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Abstract. This paper represents a new perspective in understanding the controllability of the
Korteweg-de Vries (KdV) equation on unbounded domains. By studying the equation on both the
right and left half-line with a single control input, we show that a class of solutions exists for which
the KdV equation is exactly controllable. This is achieved by introducing a new concept known as
operational controllability, which provides key insights for establishing exact controllability results
for the KdV equation. This approach allows explicitly characterizing both the control input and
the controllable solutions. Furthermore, this concept holds significant potential for application to
a wide range of nonlinear dispersive equations on the half-line and in bounded intervals.
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1. Introduction

1.1. Problem framework. In recent years, the study of the KdV equation1 as an initial boundary
value problem on the half-line has given the attention of many researchers. This is a challenging
problem, mainly when studied with low Sobolev regularity.

The theory of local well-posedness (LWP), i.e., existence, uniqueness, and continuity of the
data-to-solution map, of the initial boundary value problem (IBVP) associated with the KdV
equation is well studied. On the right half-line (0,+∞) is considered the following IBVP

(1.1)


∂tu+ ∂xu+ ∂3xu+ u∂xu = 0, for (x, t) ∈ (0,+∞)× (0, T ),

u(0, t) = f(t), for t ∈ (0, T ),

u(x, 0) = ϕ(x), for x ∈ (0,+∞),

and on the left half-line (−∞, 0) the following one

(1.2)


∂tu+ ∂xu+ ∂3xu+ u∂xu = 0, for (x, t) ∈ (−∞, 0)× (0, T ),

u(0, t) = g1(t), ∂xu(0, t) = g2(t), for t ∈ (0, T ),

u(x, 0) = ϕ(x), for x ∈ (−∞, 0).

The rationale behind the presence of one boundary condition in the right half-line problem
(1.1) as opposed to two boundary conditions in the left half-line problem (1.2) can be elucidated
by integral identities concerning smooth solutions to the linear KdV equation. For such solutions,
denoted by v, and any arbitrary time t, where 0 < t < T , the following holds:

(1.3)

∫ +∞

0
v2(x, t)dx =

∫ +∞

0
v2(x, 0)dx+

∫ t

0

[
2v
(
0, t′
)
vxx
(
0, t′
)
− v2x

(
0, t′
)]
dt′

and

(1.4)

∫ 0

−∞
v2(x, t)dx =

∫ 0

−∞
v2(x, 0)dx−

∫ t

0

[
2v
(
0, t′
)
vxx
(
0, t′
)
− v2x

(
0, t′
)]
dt′.

Thus, assuming v(x, 0) = 0 = v (0, t′) for all x > 0 and 0 < t′ < t, we deduce from (1.3) that
v(x, t) = 0 for all x > 0. However, the existence of v(x, t) ̸= 0 for x < 0, satisfying v(x, 0) = 0 =
v (0, t′) for all x < 0 and 0 < t′ < t, is not precluded by (1.4). Indeed, such nonzero solutions
do exist, as demonstrated in [29]. Nevertheless, (1.4) does reveal that homogeneous conditions
v(x, 0) = v (0, t′) = vx (0, t

′) = 0 for all x < 0 and 0 < t′ < t imply that v(x, t) = 0 for all x < 0.

Remark 1. Acknowledging the significance of the natural regularity assumptions for the boundary
function, it is pertinent to note that these are inspired by the Kato smoothing effects elucidated by
Kenig, Ponce, and Vega [32]. ∥∥∥ψ(t)et∂3xϕ∥∥∥

L∞
x H

(k+1)/3
t

≤ cψ,s∥ϕ∥Hk(R)

and ∥∥∥ψ(t)∂xet∂3xϕ∥∥∥
L∞
x H

k/3
t

≤ cψ,s∥ϕ∥Hk(R),

1This equation was first introduced by Boussinesq [7], and Korteweg and de Vries rediscovered it twenty years
later [33]. Moreover, the linearized system ∂tu + ∂xu + ∂3

xu = 0 is also called the first Stokes equation. The small
amplitude, and long wave limit of the equations governing inviscid, irrotational water waves yield the KdV equation.
Typically, when studying this equation over the entire line, the ∂xu term is omitted, as it can be eliminated via a
Galilean transformation. Yet, on the half-line, applying this transformation would alter the domain to a wedge.
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where ψ(t) is a smooth cutoff function and the operator e−t∂
3
x denotes the free propagator on R.

This motivates the following setting for the IBVP (2.1),

u0 ∈ Hk
(
R+
)
and f ∈ H

k+1
3
(
R+
)
.

While, for the IBVP (2.2),

u0 ∈ Hk
(
R+
)
, f ∈ H

k+1
3
(
R+
)
and g ∈ H

k
3
(
R+
)
.

1.2. Why study control problems on unbounded domains? The well-posedness of the sys-
tem (1.1), as an initial-boundary value problem, is well established in the literature (see, for exam-
ple, [1, 2, 3]). In particular, a result by Bona et al. [2] guarantees the following:

Theorem A. Let ν > 0 and s > −1 be given with s ̸= 3m+ 1
2 , m = 0, 1, 2, · · · . Set

Hs
ν

(
R+
)
:=
{
f ∈ Hs

(
R+
)
; eνxf ∈ Hs

(
R+
)}
.

For any given compatible pair2 (ϕ, h) ∈ Hs
ν (R+) × H

s+1
3

loc (R+), there exists T > 0 such that the
IBVP (1.1) admits a unique mild solution u ∈ C ([0, T ];Hs

ν (R+)).

As a direct consequence of Theorem A (see, for instance, [41, Section 4]), they deduced that
the system (1.1) is not exactly controllable for a certain class of final states. Specifically, this class
is given by

C :=
{
ϕT ∈ Hs

(
R+
)
: ϕT /∈ Hs′

ν (R+) for any ν and s′ > −1
}
.

This result highlights that the exact controllability is obstructed for states that fail to belong to
the more regular weighted Sobolev space Hs′

ν (R+), regardless of the weight parameter ν and for
any s′ > −1. This naturally raises the question:

Question A: Is there a class of states for which the system (1.1) (or (1.2)) is either null controllable
or exactly controllable?

In this direction, Rosier [39, Theorem 1.2] shows that for a certain class of solutions, the linear
system associated with (1.1) is not null controllable for some states. Specifically, the following result
was established:

Theorem B. Let T > 0 be given. Then, there exists an initial data ϕ ∈ L2 (R+) such that if
u ∈ L∞ (0, T ;L2 (R+)

)
solves{
∂tu+ ∂xu+ ∂3xu = 0, in D′((0,+∞)× (0, T )),
u
∣∣
t=0

= ϕ,

then u
∣∣
t=T

̸= 0.

It means that the bad behavior of the trajectories as x→ ∞ is the price to be paid for getting
the exact controllability in (0,+∞). Indeed, for a certain function u0 in L2(0,+∞) and uT = 0 a
trajectory u as above cannot be found in L∞ (0, T, L2(0,+∞)

)
. However, when the bounded energy

condition
(
u ∈ L∞ (0, T ;L2 (R+)

))
is relaxed, the exact boundary controllability of the linear KdV

equation holds, as demonstrated also by Rosier in [39, Theorem 1.3]:

Theorem C. Let T, ϵ, and b be positive numbers, with ϵ < T
2 . Let ϕ ∈ H0 (R+) = L2 (R+) and

ψ ∈ H0
−b (R+). Then, there exists a solution

u ∈ L2
loc([0,∞)× [0, T ]) ∩ C

(
[0, ϵ];L2

(
R+
))

∩ C
(
[T − ϵ, T ];H0

−b
(
R+
))

which satisfies {
∂tu+ ∂xu+ ∂3xu = 0, in D′((0,+∞)× (0, T ))
u
∣∣
t=0

= ϕ, u
∣∣
t=T

= ψ.

2Refer to [1] for the precise definition of s-compatibility in this context.
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Additionally, Rosier [40, Corollary 2] provides a fundamental solution with compact support
in time for the linear KdV equation. This enables the construction of an explicit trajectory, al-
though with undesirable behavior at infinity, that drives any function u0 to zero. To conclude,
and summarize all results related to the controllability of the KdV equation on the half-line, it is
important to highlight the following result, which asserts that the linear KdV equation is indeed
exactly boundary controllable in (0,+∞), as established in [40, Theorem 1].

Theorem D. Let T > 0 and let u0, uT ∈ L2(0,+∞). Then there exists a function u ∈ L2
loc([0, T ]×

[0,+∞)) fulfilling 
∂tu+ ∂xu+ ∂3xu = 0, t ∈ (0, T ), x ∈ R+,

u|t=0 = u0,

u |t=T
= uT .

Note that, in the context of the unbounded domain, the control theory for the KdV equation
still needs to be developed if compared with the theory in bounded domains (see below the discussion
in this case). So, given these previous results, the study of exact controllability for systems (1.1)
and (1.2) in the half-line framework becomes an interesting problem. Specifically, the following
question arises:

Question A′: Given T > 0 and ϕ, ϕT ∈ L2(R+) (or L2(R−) ). Can one find an appropriate control

input f(t) ∈ H
1
3 (0, T ) (or g1(t) ∈ H

1
3 (0, T ) or g2(t) ∈ L2(0, T )) such that there exists a class of

corresponding solutions u(x, t) of system (1.1) (or (1.2)) satisfying

u(x, 0) = ϕ(x) and u(x, T ) = ϕT (x)?

In the framework of unbounded domains, this work provides new insights into the mathe-
matical theory of control for the KdV equation, applicable on the half-line (and also in bounded
domains). Specifically, by characterizing the solutions and controls associated with these prob-
lems, we can identify a class of solutions where the exact controllability is satisfied, answering the
Questions A and A′.

1.3. State of the arts. Before delving into our main findings, let us provide an overview of the
existing literature regarding the well-posedness of the KdV equation in half-line, along with the
principal results concerning the control problem for the KdV equation, and consequently, the critical
set phenomena associated with it.

1.3.1. Well-posdness theory. Research on (IBVP) (1.1) commenced with Ton’s investigation [45].
Ton established the existence and uniqueness of solutions, considering smooth initial data ϕ(x)
and zero boundary data f . Subsequently, Bona and Winther [4] demonstrated the global existence
and uniqueness of solutions in L∞

loc(R+;H4(R+)), provided ϕ(x) ∈ H4(R+) and f ∈ H2
loc(R+).

Six years later, they further investigated the system in [5], establishing its continuous dependence.
Concurrently, Faminskii [20] explored a generalized version of the IBVP (1.1), establishing well-
posedness in weighted H1(R+) Sobolev space.

Nearly fifteen years later, Bona et al. [1] established conditional local well-posedness, whereby
solutions are deemed unique only if they adhere to certain s-compatibility conditions. This achieve-

ment was attained by considering ψ ∈ Hs (R+) and f ∈ H
s+1
3 (R+) with s > 3

4 . Additionally, they

provided global well-posedness for ψ ∈ Hs (R+) and f ∈ H
3s+7
12 (R+), where 1 ≤ s ≤ 3.

Colliander and Kenig [14] concurrently explored the initial boundary value problem (IBVP)
depicted in equation (1.1) alongside their research. They proposed a more inclusive method to
address the generalized Korteweg-de Vries (gKdV) equation situated on R+. Their approach in-
volved expressing the original system (1.1) as a superposition of three initial value problems on
R×R. Specifically, for the system examined in our study, their findings provided conditional local

well-posedness in L2 (R+)×H
1
3 (R+), wherein solutions are deemed unique only if they adhere to

supplementary auxiliary conditions. The authors also established a global a priori estimate for the
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boundary condition f ∈ H
7
12 (R+), and conditional global well-posedness was achieved for the case

s = 0.
Two years later, Faminskii [21] enhanced the global outcomes reported in [14] by considering

more natural boundary conditions. The local well-posedness of the IBVP (1.1) above s = −3
4 ,

representing the critical Sobolev exponent for the KdV initial value problem, was established by
Holmer [29] and Bona et al. [3]. Overviews detailing these findings and others can be found in [1]
and [25].

In the case of the left half-line, Holmer [29] established local well-posedness in Hs (R+) for
s > −3

4 . Subsequently, Faminskii [22] demonstrated global well-posedness in Hs (R+) for s ≥ 0,
assuming natural boundary conditions.

An alternative perspective on (1.1) is offered by employing Inverse Scattering techniques.
Fokas [23] introduced a novel approach called the unified transform method (UTM), which extends
the Inverse Scattering Transform (IST) method for solving IBVPs. For instance, it was noted in [23]
that, subject to appropriate decay and smoothness assumptions, akin to the infinite-line scenario,
the solution on the right half-line is expected to depict (for large times) an assembly of (standard
KdV) solitons traveling at constant speeds. These techniques were refined further in [25], where
the UTM method establishes well-posedness in Sobolev spaces.

Finally, two significant points warrant mention. Firstly, the representation and well-posedness
approaches introduced in [1, 14, 23, 29] apply to the left-half line and, consequently, to the IBVP
(1.2). Secondly, it is noteworthy that Cavalcante introduced an adaptation of Colliander and
Kenig’s approach for the context of star graphs in [10].

