪{hn|ξ|≥R}, R > 0. We get

∥∇σR(D)ṽn∥2L2 = ∥∇σR(D)p̃(1)n ∥2L2 + ∥∇σR(D)w(1)
n ∥2L2 + o(1).

Iterating, we obtain

∥∇σR(D)ṽn∥2L2 =
l∑

j=1

∥∇σR(D)p̃(j)n ∥2L2 + ∥∇σR(D)w(l)
n ∥2L2 + o(1),

which means

lim sup
n→∞

∫
{hn|ξ|≤ 1

R
}∪{hn|ξ|≥R}

|ξ|2|ŵ(l)
n (., ξ)|2 dξ ≤ lim sup

n→∞

∫
{hn|ξ|≤ 1

R
}∪{hn|ξ|≥R}

|ξ|2|v̂n(., ξ)|2 dξ.

Since ṽn is a (strictly) hn-oscillatory sequence, so it is w
(l)
n .

Before presenting the proof of Theorem 2.5, let us present a result from [26, Lemma 2.7 and
Remark 2.8], which will be used.

Lemma 2.13. Let (h(j), x(j), t(j)) be a family of pairwise orthogonal scales-cores and (V (j)) a family
of functions in L10(R, L10(R3)). For every l ≥ 1, we have

(2.26)

∥∥∥∥∥
l∑

j=1

1√
h
(j)
n

V (j)
( .− t

(j)
n

h
(j)
n

2 ,
.− x

(j)
n

h
(j)
n

)∥∥∥∥∥
10

L10
t L10

x

−→
l∑

j=1

∥V (j)∥10L10
t L10

x
, as n→ ∞.

Additionally,

(2.27)

∥∥∥∥∥∇(
l∑

j=1

1√
h
(j)
n

V (j)
( .− t

(j)
n

h
(j)
n

2 ,
.− x

(j)
n

h
(j)
n

))∥∥∥∥∥
10
3

L
10
3

t L
10
3

x

−→
l∑

j=1

∥∇V (j)∥
10
3

L
10
3

t L
10
3

x

, as n→ ∞.



CRITICAL NLS: STABILIZATION RESULT 19

Now, we have all the tools to prove Theorem 2.5.

Step 4. Proof of Theorem 2.5. Denote by v
(j)
n (and the rest (ρ

(l)
n )) the h

(j)
n -oscillatory component

obtained by decomposition (2.7) and p
(j,α)
n the concentrating solutions obtained from decomposition

(2.14) (and the rest w
(j,Aj)
n ). Summing everything up, one has

vn(t, x) =
l∑

j=1

( Aj∑
α=1

p(j,α)n (t, x) + w
(j,Aj)
n (t, x)

)
+ ρ(l)n (t, x).

Rewrite this equation as

vn(t, x) =
l∑

j=1

( Aj∑
α=1

p(j,α)n (t, x)
)
+ w(l,A1,...,Al)

n (t, x),

where

w(l,A1,...,Al)
n (t, x) =

l∑
j=1

w
(j,Aj)
n (t, x) + ρ(l)n (t, x)

for l and Aj fixed, 1 ≤ j ≤ l. We enumerate this pairs by the bijection σ : N2 → N defined by

σ(j, α) < σ(k, β) if j + α < k + β or j + α = k + β and j < k.

The almost orthogonality identity (2.6) is satisfied. Indeed, combining (2.9) and (2.16), we obtain

∥∇vn∥2L2 =
l∑

j=1

∥∇v(j)n ∥2L2 + ∥∇ρ(l)n ∥2L2 + o(1)

=
l∑

j=1

( Aj∑
α=1

∥∇p(j,α)n ∥2L2 + ∥∇w(j,Aj)
n ∥2L2

)
+ ∥∇ρ(l)n ∥2L2 + o(1)

=
l∑

j=1

( Aj∑
α=1

∥∇p(j,α)n ∥2L2

)
+

l∑
j=1

∥∇w(j,Aj)
n ∥2L2 + ∥∇ρ(l)n ∥2L2 + o(1),

but

∥∇w(l,A1,...,Al)
n ∥2L2 =

∥∥∥∥∥∇
(

l∑
j=1

w
(j,Aj)
n + ρ(l)n

)∥∥∥∥∥
2

L2

=
l∑

j=1

∥∇w(j,Aj)
n ∥2L2 + ∥∇ρ(l)n ∥2L2

since w
(j,Aj)
n is hjn-oscillatory and ρ

(l)
n is hjn-singular for all 1 ≤ j ≤ l. Therefore,

(2.28) ∥∇vn∥2L2 =

l∑
j=1

Aj∑
α=1

∥∇p(j,α)n ∥2L2 + ∥∇w(l,A1,...,Al)
n ∥2L2 + o(1) as n→ ∞.

The last point that remains to be checked is the convergence of the remainder w
(l,A1,...,Al)
n to zero

in the Strichartz norm. To this end, let ε > 0 be a small arbitrary number. To get the result, it
suffices to prove that for l0 large enough,

∥w(l,A1,...,Al)
n ∥L∞

t L6
x
≤ ε

for all (l, A1, ..., Al) satisfying l ≥ l0 and σ(j, Aj) ≥ σ(l0, 1). To prove this, first choose l0 such that,
for every l ≥ l0,

lim sup
n→∞

∥ρ(l)n ∥L∞
t L6

x
≤ ε,
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Note that the existence of such l0 is ensured by (2.8). Moreover, by (2.15), for every l ≥ l0, there
exists Bl, such that Aj ≥ Bl for every j ∈ {1, ..., l} and

lim sup
n→∞

∥w(j,Aj)
n ∥L∞

t L6
x
≤ ε

l
.

Moreover, the expression (2.28) implies that the series with general term
∑

(j,α) lim supn→∞ ∥∇p(j,α)n (0)∥2L2

is convergent. In particular, we may also assume, increasing l0 if necessary, that l0 is such that

(2.29)
∑

σ(j,α)>σ(l0,1)

lim sup
n→∞

∥∇p(j,α)n (0)∥2L2 ≤ ε.

Now, rewrite the remainder w
(l,A1,...,Al)
n as

w(l,A1,...,Al)
n = ρ(l)n +

∑
1≤j≤l

w
(j,max(Aj ,Bl))
n + S(l,A1,...,Al)

n ,

where

S(l,A1,...,Al)
n =

∑
1≤j≤l,Aj<Bl

w
(j,Aj)
n − w(j,Bl)

n .

One has

w
(j,Aj)
n − w(j,Bl)

n =

Bl∑
α=1

p(j,α)n −
Aj∑
α=1

p(j,α)n =
∑

Aj<α≤Bl

p(j,α)n .

Hence,

S(l,A1,...,Al)
n =

∑
1≤j≤l,Aj<Bl

∑
Aj<α≤Bl

p(j,α)n .

Therefore,

lim sup
n→∞

∥w(l,A1,...,Al)
n ∥L∞

t L6
x

≤ lim sup
n→∞

∥ρ(l)n ∥L∞
t L6

x
+ lim sup

n→∞

l∑
j=1

∥w(j,max(Aj ,Bl))
n ∥L∞

t L6
x

+ lim sup
n→∞

∥S(l,A1,...,Al)
n ∥L∞

t L6
x

≤ 2ε+ lim sup
n→∞

∥S(l,A1,...,Al)
n ∥L∞

t L6
x
.

Since S
(l,A1,...,Al)
n is a solution of the linear Schrödinger equation, we have

∥S(l,A1,...,Al)
n ∥L∞

t L6
x
≤ C∥∇S(l,A1,...,Al)

n ∥L2 ≤ C∥∇S(l,A1,...,Al)
n (0)∥L2

≤ C
∑

1≤j≤l,Aj<Bl

∑
Aj<α≤Bl

∥∇p(j,α)n (0)∥L2

≤ Cε,

because the sum is restricted to some σ(j, α) satisfying σ(j, α) > σ(j, αj) > σ(l0, 1) and is indeed

smaller than Cε due to inequality (2.29). Therefore, lim supn→∞ ∥w(l,A1,...,Al)
n ∥L∞

t L6
x
is smaller than

(2+C)ε for all (l, A1, ..., Al) satisfying l ≥ l0 and σ(j, Aj) ≥ σ(l0, 1). Through the same procedure,
we get the same estimates for the L10(L10) norm, that is,

lim sup
n→∞

∥w(l,A1,...,Al)
n ∥L10

t L10
x

≤ lim sup
n→∞

∥ρ(l)n ∥L10
t L10

x
+ lim sup

n→∞

l∑
j=1

∥w(j,max(Aj ,Bl))
n ∥L10

t L10
x

+ lim sup
n→∞

∥S(l,A1,...,Al)
n ∥L10

t L10
x

≤ 2ε+ lim sup
n→∞

∥S(l,A1,...,Al)
n ∥L10

t L10
x
.
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Moreover,

lim sup
n→∞

∥S(l,A1,...,Al)
n ∥10L10

t L10
x

= lim sup
n→∞

∥∥∥∑
(j,α)

p(j,α)n

∥∥∥10
L10
t L10

x

and rescaling,

p(j,α)n (t, x) =
1√
hn
ψ(j,α)

( t− t
(j,α)
n

h2n
,
x− x

(j,α)
n

hn

)
,

where ψ(j,α) ∈ L∞(R; Ḣ1(R3)). So, by convergente (2.26),

lim sup
n→∞

∥∥∥∑
(j,α)

p
(j,α)
h

∥∥∥10
L10
t L10

x

=
∑
(j,α)

∥ψ(j,α)∥10L10
t L10

x
.

So, through Strichartz estimates and Lemma 2.2, one gets∑
(j,α)

∥ψ(j,α)∥10L10
t L10

x
=
∑
(j,α)

∥p(j,α)n ∥10L10
t L10

x
≤ C

∑
(j,α)

(
∥∇p(j,α)n (0)∥2L2

)5
.(2.30)

On the other hand, by (2.28) one has that
∑

(j,α) ∥∇p
(j,α)
n (0)∥2L2 is convergent, and so the right-hand

side of (2.30) is finite. Thus ( ∑
σ(j,α)>σ(l0,1)

∥ψ(j,α)∥10L10
t L10

x

) 1
10 ≤ ε.

Hence,

lim sup
n→∞

∥w(l,A1,...,Al)
n ∥L10

t L10
x

≤ 2ε+ lim sup
n→∞

∥S(l,A1,...,Al)
n ∥L10

t L10
x

≤ 2ε+
(∑

(j,α)

∥ψ(j,α)∥10L10
t L10

x

) 1
10

= 3ε.

Since ε is an arbitrary small number, we conclude that

lim sup
n→∞

∥w(l,A1,...,Al)
n ∥L10

t L10
x

−→ 0,

which proves Theorem 2.5. □

To finish this section, we present the next result, which is a consequence of the construction
carried out in the proof of Proposition 2.11.

Lemma 2.14. Consider the notations and the assumptions of Theorem 2.5. For any l ∈ N and

1 ≤ j ≤ l, we have D
(j)
hn
w

(l)
n ⇀ 0.

Proof. Assuming that D
(j)
hn
w

(l)
n ⇀ φ, we can directly use the decomposition from Theorem 2.5 to

write

w(l)
n =

L∑
i=l+1

p(i)n + w(L)
n ,

for L > l. In case of scale orthogonality of h
(j)
n and h

(i)
n , for l + 1 ≤ i ≤ L, we have D

(j)
hn
p
(i)
n ⇀ 0.

Indeed, by hypothesis, p
(i)
n is a concentrating solution and so

p(i)n (t, x) =
1√
h
(i)
n

φ(i)
( t− t

(i)
n

h
(i)
n

2 ,
x− x

(i)
n

h
(i)
n

)
,

which means that√
h
(j)
n p(i)n (t(j)n + (h(j)n )2s, x(j)n + h(j)n y) =

√
h
(j)
n√
h
(i)
n

φ(i)
( t(j)n − t

(i)
n

h
(i)
n

2 + s
(h(j)n

h
(i)
n

)2
,
x
(j)
n − x

(i)
n

h
(i)
n

+ y
h
(j)
n

h
(i)
n

)
.
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Without loss of generality, we may assume φ(i) to be continuous and compactly supported. Thus,
for ψ to be a compactly supported function, one has∫

R3

∇
√
h
(j)
n p(i)n (t(j)n + (h(j)n )2s, x(j)n + h(j)n y) · ∇ψ(y) dy

=

√
h
(j)
n√
h
(i)
n

∫
R3

∇φ(i)
( t(j)n − t

(i)
n

h
(i)
n

2 + s
(h(j)n

h
(i)
n

)2
,
x
(j)
n − x

(i)
n

h
(i)
n

+ y
h
(j)
n

h
(i)
n

)
· ∇ψ(y) dy

and the orthogonality of h
(j)
n and h

(i)
n means that

h
(j)
n

h
(i)
n

+
h
(i)
n

h
(j)
n

−→ +∞.

If h
(j)
n

h
(i)
n

−→ +∞, we have√
h
(j)
n√
h
(i)
n

∫
R3

∇φ(i)
( t(j)n − t

(i)
n

h
(i)
n

2 + s
(h(j)n

h
(i)
n

)2
,
x
(j)
n − x

(i)
n

h
(i)
n

+ y
h
(j)
n

h
(i)
n

)
· ∇ψ(y) dy = O

((h(j)n

h
(i)
n

) 1
2

)
→ 0,

as done in [26, Lemma 2.7]. If h
(i)
n

h
(j)
n

−→ +∞, we make the change of variables

x
(j)
n − x

(i)
n

h
(i)
n

+ y
h
(j)
n

h
(i)
n

= x,

to get √
h
(j)
n√
h
(i)
n

∫
R3

∇φ(i)
( t(j)n − t

(i)
n

h
(i)
n

2 + s
(h(j)n

h
(i)
n

)2
, x
)
· ∇ψ

(h(i)n

h
(j)
n

x− x
(j)
n − x

(i)
n

h
(i)
n

)h(i)n

h
(j)
n

dx.

= O

((h(i)n

h
(j)
n

) 1
2

)
→ 0,

since ψ is assumed to be compactly supported, which gives the desired result D
(j)
hn
p
(i)
n ⇀ 0.

Now, in case h
(j)
n = h

(i)
n and (x(j), t(j)) ⊥hn (x(i), t(i)), the second part of Lemma 2.10 gives

the same convergence. Therefore, in both cases one has

D
(j)
hn
w(L)
n ⇀ φ.

Since, by Theorem 2.5, lim supn→∞ ∥w(L)
n ∥L∞

t L6
x
→ 0, we have φ = 0, proving the lemma. □

3. Nonlinear profile decomposition

In this section, we establish a decomposition into profiles similar to the one carried out in the
previous section, but, this time, for a sequence of solutions to the nonlinear equation (2.1).

Theorem 3.1. Let un be the sequence of solutions to nonlinear Schrödinger equation (2.1) with

initial data φn bounded in Ḣ1(R3) and satisfying lim supn→∞ ∥φn∥Ḣ1 < λ0. Let p
(j)
n be the lin-

ear concentrating solutions given by Theorem 2.5 and q
(j)
n the associated nonlinear concentrating

solutions. Then, up to a subsequence, we have

un(t, x) =

l∑
j=1

q(j)n (t, x) + w(l)
n (t, x) + r(l)n (t, x),
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and

lim sup
n→∞

(
∥∇r(l)n ∥

L
10
3 ([0,T ];L

10
3 (R3))

+∥r(l)n ∥L10([0,T ];L10(R3)) + ∥r(l)n ∥L∞([0,T ];Ḣ1(R3))

)
−→ 0 as l → ∞.

(3.1)

The following notations will be used in this section: β(z) = |z|4z, W (l)
n =

∑l
j=1 q

(j)
n , and

f (l)n =

l∑
j=1

β(q(j)n )− β
( l∑

j=1

q(j)n + w(l)
n + r(l)n

)
.