1.3.2. Control theory. The exploration of control strategies for the KdV equation was initiated
by the works of Russell and Zhang [42, 43, 44, 46, 47]. As for the control issue, Rosier [38]
examined boundary control of the KdV equation on the finite domain (0, L) with Dirichlet boundary
conditions

(1.5)

 ∂tu+ ∂xu+ ∂3xu+ u∂xu = 0, in (0, L)× (0, T ),
u(0, t) = u(L, t) = 0, ∂xu(L, t) = g(t), in (0, T ),
u(x, 0) = u0(x), in (0, L),

where the boundary value function g(t) is considered as a control input, has important phenomena
that directly affect the control problem related to them, so-called critical length phenomenon.
The control problem (1.5) was presented in 97’ in a pioneering work of Rosier [38]. The author
answered the following control problem for the system (1.5), giving the origin of the critical length
phenomenon for the KdV equation.

Initially, the linear system associated with (1.5) unveiled the phenomenon known as the “criti-
cal length”. This phenomenon suggests that the exact controllability of the linear system associated
with (1.5) hinges on the length L of the spatial domain (0, L). In other words, the linear system is
controllable if and only if

(1.6) L /∈ N :=

{
2π√
3

√
k2 + kl + l2 : k, l ∈ N∗

}
.

In the case of L ∈ N , Rosier demonstrated in [38] that the linear system linked with (1.5) is not
controllable. There exists a finite-dimensional subspace M = M(L) within L2(0, L) that remains
unreachable from the origin of this linear system. Specifically, for any non-zero state ψ ∈ M,
g ∈ L2(0, T ), and u ∈ C([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L)) fulfilling the conditions of the linear
system associated with (1.5) and u(·, 0) = 0, it follows that u(·, T ) ̸= ψ. A spatial domain (0, L) is
termed “critical” for the linear system related to (1.5) if its length L ∈ N .

When the spatial domain (0, L) is critical, one would not typically anticipate the corresponding
nonlinear system (1.5) to be precisely controllable, given the lack of controllability in the associated
linear system. Therefore, it was surprising when Coron and Crépeau demonstrated in [16] that the
nonlinear system (1.5) remains locally exactly controllable, even when its spatial domain is critical
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with a length of L = 2kπ, where k ∈ N∗ satisfies the condition:

̸ ∃(m,n) ∈ N∗ × N∗ with m2 +mn+ n2 = 3k2 and m ̸= n.

Subsequently, Cerpa [11], and Cerpa and Crépeau in [13], demonstrated that the nonlinear system
(1.5) is locally exactly controllable for large time considering the critical lengths.

It is important to point out, that if we change the control of position in the boundary condition
of (1.5), for example

(1.7) u(0, t) = h(t), u(L, t) = 0, ∂xu(L, t) = 0 in (0, T )

or

(1.8) u(0, t) = 0, u(L, t) = f(t), ∂xu(L, t) = 0 in (0, T ),

we can not characterize explicitly the critical sets for the KdV equation with the boundary condi-
tions (1.7) and (1.8). For details, we infer [12, 27].

After 97′, some authors tried to prove the critical set phenomenon for the KdV equation with
some boundary condition, we can cite, for example, [27, 15], and the references therein. However,
for the sets considered in these works, the authors were not allowed to characterize explicitly
the set where the linear controllability fails. Twenty years later, in [8], another set of boundary
conditions was considered. The authors introduced the KdV equation with Neumann conditions.
Capistrano–Filho et al. investigated the KdV equation with the following boundary control

∂2xu(0, t) = 0, ∂xu(L, t) = h(t), ∂2xu(L, t) = 0.

First, the authors studied the following linearized system

(1.9)

 ∂tu+ (1 + β)∂xu+ ∂3xu = 0. in (0, L)× (0, T ),
∂2xu(0, t) = 0, ∂xu(L, t) = h(t), ∂2xu(L, t) = 0, in (0, T ),
u(x, 0) = u0(x), in (0, L),

where β is a given real constant. For any β ̸= −1, considering the following set

Rβ :=

{
2π√

3(1 + β)

√
k2 + kl + l2 : k, l ∈ N∗

}
∪
{

kπ√
β + 1

: k ∈ N∗
}
.

The authors showed that if β ̸= −1, the linear system (1.9) is exactly controllable in the space
L2(0, L) if and only if the length L of the spatial domain (0, L) does not belong to the set Rβ.
Moreover, if β = −1, then the system (1.9) is not exactly controllable in the space L2(0, L) for any
L > 0. The result is also extended to the nonlinear problem using a point-fixed argument.

Note that, as in [38], the set Rβ is completely characterized. Moreover, when β = 0, N (see
(1.6)) is a proper subset of R0. The linear system (1.9) has more critical length domains than that
of the linear system associated with (1.5). In the case of β = −1, every L > 0 is critical for the
system (1.9). By contrast, removing the term ∂xu from the equation in (1.5), every L > 0 is not
critical for the system (1.5).

In recent work, Capistrano-Filho and da Silva [9] gave a necessary first step to understanding
the critical set phenomenon for the KdV equation posed on the interval [0, L] considering the
Neumann boundary conditions with only one control input. They showed that the KdV equation is
controllable in the critical case, i.e., when the spatial domain L belongs to the set Rβ. This result
is achieved using the return method together with a fixed point argument.

Finally, it is important to mention that in [31], the author presented an alternative for the
null controllability of the heat equation on the half line since the lack of null controllability for this
equation in this framework. This article introduced the relation via the UTM operator (see [23]) to
ensure the controllability result (see next subsection for a detailed discussion of the KdV equation
in this context).
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1.4. Operational controllability: The method. In the next sections, we focused on studying
the controllability of the KdV equation in the half-line. To achieve our objective we will use the
Hilbert uniqueness (HUM) method introduced by Lions [35]. This classical method consists of
proving an observability inequality for solutions of the adjoint system associated with the system
that we are interested in controlling.

However, to apply the HUM, we need to present a new concept of controllability which we
are calling the operational controllability. The core concept of this kind of controllability involves
deriving a global relation for the initial and boundary conditions from the integral representation
of solutions to problems posed on both the half-line and the finite interval. The strategy presented
here has the potential to be applied to exact controllability problems governed by various nonlinear
evolution partial differential equations. Notably, this form of integral representation has been
explored in several works in the last decade, for instance, by Fokas [23], Kenig et al. [14], Holmer
[29] and Bona et al. [1].

Let us consider the exact controllability problem (1.1), the other cases in this work can be
treated analogously. An important point is that, without any loss of generality, we shall consider
only the case when the initial data ϕ = 0. This is possible since considering ϕ, ϕT in L2(R+

x ), and f

in H
1
3 (R+

t ) is the control which leads the solution (ũ, ṽ) of the system KdV equation posed on the
right half-line from the zero initial data to the final state ϕT − u(T ), where u is the mild solution
corresponding to (1.1) with initial data ϕ and boundary condition f = 0, it follows immediately
that these controls also lead to the solution ũ+ u of (1.1) from ϕ to the final state ϕT .

1.4.1. Operational controllability via forcing operator. We will use the representation introduced
by Kenig et al. [14], and after explored by Holmer [29]. Suppose that the initial data ϕ = 0. Then,
the integral representation of the solution of (1.1) given by the forcing operator takes the form

(1.10) u(x, t) = −1

2
θ(t)D∂xu

2(x, t) + θ(t)L λ
+

(
e−πiλf

)
(x, t) + θ(t)L λ

+

(
1

2
θ(t)D∂xu

2(0, t)

)
(x, t).

Now, if we consider the linearized system with initial data zero, the solution could be written as

u(x, t) = θ(t)L λ
+

(
e−πiλf

)
(x, t).

Thus, we obtain the following definition for the exact controllability problem of the linearized
system associated with the problem (1.1).

Definition 1.1. Let ϕT ∈ L2(R+
x ), thus the system

(1.11)


∂tu+ ∂xu+ ∂3xu = 0, for (x, t) ∈ (0,+∞)× (0, T ),

u(0, t) = f(t), for t ∈ (0, T ),

u(x, 0) = 0, for x ∈ (0,+∞),

is operational exact controllable at time t = T if and only if there exists f = f(t) ∈ H
1
3 (R+

t ) such
that

θ(T )L λ
+

(
e−πiλf(t)

)
(x, T ) = ϕT (x),(1.12)

for some λ ∈ R.

From the identities (B.10) and (B.12), the relation (1.12) is equivalent to

3

Γ(λ)

∫ ∞

x

∫ T

0
(y − x)λ−1A

(
y

(T − t′)1/3

)
I− 2

3
−λ

3
f (t′)

(T − t′)1/3
dt′dy = ϕT (x),(1.13)

for some λ ∈ R. It is crucial to emphasize that the presence of the parameter λ in the afore-
mentioned relation must adhere to the conditions ensuring the well-posedness of the system under
consideration.

To establish the local exact controllability of the nonlinear system (1.1), with zero initial data,
it is necessary to employ the fixed-point argument along with the formula (1.10). Observe that
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the operational controllability relation (1.13) remains effective in achieving exact controllability in
Hs(R+

x ) for −3
4 < s ≤ 3

2 , excluding the case when s = 1
2 (see the proof of Theorems 1.1 and 1.2,

for details).

Remark 2. Observe that we can extend the results of this article for two classes of operators,
namely: boundary operator and UTM operator. Precisely, we have the following:

(a) Operational controllability via boundary operator: Using the representation giving by
Bona et al. [1], we can establish the operational controllability of the linear system (1.11).
Note that [1, Proposition 2.2] implies that the solution of the system (1.11) is given by

u(x, t) = [Wb(t)f ] (x) = [Ub(t)f ] (x) + [Ub(t)f ] (x) in Hs(R+
x ), for

3

4
< s ≤ 3.

Here, for x ≥, t ≥ 0,

[Ub(t)f ] (x) =
1

2π

∫ ∞

1
eiµ

3t−iµte
−
(√

3µ2−4+iµ
2

)
x (

3µ2 − 1
) ∫ ∞

0
e−(µ

3i−iµ)ξf(ξ)dξdµ.

Thus, a definition for the exact controllability problem for the linearized system (1.11) is
obtained as follows.

Definition 1.2. Let ϕT ∈ Hs(R+
x ), thus the system is operational exact controllable at time

t = T if and only if there exists f = f(t) ∈ H
s+1
3 (R+

t ) such that

2Re

(∫ ∞

1

∫ ∞

0
eiµ

3T−iµT e
−
(√

3µ2−4+iµ
2

)
x (

3µ2 − 1
)
e−(µ

3i−iµ)ξf(ξ)dξdµ

)
= 2πϕT (x).

(b) Operational controllability via UTM operator: Following the Fokas approach [23, 24,
25, 30], we can consider the case of Hs(R+

x ), for −3
4 < s with s+1

3 /∈ N + 1
2 , and we can

consider the operational controllability by using the following integral formula3

(1.14) u(x, t) = S [0, f, 0] (x, t) = − 1

2π

∫
∂D+

R

eikx−i(k−k3)t(3k2 − 1)f̃
(
k − k3, T

)
dk,

where f̃0
(
k3, T

)
are defined by

f̃
(
k3, T

)
=

∫ T

0
ei(k−k

3)t′f
(
t′
)
dt′, k ∈ C, 0 < t < T,

and C+ and C− will denote the upper half (Im k > 0) and the lower half (Im k < 0) of the
complex k-plane. The domain D is defined by

D = {k ∈ C, Re(ik − ik3) < 0} = {k ∈ C, (Im k)
(
3(Re k)2 − (Im k)2 − 1

)
< 0}.

Moreover, D+ and D− will denote the part of D in C+ and C−, namely

D+ = D ∩ C+ and D− = D ∩ C−.

The asymptotic form of D,D+, D−as k → ∞ will be denoted by DR, D
+
R , D

−
R , respectively,

i.e.,

(1.15) DR = {k ∈ D, |w(k)| > R, R large }, D+
R = DR ∩ C+, D−

R = DR ∩ C−.

From [25, Theorem 2], the function u(x, t) given by (1.14) defines a solution to the sys-
tem (1.11) in the space C([0, T ];Hs(R+

x )). Thus, in this case, the definition for the exact
controllability problem of the system (1.11) is given as follows.

Definition 1.3. Pick ϕT ∈ Hs(R+
x ), the system is operational exact controllable at time

t = T if and only if there exists f = f(t) ∈ H
s+1
3 (R+

t ) such that∫
∂D+

R

∫ T

0
eikx−i(k−k3)(T−t′)(3k2 − 1)f

(
t′
)
dt′dk = −2πϕT (x).

3See for instance [23, Chapter 1, Proposition 1.2 and Example 1.12].
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1.5. Notations and main results. As stated, there are no results in the literature that show the
controllability of the KdV equation in half-line. In this case, we are interested in relating the IBVP
with controllability and presenting an approach that serves not only for the KdV equation but also
for a series of dispersive equations when posed in half-line.

So, in this spirit, this article deals with a class of distributed parameter control systems
described by the KdV equation posed on an unbounded domain R+ = (0,+∞) and the left half-
line R− = (−∞, 0). To deal with the well-posedness theory and control problems, consider first the
equation (1.1) when −3

4 < s < 3
2 and s ̸= 1

2 . In this set of conditions over s, we have that

(1.16) ϕ ∈ Hs
(
R+
x

)
, f ∈ H

s+1
3
(
R+
t

)
, and if

1

2
< s <

3

2
, ϕ(0) = f(0).

Moreover, considering the system (1.2), if −3
4 < s < 3

2 , for s ̸=
1
2 , we get

(1.17) ϕ ∈ Hs
(
R−
x

)
, g1 ∈ H

s+1
3
(
R+
t

)
, g2 ∈ H

s
3
(
R+
t

)
, and if

1

2
< s <

3

2
, ϕ(0) = g1(0).

With this in hand, we define the solution for the systems (1.1) and (1.2), respectively, as follows.

Definition 1.4. We will call a solution u(x, t) of (1.1)-(1.16) (resp. (1.2)-(1.17)) on [0, T ] if the
following holds:

a) Well-defined nonlinearity: The function for some (appropriated) space X, if u ∈ X we have

∂xu
2 is a well-defined, in a distribution sense. Moreover, the function u(x, t) satisfies system

(1.1) (resp. (1.2)) in the sense of distributions on the set (x, t) ∈ (0,+∞) × (0, T ) (resp.
(x, t) ∈ (−∞, 0)× (0, T )).

b) Space traces: The function u ∈ C ([0, T ];Hs
x) and in this sense u(·, 0) = ϕ in Hs (R+

x ) (resp.

u(·, 0) = ϕ in Hs (R−
x )).

c) Time traces: Considering u ∈ C
(
Rx;H

s+1
3 (0, T )

)
and in this sense u(0, ·) = f in H

s+1
3 (0, T )

(resp. u(0, ·) = g1 in H
s+1
3 (0, T )).

d) Derivative traces: If ∂xu ∈ C
(
Rx;H

s
3 (0, T )

)
, considering only the system (1.2)-(1.17) we

require that, in this sense, u(0, ·) = g2 in H
s
3 (0, T ).

In this case, X shall be the modified Bourgain space Xs,b ∩Dα with b < 1
2 and α > 1

2 , where

∥u∥Xs,b
=

(∫∫
ξ,τ

⟨ξ⟩2s
〈
τ − ξ3

〉2b |û(ξ, τ)|2dξdτ)1/2

,

and

∥u∥Dα =

(∫∫
|ξ|≤1

⟨τ⟩2α|û(ξ, τ)|2dξdτ

)1/2

.

Let us now introduce two sets. For any ϕ ∈ Hs(R+), −3
4 < s ≤ 3

2 , we define the admissible
final state class for the linearized systems (1.1) and (1.2) by the sets

As
r(ϕ, T ) =

{
ϕT ∈ Hs(R+) : the solution given by Definition 1.4 for the linear system associated

with (1.1) satisfies u(x, T ) = ϕT , for a boundary control f ∈ H
s+1
3 (R+)

}
and

As
l (ϕ, T ) =

{
ϕT ∈ Hs(R−) : the solution given by Definition 1.4 for the linear system associated

with (1.2) satisfies u(x, T ) = ϕT , for a boundary controls g1 ∈ H
s
3 (R+), g2 ∈ H

s+1
3 (R+)

}
,

respectively. Note that from [40, Theorem 1] it follows that the admissible final state class for the
linearized system associated with (1.1) is not an empty set, i.e A0

r(ϕ, T ) ̸= ∅.
With this in hand, this article presents two results that give answers for Question A′, and con-

sequently, for Question A. Precisely, in this work, we will prove the exact boundary controllability
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in the sense of the definition 1.1. The first one is related to the control properties for the system
(1.1) and can be read as follows.

Theorem 1.1. Let T > 0. Then, there exists δ > 0 such that for any ϕ ∈ L2(R+
x ) and ϕT ∈

A0
r(ϕ, T ), verifying

∥ϕ∥L2(R+
x ) + ∥ϕT ∥L2(R+

x ) ≤ δ,

the system (1.1) admits a unique solution u ∈ X = X0,b ∩ Dα operational exactly controllable at

time T , it means that there exist f ∈ H
1
3 (R+

t ) such that

ϕT (x) = e−T (∂x+∂
3
x)ϕ(x)− 1

2
D∂xu

2(x, T ) + L λ
+h(x, T, ϕ),

where

h(t, ϕ) = e−πiλ
[
f(t)− θ(t)e−t(∂x+∂

3
x)ϕ
∣∣∣
x=0

+
1

2
θ(t)D∂xu

2(0, t)

]
,

with L λ
+ the forcing operator given by (B.11).

The second main result considers the control problem (1.2) when only one control input. The
result is the following one.

Theorem 1.2. Let T > 0. Then, there exists δ > 0 such that for any ϕ ∈ L2(R+
x ) and ϕT ∈

A0
l (ϕ, T ), verifying

∥ϕ∥L2(R+
x ) + ∥ϕT ∥L2(R+

x ) ≤ δ,

the system (1.1) admits a unique solution u ∈ X = X0,b ∩ Dα operational exactly controllable at
time T . Moreover, we have:

(i) If g1 = 0, one can find g2 ∈ L2(R+
t ) such that

ϕT (x) = e−T (∂x+∂
3
x)ϕ(x)− 1

2
D∂xu

2(x, T ) + L λ1
− h1(x, T, ϕ) + L λ2

− h2(x, T, ϕ)

where[
h1(t, ϕ)
h2(t, ϕ)

]
=M

 − θ(t)e−t(∂x+∂
3
x)ϕ
∣∣∣
x=0

+ 1
2D∂xu

2(0, t)

θ(t)I1/3
(
g2 − θ∂xe

−t(∂x+∂3x)ϕ
∣∣∣
x=0

+ 1
2θ∂xD∂xu

2(0, ·)
)
(t)

 .
(ii) If g2 = 0, one can find g1 ∈ H

1
3 (R+

t ) such that

ϕT (x) = e−T (∂x+∂
3
x)ϕ(x)− 1

2
D∂xu

2(x, T ) + L λ1
− h1(x, T, ϕ) + L λ2

− h2(x, T, ϕ),

where[
h1(t, ϕ)
h2(t, ϕ)

]
=M

 g1(t)− θ(t)e−t(∂x+∂
3
x)ϕ
∣∣∣
x=0

+ 1
2D∂xu

2(0, t)

θ(t)I1/3
(
− θ∂xe

−t(∂x+∂3x)ϕ
∣∣∣
x=0

+ 1
2θ∂xD∂xu

2(0, ·)
)
(t)

 .
Here, M is a matrix given by (B.15).

Both theorems are shown true using the classical tools of control theory, namely, the duality
theory of Dolecki and Russell [19] in the set-up of Lions [35], which reduces our problem to provide
an observability inequality. Moreover, to ensure the controllability of the full system, we employ a
classical fixed-point argument.

Finally, considering the case where the initial data ϕ is zero in the linearized system associ-
ated with (1.1) and considering the explicit characterization of the solutions to the systems under
consideration in this work, it is possible to characterize precisely the control and the controllable so-
lutions for the control problem. To be precise, the following theorem is achieved using the formulas
presented in [1, 23, 29], and in the sense of the definitions 1.1, 1.2 and 1.3:
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Theorem 1.3. Let 3
4 < s ≤ 3

2 and f ∈ H
1
3 (0, T ) such that system

∂tu+ ∂xu+ ∂3xu = 0, for (x, t) ∈ (0,+∞)× (0, T ),

u(0, t) = f(t), for t ∈ (0, T ),

u(x, 0) = 0, for x ∈ (0,+∞),

is (operational) exactly controllable at time T . Then the control f satisfies the following relations

6π

Γ(λ)

∫ ∞

x

∫ T

0
(y − x)λ−1A

(
y

(T − t′)1/3

)
I− 2

3
−λ

3
f (t′)

(T − t′)1/3
dt′dy

+

∫
∂D+

R

∫ T

0
eikx−i(k−k3)(T−t′)(3k2 − 1)f

(
t′
)
dt′dk = 0

or

6π

Γ(λ)

∫ ∞

x

∫ T

0
(y − x)λ−1A

(
y

(T − t′)1/3

)
I− 2

3
−λ

3
f (t′)

(T − t′)1/3
dt′dy

− 2Re

(∫ ∞

1

∫ ∞

0
eiµ

3T−iµT e
−
(√

3µ2−4+iµ
2

)
x (

3µ2 − 1
)
e−(µ

3i−iµ)ξf(ξ)dξdµ

)
= 0

or

2Re

(∫ ∞

1

∫ ∞

0
eiµ

3T−iµT e
−
(√

3µ2−4+iµ
2

)
x (

3µ2 − 1
)
e−(µ

3i−iµ)ξf(ξ)dξdµ

)

+

∫
∂D+

R

∫ T

0
eikx−i(k−k3)(T−t′)(3k2 − 1)f

(
t′
)
dt′dk = 0.

Here, A is the Airy function and I− 2
3
−λ

3
is the Caputo fractional derivative given by (B.5) and

(B.4), respectively. Moreover, the region D+
R is defined by (1.15).

1.6. Comments and novelties. There are important facts about the theorems presented in this
work. We mention some of them below.

i. Theorem 1.3 can be proved for the control system (1.2) with only one control input.
ii. Theorem 1.3 provides how to determine explicitly the control function f(t) (or g1(t) or g2(t)).

This can be done since we have a relationship between the forcing operator, UTM operator,
and Boundary operator with the controllability of the KdV equation in the following sense.
Suppose, for instance, the control problem (1.1). In this case, the control function f(t) can
be given by

({Forcing operator} f) (x, t) + ({UTM operator} f) (x, t) = 0,

({Forcing operator} f) (x, t)− ({Boundary operator} f) (x, t) = 0,

or
({Boundary operator} f) (x, t) + ({UTM operator} f) (x, t) = 0.

Thus, the previous relations ensure that, if the inverse of the operators presented before
exists, we have that:

f(t) = [({Forcing operator}+ {UTM 0perator}) (x, t)]−1 ({0}),

f(t) = [({Forcing operator} − {Boundary operator}) (x, t)]−1 ({0}),
or

f(t) = [({Bondary operator}+ {UTM operator}) (x, t)]−1 ({0}).
iii. Given that operational controllability can be extended to encompass bounded intervals,

with all operators effectively operating within these constraints, we can similarly extend the
Theorems 1.1, 1.2 and 1.3 to the bounded cases, provided suitable boundary conditions.
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iv. Regarding the critical set phenomenon, it is notable that several authors have explored
this aspect when considering the KdV equation on a bounded domain. We highlight two
specific works. In references [38] and [27], the authors delve into this phenomenon for two
sets of boundary conditions: condition (1.5)2 and (1.7). However, in our case, where fewer
boundary conditions are imposed and the drift term (∂xu) is included in the equation,
the critical set phenomenon does not manifest. This represents a novel observation for
the KdV equation. Specifically, we can maintain the same positioning of control, either
∂xu(L, t) = f(t) or u(0, t) = g1(t).

v. The main contribution of this work can be seen in two directions. The first is to relate
the three types of operators that guarantee the existence of solutions to the KdV equation
(see [1, 23, 29]) with the control theory for this equation, which guarantees an explicit form
for the control that drives the initial data to the final data, considering a class of solution
as mentioned before. Furthermore, the second contribution is that, in any configuration
of half-line controls, that is, considering f(t), g1(t) or g2(t), the phenomenon of “critical
length” does not appear.

The scenario presented in this work is completely new in terms of control theory. Employing
a comprehensive approach allows us to formulate a broader relationship, thereby achieving precise
control, denoted by f , essential for ensuring the exact controllability of the system under consider-
ation, precisely, Theorem 1.3, when only one control input is considered. Our analysis can be seen
in the scheme below (see Figure 1 below), which shows the range of s in the control space Hs, in
each operator that Theorem 1.3 remains valid.
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Figure 1. Operational controllability and control characterization relations

1.7. Paper’s outline. We complete our introduction by outlining the structure of the paper.
Section 2 provides an overview of the well-posedness theory. In Section 3, we address the exact
controllability result on the right half-line, offering the proof of Theorem 1.1. Section 4 contains the
detailed proof of Theorem 1.2, demonstrating the exact controllability of the KdV equation on the
left half-line. Section 5 gives some perspectives and discusses open issues. Finally, we include two
appendices. Appendix A provides supplementary results for the homogeneous systems discussed in
this work. Additionally, Appendix B presents the boundary forcing operator formulas for the KdV
system, along with the key estimates for this operator.

Acknowledgment. This research was conducted after several visits by the authors to the National
University of Colombia (sede Manizales) and the Federal University of Pernambuco, and it was
completed during the visit of the authors to the Department of Mathematics at Ewha Womans
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2. Well-posedness theory

In this section, we are interested in revisiting the well-posedness theory presented in the
classical papers [1, 2, 3, 14, 23, 25, 29]. These preliminary analyses will be paramount for us to
present the main novelty of this work.

2.1. Preliminaries. Let us consider s ≥ 0. In this case, we say that ϕ ∈ Hs(R+) if exists

ϕ̃ ∈ Hs(R) such that ϕ = ϕ̃|R+. Moreover, we set

∥ϕ∥Hs(R+) := inf
ϕ̃

∥ϕ̃∥Hs(R).

Here,

Hs
0(R+) =

{
ϕ ∈ Hs(R+); supp(ϕ) ⊂ [0,+∞)

}
,

otherwise, that is, s < 0, define Hs(R+) and Hs
0(R+) as the dual space of H−s

0 (R+) and H−s(R+),
respectively. The first results summarize useful properties of the Sobolev spaces on the half-line
and the proofs can be found in [14].