Before proving the decomposition result, we first show that nonlinear concentration solutions behave
similarly to linear concentration solutions, at least in a specific type of interval.

3.1. Behavior of nonlinear concentrating solutions. To give the behavior of nonlinear con-
centration solutions, we will use the following two lemmas from Keraani in [26].

Lemma 3.2. Let I = [a, b]. The solution v ∈ C([a, b]; Ḣ1(R3)) of the equation

i∂tv +∆v = f, I × R3,

with ∇f ∈ L
10
7 (I × R3), satisfies

|||v|||I + sup
t∈I

∥∇v(t)∥L2 ≤ C
(
∥∇v(a)∥L2 + ∥∇f∥

L
10
7 (I×R3)

)
.

Lemma 3.3. Let M = M(t) be a positive continuous function on [0, T ] such that M(0) = 0 and,
for every t ∈ [0, T ],

M(t) ≤ c
(
a+

5∑
α=2

Mα(t)
)
,

with 0 < a < a0 = a0(c). One has

M(t) ≤ 2ca, ∀t ∈ [0, T ].

Now, we examine the behavior of the nonlinear concentrating solutions. As already seen, the
evolution problem (2.1) admits a complete scattering theory concerning linear problems in the ball
∥u0∥Ḣ1(R3) < λ0. The next theorem is a consequence of this scattering property.

Theorem 3.4. Let un be a nonlinear concentrating solution. There exist two linear concentrating
solutions [φi, h, x, t], i = 1, 2, such that for all interval [−T, T ] containing t∞, one has

(3.2) lim sup
n→∞

(
∥un − [φ1, h, x, t]∥L10(I1,Λn ×R3)

+ ∥un − [φ1, h, x, t]∥L∞(I1,Λn ;Ḣ1(R3))

)
−→ 0,

and

(3.3) lim sup
n→∞

(
∥un − [φ2, h, x, t]∥L10(I3,Λn ×R3)

+ ∥un − [φ2, h, x, t]∥L∞(I3,Λn ;Ḣ1(R3))

)
−→ 0,

as Λ → ∞. Here, I1,Λn = [−T, tn − Λh2n] and I
3,Λ
n = (tn + Λh2n, T ].

Proof. We consider the case tn
hn

→ ∞. The other cases are followed analogously.

Let us show (3.2). For the sake of simplicity, we take I1,Λn = [0, t∞ − Λh2n]. We know that un
is a solution to {

i∂tun +∆un − |un|4un = 0, on [0, T ]× R3,

un(0) = φ ∈ Ḣ1(R3).

Since un(t, x) is a nonlinear concentrating solution, one has

un(t, x) =
1√
hn
u
( t− tn

h2n
,
x− xn
hn

)
,

where u satisfies
i∂su+∆u− |u|4u = 0 on [0, T ]× R3.
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By the scattering theory of Proposition A.5, there exists v, solution of the system{
i∂sv +∆v = 0, on [0, T ]× R3,
v(0) = φ1,

such that
∥∇u(s)−∇v(s)∥L2 −→ 0, as s→ −∞.

Let

vn(t, x) =
1√
hn
v
( t− tn

h2n
,
x− xn
hn

)
satisfying {

i∂tvn +∆vn = 0 on [0, T ]× R3,
vn(tn) =

1√
hn
φ1.

We should prove that

(3.4) lim sup
n→∞

(
∥un − vn∥L10(I1,Λn ×R3)

+ ∥un − vn∥L∞(I1,Λn ;Ḣ1(R3))

)
−→ 0

when Λ → ∞. To this end, define wn := un − vn. Thus, wn satisfies the system{
i∂twn +∆wn = |wn + vn|4(wn + vn),
wn(0) = un(0)− vn(0).

Using Lemma 3.2, and denoting

|||.|||
I1,Λn

:= ∥.∥
L10(I1,Λn ×R3)

+ ∥∇.∥
L

10
3 (I1,Λn ×R3)

,

one has

|||wn|||I1,Λn
+ ∥∇wn∥L∞(I1,Λn ;L2(R3))

≤ c
(
∥∇wn(0)∥L2 + ∥∇(wn + vn)

4(wn + vn)∥
L

10
7 (I1,Λn ×R3)

)
.

On the other hand, one has

∥∇wn(0)∥L2 =
∥∥∥∇u(− tn

h2n

)
−∇v

(
− tn
h2n

)∥∥∥
L2

−→ 0 as n→ ∞.

Therefore

|||wn|||I1,Λn
+ ∥∇wn∥L∞(I1,Λn ;L2(R3))

≤ c
(
∥∇wn(0)∥L2

+ ∥wn + vn∥4L10(I1,Λn ×R3)
∥∇(wn + vn)∥

L
10
3 (I1,Λn ×R3)

)
≤ c

(
∥∇wn(0)∥L2 + ∥wn∥4L10(I1,Λn ×R3)

∥∇wn∥
L

10
3 (I1,Λn ×R3)

+ ∥wn∥4L10(I1,Λn ×R3)
∥∇vn∥

L
10
3 (I1,Λn ×R3)

+ ∥vn∥4L10(I1,Λn ×R3)
∥∇wn∥

L
10
3 (I1,Λn ×R3)

+ ∥vn∥4L10(I1,Λn ×R3)
∥∇vn∥

L
10
3 (I1,Λn ×R3)

)
.

Using Lemma 2.8, one gets

lim sup
n→∞

∥vn∥L10(I1,Λn ×R3)
−→ 0 as Λ → ∞.

Hence,

lim sup
n→∞

(
∥∇wn(0)∥L2 + ∥vn∥L10(I1,Λn ×R3)

)
−→ 0 as Λ → ∞.

Given δ > 0, there exists Λ0 and and integer n0(Λ) such that for all Λ ≥ Λ0 and for any integer
n ≥ n0(Λ), one has ∥∇wn(0)∥L2 + ∥vn∥L10(I1,Λn ×R3)

< δ. Therefore, choosing δ such that δ4 < 1
2c ,

one has

|||wn|||I1,Λn
+ ∥∇wn∥L∞(I1,Λn ;L2(R3))

≤ C
(
∥∇wn(0)∥L2 + |||wn|||5I1,Λn

+|||wn|||4I1,Λn
+ ∥vn∥4L10(I1,Λn ×R3)

)
.
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Define Mn(t) by

Mn(t) := ∥wn∥L10([0,t]×R3) + ∥∇wn∥
L

10
3 ([0,t]×R3)

+ ∥∇wn∥L∞([0,t];L2(R3)).

Then

Mn(t) ≤ C
(
∥∇wn(0)∥L2 + ∥vn∥4L10(I1,Λn ×R3)

+
5∑

α=2

Mn(t)
α
)
,

for all t ∈ I1,Λn . Lemma 3.3 implies that

Mn(t) ≤ 2C
(
∥∇wn(0)∥L2 + ∥vn∥4L10(I1,Λn ×R3)

)
−→ 0, ∀t ∈ I1,Λn ,

for any Λ ≥ Λ0 as n→ ∞. Hence,

lim sup
n→∞

(
∥un − vn∥L10(I1,Λn ×R3)

+ ∥∇(un − vn)∥L∞(I1,Λn ;L2(R3))

)
−→ 0 as Λ → ∞,

showing the convergence (3.4). The proof of (3.3) is analogous. □

3.2. Auxiliary results. We state and prove some technical results which will be used in the proof
of Theorem refnonlineardec.

Lemma 3.5. There exists δ0 > 0 such that if v is a solution of the linear Schrödinger equation
satisfying |||v|||R ≤ δ0 and u is a solution of the nonlinear Schrödinger equation satisfying v(T, x) =
u(T, x) for some T ∈ [−∞,+∞], then |||u|||R ≤ 2|||v|||R.

Proof. Suppose ∥∇(u− v)(x,−∞)∥L2 = 0 (the other cases can be analogously handled). Let (Tn)
be a sequence of numbers converging to +∞ as n → +∞. Set Jn = [−Tn, Tn]. The difference
w = u− v satisfies {

i∂tw +∆w = |w + v|4(w + v),
w(−Tn) = (u− v)(−Tn).

From Lemma 3.2, it follows that

|||w|||Jn ≤ C
(
||∇(u− v)(−Tn)||L2 + ∥∇(w + v)5∥

L
10
7 (Jn×R3)

)
≤ C

(
|∇(u− v)(−Tn)||L2 + ∥w∥4L10(Jn×R3)∥∇w∥L 10

3 (Jn×R3)

+ ∥w∥4L10(Jn×R3)∥∇v∥L 10
3 (Jn×R3)

+ ∥v∥4L10(Jn×R3)∥∇w∥L 10
3 (Jn×R3)

+ ∥v∥4L10(Jn×R3)∥∇v∥L 10
3 (Jn×R3)

)
.

Now, let δ0 > 0 such that δ40 <
1
2C , δ

5
0 <

a0
2 and δ0 < 1, where a0 is the constant from Lemma 3.3.

Therefore,

∥w∥L10(Jn×R3) + ∥∇w∥
L

10
3 (Jn×R3)

≤ 2C
(
∥∇(u− v)(−Tn)||L2 + |||w|||5Jn

+ ∥w∥4L10(Jn×R3)∥∇v∥L 10
3 (Jn×R3)

+ |||v|||5Jn
)

≤ 2C
(
∥∇(u− v)(−Tn)||L2 + |||w|||5Jn

+ |||w|||4L10(Jn×R3) + |||v|||5Jn
)
.

Using the fact that ∥∇(u− v)(x,−Tn)∥L2 → 0 as n goes to infinity, we get, for n large,

∥∇(u− v)(x,−Tn)∥L2 + |||v|||5Jn ≤ a0.

Thus, for n large, the function M : s 7→ |||w|||[−Tn,s] satisfies the conditions of Lemma 3.3 on
[−Tn, Tn], so that

M(Tn) = |||w|||Jn ≤ 4C(∥∇(u− v)(x,−Tn)∥L2 + |||v|||5Jn)
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for large n. Taking n→ ∞, we obtain

|||w|||R ≤ 4C|||v|||5R.

Hence

|||u|||R ≤ |||w|||R + |||v|||R ≤ (4C|||v|||4R + 1)|||v|||R.
Since 2Cδ40 < 1, this proves the lemma. □

Proposition 3.6. There exists C > 0 such that

(3.5) lim sup
n→∞

|||W (l)
n + w(l)

n |||I ≤ C

for all l ≥ 1.

Proof. First of all, observe that, using (2.6),

lim sup
n→∞

|||w(l)
n |||I ≤ C lim sup

n→∞
∥∇w(l)

n (0)∥L2 ≤ C lim sup
n→∞

∥∇vn(0)∥L2 ≤ C

for all l ≥ 1. Thereby, to obtain (3.5), it suffices to prove that

lim sup
n→∞

|||W (l)
n |||I ≤ C,

for all l ≥ 1. Now, rescaling p
(j)
n and q

(j)
n by

p(j)n (t, x) =
1√
h
(j)
n

φ(j)
( t− t

(j)
n

(h
(j)
n )2

,
x− x

(j)
n

h
(j)
n

)
and

q(j)n (t, x) =
1√
h
(j)
n

ψ(j)
( t− t

(j)
n

(h
(j)
n )2

,
x− x

(j)
n

h
(j)
n

)
,

respectively, with φ and ψ belonging to L∞(R; Ḣ1(R3)), (2.26) and (2.27) ensure that

∥W (l)
n ∥10L10(I×R3) →

l∑
j=1

∥ψ(j)∥10L10(R×R3), ∥∇W (l)
n ∥

10
3

L
10
3 (I×R3)

→
l∑

j=1

∥∇ψ(j)∥
10
3

L
10
3 (R×R3)

,

as n → ∞, for every l. Let us prove that the series
∑

j≥1 |||ψ(j)|||
10
3
R are convergent. To this end,

first note that (2.6) and Lemma 2.2 imply

(3.6)
∑
j≥1

|||φ(j)|||
10
3
R =

∑
j≥1

|||p(j)n |||
10
3
I ≤ C

∑
j≥1

∥∇p(j)n (0)∥
10
3

L2
x
≤ C,

where we have used that the series
∑

j≥1 ∥∇p
(j)
n (0)∥

10
3

L2
x
is convergent. Thus, if

(3.7) |||ψ(j)|||R ≤ C|||φ(j)|||R,

for large enough j, then
∑

j≥1 |||ψ(j)|||
10
3
R is convergent. But from (3.6), one has that |||φ(j)|||R ≤ δ0,

for large enough j large enough, since |||φ(j)|||R is the general term of a convergent series, where δ0
is as in Lemma 3.5. Moreover,

∥∇(ψ(j) − φ(j))(−t(j)n /(h(j)n )2)∥L2
x
= ∥∇(q(j)n − p(j)n )(0)∥L2

x
= 0.

Consequently, ψ(j) and φ(j) satisfy the conditions of Lemma 3.5 for large j, and, therefore, inequality
(3.7) holds. This finishes the proof. □
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Proposition 3.7. For every ε > 0, there exists an n-dependent finite partition

(3.8) [0, T ] =

p⋃
i=1

Iin

such that

(3.9) lim sup
n→∞

∥W (l)
n + w(l)

n ∥L10(Iin×R3) ≤ ε,

for all 1 ≤ i ≤ p, l ≥ 1.

Proof. Since

lim sup
n→∞

∥w(l)
n ∥L10(I×R3) −→ 0 as l → ∞,

given ε > 0, there exists l1 ≥ 1 such that

(3.10) lim sup
n→∞

∥w(l)
n ∥L10(I×R3) ≤

ε

2

if l ≥ l1. Moreover, by (2.26), there exists l2 ≥ 1 such that

lim sup
n→∞

∥W (l)
n ∥L10(I×R3) ≤ lim sup

n→∞
∥W (l2)

n ∥L10(I×R3) +
( l∑

j=l2+1

∥ψ(j)∥10L10(R×R3)

) 1
10

for all l ≥ l2 ≥ 1, Since the series
∑

j≥1 ∥ψ(j)∥10L10(R×R3) is convergent, we may choose l2 such that

(3.11)
(∑

j≥l2

∥ψ(j)∥10L10(R×R3)

) 1
10 ≤ ε

4
.

Putting together (3.10) and (3.11), it follows that

lim sup
n→∞

∥W (l)
n + w(l)

n ∥L10(I×R3) ≤ lim sup
n→∞

∥W (l)
n ∥L10(I×R3) + lim sup

n→∞
∥w(l)

n ∥L10(I×R3)

≤ lim sup
n→∞

∥W (l2)
n ∥L10(I×R3) +

( l∑
j=l2+1

∥ψ(j)∥10L10(R×R3)

) 1
10

+
ε

2

≤ lim sup
n→∞

∥W (l3)
n ∥L10(I×R3) +

3ε

4
,

for every l ≥ l3 = sup(l1, l2). Considering the natural number l3, we must construct l3 partial finite
portion of I for every 1 ≤ j ≤ l3, and the global decomposition is obtained by intersecting all the
partial ones. Note that the partition (3.8) is needed for n large, then in the next construction, we
take n large enough.

For j = 1, we split the interval [0, T ] = I1,Λn ∪ I2,Λn ∪ I3,Λn according to Theorem 3.4.

i. For (I1,Λn ): Using Theorem 3.4 and Lemma 2.8, there exists a linear concentrating solution

p
(1)
n such that

lim sup
n→∞

∥q(1)n ∥
L10(I1,Λn ×R3)

≤ ∥q(1)n − p(1)n ∥
L10(I1,Λn ×R3)

+ ∥p(1)n ∥
L10(I1,Λn ×R3)

≤ ε

4l3
.

ii. For (I3,Λn ): Analogously,

lim sup
n→∞

∥q(1)n ∥
L10(I3,Λn ×R3)

≤ ∥q(1)n − p(1)n ∥
L10(I3,Λn ×R3)

+ ∥p(1)n ∥
L10(I3,Λn ×R3)

≤ ε

4l3
.

iii. For (I2,Λn ): We have I2,Λn = [t
(1)
n − (h

(1)
n )2Λ, t

(1)
n + (h

(1)
n )2Λ]. Therefore,

∥q(1)n ∥
L10(I2,Λn ×R3)

= ∥ψ(1)∥L10([−Λ,Λ]×R3).
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Once Λ is fixed, divide [−Λ,Λ] in a finite number of intervals I(i),Λ such that

∥ψ(1)∥L10(I(i),Λ×R3) ≤
ε

4l3
.