Lemma 2.1. For all f ∈ Hs(R) with −1
2 < s < 1

2 we have

∥χ(0,+∞)f∥Hs(R) ≲ ∥f∥Hs(R).

Lemma 2.2. If 1
2 < s < 3

2 the following statements are valid:

(a) Hs
0(R+) =

{
f ∈ Hs(R+); f(0) = 0

}
,

(b) If f ∈ Hs(R+) with f(0) = 0, then ∥χ(0,+∞)f∥Hs
0(R+) ≲ ∥f∥Hs(R+).

Lemma 2.3. If f ∈ Hs
0(R+) with s ∈ R, we then have

∥ψf∥Hs
0(R+) ≲ ∥f∥Hs

0(R+).

Let us consider the well-known Bourgain theory [6]. We denote by Xs,b the Fourier trans-
form space associated with linear KdV equation, precisely, space Xs,b is the completion of S′(R2)
concerning the norm

∥w∥Xs,b(ϕ) = ∥⟨ξ⟩s⟨τ − ξ3⟩bŵ(ξ, τ)∥L2
τL

2
ξ
.

To obtain our results we also need to define the following auxiliary modified Bougain space. Let
U s,b and V α the completion of S′(R2) with respect to the norms

∥w∥Us,b =

(∫ ∫
⟨τ⟩2s/3⟨τ − ξ3⟩2b|ŵ(ξ, τ)|2dξdτ

) 1
2

and ∥w∥V α =

(∫ ∫
⟨τ⟩2α|ŵ(ξ, τ)|2dξdτ

) 1
2

.

Next nonlinear estimates, in the context of the KdV equation, for b < 1
2 , were derived by Holmer

in [29].

Lemma 2.4. The following holds:

(a) For s > −3
4 , there exists b = b(s) < 1

2 such that for all α > 1
2 we have∥∥∂x(v1v2)∥∥Xs,−b ≲ ∥v1∥Xs,b∩V α∥v2∥Xs,b∩V α .

(b) Considering s ∈
(
−3

4 , 3
)
, there exists b = b(s) < 1

2 such that for all α > 1
2∥∥∂x(v1v2)∥∥Xs,−b ≲ ∥v1∥Xs,b∩V α∥v2∥Xs,b∩V α ,

is verified.



14 CAPISTRANO-FILHO AND GALLEGO

2.2. Overview of well-posedness results. In our analysis, we will consider the KdV equation
posed in the unbounded domains, that is, the positive real line and the negative real line.

Let us start considering the case of the positive real line. We firstly quote the work of Bona et.
al. [1, 2] that considers the system (1.1) in R+. Notably, the conventional approach of eliminating
the term ∂xu from the equation by transitioning to traveling coordinates comes with a substantial
trade-off in the quarter-plane problem. Introducing a change of variables v(x, t) = u(x + t, t), ef-
fectively eliminates the problematic term in the evolution equation. However, this transformation
alters the landscape of the boundary condition, now expressed as v(−t, t) = f(t) for t ≥ 0. Con-
sequently, the boundary condition is enforced at a dynamically shifting spatial point, framing the
problem within the unconventional domain {(x, t) : t ≥ 0, x+ t}.

Essentially, in [1] the authors establish a Kato smoothing effect in the following form: For

s > 3
4 , if ϕ ∈ Hs (R+)and f ∈ H

s+1
3

loc (R+) satisfy certain compatibility conditions at (x, t) = (0, 0),
then the IBVP (1.1) admits a unique solution

u ∈ C
(
0, T ;Hs

(
R+
x

))
∩ L2

(
0, T ;Hs+1

loc

(
R+
x

))
,

which satisfies the following additional properties(
sup

0<x<+∞

∫ T

0

∣∣∂s+1
x u(x, t)

∣∣2 dt) 1
2

≤ C
(
∥ϕ∥Hs(R+

x ) + ∥f∥
H

s+1
3 (0,T )

)
.

On the other hand, in [3], the authors proved a boundary smoothing property for the corresponding
linear problem, where the u∂xu term is dropped and ϕ(x) = 0, which states

∥u∥
L2

(
[0,T ];Hs+3

2 (R+
X)

) ≤ c∥f∥
H

s+1
3 (R+

t )
,

where c = c(s, T ). As an application of this property and variants of it, the authors obtain local
well-posedness of mild solutions of the nonlinear problem for s > −3

4 , where mild solutions are
defined as ones that can be appropriately approximated by smoother solutions. Next, we present
the results that can be found in [1] and [3], respectively.

Theorem 2.5. The initial-boundary-value problem (1.1) is locally well-posed for initial data ϕ ∈
Hs (R+

x ) and boundary data f ∈ H
(s+1)/3
loc

(
R+
t

)
satisfying certain compatibility conditions for s >

3/4, whereas global well-posedness holds for ϕ ∈ Hs (R+
x ) , f ∈ H

7+3s
12

(
R+
t

)
when 1 ≤ s ≤ 3 and for

ϕ ∈ Hs (R+
x ), f ∈ H

(s+1)/3
loc

(
R+
t

)
when s ≥ 3. Furthermore, the corresponding solution map is an

analytic correspondence between the space of initial and boundary data and the solution space.

Theorem 2.6. Let s ≥ −3/2 and T > 0 be given. There exists a constant C such that for any

f ∈ H
(s+1)/3
0

(
R+
t

)
, the corresponding solution u of the linearized system associated to (1.1) belongs

to the space L2
(
0, T ;H

s+3/2
0 (R+

x )
)
and satisfies

∥u∥
L2

(
0,T ;Hs+3

2 (R+
x )

) ≤ C∥f∥
H

s+1
3 (R+

t )
,

for a constant C depending only on s and T .

To obtain the boundary controllability for the KdV posed in half-line (positive or negative),
it is necessary to consider more low regularity in the initial data than s > 3

4 as in the previous
results. In this sense, Holmer [29] proves the existence of a solution of the KdV equation (1.1) and
(1.2), with β = 0, posed either on a left half-line and right half-line. The main accomplishment
of his work is to show that initial and boundary data may be given in Sobolev spaces of negative
index. Indeed, the author showed the existence of solutions for initial data in the Sobolev space
Hs as long as s is greater than −3

4 , and similar restrictions are enforced for the boundary data. As
is shown in the article, the right half-line problem requires one Dirichlet condition, while the left
half-line problem requires an additional Neumann condition. On the finite interval, the problem is
solved with two Dirichlet conditions and one Neumann condition on the right boundary. Now, to
establish the well-posedness of systems (1.1) and (1.2), for −3

4 < s < 3
2 with s ̸= 1

2 .
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Now on, we will consider the case when β = 0 and the presence of source function h ∈
L1(0, T,Hs(Ω)), where Ω = R+ or Ω = R−, namely

(2.1)


∂tu+ ∂3xu = h, for (x, t) ∈ (0,+∞)× (0, T ),

u(0, t) = f(t), for t ∈ (0, T ),

u(x, 0) = ϕ(x), for x ∈ (0,+∞),

and

(2.2)


∂tu+ ∂3xu = h, for (x, t) ∈ (−∞, 0)× (0, T ),

u(0, t) = g1(t), ∂xu(0, t) = g2(t), for t ∈ (0, T ),

u(x, 0) = ϕ(x), for x ∈ (−∞, 0).

Thus, the well-posedness result, for the linear systems, in [29] can be read as follows.

Theorem 2.7. Let −3
4 < s < 3

2 , s ̸=
1
2 , and consider h = 0 in the system (2.1) and (2.2).

i. Given (ϕ, f) satisfying (1.16), exist T > 0, depending only on the norms of ϕ, f in (1.16),
and u(x, t) that is a mild and distributional solution to (2.1)-(1.16) on [0, T ].

ii. Given (ϕ, g1, g2) satisfying (1.17), exist T > 0, depending only on the norms of ϕ, g1, g2 in
(1.17), and u(x, t) a mild and distributional solution to (2.2)-(1.17) on [0, T ].

Additionally, the results in [29] also ensure the well-posedness theory for the systems (1.1) and
(1.2), respectively.

Theorem 2.8. Let −3
4 < s < 3

2 , s ̸=
1
2 , it follows that

i. Given (ϕ, f) satisfying (1.16), exist T > 0, depending only on the norms of ϕ, f in (1.16),
and u(x, t) solution to (1.1)-(1.16) on [0, T ].

ii. Given (ϕ, g1, g2) satisfying (1.17), exist T > 0, depending only on the norms of ϕ, g1, g2 in
(1.17), and u(x, t) solution to (1.2)-(1.17) on [0, T ].

In both cases, the data-to-solution map is analytic as a map from the spaces in (1.16) and (1.17),
to the spaces giving in the Definition 1.4, which means that following solutions maps,

Γr : Hs(R+
x )×H

s+1
3 (R+

t ) −→ X = Xs,b ∩Dα

(ϕ, f) −→ Γr(ϕ, f) = u

and

Γl : Hs(R+
x )×H

s+1
3 (R+

t )×H
s
3 (R+

t ) −→ X = Xs,b ∩Dα

(ϕ, g1, g2) −→ Γl(ϕ, g1, g2) = u,

are analytics, where Γr and Γl are the map solution of the systems (1.1) and (1.2), respectively.

2.3. Boundary formulas. In [29], Holmer introduced the boundary forcing operator, which is the
key point to prove the previous results. This operator gives us a chance to express the solution of
the system (1.1) and (1.2), as well as, the boundary terms in terms of this operator (for details see
Appendix B.1). Thus, the local solution of the systems (1.1) and (1.2) are given by

(2.3)
Right

Half-Line
Problem


u(x, t) = θ(t)e−t(∂x+∂

3
x)ϕ(x)− 1

2θ(t)D∂xu
2(x, t) + θ(t)L λ

+h(x, t, ϕ),

h(t, ϕ) = e−πiλ
[
f(t)− θ(t)e−t(∂x+∂

3
x)ϕ
∣∣∣
x=0

+ 1
2θ(t)D∂xu

2(0, t)
]
.
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and
(2.4)

Left
Half-Line
Problem



u(x, t) = θ(t)e−t(∂x+∂
3
x)ϕ(x)− 1

2
θ(t)D∂xu

2(x, t)

+ θ(t)L λ1
− h1(x, t, ϕ) + θ(t)L λ2

− h2(x, t, ϕ),

[
h1(t, ϕ)

h2(t, ϕ)

]
=M

 g1(t)− θ(t)e−t(∂x+∂
3
x)ϕ
∣∣∣
x=0

+ 1
2θ(t)D∂xu

2(0, t)

θ(t)I1/3
(
g2 − θ∂xe

−t(∂x+∂3x)ϕ
∣∣∣
x=0

+ 1
2θ∂xD∂xu

2(0, ·)
)
(t)

 ,
respectively, where M is a matrix given by (B.15).

Finally, it is important to say that there is another approach for solving initial-boundary value
problems for integrable nonlinear evolution equations proposed by Fokas [24, 23, 25], the so-called
unified transform method (UTM). Fokas et. al, in [25], studied the validity of the UTM formula
for the KdV equation with data in Sobolev spaces. There, the authors studied the KdV equation
without drift term, i.e., β = 0. For more details, see the Appendix B and [23, Chapter 1, examples
1.1 and 1.12].

3. Exact controllability: The right half-line

In this section, our primary focus is to attain the exact controllability of the system described
by (1.1) and establish the proof for Theorem 1.1.

3.1. Backward system. Initially, consider the following homogeneous linearized system
∂tu+ ∂xu+ ∂3xu = 0, for (x, t) ∈ (0,+∞)× (0, T ),

u(0, t) = 0, for t ∈ (0, T ),

u(x, 0) = ϕ(x), for x ∈ (0,+∞).

Note that this system could be rewritten as{
∂tu = Au,

u(0) = u0,
where

{
Au = −∂xu− ∂3xu,

D(A) :=
{
u ∈ H3(R+

x ) : u(0) = 0
}
⊂ L2(R+

x ).

Using the Semigroup theory (see, for instance, [37, Cor. 4.4 chapter 1]) is not difficult to see the
following result.

Proposition 3.1. The operator A generates a C0-semigroup of contraction (S(t))t⩾0 in L2(R+
x ).

So on, we will consider the backward adjoint system given by{
−φt = A∗φ,

φ(T ) = φT ,

which implies that

(3.1)


∂tφ+ ∂xφ+ ∂3xφ = 0, for (x, t) ∈ (0,+∞)× (0, T ),

φ(0, t) = ∂xφ(0, t) = 0, for t ∈ (0, T ),

φ(x, T ) = φT (x), for x ∈ (0,+∞).

As a direct consequence of Proposition 3.1 and the general theory of evolution equation, the exis-
tence and uniqueness of this system holds.

Proposition 3.2. Let φT ∈ L2(R+
x ), then there exists a unique mild solution φ(t) = S(T − t)φT of

(3.1) such that φ ∈ C
(
[0, T ];L2(R+

x )
)
. Moreover, if φT ∈ D(A), then (3.1) has a unique (classical)

solution φ such that

φ ∈ C([0, T ];D(A)) ∩ C1
(
0, T ;L2(R+

x )
)
.
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To establish some trace estimates for the backward system, remark that the change of variable
x = −x and t = T − t reduces system (3.1) in

(3.2)


∂tφ+ ∂xφ+ ∂3xφ = 0, for (x, t) ∈ (−∞, 0)× (0, T ),

φ(0, t) = ∂xφ(0, t) = 0, for t ∈ (0, T ),

φ(x, 0) = φ0(x), for x ∈ (−∞, 0).

Also the well-posedness of system (3.2) follows from Theorem 2.8, with −3
4 < s < 3

2 and s ̸= 1
2 . By

using the boundary forcing operator, we have that the solution φ of (3.2) is given by:

φ(x, t) = θ(t)e−t(∂x+∂
3
x)φ0(x) + θ(t)L λ1

− h1(x, t) + θ(t)L λ2
− h2(x, t),

where [
h1(t)
h2(t)

]
=M

 − θ(t)e−t(∂x+∂
3
x)φ0

∣∣∣
x=0

θ(t)I1/3
(
− θ∂xe

−t(∂x+∂3x)ϕ
∣∣∣
x=0

)
(t)


with A a matrix given by (B.15). From Lemmas B.4 and B.6, the estimations of the group and
the Duhamel boundary forcing operator, respectively, ensure the following space and time trace
estimations

(3.3) (Space traces) ∥φ∥C(Rt,Hs
x)

≤ C∥φ0∥Hs(R+
x ),

(3.4) (Time traces) ∥φ∥
C

(
Rx,H

s+1
3

t

) ≤ C∥φ0∥Hs(R+
x ),

and

(3.5) (Derivative time traces) ∥∂xφ∥
C

(
Rx,H

s
3
t

) ≤ C∥φ0∥Hs(R+
x ).

In particular, for φ0 ∈ L2(R−
x ), we have the solution φ of system (3.2) belonging of C([0, T ];L2(R−

x ))

with φ(0, ·) ∈ H
1
3 (0, T ) and φx(0, ·) ∈ L2(0, T ), and the following results are verified.

Proposition 3.3. Any solution φ of adjoint system (3.1) satisfies

T∥φT ∥2L2(R+
x )

=

∫ T

0
∥φ(t)∥2

L2(R+
x )
dt.

Proof. Multiplying the first equation of (3.2) by tφ and integrating by parts in (0, T )× (0,∞), the
results hold using the boundary conditions. □

The following result reveals a notable improvement in the regularity of the solution to the
linear system (3.1) and will be proved in Appendix A.

Theorem 3.4. Let u be the solution of problem (3.2). In addition, if χαu0 ∈ L2(R−
x ) for α = 2, 3,

then ∥xu∥L2(0,T ;H1(R−
x )) ⩽ c, where c

(
T, ∥u0∥L2(R−

x ) , ∥χ
αu0∥L2(R−

x )

)
. Moreover,∫ T

0

∫ x0+1

x0

(∂xu)
2dxdt ⩽ c

(
T, ∥u0∥L2(R−

x )

)
,

for any x0 ∈ (−∞, 0].

3.2. Controllability: Linear system. The first lemma gives an optimality condition that will
be paramount for our analysis.

Lemma 3.5. Consider the initial data ϕ ∈ L2(R+
x ). Then, the linear system associated to (1.1) is

exactly controllable if and only if there exists f ∈ H
1
3 (0, T ) such that

(3.6)
〈
f(·), ∂2xφ(0, ·)

〉
H1/3(0,T ),H−1/3(0,T )

=

∫ ∞

0
ϕφ(0)dx−

∫ ∞

0
u(T )φTdx,

for all φT ∈ L2(0,∞) and φ is the solution of the backward system (3.1).
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Proof. To prove this result multiply the system (1.1) by φ, solution of the backward system (3.1),
and integrate by parts in R+

x × (0, T ). □

The optimality condition (3.6) guarantee that the critical points of the functional

J : L2(0,∞) → R,
defined by

(3.7) J (φT ) =
1

2

∥∥∂2xφ(0, ·)∥∥2H−1/3(0,T )
+

∫ ∞

0
u(T )φTdx−

∫ ∞

0
ϕφ(0)dx,

where φ is the solution of (3.2) with final data φT ∈ L2(R+
x ), is the control that drives my initial

data to my final data, precisely, we have the following classical result.

Proposition 3.6. Let ϕ ∈ L2(R+
x ) and suppose that φ̂T ∈ L2(R+

x ) is a minimizer of J . If φ̂ is the

corresponding solution of (3.1) with final data φ̂T then f(t) = ∂̂2xφ(0, t) is a desired control.

Let us now give a general condition that ensures the existence of a minimizer for J . To prove
the previous result, we first establish an observability inequality associated with the solutions of
the system (3.1).

Proposition 3.7. For any T > 0, there exists a constant C(T, L) > 0, such that

(3.8) ∥φT ∥2L2(R+
x )

≤C
∥∥∂2xφ(0, ·)∥∥2H− 1

3 (0,T )
,

for any φT ∈ L2(R+
x ), where φ is the solution of the backward system (3.1).

Proof. We proceed in a standard way (see, e.g., [38, Lemma 3.5]). Let us suppose that (3.8) does
not hold. In this case, it follows that there exists a sequence {φn,T }n∈N of final data, such that

1 =∥φn,T ∥2L2(R+
x )

≥ n
∥∥∂2xφn(0, ·)∥∥2H− 1

3 (0,T )
,(3.9)

where, for each n ∈ N, {φn}n∈N is the solution of (3.1). Inequality (3.9) imply that

∂2xφn(0, ·) → 0 in H− 1
3 (0, T ).

Moreover, from (3.3), Theorem 3.4 and (3.9), we obtain that the sequences {φn}n∈N is bounded in
L2(0, T ;H1

loc(R+
x )). On the other hand, the adjoint system implies that {∂tφn}n∈N, is bounded in

L2(0, T ;H−2
loc (R

+
x )), and the compact embedding

H1
loc(R+

x ) ↪→cc L
2
loc(R+

x ) ↪→ H−2
loc (R

+
x ),

allows us to conclude that {φn}n∈N is relatively compact in L2(0, T ;L2
loc(R+

x )) and consequently,
we obtain a subsequence, still denoted by the same index n, satisfying

φn → φ in L2(0, T ;L2
loc(R+

x )), as n→ ∞.

Furthermore, the hidden regularity given by (3.4) implies that {φn(0, ·)}n∈N is bounded inH
1
3 (0, T ).

Then, the embedding H
1
3 (0, T ) ↪→cc L

2(0, T ) ensures that the above sequences are relatively com-
pact in L2(0, T ). Thus, we obtain a subsequence, still denoted by the same index n, satisfying

φn(0, ·) → φ(0, ·), in L2(0, T ).

From the boundary condition of the adjoint system, we deduce that φ(0, ·) = 0. In addition,
according to Proposition 3.3, we have

T∥φn,T ∥2L2(R+
x )

=

∫ T

0
∥φn(t)∥2L2(R+

x )
dt.

Then, if follows that {φn,T }n∈N is a Cauchy sequence in L2(R+
x ). Thus,

(3.10) φn,T → φT in L2(R+
x ), as n→ ∞,

which implies that

(3.11) ∥φT ∥L2(R+
x ) = 1.
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On the other hand, by using (3.5), (3.10) and (3.9), we see that

∂xφn(0, ·) → ∂xφ(0, ·) in L2(0, T ), as n→ ∞,

and

∂2xφn(0, ·) → ∂2xφ(0, ·) in H− 1
3 (0, T ), as n→ ∞.

Finally, taking n→ ∞, from above converges, we obtain that φ is solution of the system{
∂tφ+ ∂xφ+ ∂3xφ = 0, for (x, t) ∈ (0,∞)× (0, T ),

φ(0, t) = ∂xφ(0, t) = ∂2xφ(0, t) = 0, for t ∈ (0, T ).

Note that in this situation, we have φ ≡ 0 because of the unique continuation property (φ(0, t) =
∂xφ(0, t) = ∂2xφ(0, t) = 0, t ∈ (0, T )), which is a contradiction with (3.11), showing the result. □

We are in a position to present the controllability result for the linearized system associated
with (1.1). Indeed, the linear functional (3.7) is continuous and convex. It is evident from Propo-
sition 3.7 that the functional is coercive. Consequently, a minimizer for J exists. Therefore, based
on Lemma 3.5, Proposition 3.6, Lemmas B.4 and B.6, the following theorem is verified.

Theorem 3.8. Let T > 0, ϕ, ϕT ∈ L2(R+
x ). Then, there exist f ∈ H

1
3 (R+

t ) such that the distri-
butional solution u of the linear system (1.11) satisfies u(x, T ) = ϕT (x) for x ∈ (0,∞). Moreover,
the following estimates hold

∥u∥C(R+
t ,L

2(R+
x )) ≤ C

(
∥ϕ∥L2(R+

x ) + ∥f∥
H

1
3 (R+

t )

)
.

3.3. Controllability: Nonlinear system. Let T > 0, thanks to the Theorem 3.8, we can define
the bounded linear operator

Λl : L2(R+
x )× L2(R+

x ) −→ H
1
3 (R+

t )
(ϕ, ϕT ) −→ Λl(ϕ, ϕT ) = f

where f is the control defined in Proposition 3.6. Now, we are in a position to prove one of the
main results of the work.

3.3.1. Proof of Theorem 1.1. We treat the nonlinear problem using a classical fixed-point argu-
ment. According to (2.3) the solution of (1.1) can be written as

u(x, t) = θ(t)e−t(∂x+∂
3
x)ϕ(x)− 1

2
θ(t)D∂xu

2(x, t) + θ(t)L λ
+h(x, t),

with

h(t) = e−πiλ
[
f(t)− θ(t)e−t(∂x+∂

3
x)ϕ
∣∣∣
x=0

+
1

2
θ(t)D∂xu

2(0, t)

]
.

Consider the map

Γ(u) := θ(t)e−t(∂x+∂
3
x)ϕ(x)− 1

2
θ(t)D∂xu

2(x, t) + θ(t)L λ
+ ĥT (x, t),

where

ĥT (t) = e−πiλ
[
Λl

(
ϕ, ϕT +

1

2
θ(T )D∂xu

2(x, T )

)
(t)− θ(t)e−t(∂x+∂

3
x)ϕ
∣∣∣
x=0

+
1

2
θ(t)D∂xu

2(0, t)

]
.

If we choose

f(t) = Λl

(
ϕ, ϕT +

1

2
θ(T )D∂xu

2(x, T )

)
(t)(3.12)

from Theorem 3.8, we get

Γ(u)|t=0 = ϕ and Γ(u)|t=T = ϕT .

The next steps are devoted to proving that the map Γ is a contraction in an appropriate
metric space, then its fixed point u is the solution of (1.1), with f defined by (3.12). To prove the
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existence of the fixed point, we apply the Banach fixed-point theorem to the restriction of Γ on the
closed ball

Br =
{
u ∈ X0,b ∩Dα : ∥u∥X0,b∩Dα ≤ r

}
,

for some r > 0. In the sequel, C denotes a generic positive constant; C0, C1, etc, and others positive
(specific) constants.

(i) Γ maps Br into itself.

Indeed,using Lemmas B.4, B.5 and B.6, there exists a constant C>0, such that

∥Γ(u)∥X0,b∩Dα ≤
∥∥∥θ(t)e−t(∂x+∂3x)ϕ(x)∥∥∥

X0,b∩Dα

+

∥∥∥∥12θ(t)D∂xu2(x, t)
∥∥∥∥
X0,b∩Dα

+
∥∥∥θ(t)L λ

+ ĥT (x, t)
∥∥∥
X0,b∩Dα

≤C
(
∥θ∥H1(R+

t ) ∥ϕ∥L2(R+
x ) +

∥∥∂xu2∥∥X0,−b
+ ∥ĥT ∥

H
1
3 (R+

t )

)
.

From [29, Lemma 5.10], it follows that∥∥∂xu2∥∥X0,−b
≤ C ∥u∥2X0,b∩Dα

≤ Cr2.

Thus,

∥ĥT ∥
H

1
3 (R+

t )
≤
∥∥∥∥Λl (ϕ, ϕT +

1

2
θ(T )D∂xu

2(x, T )

)
(t)

∥∥∥∥
H

1
3 (R+

t )

+
∥∥∥θ(t)e−t(∂x+∂3x)ϕ∣∣∣

x=0

∥∥∥
H

1
3 (R+

t )
+

∥∥∥∥12θ(t)D∂xu2(0, t)
∥∥∥∥
H

1
3 (R+

t )

≤∥Λl∥

(
∥ϕ∥L2(R+

x ) +

∥∥∥∥ϕT +
1

2
θ(T )D∂xu

2(x, T )

∥∥∥∥
L2(R+

x )

)
+ C ∥ϕ∥L2(R+

x ) + 2C ∥u∥2X0,b∩Dα

≤∥Λl∥
(
∥ϕ∥L2(R+

x ) + ∥ϕT ∥L2(R+
x )

)
+ C ∥ϕ∥L2(R+

x ) + 2C (1 + ∥Λl∥) ∥u∥2X0,b∩Dα

≤∥Λl∥ δ + Cδ + 2C (1 + ∥Λl∥) r2.

Finally, we have that

∥Γ(u)∥Xs,b∩Dα ≤ C
(
∥θ∥H1(R+

t ) + ∥Λl∥+ C
)
δ + C2 (3 + ∥Λl∥) r2.