Therefore

∥q(1)n ∥
L10(I

(i),Λ
n ×R3)

= ∥ψ(1)∥L10(I(i),Λ×R3) ≤
ε

4l3
.

This gives the decomposition for j = 1. Analogously, we construct a partial decomposition for
every j = 2, ..., l3. Finally, the global decomposition is obtained by intersecting all the partial ones.
Hence,

lim sup
n→∞

∥W (l)
n + w(l)

n ∥L10(Iin×R3) ≤ lim sup
n→∞

∥W (l3)
n ∥L10(Iin×R3) +

3ε

4

≤ lim sup
n→∞

l3∑
j=1

∥q(j)n ∥L10(Iin×R3) +
3ε

4

≤
l3∑

j=1

ε

4l3
+

3ε

4
= ε,

proving (3.9). □

Lemma 3.8. Let B be a compact set of R×R3. For every ε > 0, there exists a constant C(ε) such
that

(3.12) ∥∇v∥L2(B) ≤ C(ε)∥v∥L10(R×R3) + ε∥∇v(0)∥L2(R3),

for all solutions v of the linear Schrödinger equation.

Proof. We argue by contradiction. Suppose that (3.12) does not hold. Then, there exist an ε > 0
and a sequence (vm) of solutions of the linear Schrödinger equation such that

∥∇vm∥L2(B) > m∥vm∥L10(R×R3) + ε∥∇vm(0)∥L2(R3).

Define ṽm := vm/∥∇vm∥L2(B). One has

1 > m∥ṽm∥L10(R×R3) + ε∥∇ṽm(0)∥L2(R3).

Note that ∥∇ṽm(0)∥L2(R3) is bounded and

m∥ṽm∥L10(R×R3) < −ε∥∇ṽm(0)∥L2(R3) + 1,

thus

(3.13) ∥ṽm∥L10(R×R3) −→ 0, m→ ∞.

By Strichartz estimates, ∥∇ṽm∥
L

10
3 (R×R3)

≤ C∥∇ṽm(0)∥L2(R3). So, we conclude that ∥∇ṽm∥
L

10
3 (R×R3)

is also bounded. In view of (3.13) and [32, Lemma 3.23], there exists a subsequence of (ṽm), which
we keep denoted by the same index, such that

∇ṽm ⇀ 0 weakly in L
10
3 (R× R3).

Setting ψm = ∇ṽm(0, ·), we get

∥eit∆ψm∥L2(B) = ∥eit∆∇ṽm(0)∥L2(B) =
∥∇vm(0)∥L2(B)

∥∇vm(t)∥L2(B)
= 1.

But, up to a subsequence, ψm ⇀ 0 in L2(R3), which is a contradiction. Therefore, (3.12) holds. □

The previous lemma gives the following proposition, which guarantees the smallness, for large
n and l, of

δ(l)n =
∥∥∥∇[β(W (l)

n + w(l)
n )− β(W (l)

n )
]∥∥∥

L
10
7 (I×R3)

+
∥∥∥∇( l∑

j=1

β(q(j)n )− β(W (l)
n )
)∥∥∥

L
10
7 (I×R3)

.
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Proposition 3.9. We have that

(3.14) lim sup
n→∞

δ(l)n −→ 0 as l → ∞.

Proof. We split the proof into two parts. The first one is devoted to proving that for every l ≥ 1,
one has

(3.15)
∥∥∥∇( l∑

j=1

β(q(j)n )− β(W (j)
n )
)∥∥∥

L
10
7 (I×R3)

−→ 0 as n→ ∞.

In the second part, we will show that

(3.16) lim sup
n→∞

∥∇(β(W (l)
n + w(l)

n )− β(W (l)
n ))∥

L
10
7 (I×R3)

−→ 0 as l → ∞.

Part 1. Note that ∥∥∥∇( l∑
j=1

β(q(j)n )− β(W (j)
n )
)∥∥∥

L
10
7 (I×R3)

≤ CDn,

where Dn = ∥∇(q
(j1)
n q

(j2)
n q

(j3)
n q

(j4)
n q

(j5)
n )∥

L
10
7 (I×R3)

, with at least two differents jk, for k=1,2,3,4,5.

Now, we want to prove that
Dn −→ 0, n→ ∞.

Assuming, for example, that j1 ̸= j2, we have

D
10
7
n =

∫
R

∫
R3

|∇q(j1)n q(j2)n (q(jk)n )3|
10
7 dxdt

≤C
∫
R

∫
R3

|∇q(j1)n q(j2)n |
10
7 |q(jk)n |

30
7 dxdt

+ C

∫
R

∫
R3

|q(j1)n q(j2)n |
10
7 |∇(q(jk)n )3|

10
7 dxdt.

(3.17)

To bound the first integral on the right-hand side of the inequality above, use Hölder’s inequality
to get ∫

R

∫
R3

|∇q(j1)n q(j2)n |
10
7 |q(jk)n |

30
7 dxdt ≤ C∥q(jk)n ∥3L10(R4)

(∫
R

∫
R3

|∇q(j1)n q(j2)n |
10
4 dxdt

) 4
7

≤ C

(∫
R

∫
R3

|∇q(j1)n q(j2)n |
5
2 dxdt

) 4
7

.

This last term can be written as

1

(h
(j1)
n h

(j2)
n )

5
7

(∫
R

∫
R3

∣∣∣∣∣∇xψ
(j1)

(
t− t

(j1)
n

(h
(j1)
n )2

,
x− x

(j1)
n

h
(j1)
n

)
ψ(j2)

(
t− t

(j2)
n

(h
(j2)
n )2

,
x− x

(j2)
n

h
(j2)
n

)∣∣∣∣∣
5
2

dxdt

) 4
7

.

Since [h
(j1)
n , x(j1), t(j1)], [h

(j2)
n , x(j2), t(j2)] are orthogonal, assume ψj1 , ψj2 to be continuous and com-

pactly supported an analyze the possible cases:

• If h
(j1)
n

h
(j2)
n

+h
(j2)
n

h
(j1)
n

−→ +∞, assume, for example, that h
(j1)
n

h
(j2)
n

−→ +∞ (the other case is analogous).

Using the change of variables t = s(h
(j2)
n )2 + t

(j2)
n , x = yh

(j2)
n + x

(j2)
n , we have

1

(h
(j1)
n h

(j2)
n )

5
7

(∫
R4

∣∣∣∣∣∇xψ
(j1)

(
t
(j2)
n − t

(j1)
n

(h
(j1)
n )2

+ s
(h

(j2)
n )2

(h
(j1)
n )2

,
x
(j2)
n − x

(j1)
n

h
(j1)
n

+ y
h
(j2)
n

h
(j1)
n

)
ψ(j2)(s, y)

∣∣∣∣∣
5
2

dyds(h(j2)n )5

) 4
7

=
(h

(j2)
n )

5
7

(h
(j1)
n )

5
7

(∫
R4

∣∣∣∣∣∇yψ
(j1)

(
t
(j2)
n − t

(j1)
n

(h
(j1)
n )2

+ s
(h

(j2)
n )2

(h
(j1)
n )2

,
x
(j2)
n − x

(j1)
n

h
(j1)
n

+ y
h
(j2)
n

h
(j1)
n

)
ψ(j2)(s, y)

∣∣∣∣∣
5
2

dyds

) 4
7

→ 0.
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• If h
(j1)
n = h

(j2)
n , using the same change of variables as above, we get

(∫
R

∫
R3

∣∣∣∣∣∇yψ
(j1)

(
t
(j2)
n − t

(j1)
n

(h
(j1)
n )2

+ s
(h

(j2)
n )2

(h
(j1)
n )2

,
x
(j2)
n − x

(j1)
n

h
(j1)
n

+ y
h
(j2)
n

h
(j1)
n

)
ψ(j2)(s, y)

∣∣∣∣∣
5
2

dyds

) 4
7

.

Since
∣∣∣ t(j1)n −t

(j2)
n

h
(j1)
n

2

∣∣∣+ ∣∣∣x(j1)
n −x

(j2)
n

h
(j1)
n

∣∣∣ −→ +∞ as n→ ∞, this integral tends to 0, which ensures that the

first integral on the right-hand side of (3.17) converges to 0.
Now, we examine the second integral on the right-hand side of (3.17). Again, Hölder’s in-

equality ensures that∫
R

∫
R3

|q(j1)n q(j2)n |
10
7 |∇(q(jk)n )3|

10
7 dxdt ≤ C∥q(jk)n ∥

20
7

L10(R4)
∥∇q(jk)n ∥

10
7

L
10
3 (R4)

(∫
R

∫
R3

|q(j1)n q(j2)n |5 dxdt
) 2

7

≤ C
(∫

R

∫
R3

|q(j1)n q(j2)n |5 dxdt
) 2

7

and (∫
R

∫
R3

|q(j1)n q(j2)n |5 dxdt
) 2

7

=
1

(h
(j1)
n h

(j2)
n )

5
7

(∫
R

∫
R3

∣∣∣∣∣ψ(j1)

(
t− t

(j1)
n

(h
(j1)
n )2

,
x− x

(j1)
n

h
(j1)
n

)
ψ(j2)

(
t− t

(j2)
n

(h
(j2)
n )2

,
x− x

(j2)
n

h
(j2)
n

)∣∣∣∣∣
5

dxdt

) 2
7

.

Analogously to the previous case, one concludes that the second integral on the right-hand side of
(3.17) converges to 0 as well, which shows the convergence (3.15).

Part 2. By Leibnitz formula and Hölder inequality, we get

∥∇(β(W (l)
n + w(l)

n )− β(W (l)
n ))∥

L
10
7 (I×R3)

≤ C
(
∥w(l)

n ∥L10(I×R3)|||W (l)
n + w(l)

n |||4I

+ |||W (l)
n |||3I∥W (l)

n ∇w(l)
n ∥

L
5
2 (I×R3)

)
.

Since that (2.5) and (3.5) hold, if we prove that

lim sup
n→∞

∥W (l)
n ∇w(l)

n ∥
L

5
2 (I×R3)

−→ 0 as l → ∞,

then the proof of (3.16) is complete. Indeed, the convergence of the series
∑

j≥1 ∥ψ(j)∥10L10(R×R3)

implies that, for every ε > 0, there exists l(ε) such that∑
j≥l(ε)

∥ψ(j)∥10L10(R×R3) ≤ ε10.

In particular, using Hölder’s inequality,

lim sup
n→∞

∥∥∥( l∑
j=l(ε)

q(j)n

)
∇w(l)

n

∥∥∥10
L

5
2 (I×R3)

= lim sup
n→∞

∥∥∥ l∑
j=l(ε)

q(j)n

∥∥∥10
L10(I×R3)

lim sup
n→∞

∥∇w(l)
n ∥10

L
10
3 (I×R3)

≤
∑
j≥l(ϵ)

∥ψ(j)∥10L10(R×R3) lim sup
n→∞

∥∇w(l)
n ∥10

L
10
3 (I×R3)

≤ Cε10,
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where the last inequality follows from the fact that ∥∇w(l)
n ∥10

L
10
3 (I×R3)

is uniformly bounded by

Strichartz estimates. Therefore,

lim sup
n→∞

∥W (l)
n ∇w(l)

n ∥
L

5
2 (I×R3)

= lim sup
n→∞

∥∥∥( l∑
j=1

q(j)n

)
∇w(l)

n

∥∥∥
L

5
2 (I×R3)

≤ lim sup
n→∞

∥∥∥( l(ε)∑
j=1

q(j)n

)
∇w(l)

n

∥∥∥
L

5
2 (I×R3)

+ lim sup
n→∞

∥∥∥( l∑
j=l(ε)

q(j)n

)
∇w(l)

n

∥∥∥
L

5
2 (I×R3)

≤ lim sup
n→∞

∥W (l(ε))
n ∇w(l)

n ∥
L

5
2 (I×R3)

+ Cε,

for l ≥ l(ε). Hence, our problem is reduced to prove that

lim sup
n→∞

∥W (l0)
n ∇w(l)

n ∥
L

5
2 (I×R3)

,−→ 0 as l → ∞

for every fixed l0 ≥ 1. Since W
(l0)
n =

∑l0
j=1 q

(j)
n , we have to show that

lim sup
n→∞

∥q(j)n ∇w(l)
n ∥

L
5
2 (I×R3)

−→ 0 as l → ∞,

for every l0 ≥ j ≥ 1, i.e.,

lim sup
n→∞

∥∥∥ 1√
h
(j)
n

ψ(j)
( t− t

(j)
n

(h
(j)
n )2

,
x− x

(j)
n

h
(j)
n

)
∇w(l)

n

∥∥∥
L

5
2 (I×R3)

−→ 0 as l → ∞.

To this end, change variables to get

∥q(j)n ∇w(l)
n ∥

L
5
2 (I×R3)

= ∥ψ(j)∇w̃(l)
n ∥

L
5
2 (R×R3)

where

w̃(l)
n (s, y) =

√
h
(j)
n w(l)

n (t(j)n + (h(j)n )2s, x(j)n + h(j)n y).

Observe that, by Lemma 2.2,

∥w(l)
n ∥L10(I×R3) = ∥w̃(l)

n ∥L10(R×R3) and ∥∇w(l)
n ∥

L
10
3 (I×R3)

= ∥∇w̃(l)
n ∥

L
10
3 (R×R3)

.

By density, we can take ψ(j) ∈ C∞
0 (R4). Using Hölder’s inequality, one sees that it is enough to

prove that

(3.18) lim sup
n→∞

∥∇w̃(l)
n ∥L2(B) −→ 0 as l → ∞,

where B is a fixed compact of R× R3. To this end, let νln be the function defined by

νln(t, x) =

{
w

(l)
n (t, x), if (t, x) ∈ B,

0, otherwise.
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Then, νln is a solution for the linear Schrödinger equation, and we get, by Strichartz estimates, that

lim sup
n→∞

∥ψ(j)∇w̃(l)
n ∥

L
5
2 (R×R3)

≤ lim sup
n→∞

∥ψ(j)∇w̃(l)
n ∥

L
5
2 (B)

≤ lim sup
n→∞

∥ψ(j)∥L10(B)∥∇w̃(l)
n ∥

L
10
3 (B)

≤ lim sup
n→∞

∥ψ(j)∥L10(B)∥∇ν̃(l)n ∥
L

10
3 (R4)

≤ lim sup
n→∞

∥ψ(j)∥L10(B)∥∇ν̃(l)n ∥L2(B)

≤ lim sup
n→∞

∥ψ(j)∥L10(B)∥∇w̃(l)
n ∥L2(B).

Applying Lemma 3.8 to w̃
(l)
n gives

∥∇w̃(l)
n ∥L2(B) ≤ C(ε)∥w̃(l)

n ∥L10(R×R3) + ε∥∇w̃(l)
n (0)∥L2(R3).

The invariance of the L10 and Ḣ1 norms by the change of variables gives

∥∇w̃(l)
n ∥L2(B) ≤ C(ε)∥w(l)

n ∥L10(I×R3) + ε∥∇w(l)
n (0)∥L2(R3).

So, it follows that

lim sup
l→∞

∥∇w̃(l)
n ∥L2(B) ≤ Cε.

Since ε is arbitrary, (3.18) holds. This concludes the proof of Proposition 3.9. □

3.3. Proof of the decomposition. We finally prove Theorem 3.1 following the ideas introduced
by S. Keraani in [26].

First of all, note that the nonlinear profile q
(j)
n is globally well-defined. Indeed, for a bounded

sequence (φn) ∈ Ḣ(R3) such that lim supn→∞ ∥φn∥Ḣ1 < λ0, with λ0 given by Definition 1, and (vn)
(respectively (un)) the sequence of solutions for the linear equation (respectively nonlinear) with

initial data φn, Theorem 2.5 provides a decomposition of vn into linear concentrating solutions p
(j)
n .

Thus, if we consider un a sequence of solutions for the nonlinear equation with the same initial

data of vn at t = 0 and q
(j)
n the nonlinear concentrating solutions associated to p

(j)
n for every j ≥ 1,

we have

∥∇q(j)n (0)∥2L2 = ∥∇p(j)n (0)∥2L2 ≤ lim sup
n→∞

∥∇vn(0)∥2L2 ≤ ∥∇φn∥2L2 ≤ λ20,

due to the almost orthogonality identity (2.6). With this in hand, we are in a position to prove the
Theorem 3.1.

Proof of Theorem 3.1. Let us consider r
(l)
n (t, x) = un(t, x)−

∑l
j=1 q

(j)
n (t, x)−w

(l)
n (t, x). We need to

prove the convergence

lim sup
n→∞

(∥∇r(l)n ∥
L

10
3 ([0,T ];L

10
3 (R3))

+ ∥r(l)n ∥L10([0,T ];L10(R3)) + ∥r(l)n ∥L∞([0,T ];Ḣ1(R3))) −→ 0 as l → ∞.

To this end, let β(z) = |z|4z, W (l)
n =

∑l
j=1 q

(j)
n , and

f (l)n =

l∑
j=1

β(q(j)n )− β
( l∑

j=1

q(j)n + w(l)
n + r(l)n

)
.

The function r
(l)
n satisfies {

i∂tr
(l)
n +∆r

(l)
n = f

(l)
n ,

r
(l)
n (0) =

∑l
j=1(p

(j)
n − q

(j)
n )(0) = 0.

Introduce the norm

|||g|||I = ∥g∥L10(I×R3) + ∥∇g∥
L

10
3 (I×R3)

.
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Note that, by Strichartz estimates, for any v solution of the linear Schrödinger equation with initial
data φ ∈ Ḣ1, one has

|||v|||I = ∥v∥L10
t L10

x
+ ∥∇v∥

L
10
3

t L
10
3

x

≤ C∥∇eit∆φ∥L2
x
≤ C∥∇φ∥L2

x
.

From now on, γ
(l)
n (a) = ∥∇r(l)n (a)∥L2

x
, for every a ∈ [0, T ]. Applying Lemma 3.2 to r

(l)
n on I = [0, T ],

we obtain

(3.19) |||r(l)n |||I + sup
t∈I

∥∇r(l)n (t)∥L2 ≤ C
(
∥∇f (l)n ∥

L
10
7 (I×R3)

)
.

We estimate the right-hand side of inequality (3.19) by

∥∇f (l)n ∥
L

10
7 (I×R3)

≤
∥∥∥∇( l∑

j=1

β(q(j)n )− β(W (l)
n )
)∥∥∥

L
10
7 (I×R3)

+
∥∥∥∇[β(W (l)

n + w(l)
n )− β(W (l)

n )
]∥∥∥

L
10
7 (I×R3)

+
∥∥∥∇[β(W (l)

n + w(l)
n + r(l)n )− β(W (l)

n + w(l)
n )
]∥∥∥

L
10
7 (I×R3)

.

(3.20)

Furthermore, a combination of Leibnitz formula and Hölder inequality gives that (3.20) can be
bounded as∥∥∥∇[β(W (l)

n + w(l)
n + r(l)n )− β(W (l)

n + w(l)
n )
]∥∥∥

L
10
7 (I×R3)

≤

C
(
|||W (l)

n + w(l)
n |||3I∥W (l)

n + w(l)
n ∥L10(I×R3)|||r(l)n |||I +

5∑
α=2

|||W (l)
n + w(l)

n |||5−α
I |||r(l)n |||αI

)
.

(3.21)

Denote

(3.22) δ(l)n =
∥∥∥∇[β(W (l)

n + w(l)
n )− β(W (l)

n )
]∥∥∥

L
10
7 (I×R3)

+
∥∥∥∇( l∑

j=1

β(q(j)n )− β(W (l)
n )
)∥∥∥

L
10
7 (I×R3)

.

Using (3.20), (3.21) and (3.22) into (3.19), it follows that

|||r(l)n |||I + sup
t∈I

∥∇r(l)n (t)∥L2 ≤C
(
δ(l)n +

5∑
α=2

|||W (l)
n + w(l)

n |||5−α
I |||r(l)n |||αI

+ |||W (l)
n + w(l)

n |||3I∥W (l)
n + w(l)

n ∥L10(I×R3)|||r(l)n |||I
)
.

(3.23)

In view of bound (3.23) and Proposition 3.6, we get

(3.24) |||r(l)n |||I+sup
t∈I

∥∇r(l)n (t)∥L2 ≤ C
(
γ(l)n (a)+δ(l)n +

5∑
α=2

|||r(l)n |||αI +∥W (l)
n +w(l)

n ∥L10(I×R3)|||r(l)n |||I
)

for all l ≥ 1 and n ≥ N(l). Applying (3.24) on an interval Iin, provided by Proposition 3.7, one gets

|||r(l)n |||Iin + sup
t∈Iin

∥∇r(l)n (t)∥L2 ≤ C
(
γ(l)n (ain) + δ(l)n +

5∑
α=2

|||r(l)n |||αIin + 2ε|||r(l)n |||Iin
)
,

for all l ≥ 1 and n ≥ N(l). So, choosing ε so that Cϵ < 1
4 , we obtain

(3.25) |||r(l)n |||Iin + sup
t∈Iin

∥∇r(l)n (t)∥L2 ≤ C
(
γ(l)n (ain) + δ(l)n +

5∑
α=2

|||r(l)n |||αIin
)
.

Now, we use an iterative process to achieve the result. For i = 1, (3.25) reads

|||r(l)n |||I1n + sup
t∈I1n

∥∇r(l)n (t)∥L2 ≤ C
(
γ(l)n (0) + δ(l)n +

5∑
α=2

|||r(l)n |||αI1n
)
.
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Recall that, in view of the definition of γ
(l)
n , we have

(3.26) γ(l)n (0) = ∥∇r(l)n (0)∥L2 =
∥∥∥∇( l∑

j=1

(p(j)n − q(j)n )(0)
)∥∥∥

L2
= 0

for all l ≥ 1. Due to (3.14) and (3.26), it follows that, for all large enough l, there exists N(l), such

that if n ≥ N(l), then γ
(l)
n (0) + δ

(l)
n ≤ a0(c). Denote by M l

n the function defined on I1n = [0, a1n] by

M l
n(s) = |||r(l)n |||[0,s] +

s

a1n
sup
t∈[0,s]

∥∇r(l)n (t)∥L2 .

It is clear that (3.25) still holds if we replace I1n = [0, a1n] by [0, s] for every s ∈ I1n .Thus,

M l
n(s) ≤ C

(
γ(l)n (0) + δ(l)n +

5∑
α=2

(M l
n)

α(s)
)
.

Hence, the function M l
n satisfies the conditions of Lemma 3.3 for large l and n ≥ N(l). So

(3.27) M l
n(a

1
n) = |||r(l)n |||I1n + sup

t∈I1n
∥∇r(l)n (t)∥L2 ≤ 2c(γ(l)n (0) + δ(l)n ),

for large l and n ≥ N(l). Using (3.14), (3.26) and (3.27), one obtains

lim sup
n→∞

(
|||r(l)n |||I1n + sup

t∈I1n
∥∇r(l)n (t)∥L2

)
−→ 0 as l → ∞.

On the other hand, we have

γ(l)n (a1n) ≤ sup
t∈I1n

∥∇r(l)n (t)∥L2 ,

which gives

lim sup
n→∞

γ(l)n (a1n) −→ 0 as l → ∞.

This allows us to repeat the same argument on the interval I2n = [a1n, a
2
n]. We get

|||r(l)n |||I2n + sup
t∈I2n

∥∇r(l)n (t)∥L2 ≤ c(γ(l)n (a1n) + δ(l)n ).

Thus

lim sup
n→∞

(
|||r(l)n |||I2n + sup

t∈I2n
∥∇r(l)n (t)∥L2

)
−→ 0 as l → ∞.

Iterating this process, we get

lim sup
n→∞

(
|||r(l)n |||Iin + sup

t∈Iin
∥∇r(l)n (t)∥L2

)
−→ 0 as l → ∞

for all 1 ≤ i ≤ p. Since p does not depend on n and l, we get

lim sup
n→∞

(
|||r(l)n |||[0,T ] + sup

t∈[0,T ]
∥∇r(l)n (t)∥L2

)
−→ 0 as l → ∞,

which concludes the proof. □

3.4. Profile decomposition of the limit energy. For u a solutions of the nonlinear Schrödinger
equation (3.28), we denote its nonlinear energy density by

E(t)(t, x) = 1

2
|∇u(t, x)|2 + 1

6
|u(t, x)|6.

For a sequence un of solution with initial data bounded in Ḣ1(R3), the corresponding nonlinear
energy density is bounded in L∞([0, T ], L1) and so in the space of bounded measures on [0, T ]×R3.
This allows us to consider, up to a subsequence, its weak* limit. The following theorem shows that
the energy limit follows the same profile decomposition as un. This will be a crucial result that
will allow the use of a microlocal defect measure on each profile and then apply the linearization
argument.
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Theorem 3.10. Let un be a sequence of solutions to

(3.28) i∂tun +∆un − |un|4un = 0,

with un(0) convergent to 0 in L2(R3). The nonlinear energy density limit of un (up to a subsequence)
is

E(t, x) =
∞∑
j=1

e(j)(t, x) + ef (t, x),

where e(j) is the energy density limit of q
(j)
n (following the notation of Theorem 3.1) and

ef = lim
l→∞

lim
n→∞

e(w(l)
n ),

where the limits are considered up to a subsequence and in the weak* sense. In particular, ef can
be written as

ef (t, x) =

∫
ξ∈S2

µ(t, x, dξ).

Moreover, E is also the limit of the linear energy density

Elim(un)(t, x) =
1

2
|∇un(t, x)|2.

Proof. The proof of this result is a direct consequence of Theorem 3.1. Indeed, noting that
∥un∥L10([0,T ]×R3) ≤ C, it follows, by an interpolation argument, that

∥un∥L2([0,T ]×R3) → 0 =⇒ ∥un∥L6([0,T ]×R3) → 0, as n→ ∞.

Therefore, E is the limit of b(un, un), with b(f, g) = ∇f(t, x) · ∇g(t, x).
Now, we have to compute the limit of b(un, un) using the decomposition of Theorem 3.1. We

set s
(l)
n =

∑l
j=1 q

(j)
n , for l ∈ N, and so

b(un, un) = b(s(l)n , s
(l)
n ) + b(w(l)

n , w(l)
n ) + 2b(s(l)n , w

(l)
n ) + 2b(un, r

(l)
n )− b(r(l)n , r(l)n ).

The convergence (3.1) gives

lim sup
n→∞

∥2b(un, r(l)n )− b(r(l)n , r(l)n )∥L1([0,T ]×R3) → 0 as l → ∞.

So, defining e
(l)
r = w ∗ limn→∞(2b(un, r

(l)
n )− b(r

(l)
n , r

(l)
n )), we have

e(l)r −→ 0 as l → ∞.

Let φ(t, x) = φ1(t) · φ2(x) ∈ C∞
0 ((0, T )× R3). It remains to estimate∫ T

0

∫
R3

φb(s(l)n , w
(l)
n ) =

l∑
j=1

∫ T

0
φ1

∫
R3

φ2b(q
(j)
n , w(l)

n )

for each fixed l. To this end, first note that, since b(q
(j)
n , w

(l)
n ) is bounded in L∞((0, T ), L1(R3)), we

can assume, up to an arbitrary small error, that φ1 is supported in {t < t
(j)
∞ } or {t > t

(j)
∞ } (replace

φ1 by (1−Ψ)(t)φ1 with Ψ(t
(j)
∞ ) = 1 and ∥Ψ∥L1(0,T ) small). On each interval, Theorem 3.4 allows to

replace q
(j)
n by a linear concentrating solution. Then, by Lemma 2.14, we get the weak convergence

of b(s
(l)
n , w

(l)
n ) to zero, for each fixed l. Indeed, by Lemma 2.14, D

(j)
hn
w

(l)
n ⇀ 0, 1 ≤ j ≤ l, which

means, √
h
(j)
n w(l)

n (t(j)n + (h(j)n )2s, x(j)n + h(j)n y)⇀ 0.
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It is enough to compute
∫
R3 ∇xw

(l)
n (t, x) · ∇xp

(j)
n (t, x) dx. We have∫

R3

∇xw
(l)
n (t, x) · ∇xp

(j)
n (t, x) dx =

∫
R3

∇xw
(l)
n (t, x) · ∇x

1√
h
(j)
n

φ(j)
( t− t

(j)
n

(h
(j)
n )2

,
x− x

(j)
n

h
(j)
n

)
dx

=

∫
R3

∇xw
(l)
n (t(j)n + (h(j)n )2s, x(j)n + h(j)n y) · ∇x

1√
h
(j)
n

φ(j)(s, y) (h(j)n )3dy

=

∫
R3

∇y

√
h
(j)
n w(l)

n (t(j)n + (h(j)n )2s, x(j)n + h(j)n y) · ∇yφ
(j)(s, y) dy −→ 0,

as n→ ∞.
Lemma 2.10 and the orthogonality of the cores of concentration yields D

(j)
hn
p
(j′)
n ⇀ 0, for j ̸= j′

and p
(j′)
n a concentrating solution at rate [h(j

′), x(j
′), t(j

′)]. Then, the same argument as before gives

b(s(l)n , s
(l)
n )⇀

l∑
j=1

e(j).

So, we have proved that for any l ∈ N,

b(un, un)⇀ E =
l∑

j=1

e(j) + e(l)w + e(l)r as n→ ∞,

where e
(l)
w is the weak* limit of b(w

(l)
n , w

(l)
n ) and e

(l)
r satisfies e

(l)
r → 0 as l → ∞. Since e

(l)
w is the weak*

limit of a sequence of solutions to the linear Schrödinger equation with initial data convergent to

zero in L2, we can use Proposition B.4 to conclude that b(w
(l)
n , w

(l)
n ) converges (locally) to a positive

measure ef . Hence,

E =
∞∑
j=1

e(j) + ef

and the result is proven. □

4. Exponential stabilizability: Proof of Theorem 1.1

It is well-known in control theory that the energy associated with the system (1.5) is expo-
nentially stable if the observability inequality

(4.1) E(u)(0) ≤ C

∫ T

0

∫
R3

|(1−∆)−
1
2a∂tu|2 dxdt

is verified. Here, we consider a ∈ C∞(R3) satisfying (1.4). So, ω :=
(
R3\BR(0)

)
satisfies the

following geometric control condition:

Assumption 4.1. There exists T0 > 0 such that every geodesic travelling at speed 1 meets ω in a
time t < T0.

Roughly speaking, the proof of the stabilizability consists of the analysis of possible sequences
contradicting the observability estimate. The first step of the proof is to show that such a sequence
is linearizable because its behavior is close to solutions of the linear equation.