To obtain (i), we take δ with

δ = min

 r

2C
(
∥θ∥H1(R+

t ) + ∥Λl∥+ C
) , 1

4C3
(
∥θ∥H1(R+

t ) + ∥Λl∥+ C
)
(3 + ∥Λl∥)

 .

Hence, it follows that

C
(
∥θ∥H1(R+

t ) + ∥Λl∥+ C
)
δ + C2 (3 + ∥Λl∥) r2 ≤ r.

(ii) Γ is a contraction.

Let u, v ∈ Br, and consider

Γ(u)− Γ(v) = −1

2
θ(t)D∂x

(
u2(x, t)− v2(x, t)

)
+ θ(t)L λ

+

(
ĥuT (x, t)− ĥvT (x, t)

)
.

Here,

ĥuT (t) = e−πiλ
[
Λl

(
ϕ, ϕT +

1

2
θ(T )D∂xu

2(x, T )

)
(t)− θ(t)e−t(∂x+∂

3
x)ϕ
∣∣∣
x=0

+
1

2
θ(t)D∂xu

2(0, t)

]
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and

ĥvT (t) = e−πiλ
[
Λl

(
ϕ, ϕT +

1

2
θ(T )D∂xv

2(x, T )

)
(t)− θ(t)e−t(∂x+∂

3
x)ϕ
∣∣∣
x=0

+
1

2
θ(t)D∂xv

2(0, t)

]
.

Note that

ĥuT (t)−ĥvT (t) = e−πiλ
[
Λl

(
0,

1

2
θ(T )D∂x

(
u2(x, T )− v2(x, T )

))
(t) +

1

2
θ(t)D∂x

(
u2(0, t)− v2(0, t)

)]
.

Thus, we get

∥Γ(u)− Γ(v)∥X0,b∩Dα
≤
∥∥∥∥12θ(t)D∂x (u2(x, t)− v2(x, t)

)∥∥∥∥
X0,b∩Dα

+
∥∥∥θ(t)L λ

+

(
ĥuT (x, t)− ĥvT (x, t)

)∥∥∥
X0,b∩Dα

≤C ∥∂x (u+ v) (u− v)∥Xs,−b
+ C

∥∥∥ĥuT (t)− ĥvT (t)
∥∥∥
H

1
3 (R+

t )

≤2C2 ∥u+ v∥X0,b∩Dα
∥u− v∥X0,b∩Dα

+ C2 (2 + ∥Λl∥) ∥u+ v∥X0,b∩Dα
∥u− v∥X0,b∩Dα

≤2C2 (4 + ∥Λl∥) r ∥u− v∥X0,b∩Dα
,

and taking r such that 2C2 (4 + ∥Λl∥) r < 1, (ii) follows.
Therefore, the map Γ is a contraction. Thus, from (i), (ii), and the Banach fixed-point theorem,

Γ has a fixed point in Br, and its fixed point is the desired solution. The proof of Theorem 1.1 is,
thus, complete. □

4. Exact Controllability: The left half-line

In this section, our primary focus is on achieving exact controllability for the system (1.2) and
establishing the validity of Theorem 1.2. Firstly, consider the homogeneous linear system

∂tu+ ∂xu+ ∂3xu = 0, for (x, t) ∈ (−∞, 0)× (0, T ),

u(0, t) = ∂xu(0, t) = 0, for t ∈ (0, T ),

u(x, 0) = ϕ(x), for x ∈ (−∞, 0),

whose adjoint associated system is given by

(4.1)


∂tφ+ ∂xφ+ ∂3xφ = 0, for (x, t) ∈ (−∞, 0)× (0, T ),

φ(0, t) = 0, for t ∈ (0, T ),

φ(x, T ) = φT (x), for x ∈ (−∞, 0).

Remark that the change of variable x = −x and t = T − t reduces system in

(4.2)


∂tφ+ ∂xφ+ ∂3xφ = 0, for (x, t) ∈ (0,∞)× (0, T ),

φ(0, t) = 0, for t ∈ (0, T ),

φ(x, 0) = φ0(x), for x ∈ (0,∞).

The well-posedness of system (4.2) follows from Theorem 2.8, when −3
4 < s < 3

2 and s ̸= 1
2 . Note

that this system takes the form {
φt = Bφ,

φ(T ) = φT ,

where the differential operator B is given by{
Bφ = −∂xφ− ∂3xφ,

D(B) :=
{
φ ∈ H3(R−

x ) : φ(0) = 0
}
= H3(R−

x ) ∩H1
0 (R−

x ).

Similarly as Propositions 3.2 and 3.3, we have the following result.
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Proposition 4.1. Consider the initial data φT ∈ L2(R−
x ). Then, there exists a unique mild solution

φ(t) = S(T − t)φT of (4.2) such that φ ∈ C
(
[0, T ];L2(R−

x )
)
. Moreover, if φT ∈ D(B), the system

(4.2) has a unique (classical) solution φ in the class

φ ∈ C([0, T ];D(B)) ∩ C1
(
0, T ;L2(R−

x )
)

and satisfies

∥φx(0, ·)∥L2(0,T ) ≤ ∥φT ∥L2(R−
x ).

4.1. Linear control results: Neumann and Dirichlet cases. We consider the linearized sys-
tem associated with (1.2), with the presence of one control acting in the Neumann boundary
condition

(4.3)


∂tu+ ∂xu+ ∂3xu = 0, for (x, t) ∈ (−∞, 0)× (0, T ),

u(0, t) = 0, ∂xu(0, t) = g2(t), for t ∈ (0, T ),

u(x, 0) = ϕ(x), for x ∈ (−∞, 0),

and with one control acting in the Dirichlet boundary condition

(4.4)


∂tu+ ∂xu+ ∂3xu = 0, for (x, t) ∈ (−∞, 0)× (0, T ),

u(0, t) = g1(t), ∂xu(0, t) = 0, for t ∈ (0, T ),

u(x, 0) = ϕ(x), for x ∈ (−∞, 0).

Now, we will first prove that the system (4.3) is exactly controllable. Here, we will follow
the same steps as done in the previous section, the control result is achieved if an observability
inequality is shown. The observability inequality is given in the next proposition.

Proposition 4.2. For any T > 0, there exists a constant C(T, L) > 0, such that,

(4.5) ∥φT ∥2L2(R−
x )

≤ C ∥∂xφ(0, ·)∥2L2(0,T ) ,

for any φT ∈ L2(R−
x ), where φ(x, t) is the solution of the backward system (4.1).

Proof. Let us argue by contradiction. Supposing that the observability inequality (4.5) does not
hold, it follows that there exists a sequence {φn,T }n∈N, such that

1 =∥φn,T ∥2L2(R−
x )

≥ n ∥∂xφn(0, ·)∥2L2(0,T )(4.6)

where, for each n ∈ N, {φn}n∈N is the solution of (4.1). Inequality (4.6) imply that

∂xφn(0, ·) → 0 in L2(0, T ).

Moreover, it is important to note that from Lemmas B.4 and B.6 together with the formula solution
(2.3), we obtain the estimates (3.3), (3.4), and (3.5) for the adjoint system (4.1). Furthermore,
from Theorem A.1 and (4.6), we obtain a sequence {φn}n∈N bounded in L2(0, T ;H1

loc(R−
x )). On

the other hand, the adjoint system implies that {∂tφn}n∈N, is bounded in L2(0, T ;H−2
loc (R

−
x )), and

the compact embedding

H1
loc(R−

x ) ↪→cc L
2
loc(R−

x ) ↪→ H−2
loc (R

−
x ),

allows us to conclude that {φn}n∈N is relatively compact in L2(0, T ;L2
loc(R−

x )) and consequently,
we obtain a subsequence, still denoted by the same index n, satisfying

φn → φ in L2(0, T ;L2
loc(0,∞)), as n→ ∞.

Furthermore, the trace estimate of the system (4.1) implies that {φn(0, ·)}n∈N is bounded in

H
1
3 (0, T ). Then, the embedding H

1
3 (0, T ) ↪→cc L

2(0, T ), guarantees that the above sequences are
relatively compact in L2(0, T ). Thus, we obtain a subsequence, still denoted by the same index n,
satisfying

φn(0, ·) → φ(0, ·), in L2(0, T ).
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From the boundary condition of the adjoint system, we deduce that φ(0, ·) = 0. Additionally,
multiplying the first equation of (4.1) by tφ and integrating by parts in (0, T )×(−∞, 0), we deduce
that

T∥φn,T ∥2L2(R−
x )

=

∫ T

0
∥φn(t)∥2L2(R−

x )
dt+

∫ T

0

t

2
|φx,n(0, t)|2dt.

So, if follows that {φn,T }n∈N is a Cauchy sequence in L2(0,∞). Thus,

(4.7) φn,T → φT in L2(R−
x ), as n→ ∞,

which implies that

(4.8) ∥φT ∥L2(R−
x ) = 1.

On the other hand, by using the derivative traces estimation of the system (4.1), (4.7) and (4.6),
we see that

∂xφn(0, ·) → ∂xφ(0, ·) in L2(0, T ), as n→ ∞,

and
∂2xφn(0, ·) → ∂2xφ(0, ·) in H− 1

3 (0, T ), as n→ ∞.

Finally, taking n→ ∞, from above converges, we obtain that φ is solution of the system
∂tφ+ ∂xφ+ ∂3xφ = 0, for (x, t) ∈ (−∞, 0)× (0, T ),

φ(0, t) = ∂xφ(0, t) = 0, for t ∈ (0, T ),

φ(x, T ) = φT (x), for x ∈ (−∞, 0),

or equivalently, 
∂tφ+ ∂xφ+ ∂3xφ = 0, for (x, t) ∈ (0,∞)× (0, T ),

φ(0, t) = ∂xφ(0, t) = 0, for t ∈ (0, T ),

φ(x, 0) = φ0(x), for x ∈ (0,∞).

Notice that (4.8) implies that the solutions can not be identically zero. However, from the following
Lemma, one can conclude that φ = 0, which drives us to contradict (4.8). □

Lemma 4.3. For any T > 0, let NT denote the space of the initial states φ0 ∈ L2(R−
x ), such that

the solution of (4.2) satisfies ∂xφ(0, ·) = 0. Then, NT = {0}.
Proof. The proof uses the same arguments as those given in [38], that is if NT ̸= {0}, the map
φT ∈ NT → B (φT ) ∈ CNT (where CNT denote the complexification of NT ) has (at least) one
eigenvalue.Hence, there exist λ ∈ C and φ0 ∈ H3(R−

x )\{0}, such that

(4.9)

{
λφT + φ′

T + φ′′′
T = 0, in R−

x ,

φT (0) = φ′
T (0) = 0.

To conclude the proof of the Lemma 4.3, we prove that this does not hold. To simplify the notation,
henceforth we denote φT := φ. Consider{

λφ+ φ′ + φ′′′ = 0, in (−∞, 0),

φ(0) = φ′(0) = 0,

with φ ̸= 0. Note that if φ′′(0) = 0, then φ ≡ 0. Otherwise, we use an argument similar to the one

used in [38, Lemma 3.5]. Let us introduce the notation φ̂(ξ) =
∫ 0
−∞ e−ixξφ(x)dx. Note that, the

above representation has the following properties:

φ̂′(ξ) =

∫ 0

−∞
e−ixξφ′(x)dx = iξψ̂ + [e−ixξφ]x=0

x=−∞ = iξφ̂+ φ(0) = iξφ̂,

and

φ̂′′′(ξ) =

∫ 0

−∞
e−ixξφ′′′(x)dx = iξ3φ̂+ [−ξ2e−ixξφ+ iξe−ixξφ′ + e−ixξφ′′]x=0

x=−∞

= −iξ3φ̂− ξ2φ(0) + iξφ′(0) + φ′′(0) = −iξ3φ̂+ φ′′(0).
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Then, multiplying the equation in (4.9) by e−ixξ and integrating by part in (−∞, 0) yields

(4.10) φ̂(ξ) =
φ′′(0)

λ− iξ − iξ3
.

Using Paley-Wiener theorem (see, for instance, [48, Section 4, p. 161]) and the usual characteriza-
tion of H3(−∞, 0) functions using their Fourier transforms, we see that nontrivial solution of (4.9)
is equivalent to the existence of λ ∈ C, such that

(i) φ̂ is a entire functions in C,
(ii)

∫
R |φ̂(ξ)|2

(
1 + |ξ|2

)2
dξ <∞,

(iii) ∀ξ ∈ C, we have that φ̂|(ξ)| ≤ c1(1 + |ξ|)keL| Im ξ|, for some positive constant c1.

Notice that if (i) holds, then (ii) and (iii) are satisfied, however, since φ̂ is given by (4.10), it can
not be an entire function. □

As usual in the control theory (see the previous section), with the previous observability
inequality in hands, the following controllability result for the linearized system holds.

Theorem 4.4. Let T > 0, ϕ, ϕT ∈ L2(R−
x ). Then, there exist g2 ∈ L2(R+

t ) such that the distri-
butional solution u of (4.3) satisfies that u(x, T ) = ϕT (x) for x ∈ R−

x . Moreover, the following
estimates hold

∥u∥C(R+
t ,L

2(R−
x )) ≤ C

(
∥ϕ∥L2(R−

x ) + ∥g2∥L2(R+
t )

)
.

Remark 3. Note that similar results can be obtained for the system (4.4). Indeed, we have the
following observability inequality for the solution of the adjoint system associated with the system
(4.4):

∥φT ∥2L2(R−
x )

≤ C
∥∥∂2xφ(0, ·)∥∥2H− 1

3 (0,T )
,

for any φT ∈ L2(R−
x ), where φ is the solution of the backward system (4.1). So, with this in hand,

the following holds:

Theorem 4.5. Let T > 0, ϕ, ϕT ∈ L2(R−
x ). Then, there exist g1 ∈ H

1
3 (R+

t ) such that the dis-
tributional solution u of (4.4) satisfies that u(x, T ) = ϕT (x) for x ∈ R−

x . Moreover, the following
estimates hold

∥u∥C(R+
t ,L

2(R−
x )) ≤ C

(
∥ϕ∥L2(R−

x ) + ∥g1∥
H

1
3 (R+

t )

)
.

4.2. Controllability of the nonlinear systems. Let T > 0, from Theorems 4.4 and 4.5, we can
define the bounded linear operators

Λr,D : L2(R+
x )× L2(R+

x ) −→ L2(R+
t )

(ϕ, ϕT ) −→ Λr,D(ϕ, ϕT ) = g1

and
Λr,N : L2(R+

x )× L2(R+
x ) −→ L2(R+

t )
(ϕ, ϕT ) −→ Λr,N (ϕ, ϕT ) = g2,

where g1 and g2 are the controls of the linear system (4.3) and (4.4), respectively. Now, we are in
a position to prove Theorem 1.2.

4.2.1. Proof of Theorem 1.2. Since the proof of this theorem is analogous as done before in
Theorem 1.1, that is, the nonlinear problem is treated using a classical fixed-point argument, for
the sake of completeness we will give the sketch of the proof. According to (2.4) the solution of
(1.2) can be written as

u(x, t) = θ(t)e−t(∂x+∂
3
x)ϕ(x)− 1

2
θ(t)D∂xu

2(x, t) + θ(t)L λ1
− h1(x, t, ϕ) + θ(t)L λ2

− h2(x, t, ϕ),

with [
h1(t, ϕ)
h2(t, ϕ)

]
=M

 − θ(t)e−t(∂x+∂
3
x)ϕ
∣∣∣
x=0

+ 1
2θ(t)D∂xu

2(0, t)

θ(t)I1/3
(
g2 − θ∂xe

−t(∂x+∂3x)ϕ
∣∣∣
x=0

+ 1
2θ∂xD∂xu

2(0, ·)
)
(t)

 ,
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where M is a matrix given by (B.15). Consider the map

Γ(u) := θ(t)e−t(∂x+∂
3
x)ϕ(x)− 1

2
θ(t)D∂xu

2(x, t) + θ(t)L λ
− ĥ1,T (x, t) + θ(t)L λ

− ĥ2,T (x, t).

In this case, ĥu1,T (t) = h1(t, φ) and ĥ
u
2,T (t) = h2(t, φ) with

g2(t) = Λr,N

(
ϕ, ϕT +

1

2
θ(T )D∂xu

2(x, T )

)
(t).

Thanks to the Theorem 4.4, we get that

Γ(u)|t=0 = ϕ and Γ(u)|t=T = ϕT .

Consider the closed ball
Br =

{
u ∈ X0,b ∩Dα : ∥u∥X0,b∩Dα ≤ r

}
,

for some r > 0.

Note, first, that Γ maps Br into itself. Indeed, using Lemmas B.4, B.5 and B.6, there exists
a constant C > 0, such that

∥Γ(u)∥X0,b∩Dα ≤ C

(
∥θ∥H1(R+

t ) ∥ϕ∥L2(R−
x ) +

∥∥∂xu2∥∥X0,−b
+ ∥ĥu1,T ∥H 1

3 (R+
t )

+ ∥ĥu2,T ∥H 1
3 (R+

t )

)
.

From [29, Lemma 5.10], it follows that∥∥∂xu2∥∥X0,−b
≤ C ∥u∥2X0,b∩Dα

≤ Cr2.

Note that from definition of Γ, the function ĥ1 and ĥ2 are given by

ĥu1,T (t) =a1,1

(
θ(t)e−t(∂x+∂

3
x)ϕ
∣∣∣
x=0

+
1

2
θ(t)D∂xu

2(0, t)

)
+ a1,2

(
θI1/3

(
Λr,N

(
ϕ, ϕT +

1

2
θ(T )D∂xu

2(x, T )

)
(t)

− θ∂xe
−t(∂x+∂3x)ϕ

∣∣∣
x=0

+
1

2
θ∂xD∂xu

2(0, ·)
)
(t)

)(4.11)

and

ĥu2,T (t) =a2,1

(
θ(t)e−t(∂x+∂

3
x)ϕ
∣∣∣
x=0

+
1

2
θ(t)D∂xu

2(0, t)

)
+ a2,2

(
θI1/3

(
Λr,N

(
ϕ, ϕT +

1

2
θ(T )D∂xu

2(x, T )

)
(t)

− θ∂xe
−t(∂x+∂3x)ϕ

∣∣∣
x=0

+
1

2
θ∂xD∂xu

2(0, ·)
)
(t)

)
,

(4.12)

where 
a1,1 =

sin(π
3
λ2−π

6 )
2
√
3 sin[π3 (λ2−λ1)]

a1,2 = − sin(π
3
λ2+

π
6 )

2
√
3 sin[π3 (λ2−λ1)]

a2,1 =
sin(π

3
λ1−π

6 )
2
√
3 sin[π3 (λ2−λ1)]

a2,2 = − sin(π
3
λ1+

π
6 )

2
√
3 sin[π3 (λ2−λ1)]

.

Thus, for i = 1, 2, we get

∥ĥi,T ∥
H

1
3 (R+

t )
≤ C

(∥∥∥θ(t)e−t(∂x+∂3x)ϕ∣∣∣
x=0

∥∥∥
H

1
3 (R+

t )
+

∥∥∥∥12θ(t)D∂xu2(0, t)
∥∥∥∥
H

1
3 (R+

t )

+

∥∥∥∥I1/3Λr,N (ϕ, ϕT +
1

2
θ(T )D∂xu

2(x, T )

)
(t)

∥∥∥∥
H

1
3 (R+

t )

+

∥∥∥∥I1/3(−θ ∂xe−t(∂x+∂3x)ϕ∣∣∣x=0
+

1

2
θ∂xD∂xu

2(0, ·)
)
(t)

∥∥∥∥
H

1
3 (R+

t )

)
.
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Note that ∥∥∥θ(t)e−t(∂x+∂3x)ϕ∣∣∣
x=0

∥∥∥
H

1
3 (R+

t )
+

∥∥∥∥12θ(t)D∂xu2(0, t)
∥∥∥∥
H

1
3 (R+

t )

≤ Cδ + 2Cr2

and ∥∥∥∥I1/3Λr,N (ϕ, ϕT +
1

2
θ(T )D∂xu

2(x, T )

)
(t)

∥∥∥∥
H

1
3 (R+

t )

≤ ∥Λr,N∥ δ + 2C ∥Λr,N∥ r2.

Therefore, we have that

∥ĥi,T ∥
H

1
3 (R+

t )
≤ (C + ∥Λr,N∥) δ + 2C (1 + ∥Λr,N∥) r2.

Finally, we have that

∥Γ(u)∥Xs,b∩Dα ≤ C
(
∥θ∥H1(R+

t ) + ∥Λr,N∥+ 2C
)
δ + C2 (6 + ∥Λr,N∥) r2,

showing that Γ maps Br into itself.

Now on, let us show that Γ is a contractive. To do that, let u, v ∈ Br, and consider

Γ(u)− Γ(v) =− 1

2
θ(t)D∂x

(
u2(x, t)− v2(x, t)

)
+ θ(t)L λ

−

(
ĥu1,T (x, t)− ĥv1,T (x, t)

)
+ θ(t)L λ

−

(
ĥu2,T (x, t)− ĥv2,T (x, t)

)
.

Here ĥui,T and ĥvi,T for i = 1, 2 are given by (4.11) and (4.12), respectively. Observing that

ĥui,T (t)− ĥvi,T (t) =ai,1

(
1

2
θ(t)D∂x

(
u2(0, t)− v2(0, t)

))
+ ai,2

(
θI1/3

(
Λr,N

(
0,

1

2
θ(T )D∂x

(
u2(x, T )− v2(x, T )

))
(t)

+
1

2
θ∂xD∂x

(
u2(0, t)− v2(0, t)

))
(t)

)
.

we have

∥Γ(u)− Γ(v)∥X0,b∩Dα
≤ 4C2 (5 + ∥Λ∥) r ∥u− v∥X0,b∩Dα

,

and taking r such that 2C2 (4 + ∥Λ∥) r < 1, Γ is a contractive. Therefore, the results hold by using
Banach fixed-point theorem. The proof of the Theorem is complete. □

5. Further comments and perspectives

Let us present some comments and perspectives on our analysis in this work.

5.1. Noncritical length phenomenon. Rosier [38] showed that considering L /∈ N , where N is
defined by (1.6), that the associated linear system (1.5) posed on the bounded interval

(5.1)

 ∂tu+ ∂xu+ ∂3xu = 0, in (0, L)× (0, T ),
u(0, t) = u(L, t) = 0, ∂xu(L, t) = g(t), in (0, T ),
u(x, 0) = u0(x), in (0, L),

is controllable; roughly speaking, if L ∈ N system (5.1) is not controllable, that is, there exists
a finite-dimensional subspace of L2(0, L), denoted by M = M(L), which is unreachable from 0
for the linear system. More precisely, for every nonzero state ψ ∈ M, g ∈ L2(0, T ) and u ∈
C([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L)) satisfying (5.1) and u(·, 0) = 0, one has u(·, T ) ̸= ψ.

Definition 5.1. A spatial domain (0, L) is called critical for the system (5.1) if its domain length
L belongs to critical set N .
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Following the work of Rosier [38], the boundary control system of the KdV equation posed
on the finite interval (0, L) with various control inputs has been intensively studied (cf. [8, 11,
13, 17, 18, 26, 27, 28] and see [12, 41] for more complete reviews). Essentially, the critical length
phenomenon arises from employing HUM, utilizing a compactness-uniqueness argument to establish
certain observability inequalities. Certainly, through a contradiction argument, we have determined
that the adjoint system is observable, which allows us to explore a complex function. The critical
length phenomenon manifests when this complex function is potentially entire.

Thus, we are interested in analyzing if the critical length phenomenon appears for the KdV
equation in unbounded domains. Let us consider the three cases treated in this work.

5.1.1. The case of the left-half line. We already know that the critical length phenomenon
naturally arises in the case of Neumann boundary control within a bounded domain. However,
when considering the left half-line, we can further examine the following control problem

(5.2)


∂tu+ ∂xu+ ∂3xu = 0, for (x, t) ∈ (−∞, L)× (0, T ),

u(L, t) = 0, ∂xu(L, t) = g2(t), for t ∈ (0, T ),

u(x, 0) = ϕ(x), for x ∈ (−∞, L).

By using the HUM, let us recall that the backward system associated with (5.2) is

(5.3)


∂tφ+ ∂xφ+ ∂3xφ = 0, for (x, t) ∈ (−∞, L)× (0, T ),

φ(L, t) = 0, for t ∈ (0, T ),

φ(x, T ) = φT (x), for x ∈ (−∞, L).

and its observability inequality is given by

∥φT ∥2L2(−∞,L) ≤ C ∥∂xφ(L, ·)∥2L2(0,T ) .

Through the application of the compactness-uniqueness argument, the function in the complex
plane associated with the observability inequality is

φ̂(ξ) =
e−iLξφ′′(L)

λ− iξ − iξ3
.

Note that for any L > 0, the function φ̂ can not be entire. Thus, we do not have any restriction in
the length L.

Also, in the case of the control acting in the Dirichlet condition
∂tu+ ∂xu+ ∂3xu = 0, for (x, t) ∈ (−∞, L)× (0, T ),

u(L, t) = g1(t), ∂xu(L, t) = 0, for t ∈ (0, T ),

u(x, 0) = ϕ(x), for x ∈ (−∞, L),

the backward system and its observability inequality are given by (5.3) and

∥φT ∥2L2(−∞,L) ≤ C
∥∥∂2xφ(L, ·)∥∥2H− 1

3 (0,T )
,

respectively. In this case, the function in the plane complex is given by

φ̂(ξ) =
ξe−iLξφ′(L)

ξ3 + ξ + iλ
,

and the function φ̂ can not be entire. Again, no restriction in the length L is necessary.

5.1.2. The case of the right-half line. Consider the control problem posed on the right half-line

(5.4)


∂tu+ ∂xu+ ∂3xu = 0, for (x, t) ∈ (L,+∞)× (0, T ),

u(L, t) = f(t), for t ∈ (0, T ),

u(x, 0) = ϕ(x), for x ∈ (L,+∞).

.
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Again, using HUM, the backward system associated with (5.4) is
∂tφ+ ∂xφ+ ∂3xφ = 0, for (x, t) ∈ (L,+∞)× (0, T ),

φ(L, t) = ∂xφ(L, t) = 0, for t ∈ (0, T ),

φ(x, T ) = φT (x), for x ∈ (L,+∞),

and its observability inequality is given by

∥φT ∥2L2(L,∞) ≤C
∥∥∂2xφ(L, ·)∥∥2H− 1

3 (0,T )
.