4.1. Linearization argument.

Lemma 4.2. Let T > T0 and un be a sequence of solutions to

(4.2)

{
i∂tun +∆un − un − |un|4un − a(1−∆)−1a∂tun = 0, on [0, T ]× R3,
un(0) = u0,n, in H1(R3)

satisfying

(4.3) u0,n → 0 in L2(R3) as n→ ∞,
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and

(4.4)

∫ T

0

∫
R3

|(1−∆)−
1
2a∂tun|2 dxdt −→ 0 as n→ ∞.

Consider the profile decomposition according to Theorem 3.1 in a subinterval [t0, t0 + L] ⊂ [0, T ]
with T0 < L. Then, for any 0 < ε < L − T0, this decomposition does not contain any nonlinear

concentrating solution with t
(j)
∞ ∈ [t0, t0 + ε] and un is linearizable in [t0, t0 + ε], i.e.,

∥un − vn∥L10([t0,t0+ε]×R3) + ∥un − vn∥L∞([t0,t0+ε];H1(R3)) −→ 0 as n→ ∞,

where vn is the solution of {
i∂tvn +∆vn − vn = 0, on [0, T ]× R3,
vn(0) = u0,n, in H1(R3).

Proof. With no loss of generality, we will consider the interval [0, L] instead of [t0, t0 + L] to keep
the notation simple.

Claim 1: The sequence un is convergent to 0 in L2([0, T ]× R3).

Indeed, multiplying the first equation of (4.2) by un and taking its imaginary part, we obtain
the estimate

1

2
∥un(t)∥L2 ≤ 1

2
∥un(0)∥L2 +

∫ t

0
∥a(1−∆)−1a∂tun∥L2∥un∥L2 ds,

and Claim 1 follows due to the convergences (4.3) and (4.4).

Claim 2: The sequence un is convergent to 0 in L2
loc((0, L); Ḣ

1
loc(ω)).

From now on, we will use several times the operator Jv = (1 − ia(x)(1 − ∆)−1a(x))v as a
pseudodifferential operator of order 0 (see Theorem A.3 for details about the properties of this
operator).

Since, by hypothesis,

∥(1−∆)−
1
2a∂tun∥L2(([0,L];R3) → 0 as n→ ∞,

one has
∥(1−∆)−

1
2a(−iJ−1(I −∆)un − iJ−1|un|4un)∥L2([0,L];R3) → 0, n→ ∞.

Observe that

∥(1−∆)−
1
2aiJ−1(I −∆)un∥L2((0,L);R3) ≤∥(1−∆)−

1
2a(iJ−1(I −∆)un + iJ−1|un|4un)∥L2([0,L];R3)

+ ∥(1−∆)−
1
2aiJ−1|un|4un)∥L2([0,L];R3)

≤∥(1−∆)−
1
2a(iJ−1∆un + iJ−1|un|4un)∥L2([0,L];R3)

+ ∥u5n∥L2([0,L];H−1(R3)) → 0 as n→ ∞,

due to the converge

∥u5n∥2L2((0,L);H−1(R3)) ≤ sup
t∈[0,L]

∥un(t)∥
5
3

L2

∫ L

0
∥un(t)∥

25
3

L10 dt ≤ sup
t∈[0,L]

∥un(t)∥
5
3

L2∥un∥
3
25

L
25
3

t L10
x

→ 0,

by interpolation arguments. Hence, for every χ ∈ C∞
0 ((0, L)× R3), we have

∥(1−∆)−
1
2aJ−1(I −∆)χun∥L2(0,L)×R3) → 0,

which is equivalent to〈
(I −∆)(J−1)∗a(1−∆)−1aJ−1(I −∆)χun, χun

〉
L2((0,L)×R3)

→ 0.

This means, using Proposition B.4 (Appendix), that∫
(0,L)×R3×S3

(1 + |ξ|2)a2

1 + |ξ|2
(1 + |ξ|2) dµ(t, x, ξ) = 0.
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Thus ∫
(0,L)×ω×S3

1 + |ξ|2 dµ(t, x, ξ) = 0,

i.e.,

un −→ 0 in L2
loc((0, L); Ḣ

1
loc(ω)) as n→ ∞,

showing the claim.

Now, let ũn be a solution to{
i∂tũn +∆ũn − ũn − |ũn|4ũn = 0, on [0, T ]× R3,
ũn(0) = u0,n ∈ H1(R3).

By the convergence (4.4) and Lemma B.1, we get

ũn −→ 0 in L2
loc((0, L); Ḣ

1
loc(ω)) as n→ ∞.

Let wn = eitũn. It satisfies{
i∂twn +∆wn − |wn|4wn = 0, on [0, T ]× R3,
wn(0) = u0,n

and

wn −→ 0 in L2
loc((0, L); Ḣ

1
loc(ω)) as n→ ∞

and so

|∇wn(t)|2 −→ 0 in L1L1,

Using the notation of Theorem 3.10, this gives e = 0 on (0, L)×ω (locally). Since all the measures
in the decomposition of E are positive, we get the same result for any nonlinear concentrating
solution in the decomposition of wn, that is, ej = 0 in (0, L)× ω (locally), and

|∇q(j)n |2 ⇀ 0 in L1
loc((0, L)× ω)

which gives us ∫ L

0

∫
ω
φ|∇q(j)n |2 −→ 0,

for all φ ∈ C∞
0 . Therefore,

q(j)n −→ 0 in L2
loc((0, L); Ḣ

1
loc(ω)) as n→ ∞

and if µ(j) is the microlocal defect measure of q
(j)
n , we have

(4.5) µ(j) ≡ 0 in (0, L)× ω × S3.

Assume that t
(j)
∞ ∈ [0, ε] for some j ∈ N, so that the interval (t

(j)
∞ , L] has lenght greater

than T0. Denote by p
(j)
n the linear concentrating solution approaching q

(j)
n in the interval I3,Λn =

(t
(j)
n +Λ(h

(j)
n )2, L] according to the notation of Theorem 3.4, so that, for any t

(j)
∞ < t < L, we have

∥q(j)n − p(j)n ∥L10([t,L]×R3) + ∥q(j)n − p(j)n ∥L∞([t,L];Ḣ1(R3)) −→ 0 as n→ ∞.

In particular, µ(j) is also attached to p
(j)
n in the time interval (t

(j)
∞ , L].

Claim 3: p
(j)
n is bounded in Ḣ1(R3) and ∥p(j)n (t)∥L2 → 0 as n→ ∞.

Remember that p
(j)
n is a solution of the linear Schrödinger equation. If p

(j)
n is a linear concen-

trating solution, we can consider

p(j)n (t, x) =
1√
h
(j)
n

φ(j)
( t− t

(j)
n

(h
(j)
n )2

,
x− x

(j)
n

h
(j)
n

)
,



CRITICAL NLS: STABILIZATION RESULT 39

and so

∥p(j)n (t)∥L2 =
1√
h
(j)
n

(∫
R3

|φ(j)(s, y)|2(h(j)n )3 dy
) 1

2
= h(j)n ∥φ(j)(s)∥L2 ≤ Ch(j)n ∥φ(j)(s)∥L6 → 0,

as n → ∞, since we can assume φ(j)(s) ∈ C∞
0 (R3). Thus, p

(j)
n ’s measure propagates along the

geodesics of the R3 and we have µ(j) ≡ 0 in (t
(j)
∞ , L)×R3×S3, since |L− t

(j)
∞ | > T0 ensure that the

geometric control condition is still verified in the interval [t
(j)
∞ , L] when combined with (4.5). This

means that

p(j)n → 0 in L2
loc((t

(j)
∞ , L);H1

loc(R3)),

showing Claim 3.

Finally, solving the equation satisfied by p
(j)
n with initial data p

(j)
n (t0), where t0 ∈ (t

(j)
∞ , L) is

such that ∥p(j)n (t0)∥H1 → 0, one has the strong convergence p
(j)
n → 0 in the space L∞([t

(j)
∞ , L], H1

loc(R3)).

In particular, p
(j)
n (t

(j)
∞ ) → 0 in Ḣ1

loc(R3), so the measure µ(j,∞) associated to p
(j)
n (t

(j)
∞ ) satisfies

µ(j,∞) ≡ 0 in R3 × S2. On other hand, since p
(j)
n (t

(j)
∞ ) = 1√

hn
φ(j)

(
x−x

(j)
∞

hn

)
, we can compute µ(j,∞)

directly. To this end, note that

⟨A(x,Dx)∇p(j)n (t(j)∞ ),∇p(j)n (t(j)∞ )⟩L2

=
1

(2π)3

∫
R3

∫
R3

∫
R3

a(x, ξ)ei(x−y)ξ|ξ|2p(j)n (t(j)∞ )(y)p
(j)
n (t

(j)
∞ )(x) dydxdξ

=
1

(2π)3
1

hn

∫
R3

∫
R3

∫
R3

a(x, ξ)ei(x−y)ξ|ξ|2φ(j)
(y − x

(j)
∞

hn

)
φ(j)

(y − x
(j)
∞

hn

)
dydxdξ

=
h5n

(2π)3

∫
R3

∫
R3

∫
R3

a(hnx̃+ x(j)∞ , ξ)eihn(x̃−ỹ)ξ|ξ|2φ(j)(ỹ)φ(j)(x̃) dỹdx̃dξ

=
h2n

(2π)3

∫
R3

∫
R3

∫
R3

a(hnx̃+ x(j)∞ ,
ξ̃

hn
)ei(x̃−ỹ)ξ̃

∣∣∣ ξ̃
hn

∣∣∣2φ(j)(ỹ)φ(j)(x̃) dỹdx̃dξ̃

=
1

(2π)3

∫
R3

∫
R3

∫
R3

a(hnx̃+ x(j)∞ , ξ̃)ei(x̃−ỹ)ξ̃|ξ̃|2φ(j)(ỹ)φ(j)(x̃) dỹdx̃dξ̃

=
1

(2π)3

∫
R3

a(hnx̃+ x(j)∞ , ξ̃)|ξ̃|2|φ̂(j)(ξ̃)|2 dξ̃ → 1

(2π)3

∫
R3

a(x(j)∞ , ξ̃)|ξ̃|2|φ̂(j)(ξ̃)|2 dξ̃.

Using polar coordinates, we get

µ(j,∞) = δ
x−x

(j)
∞

⊗ Φ(θ) dθ,

where Φ(θ) = 1
(2π)3

∫∞
−∞ |rθ|2|φ̂(j)(rθ)|2r2 dr. Therefore, p(j)n (t

(j)
∞ ) ≡ 0, and the conservation of the

energy yields

∥p(j)n (t)∥Ḣ1(R3) = ∥p(j)n (t(j)∞ )∥Ḣ1(R3) = 0,∀t ∈ (t(j)∞ , L].

Moreover,

∥q(j)n (t)∥Ḣ1(R3) → 0,∀t ∈ (t(j)∞ , L].

Arguing in the same way as before, one obtains q
(j)
n ≡ 0 in (t

(j)
∞ , L] as expected, since q

(j)
n (t

(j)
∞ ) =

1√
hn
ψ(j)

(
x−x

(j)
∞

hn

)
. Then, for the profile decomposition of wn in the interval [0, L], namely,

wn =

l∑
j=1

q(j)n + w(l)
n + r(l)n ,
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we have proved that t
(j)
n ∈ (ε, L], since t

(j)
n ∈ [0, ε] implies q

(j)
n ≡ 0. Thus, Theorem 3.4 provides a

linear concentrating solution p
(j)
n such that

lim sup
n→∞

(
∥q(j)n − p(j)n ∥L10([0,ε]×R3) + ∥q(j)n − p(j)n ∥L∞([0,ε];Ḣ1(R3))

)
= 0,

while Lemma 2.8 gives

lim sup
n→∞

∥p(j)n ∥L10([0,ε]×R3) = 0.

Moreover, Theorems 2.5 and 3.1 ensure

lim sup
n→∞

∥w(l)
n + r(l)n ∥L10([0,ε]×R3) −→ 0 as l → ∞.

Therefore,
lim sup
n→∞

∥wn∥L10([0,ε]×R3) = 0

and, hence,
lim sup
n→∞

∥ũn∥L10([0,ε]×R3) = 0.

Thus,
∥∇|ũn|4ũn∥

L2([0,ε];L
6
5 (R3))

−→ 0, n→ ∞.

Since

∥∇|ũn|4ũn∥
L2([0,ε];L

6
5 (R3))

≤ ∥ũn∥4L10([0,ε]×R3)∥∇ũn∥L10([0,ε];L
30
13 (R3))

,

we have that ũn is linearizable on [0, ε]. Indeed, using Remark 5, note that

∥ũn − vn∥L10([0,ε]×R3) + ∥ũn − vn∥L∞([0,ε];H1(R3)) ≤∥∇|ũn|4ũn∥
L

10
7 ([0,ε];L

10
7 (R3)

+ ∥ũ5n∥L1([0,ε];L2(R3))

≤C∥ũn∥4L10([0,ε]×R3)∥∇ũn∥L 10
3 ([0,ε]×R3)

+ C∥ũn∥5L10([0,ε]×R3)

→0,

(4.6)

as n→ ∞. It follows that

∥un − vn∥L10([0,ε]×R3) + ∥un − vn∥L∞([0,ε];H1(R3)) ≤ ∥un − ũn∥L10([0,ε]×R3) + ∥un − ũn∥L∞([0,ε];H1(R3))

+ ∥ũn − vn∥L10([0,ε]×R3) + ∥ũn − vn∥L∞([0,ε];H1(R3))

→ 0,

as n→ ∞, due to (4.4), (4.6) and Lemma B.1. □

With this in mind, the next proposition gives that a sequence of solutions for the nonlinear
system is close to the solutions for the linear system.

Proposition 4.3. Under the assumptions of Lemma 4.2, we have that un is linearizable on [0, t]
for any t < T − T0, that is,

∥un − vn∥L10([0,t]×R3) + ∥un − vn∥L∞([0,t];H1(R3)) −→ 0 as n→ ∞,

where vn is the solution of {
i∂tvn +∆vn − vn = 0, on [0, T ]× R3,
vn(0) = u0,n, in H1(R3).

Proof. Let

t∗ = sup{s ∈ [0, T ]; lim
n

∥un − vn∥L10([0,s]×R3) + ∥un − vn∥L∞([0,s];H1(R3)) = 0}.

We claim that t∗ ≥ T − T0. Indeed, suppose, by contradiction, that this does not hold, so we can
find an interval [t∗ − ε, t∗ − ε + L] ⊂ [0, T ] with T0 < L and 0 < 2ε < L − T0 (if t∗ = 0, take the
interval [0, L] ⊂ [0, T ]). It follows from Lemma 4.2 that un is linearizable on [t∗ − ε, t∗ + ε]. The
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definition of t∗ gives limn→∞ ∥un−vn∥L10([0,t∗−ε]×R3)+∥un−vn∥L∞([0,t∗−ε];H1(R3)) = 0. So, we have
proved that limn→∞ ∥un − ṽn∥L10([t∗−ε,t∗+ε]×R3) + ∥un − ṽn∥L∞([t∗−ε,t∗+ε];H1(R3)) = 0, where ṽn is a
solution of

i∂tṽn +∆ṽn − ṽn = 0, ṽn(t∗ − ε) = un(t∗ − ε).

This yields limn→∞ ∥un − vn∥L10([0,t∗+ε]×R3) + ∥un − vn∥L∞([0,t∗+ε];H1(R3)) = 0. Indeed, we have

sup
t∈[0,t∗+ε]

∥un(t)− vn(t)∥H1(R3) ≤ sup
t∈[0,t∗−ε]

∥un(t)− vn(t)∥H1(R3)

+ sup
t∈[t∗−ε,t∗+ε]

∥un(t)− vn(t)∥H1(R3),

where the first term of the right-hand side converges to 0 as n tends to ∞. For the second term,
we have

sup
t∈[t∗−ε,t∗+ε]

∥un(t)− vn(t)∥H1(R3) ≤ sup
t∈[t∗−ε,t∗+ε]

∥un(t)− ṽn(t)∥H1(R3)

+ sup
t∈[t∗−ε,t∗+ε]

∥ṽn(t)− vn(t)∥H1(R3)

≤ sup
t∈[t∗−ε,t∗+ε]

∥un(t)− ṽn(t)∥H1(R3)

+ ∥un(t∗ − ε)− vn(t∗ − ε)∥H1(R3)

≤ sup
t∈[t∗−ε,t∗+ε]

∥un(t)− ṽn(t)∥H1(R3)

+ sup
t∈[0,t∗−ε]

∥un(t)− vn(t)∥H1(R3) → 0,

as n→ ∞. Now, we estimate the L10 norm as

∥un − vn∥10L10([0,t∗+ε]×R3) ≤
∫ t∗−ε

0
∥un − vn∥10L10(R3) dt+

∫ t∗+ε

t∗−ε
∥un − vn∥10L10(R3) dt,

where the first term of the right-hand side converges to 0 as n tends to +∞. For the second term,
we have

∥un − vn∥L10([t∗−ε,t∗+ε]×R3) ≤ ∥un − ṽn∥L10([t∗−ε,t∗+ε]×R3) + ∥ṽn − vn∥L10([t∗−ε,t∗+ε]×R3)

≤ ∥un − ṽn∥L10([t∗−ε,t∗+ε]×R3) + ∥un(t∗ − ε)− vn(t∗ − ε)∥H1(R3)

≤ ∥un − ṽn∥L10([t∗−ε,t∗+ε]×R3) + sup
t∈[0,t∗−ε]

∥un(t)− vn(t)∥H1(R3)

→ 0,

as n→ ∞, using Strichartz estimates, which contradicts the definition of t∗. □

4.2. Weak observability estimate. The desired observability estimate (4.1) is a consequence of
the following weak observability estimates.

Theorem 4.4. Let T > T0 and λ0 > 0 from Definition 1. There exists C > 0 such that any
solution u of the system

(4.7)

 i∂tu+∆u− u− |u|4u− a(1−∆)−1a∂tu = 0, on [0, T ]× R3,
u(0) = u0 ∈ H1(R3),
∥u0∥H1 ≤ λ0,

satisfies

(4.8) E(u)(0) ≤ C
(∫ T

0

∫
R3

|(1−∆)−
1
2a∂tu|2 dxdt+ ∥u0∥H−1(R3)E(u)(0)

)
.

Proof. Remember that

E(u)(t) =
1

2
∥u(t)∥2L2 +

1

2
∥∇u(t)∥2L2 +

1

6
∥u(t)∥6L6 .
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We argue by contradiction. Suppose that (4.8) does not holds, so there exists a sequence {un} of
solutions to system (4.7) such that

(4.9)
(∫ T

0

∫
R3

|(1−∆)−
1
2a∂tun|2 dxdt+ ∥u0,n∥H−1(R3)E(un)(0)

)
≤ 1

n
E(un)(0).

Let αn =
(
E(un)(0)

) 1
2 . Sobolev’s embedding for the L6 norm ensures αn ≤ C(λ0). So, up to a

subsequence, we may assume that αn → α ≥ 0. We divide the analysis into the cases α > 0 and
α = 0.

• Case 1: αn → α > 0.

Note that ∥u0,n∥H−1(R3) → 0. Using the inequality

∥u0,n∥L2(R3) ≤ ∥u0,n∥
1
2

H−1(R3)
∥u0,n∥

1
2

H1(R3)
,

one obtains that ∥u0,n∥L2(R3) → 0. Therefore, we apply Proposition 4.3 and conclude that {un} is
linearizable in an interval [0, L] with L > T0, i.e.,

∥un − vn∥L10([0,L]×R3) + ∥un − vn∥L∞([0,L];H1(R3)) → 0 as n→ ∞,

where vn is a solution of {
i∂tvn +∆vn − vn = 0, on [0, T ]× R3,
vn(0) = u0,n.

Since u0,n → 0 in L2(R3), we get ∥un(t)∥L2 → 0, ∀t ∈ [0, T ]. Then, ∥vn(t)∥L2 → 0, ∀t ∈ [0, L]. Note
that

∂tun = −iJ−1
(
(1−∆)un + |un|4un

)
= −iJ−1(I −∆)un − iJ−1(|un|4un),

where J is given as in the proof of Theorem A.3, and

∥(1−∆)−
1
2a∂tun∥L2((0,L);R3) → 0 as n→ ∞.

This implies

∥(1−∆)−
1
2a(−iJ−1(I −∆)un − iJ−1(|un|4un))∥L2((0,L);R3) → 0 as n→ ∞.

So, similarly to Claim 2 in the proof of Lemma 4.2, we get

un → 0 in L2
loc

(
(0, L);H1

loc(ω)
)
.

Additionally, we get

vn → 0 in L2((0, L);H1(R3\BR+1(0))).

Indeed, note that

∥vn∥L2([0,T ];H1(R3\BR+1(0))) ≤ ∥vn − un∥L2([0,T ];H1(R3\BR+1(0))) + ∥un∥L2([0,T ];H1(R3\BR+1(0))).

Now, we have

∥un∥L2([0,T ];H1(R3\BR+1(0))) ≤
∥∥∥[a, (1−∆)−1J ]J−1(1−∆)un

∥∥∥
L2([0,T ];H1(R3))

+
∥∥∥(1−∆)−1JaJ−1(1−∆)un

∥∥∥
L2([0,T ];H1(R3))

≤ C∥un∥L2([0,T ]×R3) +
∥∥∥(1−∆)−1JaJ−1(1−∆)un

∥∥∥
L2([0,T ];H1(R3))

,
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and∥∥∥(1−∆)−1JaJ−1(1−∆)un

∥∥∥
L2([0,T ];H1(R3))

≤
∥∥∥(1−∆)−1Ja

(
i∂tun − J−1|un|4un

)∥∥∥
L2([0,T ];H1(R3))

≤∥(1−∆)−1Ja∂tun∥L2([0,T ];H1(R3))

+ ∥(1−∆)−1JaJ−1|un|4un∥L2([0,T ];H1(R3))

≤∥(1−∆)−1J(1−∆)
1
2 (1−∆)−

1
2a∂tun∥L2([0,T ];H1(R3))

+ C∥u5n∥L2([0,T ];H−1(R3)).

So, these estimates together yield

∥un∥L2([0,T ];H1(R3\BR+1(0))) ≤ C∥(1−∆)−
1
2a∂tun∥L2([0,T ]×R3) + C∥un∥L2([0,T ]×R3)

+ C∥u5n∥L2([0,T ];H−1(R3))

≤ C∥(1−∆)−
1
2a∂tun∥L2([0,T ]×R3) + C∥un∥L2([0,T ]×R3)

+ C∥un∥5L10([0,T ];L6(R3)),

and thus ∫ L

0
∥un(t)∥2H1(R3\BR+1(0))

dt −→ 0

as n→ ∞. Now, using the interpolation

∥un(t)∥L6 ≤ ∥un(t)∥
1
6

L2∥un(t)∥
5
6

L10

and the bound ∫ L

0
∥un(t)∥10L6 dt ≤

∫ L

0
∥un(t)∥

5
3

L2∥un(t)∥
25
3

L10 dt

≤ sup
t∈[0,L]

∥un(t)∥
5
3

L2∥un∥
3
25

L
25
3

t L10
x

≤ sup
t∈[0,L]

∥un(t)∥
5
3

L2∥un∥
3
25

L10
t L10

x
→ 0,

we get the desired convergence

vn → 0 in L2
loc((0, L);H

1(R3)).

Finally, choosing t0 ∈ (0, L) such that ∥vn(t0)∥H1(R3) → 0 and solving the equation satisfied
by vn, we obtain

∥vn(t)∥H1(R3) = ∥vn(t0)∥H1(R3) → 0,

for all t ∈ [0, L]. So

vn → 0 in L∞([0, L];H1(R3))

which implies

vn(0) → 0 in H1(R3),

which is a contradiction.

• Case 2: αn → 0.

Estimate (4.9) ensures that∫ T

0

∫
R3

|(1−∆)−
1
2a∂tun|2 dxdt ≤

1

n
E(un)(0).

Define wn = un
αn

, where the sequence {wn} satisfies

(4.10) i∂twn +∆wn − wn − α4
n|wn|4wn − a(1−∆)−1a∂twn = 0
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and ∫ T

0

∫
R3

|(1−∆)−
1
2a∂twn|2 dxdt ≤

1

n
.

Now, note that there exists C > 0, depending on λ0, such that

1

C
∥un(t)∥2H1 ≤ E(un)(t) ≤ C∥un(t)∥2H1 ,

for all t ∈ [0, T ]. Consequently, we get

∥wn(t)∥H1 =
∥un(t)∥H1√
E(un)(0)

≤ C

√
E(un)(t)√
E(un)(0)

≤ C,

and

(4.11) ∥wn(0)∥H1 =
∥un(0)∥H1√
E(un)(0)

≥ 1√
C

∥un(0)∥H1

∥un(0)∥H1

≥ 1√
C
.

So, ∥wn(0)∥H1 ≈ 1 and wn is bounded in L∞([0, T ];H1(R3)). Due to the Strichartz estimates (see
Proposition A.4) for the solutions of the equation (4.10), there exists C > 0, such that

∥∇wn∥
L10([0,T ];L

30
13 (R3))

≤ C
(
∥wn(0)∥H1 + α4

n∥∇wn∥
L10([0,T ];L

30
13 (R3))

∥wn∥4L10([0,T ];L10(R3))

+ α4
n∥wn∥5L10([0,T ];L10(R3))

)
≤ C

(
1 + α4

n∥∇wn∥5
L10([0,T ];L

30
13 (R3))

)
.

A bootstrap argument gives us that ∥∇wn∥
L10([0,T ];L

30
13 (R3))

is bounded and, thus, ∥wn∥L10([0,T ];L10(R3))

is bounded, due to the Sobolev embedding. Additionally, if we consider the sequence {wn} satisfying
the Cauchy problem

(4.12)

{
i∂tw̃n +∆w̃n − w̃n − a(1−∆)−1a∂tw̃n = 0, on [0, T ]× R3,
w̃n(0) = wn(0),

an application of Proposition A.4 gives

∥wn − w̃n∥L10([0,T ];L10(R3)) + ∥wn − w̃n∥L∞([0,T ];H1(R3))

≤C
(
α4
n∥∇wn∥

L10([0,T ];L
30
13 (R3))

∥wn∥4L10([0,T ];L10(R3))

+ α4
n∥wn∥5L10([0,T ];L10(R3))

)
≤C
(
α4
n∥∇wn∥5

L10([0,T ];L
30
13 (R3))

)
→ 0,

as n→ ∞.
We have

(4.13) ∥(1−∆)−
1
2a∂tw̃n∥L2([0,T ];L2(R3)) → 0,

as n→ ∞. Indeed,

∥(1−∆)−
1
2a∂tw̃n∥L2([0,T ];L2(R3)) ≤∥(1−∆)−

1
2a(∂tw̃n − ∂twn)∥L2([0,T ];L2(R3))

+ ∥(1−∆)−
1
2a∂twn∥L2([0,T ];L2(R3))

≤∥∂tw̃n − ∂twn∥L2([0,T ];H−1(R3))

+ ∥(1−∆)−
1
2a∂twn∥L2([0,T ];L2(R3)),
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and

∥∂tw̃n − ∂twn∥L2([0,T ];H−1(R3))

≤∥ − iJ−1(I −∆)w̃n + iJ−1(I −∆)wn + iJ−1α4
n|wn|4wn∥L2([0,T ];H−1(R3))

≤∥J−1(I −∆)(w̃n − wn)∥L2([0,T ];H−1(R3))

+ α4
n∥J−1w5

n∥L2([0,T ];H−1(R3))

≤C∥w̃n − wn∥L2([0,T ];H1(R3)) + Cα4
n∥wn∥5L10([0,T ];L6(R3)) → 0,

as n→ ∞, and J is given in Theorem A.3.
Now, since {w̃n} is bounded in L∞([0, T ];H1(R3)), we can extract a subsequence (still denoted

by {w̃n}) such that w̃n(t) ⇀ w(t) weakly. Passing to the limit in (4.12), and taking into account
the convergence (4.13), the function w satisfies{

i∂tw +∆w − w = 0, on (0, T )× R3,
∂tw = 0, on (0, T )× R3\BR+1(0).

Let v = ∂tw. Taking the derivative with respect to time in the first equation of the system above,
we have that v satisfies {

i∂tv +∆v − v = 0, on (0, T )× R3,
v = 0, on (0, T )× R3\BR+1(0).

Since v ∈ C∞((0, T )× R3
)
(see, for instance, [40, Proposition 2.3]) and satisfies{
i∂tv +∆v − v = 0, on (0, T )× R3,
v = 0, on (0, T )× R3\BR+1(0),

by an unique continuation property (see [39]), v ≡ 0 on (0, T )×R3. Therefore, ∂tw ≡ 0 in (0, T )×R3

and ∆w − w = 0. Multiplying this equation by w and integrating by parts, we get∫
R3

|∇w|2 dx+

∫
R3

|w|2 dx = 0,

which implies w ≡ 0. Therefore, w̃n ⇀ 0 in H1(R3).
Finally, let us prove that

w̃n → 0 in L2
loc

(
(0, T );H1

loc(R3\BR+1(0))
)
.

Due to the convergence

∥(1−∆)−
1
2a∂tw̃n∥L2([0,T ]×R3) −→ 0

we get

∥(1−∆)−
1
2aJ−1(I −∆)χw̃n∥L2([0,T ]×R3) −→ 0,

for χ ∈ C∞
0 ([0, T ]× R3) and J given as in the proof of Theorem A.3. Indeed,

∥(1−∆)−
1
2aJ−1(I −∆)χw̃n∥L2([0,T ]×R3) =∥[(1−∆)−

1
2aJ−1(I −∆), χ]w̃n∥L2([0,T ]×R3)

+ ∥χ(1−∆)−
1
2aJ−1(I −∆)w̃n∥L2([0,T ]×R3)

≤∥χBw̃n∥L2([0,T ]×R3)

+ ∥χ(1−∆)−
1
2aJ−1(I −∆)w̃n∥L2([0,T ]×R3),

and this yields that〈
(1−∆)(J−1)∗a(1−∆)−1aJ−1(1−∆)χw̃n, χw̃n

〉
L2((0,T )×R3)

−→ 0.

Thus, Proposition B.4 gives us ∫
(0,T )×ω×S2

1 + |ξ|2 dµ = 0.

Moreover, Corollary B.5 ensures that

(4.14) w̃n → 0 in L2
loc

(
(0, T );H1

loc(R3)
)
.
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On other hand, since ∥(1−∆)−
1
2a∂tw̃n∥L2([0,T ]×R3) −→ 0, we get

∥a∂tw̃n∥L2([0,T ];H−1(R3)) −→ 0.

Let χω ∈ C∞(R3) such that χω = 1 on supp(a). Then

∥ai∂tw̃n∥L2([0,T ];H−1(R3)) =∥aJ−1(1−∆)w̃n∥L2([0,T ];H−1(R3))

≥η∥χωJ
−1(1−∆)w̃n∥L2([0,T ];H−1(R3))

≥η∥J−1χω(1−∆)w̃n∥L2([0,T ];H−1(R3))

≥C∥(1−∆)χωw̃n∥L2([0,T ];H−1(R3))

− C∥[(1−∆), χω]w̃n∥L2([0,T ];H−1(R3)).

For χB ∈ C∞
0 (R3), we have

∥[(1−∆), χω]w̃n∥L2([0,T ];H−1(R3)) = ∥[(1−∆), χω]χBw̃n∥L2([0,T ];H−1(R3))

≤ C∥χBw̃n∥L2([0,T ];L2(R3)) → 0.

Hence,

∥(1−∆)χωw̃n∥L2([0,T ];H−1(R3)) ≤C∥[(1−∆), χω]w̃n∥L2([0,T ];H−1(R3))

+ C∥ai∂tw̃n∥L2([0,T ];H−1(R3))

→ 0.

Then,

∥χωw̃n∥L2([0,T ];H1(R3)) = ∥(1−∆)−1(1−∆)χωw̃n∥L2([0,T ];H1(R3))

≤ ∥(1−∆)χωw̃n∥L2([0,T ];H−1(R3)) → 0.

This means that

(4.15) w̃n −→ 0 in L2
(
[0, T ];H1(R3\BR+1(0))

)
.

By (4.14) and (4.15), we conclude that

w̃n −→ 0 in L2
loc

(
(0, T );H1(R3)

)
.

So, choosing t0 ∈ (0, T ) such that ∥w̃n(t0)∥H1 → 0 and solving the equation satisfied by w̃n with
w̃n(t0) as initial data, we have

w̃n(t) = ei(t−t0)(∆−I)w̃n(t0) +

∫ t

t0

ei(t−τ)(∆−I)a(1−∆)−1a∂tw̃n dτ.

Hence,

∥w̃n(t)∥H1 ≤ c∥w̃n(t0)∥H1 + c∥a(1−∆)−1a∂tw̃n∥L1([0,T ];H1) → 0.

Therefore,
w̃n −→ 0 in L∞([0, T ];H1(R3)

)
,

and
∥wn(0)∥H1 = ∥w̃n(0)∥H1 → 0,

which is a contradiction with (4.11). □

Now, we finally complete the proof of the Theorem 1.1.

Proof of Theorem 1.1. Fix T > 0 such that Theorem 4.4 applies. Then, there exists ε > 0 such
that for any u0 satisfying

(4.16) ∥u0∥H1 ≤ λ0; ∥u0∥H−1 ≤ ε,

the strong observability estimate (4.1) holds for any solution of the damped equation (1.5). This
means that there exists B > 0 such that any solution of the damped equation satisfying (4.16)
fulfills

(4.17) E(u)(T ) ≤ (1−B)E(u)(0).
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Choose N ∈ N large enough such that (1 − B)NC(λ0) ≤ ε2. Corollary B.3 allow us to choose δ
small enough such that the assumptions ∥u0∥H1 ≤ R0 and ∥u0∥H−1 ≤ δ imply ∥u(nT )∥H−1 ≤ ε, for
0 ≤ n ≤ N. So, with that choice, we have E(u)(NT ) ≤ (1−B)NE(u)(0). Then, by the decreasing
of energy, we have ∥u(t)∥2H−1 ≤ ε2 for all t ≥ NT . Hence, the decay estimate (4.17) holds in each
interval [nT, (n+ 1)T ], n ∈ N, and

E(u)(nT ) ≤ (1−B)nE(u)(0),

giving the desired result. □

Appendix A. A review of the Cauchy problem

A.1. Existence. In this section, we review some results for the initial value problem

(A.1)

{
i∂tu+∆u− u− |u|4u = g, (t, x) ∈ R× R3,
u(0) = u0 ∈ H1(R3).

where g ∈ L∞
loc(R, H1(R3)). We begin with some definitions.

Definition 6. Let s ∈ R. The homogeneous Sobolev space Ḣs
(
Rd
)
is the space of tempered

distributions u over Rd which have Fourier transform belonging to L1
loc

(
Rd
)
and satisfy

∥u∥2
Ḣs

def
=

∫
Rd

|ξ|2s|û(ξ)|2dξ <∞.

We note that the spaces Ḣs and Ḣs′ are not comparable for inclusion.

Definition 7. A pair (q, r) is called L2-admissible if r ∈ [2, 6) and q satisfies

2

q
+

3

r
=

3

2
.

A pair (q, r) is called H1-admissible if r ∈ [6,+∞) and q satisfies

2

q
+

3

r
=

1

2
.

Remark 4. If (q, r) is a L2-admissible pair, then 2 ≤ q ≤ ∞. Note that the pair (∞, 2) is always
L2-admissible. The pair (2, 2N

N−2) is L
2- admissible if N > 3.

With these definitions in hand, we present two results that are paramount to prove that the
Cauchy problem (A.1) is well-posed. The first one gives the so-called Strichartz estimates and the
second one is a standard Sobolev embedding. These results can be found in [11, 24].

Lemma A.1. Let (q, r) be a L2-admissible pair. We have

(A.2) ∥eit∆h∥Lq
tL

r
x
≤ c∥h∥L2 ,

(A.3)

∥∥∥∥∥
∫ +∞

−∞
ei(t−τ)∆g dτ

∥∥∥∥∥
Lq
tL

r
x

+

∥∥∥∥∥
∫ t

0
ei(t−τ)∆g dτ

∥∥∥∥∥
Lq
tL

r
x

≤ c∥g∥
Lq′
t Lr′

x
,

and ∥∥∥∥∥
∫ +∞

−∞
eit∆g(τ) dτ

∥∥∥∥∥
L2
x

≤ C∥g∥
Lq′
t Lr′

x
.

Additionally, we have

(A.4)

∥∥∥∥∥
∫ +∞

−∞
ei(t−τ)∆g(τ) dτ

∥∥∥∥∥
Lq
tL

r
x

≤ C∥g∥
Lm′
t Ln′

x

where (q, r), (m,n) are any L2-admissible pair, wich is an generalization of (A.3).
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Define the S(I), W (I) and Z(I) norms for an interval I by

∥u∥S(I) = ∥u∥L10(I;L10(R3)), ∥u∥Z(I) = ∥u∥
L10(I;L

30
13 (R3))

and ∥u∥W (I) = ∥u∥
L

10
3 (I;L

10
3 (R3))

.

The first theorem gives us the existence of the solution to problem (A.1). The proof is similar to
the proof of Theorem 2.4 from [6] and, thus, we will omit it.

Theorem A.2. Let u0 ∈ H1(R3). , with ∥u0∥H1 ≤ A. If ∥u0∥H1 is small enough, there exists an
unique u ∈ C(R+, H

1(R3)) solution of (A.1) with

∥u∥S([0,T ]) <∞, ∥∇u∥W ([0,T ]) <∞ and ∥∇u∥Z([0,T ]) <∞

for all T > 0.

Now, we prove a result that ensures the existence of solutions for the H1 critical nonlinear
Schrödinger equation with a damping term, that is, changing g by a(x)(1 − ∆)−1a(x)∂tu in the
system (A.1).

Theorem A.3. Let T > 0, u0 ∈ H1(R3), and a(x) ∈ C∞(R3) a non-negative real valued function.
If ∥u0∥H1 is small enough, then there exists an unique u ∈ C(R+, H

1(R3)), solution of the system

(A.5)

{
i∂tu+∆u− u− |u|4u− a(x)(1−∆)−1a(x)∂tu = 0, (t, x) ∈ [0, T ]× R3,
u(0) = u0, x ∈ R3,

with ∥u∥S([0,T ]) <∞, ∥∇u∥W ([0,T ]) <∞ and ∥∇u∥Z([0,T ]) <∞ for all T <∞.

Proof. We claim that the operator Jv = (1− ia(x)(1−∆)−1a(x))v is a pseudodifferential operator
of order 0 which defines an isomorphism on the space Hs(R3), for s ∈ R and, in particular, on
Lp(R3). Indeed, we can write J as J = I + J1, where J1 is an anti-self-adjoint operator on L2(R3).
Thus J is an isomorphism on L2(R3) and, due to the ellipticity, on Hs(R3), for s > 0. Moreover,
J−1 (considered, for example, acting on L2([0, T ]×R3)) is a pseudodifferential operator of order 0
and satisfies J−1 = 1− J1J

−1.
We denote v = Ju and write the system (A.5) as{

∂tv − i∆v −R0v + i|u|4u = 0, (t, x) ∈ [0, T ]× R3,
v(0) = v0 = Ju0, x ∈ R3,

where R0 = −i∆J1J−1 + iJ−1 is a pseudodifferential operator of order 0. This Cauchy problem is
equivalent to the integral equation

v(t) = eit∆v0 +

∫ t

0
ei(t−τ)∆[R0v − i|u|4u] dτ.

Let I = [0, T ] and consider the set XI with norm

∥v∥XI
= sup

t∈I
∥∇v(t)∥L2 + sup

t∈I
∥v(t)∥L2 + ∥v∥S(I) + ∥∇v∥W (I).

We now set BR =
{
v ∈ XI ; ∥v∥XI

≤ R
}
, where R > 0. By Duhamel’s formula, we define the

functional

(A.6) Φu0(v)(t) = eit∆v0 +

∫ t

0
ei(t−τ)∆R0v dτ −

∫ t

0
ei(t−τ)∆i|u|4u dτ

Our goal is to show that this functional has a fixed point, considering Φu0 in a suitable ball BR.
We first show that we can choose R such that Φ(v) : BR −→ BR. Indeed, by (A.6), we get

∥∇Φu0(v)∥L2
x

≤ ∥∇eit∆v0∥L2 +
∥∥∥∫ t

0
∇ei(t−τ)∆|u|4u dτ

∥∥∥
L2
x

+
∥∥∥∫ t

0
∇ei(t−τ)∆R0v dτ

∥∥∥
L2
x

≤ ∥∇v0∥L2 + C∥∇|u|4u∥
L

10
7

t L
10
7

x

+ C∥∇R0v∥L1
tL

2
x

≤ ∥∇v0∥L2 + C∥u∥4S(I)∥∇u∥W (I) + C∥[∇, R0]v∥L1
tL

2
x
+ C∥R0∇v∥L1

tL
2
x
.
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On the other hand, observe that

∥∇u∥W (I) = ∥[∇, J−1]v + J−1∇v∥W (I)

≤ C∥v∥W (I) + C∥∇v∥W (I).

Then,

∥∇Φu0(v)∥L2
x
≤∥∇v0∥L2 + C∥v∥4S(I)

(
∥v∥W (I) + ∥∇v∥W (I)

)
+ C∥[∇, R0]v∥L1

tL
2
x
+ ∥R0∇v∥L1

tL
2
x

≤∥v0∥H1 + C∥v∥4S(I)∥v∥W (I) + C∥v∥4S(I)∥∇v∥W (I)

+ CT sup
t∈I

∥v(t)∥L2 + CT sup
t∈I

∥∇v(t)∥L2 .

By interpolation, one has

∥v(t)∥
L

10
3

≤ ∥v(t)∥
2
5

L2∥v(t)∥
3
5

L6 ,

which ensures∫ T

0
∥v(t)∥

10
3

L
10
3
dt ≤ T sup

t∈I
∥v(t)∥

4
3

L2 sup
t∈I

∥v(t)∥2L6 ≤ T∥v∥
4
3
XI

∥v∥2XI
≤ T∥v∥

10
3
XI
,

implying that

∥v∥W (I) ≤ T
3
10 ∥v∥XI

.

Hence,

∥∇Φu0(v)∥L2
x

≤ ∥∇v0∥L2 + CT
3
10 ∥v∥4S(I)∥v∥XI

+ C∥v∥4S(I)∥∇v∥W (I)

+ CT sup
t∈I

∥v(t)∥L2 + CT sup
t∈I

∥∇v(t)∥L2

≤ C∥v0∥H1 + CT
3
10 ∥v∥5XI

+ C∥v∥5XI
+ CT∥v∥XI

,

where, for these inequalities, we have used Lemma A.1, precisely, inequalities A.2, with (q, r) =(10
3
,
10

3

)
, and A.4, with (q, r) =

(10
3
,
10

3

)
and (m,n) = (∞, 2). Note that,

∥Φu0(v)∥L2
x

≤ C∥v0∥H1 + CT∥v∥5XI
+ CT∥v∥XI

and

∥∇Φu0(v)∥W (I) ≤ ∥∇v0∥L2 + C∥u∥4S(I)∥∇u∥W (I) + C∥[∇, R0]v∥L1
tL

2
x
+ C∥R0∇v∥L1

tL
2
x
.

Similarly as before, one can get

∥∇Φu0(v)∥W (I) ≤ ∥∇v0∥L2 + CT
3
10 ∥v∥4S(I)∥v∥XI

+ C∥v∥4S(I)∥∇v∥W (I)

+ CT sup
t∈I

∥v(t)∥L2 + CT sup
t∈I

∥∇v(t)∥L2

≤ C∥v0∥H1 + CT
3
10 ∥v∥5XI

+ C∥v∥5XI
+ CT∥v∥XI

.

Finally,

∥Φu0(v)∥S(I) ≤ C∥v0∥H1 + CT
3
10 ∥v∥5XI

+ C∥v∥5XI
+ CT∥v∥XI

,

where we used Lemma A.1, inequalities A.2, with (q, r) =
(
10,

30

13

)
, and A.4, with (q, r) =

(
10, 3013

)
and again (m,n) = (∞, 2). Putting all these pieces of information together means that

∥Φu0(v)∥XI
≤ C∥v0∥H1 + CT

3
10 ∥v∥5XI

+ C∥v∥5XI
+ CT∥v∥XI

.

Now, choosing T < min
{
1, 1

4C

}
, A < R

8C and R < 1

(4C)
1
4
, we conclude that Φu0 reproduces the ball

BR into itself.
Now, let us prove that Φ(v) is a contraction. To this end, consider the two systems{

i∂tu+∆u− u− |u|4u− a(1−∆)−1a∂tu = 0, (t, x) ∈ [0, T ]× R3,
u(0) = u0, x ∈ R3,
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and {
i∂tz +∆z − z − |z|4z − a(1−∆)−1a∂tz = 0, (t, x) ∈ [0, T ]× R3,
z(0) = u0, x ∈ R3.

Performing the same transformation carried out at the beginning of the proof, we have ∂tv − i∆v −R0v + i|u|4u = 0, (t, x) ∈ [0, T ]× R3,
v = Ju,
v(0) = v0 = Ju0, x ∈ R3,

and  ∂tw − i∆w −R0w + i|z|4z = 0, (t, x) ∈ [0, T ]× R3,
w = Jz,
w(0) = w0 = v0 = Ju0, x ∈ R3.

Using Duhamel’s formula,

Φu0(v)− Φu0(w) =

∫ t

0
ei(t−τ)∆R0(v − w) dτ −

∫ t

0
ei(t−τ)∆i

(
|u|4u− |z|4z

)
dτ.

Computations which are analogous to the ones in the previous step ensure

∥∇Φu0(v)−∇Φu0(w)∥L2
x

≤ CT
3
10R4∥v − w∥XI

+ CR4∥v − w∥XI
+ CT∥v − w∥XI

and

∥Φu0(v)− Φu0(w)∥XI
≤ CT

1
2R4∥v − w∥XI

+ CT
3
10R4∥v − w∥XI

+ CR4∥v − w∥XI
+ CT∥v − w∥XI

.

These give local existence as long as one chooses small enough constants T,R. Global existence is
obtained via energy estimates, for details, see [6, Remark 1]. □

A.2. Auxiliary results. We present two results that were used in this work. The first one ensures
that the solution of the nonhomogeneous damped Schrödinger equation satisfies a certain inequality:

Proposition A.4. Let u ∈ C([a, b];H1(R3)) be a solution of the damped Schrödinger equation

i∂tv +∆v − v − a(1−∆)−1a∂tv = f,

on I = [a, b] with ∇f ∈ L2(I;L
6
5 (R3)) and f ∈ L1(I;L2(R3)). Thus, the following inequality holds

∥∇v∥
L

10
3 (I;L

10
3 (R3))

+ ∥∇v∥
L10(I;L

30
13 (R3))

+ sup
t∈I

∥v(t)∥L2 + sup
t∈I

∥∇v(t)∥L2

≤ C
(
∥v(a)∥H1 + ∥∇f∥

L2(I;L
6
5 (R3))

+ ∥f∥L1(I;L2(R3))

)
.

Proof. The solution v satisfies

v(t) = eit∆v(a) +

∫ t

a
ei(t−τ)∆f dτ +

∫ t

a
ei(t−τ)∆[v + a(1−∆)−1a∂tv] dτ.

So,

∥v(t)∥L2 ≤ C∥v(a)∥H1 + C∥f∥L1(I;L2(R3)) + CI sup
t∈I

∥v(t)∥L2(R3),

and

∥∇v(t)∥L2 ≤ C∥v(a)∥H1 + C∥∇f∥
L2(I;L

6
5 (R3))

+ CI sup
t∈I

∥∇v(t)∥L2(R3) + CI sup
t∈I

∥v(t)∥L2(R3)

+ C∥f∥L1(I;L2(R3)).

Additionally, we get

∥v∥L10(I×R3) ≤ C∥v(a)∥H1 + C∥∇f∥
L2(I;L

6
5 (R3))

+ CI sup
t∈I

∥∇v(t)∥L2(R3) + CI sup
t∈I

∥v(t)∥L2(R3)

+ C∥f∥L1(I;L2(R3))
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and

∥∇v∥
L

10
3

t L
10
3

x

≤ C∥v(a)∥H1 + C∥∇f∥
L2(I;L

6
5 (R3))

+ CI sup
t∈I

∥∇v(t)∥L2(R3) + CI sup
t∈I

∥v(t)∥L2(R3)

+ C∥f∥L1(I;L2(R3)).

Putting together these inequalities, one obtains

∥∇v∥
L

10
3 (I;L

10
3 (R3))

+ ∥∇v∥
L10(I;L

30
13 (R3))

+ sup
t∈I

∥v(t)∥L2 + sup
t∈I

∥∇v(t)∥L2

≤ C∥v(a)∥H1 + C∥∇f∥
L2(I;L

6
5 (R3))

+ C∥f∥L1(I;L2(R3)) + CI sup
t∈I

∥v(t)∥L2 + sup
t∈I

CI∥∇v(t)∥L2 ,

and the estimate hold is the length of I is small enough. The large-time result follows by a bootstrap
argument. □

Remark 5. The same result is also true for the nonhomogeneous Schrödinger equation i∂tv+∆v−
v = f, where ∇f ∈ L2(I;L

6
5 (R3)) and f ∈ L1(I;L2(R3)).

Finally, we state and prove a result obtained as a consequence of the existence of solutions in
the Strichartz spaces. This result was shown by Cazenave and Weissler in [12].

Proposition A.5. If u is a solution of{
i∂tu+∆u− |u|4u = 0, on R× R3,
u(t0) = u0, on R,

such that u ∈ L10(R4) and u ∈ L10(R;L
30
13 (R3)), where u0 ∈ H1(R3), ∥u0∥H1 < λ, λ > 0 small

enough, there exists u± ∈ Ḣ1(R3) such that

lim
t→±∞

∥u(t)− eit∆u±∥Ḣ1 = 0.

Proof. Note that∥∥∥∫ +∞

t
∇ei(t−τ)∆|u|4u dτ

∥∥∥
L2

≤ C∥∇|u|4u∥
L2(t,+∞)L

6
5 (R3)

≤ C∥u∥4L10(t,+∞)L10(R3)∥∇u∥L10(t,+∞)L
30
13 (R3)

→ 0

as t→ +∞. Then, with

u(t) = ei(t−t0)∆u0 +

∫ t

t0

ei(t−τ)∆|u|4u dτ,

taking

u+ = e−it0∆u0 +

∫ +∞

t0

e−iτ∆|u|4u dτ and u− = e−it0∆u0 −
∫ t0

−∞
e−iτ∆|u|4u dτ,

the result holds. □

Appendix B. Propagation results for the linear Schrödinger equation

In this appendix, we collect some results of propagation for solutions of the linear Schrödinger
equation following the ideas contained in [15]. The results presented here are essential to prove our
main result, that is, the exponential stabilizability result.

Lemma B.1. Let un, ũn be two sequences of solutions for{
i∂tun +∆un − un − |un|4un = a(1−∆)−1a∂tun, on [0, T ]× R3,
un(0) = u0,n, bounded in H1(R3) with ∥u0,n∥H1 < λ0,

and {
i∂tũn +∆ũn − ũn − |ũn|4ũn = 0, on [0, T ]× R3,
ũn(0) = ũ0,n, bounded in H1(R3) with ∥ũ0,n∥H1 < λ0,



52 BRAZ E SILVA, CAPISTRANO–FILHO, CARVALHO, AND DOS SANTOS FERREIRA

respectively, with ∥un,0 − ũn,0∥H1 → 0 and ∥(1−∆)−
1
2a∂tun∥L2([0,T ];L2(R3)) → 0 as n→ ∞. Then,

∥un − ũn∥L10([0,T ]×R3) + ∥∇(un − ũn)∥
L

10
3

t L
10
3

x

+ sup
t∈[0,T ]

∥∇(un − ũn)∥L2 + sup
t∈[0,T ]

∥un − ũn∥L2 → 0

as n→ ∞.

Proof. Let rn = un − ũn. It satisfies the system{
i∂trn +∆rn − rn − |un|4un + |ũn|4ũn = a(1−∆)−1a∂tun, in [0, T ]× R3,
rn(0) = u0,n − ũ0,n.

Denote

|||.|||[0,T ] = ∥ · ∥L10([0,T ]×R3) + ∥∇ · ∥
L

10
3

t L
10
3

x

+ ∥∇ · ∥
L10
t L

30
13
x

.

Strichartz’s estimates give us that

|||rn|||[0,T ] + sup
t∈[0,T ]

∥∇rn(t)∥L2 + sup
t∈[0,T ]

∥rn(t)∥L2 ≤ ∥rn(0)∥H1 + ∥∇(u5n − ũ5n)∥
L2
tL

6
5
x

+ ∥a(1−∆)−1a∂tun∥L1
tH

1
x
+ ∥u5n − ũ5n∥L1

tL
2
x
.

(B.1)

Thus, on the one hand, we have

∥a(1−∆)−1a∂tun∥L1
tH

1
x

≤ C∥a(1−∆)−1a∂tun∥L2
tH

1
x

≤ C∥(1−∆)−
1
2a∂tun∥L2

tL
2
x
→ 0,

as n→ ∞. On the other hand,

∥∇(u5n − ũ5n)∥
L2
tL

6
5
x

≤∥un∥4L10
t L10

x
∥∇un −∇ũn∥

L10
t L

30
13
x

+ ∥un − ũn∥L10
t L10

x
∥∇ũn∥

L10
t L

30
13
x

∥un∥3L10
t L10

x

+ ∥un − ũn∥L10
t L10

x
∥∇ũn∥

L10
t L

30
13
x

∥ũn∥3L10
t L10

x

≤C∥∇rn∥
L10
t L

30
13
x

(
∥∇ũn∥4

L10
t L

30
13
x

+ ∥∇un∥4
L10
t L

30
13
x

+ ∥∇ũn∥
L10
t L

30
13
x

∥∇un∥3
L10
t L

30
13
x

)
and

∥u5n − ũ5n∥L1
tL

2
x

≤ ∥un − ũn∥L5
tL

10
x

(
∥un∥4L5

tL
10
x
+ ∥ũn∥4L5

tL
10
x

)
≤ C∥∇rn∥

L10
t L

30
13
x

(
∥∇ũn∥4

L10
t L

30
13
x

+ ∥∇un∥4
L10
t L

30
13
x

)
.

So, dividing the interval [0, T ] in a finite number of intervals Ii,n = [ai,n, ai+1,n], 1 ≤ i ≤ N , such
that

C
(
∥∇un∥4

L10
t L

30
13
x

+ ∥∇ũn∥4
L10
t L

30
13
x

+ ∥∇ũn∥
L10
t L

30
13
x

∥∇un∥3
L10
t L

30
13
x

)
≤ 1

2
,

the terms of (B.1) can be controlled. We iterate this estimate N times, which gives the result. □

Lemma B.2. Let T > 0. There exists C > 0 such that any solution u to

(B.2)

{
i∂tu+∆u− u− |u|4u = a(1−∆)−1a∂tu, on [0, T ]× R3,
u(0) = u0, ∥u0∥H1 ≤ λ0,

with λ0 given by (1), satisfies ∥u∥L∞([0,T ];L2(R3)) ≤ C∥u0∥L2(R3).

Proof. First, notice that u ∈ L7([0, T ];L14(R3)). By a Sobolev embedding, Strichartz estimates, and
an interpolation argument, we get u ∈ L4([0, T ];L12(R3)). Observe that V = |u|4 ∈ L1([0, T ];L3(R3)).
Multiplying the first equation of (B.2) by u, integrating and taking the imaginary part yields

∥u∥2L∞([0,t];L2) ≤ 2C(t+ ∥V ∥L1([0,t];L3))∥u∥2L∞([0,t];L2) + ∥u(0)∥2L2 .
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We can divide the interval [0, T ] into a finite number of intervals [ai, ai+1], i = 1, ..., N , such that
2C(t+∥V ∥L1([ai,ai+1];L3)) < 1/4. In each of these intervals, we have ∥u∥2L∞([ai,ai+1];L2) ≤ C∥u(ai)∥2L2 .

We obtain the expected result by iteration. The final constant C only depends on λ0 and T . □

As a consequence of the previous result, we have the following corollary.

Corollary B.3. Let T > 0. For any ε > 0, there exists δ > 0 such that any solution u satisfying
(4.5) and ∥u0∥H−1 ≤ δ satisfies ∥u(T )∥H−1 ≤ ε.

Proof. By Lemma B.2, we have ∥u(T )∥H−1 ≤ C∥u(0)∥L2 . However, by an interpolation argument
between Hs(R3) spaces, s ∈ R, we have

∥u(0)∥L2 ≤ ∥u(0)∥
1
2

H−1∥u(0)∥
1
2

H1 ≤ λ
1
2
0 ∥u(0)∥

1
2

H−1 .

Then,

∥u(T )∥H−1 ≤ C∥u(0)∥L2 ≤ Cλ
1
2
0 ∥u(0)∥

1
2

H−1 .

Taking δ = ε2

C2λ0
, we conclude that ∥u(T )∥H−1 ≤ ε. □

The next proposition gives us the propagation of compactness.

Proposition B.4. Let L = i∂t + ∆ + R0 where R0(t, x,Dx) is a tangential pseudodifferential
operator of order 0 and {un} a sequence of functions satisfying,

(B.3) sup
t∈[0,T ]

∥χun(t)∥H1(R3) ≤ C, sup
t∈[0,T ]

∥χun(t)∥L2(R3) → 0 and

∫ T

0
∥Lun(t)∥2L2 dt→ 0,

for every χ ∈ C∞
0 (R3), with χ(x) = 1 when x ∈ supp(χ) = K. There exist a subsequence {un′} of

{un} and a positive measure µ on (0, T )×R3×S3 such that, for every tangential pseudodifferential
operator A = A(t, x,Dx) of order 2 with principal symbol σ(A) = a2(t, x, ξ), one has

(B.4) ⟨A(t, x,Dx)χun′ , χun′⟩L2 −→
∫
(0,T )×R3×S3

a2(t, x, ξ) dµ(t, x, ξ).

Moreover, if Gs denotes the geodesic flow on R3 × S2, one has, for every s ∈ R,

(B.5) Gs(µ) = µ.

In other words, µ is invariant by the geodesic flow “at fixed t.”

Proof. The construction of the tangential microlocal defect measures µ satisfying (B.4) is classical
and can be found in [22]. The first estimate in (B.3) combined with a separability argument allows
to find a subsequence {un′} such that the left-hand side of (B.4) converges for all A. Then, the
second estimate in (B.3) and the G̊arding inequality imply the existence of some positive measure
µ such that (B.4) holds.

For the propagation, i.e., property (B.5), we consider φ = φ(t) ∈ C∞
0 (0, T ), B(x,Dx) a

pseudo-differential operator of order 1 with principal symbol b1, A(t, x,Dx) = φ(t)B(x,Dx) and,
for ε > 0, Aε = φBε = Aeε∆. Moreover, denote

αε
n =

(
Lun, A

∗
εun
)
L2([0,T ]×R3)

−
(
Aεun, Lun

)
L2([0,T ]×R3)

.

By the assumption (B.3), supε α
ε
n → 0 if n→ ∞. On the other hand,

αε
n =

(
i∂tun +∆un +R0un, A

∗
εun
)
L2([0,T ]×R3)

−
(
Aεun, i∂tun +∆un +R0un

)
L2([0,T ]×R3)

= i
(
(∂tAε)un, un

)
L2([0,T ]×R3)

+
(
Aε∆un, un

)
L2([0,T ]×R3)

+
(
AεR0un, un

)
L2([0,T ]×R3)

− i
(
(∂tAε)un, un

)
L2([0,T ]×R3)

−
(
∆Aεun, un

)
L2([0,T ]×R3)

−
(
R∗

0Aεun, un
)
L2([0,T ]×R3)

=
(
[Aε,∆]un, un

)
L2([0,T ]×R3)

+
(
[AεR0 −R∗

0Aε]un, un
)
L2([0,T ]×R3)
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Observe that taking
(
[AεR0 − R∗

0Aε]un, un
)
L2([0,T ]×R3)

= βεn, we have supε β
ε
n → 0 as n → ∞.

Finally, passing to the limit as ε→ 0, we obtain(
φ[B,∆]un, un

)
L2([0,T ]×R3)

→ 0

as n→ ∞. This means that, for any χ ∈ C∞
0 (R3), one has

(B.6)
(
χφ[B,∆]un, χun

)
L2([0,T ]×R3)

→ 0

as n → ∞. Let D := φ[B,∆]. Note that D is a pseudodifferential operator of order two and,
moreover,(

φ[B,∆]χun, χun
)
L2([0,T ]×R3)

=
(
Dχun, χun

)
L2([0,T ]×R3)

=
(
[D,χ]un, χun

)
L2([0,T ]×R3)

+
(
χDun, χun

)
L2([0,T ]×R3)

→ 0

as n→ ∞, using (B.6) and(
[D,χ]un, χun

)
L2([0,T ]×R3)

≤ ∥[D,χ]un∥L2∥χun∥L2 ≤ C∥un∥H1∥χun∥L2 .

In view of (B.4), one has ∫
(0,T )×R3×S3

φ{|ξ|2x, b1} dµ(t, x, ξ) = 0.

This identity expresses property (B.5) and completes the proof. □

With the propagation of compactness in hands, the propagation of regularity holds.

Corollary B.5. Assume that ω ⊂ R3 satisfies Assumption 4.1. Let {un} be a sequence of functions
bounded in L∞([0, T ], H1(R3)), converging to 0 in L2, and satisfying

(B.7)

{
i∂tun +∆un → 0 in L2([0, T ], H1(R3)),
un → 0 in L2([0, T ], H1

loc(ω)).

Then, {un} strongly converges to 0 in L∞([0, T ], H1
loc(R3)).

Proof. By Proposition B.4, we can attach to the sequence (un) a microlocal defect measure in
L2((0, T ), H1(R3)) that propagates with infinite speed along the geodesics of R3. Using the second
equation of (B.7), we can deduce that

µ = 0 on (0, T )× ω × S3,

which yields, by the propagation (B.5) and Assumption 4.1, µ = 0 on (0, T ) × R3 × S3. This
means that un → 0 in L2

loc((0, T );H
1
loc(R3)). Finally, solving the first equation of (B.7) with initial

data un(t0), where t0 ∈ (0, T ) is such that ∥un(t0)∥H1
loc

→ 0, this implies the strong convergence

un(t) → 0 in the space L∞([0, T ], H1
loc(R3)). □
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