Through the application of the compactness-uniqueness argument, we do not associate any function
in the complex plane, as we directly derive a contradiction from the spectral analysis of the operator.

To summarize, considering all the boundary controllability on the half-line in our work, the
critical length phenomenon does not exist, suggesting a behavior completely different compared
with the bounded interval, as in the case of the following works [38] and [27].

5.2. Controllability in Hs. From the preceding analysis, considering the case −3
4 < s ≤ 3

2 , with

s ̸= 1
2 , we can extend our understanding of controllability for the KdV equation for this range of

s. By leveraging the well-posedness principles observed in half-line scenarios, we can derive the
following scheme


∂tu+ ∂xu+ ∂3xu = 0, in (0,∞)× (0, T )

u(0, t) = f(t) ∈ H(s+1)/3(0, T )

u(x, 0) = ϕ ∈ Hs(0,∞)


∂tφ+ ∂xφ+ ∂3xφ = 0 in (0,∞)× (0, T )

φ(0, t) = ∂xφ(0, t) = 0 in (0, T )

φ(x, T ) = φT ∈ H−s(0,∞)

HUM

Adjoint systemBoundary control in right half-line

u(x, T ) = ϕT

〈
f(·), ∂2xφ(0, ·)

〉
H(s+1)/3,H−(s+1)/3 = ⟨ϕ(·), φ(·, 0)⟩Hs,H−s − ⟨u(·, T ), φT (·)⟩Hs,H−s

Necessary and sufficient condition to exact controllability:

−3

4
< s <

3

4
, with s ̸= 1

2

This scheme represents the method of controllability in the right half-line (the left half-line can
be done similarly). Note that the necessary and sufficient condition to obtain exact controllability
may be seen as an optimality condition for the critical points of the functional J : H−s(R+

x ) −→ R,
defined by

J (φT ) =
1

2

∥∥∂2xφ(0, ·)∥∥2H−(s+1)/3(0,T )
− ⟨ϕ(·), φ(·, 0)⟩Hs,H−s + ⟨u(·, T ), φT (·)⟩Hs,H−s ,

where φ is the solution of (3.1) with final data φT ∈ H−s(R+
x ). Moreover, we already known that

if φ̂T ∈ H−s(R+
x ) is a minimizer of J , with φ̂ the corresponding solution of (3.1), with final data

φ̂T , then f(t) = ∂̂2xφ(0, t) is a desired control. Thus, the observability inequality is given by

∥φT ∥2H−s(R+
x )

≤ C
∥∥∂2xφ(0, ·)∥∥2H− s+1

3 (0,T )
,

for any φT ∈ H−s(R+
x ), where φ is the solution of the backward system (3.1). To prove the

observability inequality, we can utilize several approaches. Our intuition regarding the observability
inequality is that it is valid in −3

4 < s ≤ 3
2 , with s ̸= 1

2 , given the favorable trace estimates and
smoothing effects exhibited by the solution of the backward system, however, this issue in show the
observability inequality in Hs, when −3

4 < s ≤ 3
2 , with s ̸=

1
2 , is still an open problem.
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[18] E. Crépeau, Exact boundary controllability of the Korteweg–de Vries equation around a non-trivial stationary

solution. International Journal of Control, 74:11 (2001), 1096–1106.
[19] S. Dolecki, D.L. Russell, A general theory of observation and control. SIAM J. Control Opt. 15 (1977), 185–220.
[20] A. V. Faminskii, A mixed problem in a semistrip for the Korteweg-de Vries equation and its generalisations.

Din. Sploshn. Sredy, 258, (1988), 54–94.
[21] A. V. Faminskii, An initial boundary-value problem in a half-strip for the Korteweg-de Vries equation in

fractional-order Sobolev spaces. Comm. Partial Differential Eq., 29 (2004), 1653–1695.
[22] A. V. Faminskii, Global well-posedness of two initial-boundary-value problems for the Korteweg-de Vries equa-

tion. Differ. Integral Equ. 20(6), (2007), 601–642.
[23] A. S. Fokas, A unified transform method for solving linear and certain nonlinear PDEs. Proceedings of the

Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 453 (1997), 1411–1443.
[24] A.S. Fokas, A unified approach to boundary value problems. Society for Industrial and Applied Mathematics,

(2008).
[25] A. S. Fokas, A. A. Himonas, and D. Mantzavinos, The Korteweg–de Vries equation on the half-line. Nonlinearity,

29(2), (2016).
[26] O. Glass and S. Guerrero, Some exact controllability results for the linear KdV equation and uniform control-

lability in the zero-dispersion limit. Asymptot. Anal., 60 (2008), 61–100.
[27] O. Glass and S. Guerrero, Controllability of the Korteweg-de Vries equation from the right Dirichlet boundary

condition. Systems Control Lett., 59 (2010), 390–395.
[28] J.-P. Guilleron, Null controllability of a linear KdV equation on an interval with special boundary conditions.

Math. Control Signals Syst., 26 (2014), 375–401.



30 CAPISTRANO-FILHO AND GALLEGO

[29] J. Holmer, The initial-boundary value problem for the Korteweg-de Vries equation. Comm. Partial Differential
Equations, 31, (2006), 1151–1190.

[30] A.A. Himonas and F. Yan, A higher dispersion KdV equation on the half-line. J. Differ. Equ. 333, (2022),
55-102.
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Appendix A. Auxiliary results

This first appendix is devoted to obtaining additional properties of the solutions of the homo-
geneous system associated with (1.1) and (1.2), namely

(A.1)


∂tu+ ∂xu+ ∂3xu+ u∂xu = 0, for (x, t) ∈ (0,+∞)× (0, T ),

u(0, t) = 0 for t ∈ (0, T ),

u(x, 0) = ϕ(x) for x ∈ (0,+∞),

and

(A.2)


∂tu+ ∂xu+ ∂3xu+ u∂xu = 0, for (x, t) ∈ (−∞, 0)× (0, T ),

u(0, t) = 0, ∂xu(0, t) = 0, for t ∈ (0, T ),

u(x, 0) = ϕ(x) for x ∈ (−∞, 0).

Following the ideas contained in [34, Theorem 2.1] and [36, Theorem 2.2], the first result can
be read as follows.
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Theorem A.1. Let u be the solution of problem (A.1) given by Theorem 2.8. In addition, if χαu0 ∈
L2(0,∞) for α = 2, 3, then ∥xu∥L2(0,T ;H1(0,∞)) ⩽ c, where c

(
T, ∥u0∥L2(0,∞) , ∥χαu0∥L2(0,∞)

)
. More-

over, ∫ T

0

∫ x0+1

x0

u2xdxdt ⩽ c
(
T, ∥u0∥L2(0,∞)

)
for any x0 ∈ [0,∞).

Proof. The proof is obtained following closely the arguments developed in [34]. Therefore, we will
only present the main steps. Let ψ0 ∈ C∞(0,∞) be a nondecreasing function such that ψ0(x) = 0
for x ⩽ 1

2 and ψ0(x) = 1 for x ⩾ 1. For α ⩾ 0 we set ψα(x) = xαψ0(x) and note that ψα ∈ C∞(0,∞)
and ψ′

α(x) ⩾ 0 for any x ∈ (0,∞). Multiplying the equation in (A.1) by u(x, t)ψα (x− x0) and
integrating by parts over (0,∞), we get∫ ∞

0
u(x, t)ut(x, t)ψα (x− x0) dx =

1

2

d

dt

∫ ∞

0
u2(x, t)ψα (x− x0) dx,

∫ ∞

0
ux(x, t)u(x, t)ψα (x− x0) dx = −1

2

∫ ∞

0
u2(x, t)ψ′

α (x− x0) dx,

∫ ∞

0
uxxx(x, t)u(x, t)ψα (x− x0) dx =

3

2

∫ ∞

0
u2x(x, t)ψ

′
α (x− x0) dx− 1

2

∫ ∞

0
u2(x, t)ψ′′′

α (x− x0) dx,

∫ ∞

0
ux(x, t)u

2(x, t)ψα (x− x0) dx = −1

3

∫ ∞

0
u3(x, t)ψ′

α (x− x0) dx,

and

1

2

d

dt

∫ ∞

0
u2(x, t)ψα (x− x0) dx− 1

2

∫ ∞

0
u2(x, t)ψ′

α (x− x0) dx+
3

2

∫ ∞

0
u2x(x, t)ψ

′
α (x− x0) dx

− 1

2

∫ ∞

0
u2(x, t)ψ′′′

α (x− x0) dx− 1

3

∫ ∞

0
u3(x, t)ψ′

α (x− x0) dx = 0

Hence,

1

2

d

dt

∫ ∞

0
u2(x, t)ψα (x− x0) dx+

3

2

∫ ∞

0
u2x(x, t)ψ

′
α (x− x0) dx

⩽
1

3
sup

x∈(0,∞)

∣∣∣u(x, t)√ψ′
α (x− x0)

∣∣∣ ∫ ∞

0
u2(x, t)

√
ψ′
α (x− x0)dx

+
1

2

∫ ∞

0
u2(x, t)

{
ψ′
α (x− x0) + ψ′′′

α (x− x0)
}
dx

Now, since

sup
x∈(0,∞)

v2(x, t) ⩽
1

2

∫ ∞

0
|v(x)|

∣∣v′(x)∣∣ dx, ∀v ∈ H1(0,∞),

thus, letting v(x) = u(x, t)
√
ψ′
α (x− x0) we have that

sup
x∈(0,∞)

∣∣∣u√ψ′
α

∣∣∣ ⩽ 1√
2

(∫ ∞

0

∣∣∣u√ψ′
α

∣∣∣ ∣∣∣∣∣ux√ψ′
α +

uψ′′
α

2
√
ψ′
α

∣∣∣∣∣
) 1

2

⩽
1√
2

(∫ ∞

0
u2xψ

′
αdx

) 1
4
(∫ ∞

0
u2ψ′

αdx

) 1
4

+
1

2

(∫ ∞

0
u2ψ′′

αdx

) 1
2

.
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Therefore, we obtain

1

2

d

dt

∫ ∞

0
u2(x, t)ψα (x− x0) dx+

3

2

∫ ∞

0
u2x(x, t)ψ

′
α (x− x0) dx

⩽
1

6

(∫ ∞

0
u2(x, t)

∣∣ψ′′
α (x− x0)

∣∣ dx) 1
2
∫ ∞

0
u2(x, t)

√
ψ′
α (x− x0)dx

+
1

3
√
2

(∫ ∞

0
u2x(x, t)ψ

′
α (x− x0) dx

) 1
4
(∫ ∞

0
u2(x, t)ψ′

α (x− x0) dx

) 1
4
∫ ∞

0
u2(x, t)

√
ψ′
α (x− x0)dx

+
1

2

∫ ∞

0
u2(x, t)

{
ψ′
α (x− x0) +

∣∣ψ′′′
α (x− x0)

∣∣} dx,
and taking the above inequality into account, the result is obtained arguing as in [34, Lemma 2.1
and Theorem 2.2]. □

Analogously as done in the previous theorem, we have the following one.

Theorem A.2. Let u be the solution of problem (A.2), given by Theorem 2.7. If χαu0 ∈ L2(−∞)

for α = 2, 3, then ∥xu∥L2(0,T ;H1(−∞,0)) ⩽ c, where c
(
T, ∥u0∥L2(−∞,0) , ∥χαu0∥L2(−∞,0)

)
. Moreover,∫ T

0

∫ x0+1

x0

u2xdxdt ⩽ c
(
T, ∥u0∥L2(−∞,0)

)
for any x0 ∈ (−∞, 0].

The last theorem of this first appendix can be read as follows.

Proposition A.3. Let u be the solution of problem (A.1) given by Theorem 2.7. Then, for any
T > 0,

∥u∥L∞(0,T ;H1(0,∞)) ⩽ C,

where C = C
(
T, ∥u0∥H1(0,∞)

)
is a positive constant.

Proof. Multiplying the equation in (A.1) by u and integrating by parts we obtain

1

2

d

dt
∥u(t)∥2L2(0,∞) = −1

2
u2x(0, t) ≤ 0.

Consequently, we deduce that

(A.3) ∥u(t)∥2L2(0,∞) ⩽ ∥u0∥2L2(0,∞) , ∀t > 0.

Now, we multiply the equation in (A.1) by −2uxx − u2 to bound u in L2
(
0, T ;H1

0 (0,∞)
)
. Indeed,

integrating by parts over (0,∞)× (0, T ), we get∫ ∞

0
u2x(x, t)dx−

∫ ∞

0
u2x(x, 0)dx+

∫ t

0
u2x(0, s)ds+

∫ t

0
u2xx(0, s)ds+

∫ t

0

∫ ∞

0
u3x(x, s)dxds

−1

3

∫ ∞

0
u3(x, t)dx+

1

3

∫ ∞

0
u30(x)dx−

∫ s

0

∫ ∞

0
u3x(x, s)dxds = 0.

So,

(A.4)

∫ ∞

0
u2x(x, t)dx ≤ 1

3

∫ ∞

0
u3(x, t)dx− 1

3

∫ ∞

0
u30(x)dx+

∫ ∞

0
u20,x(x)dx.

The terms on the right-hand side of the above identity may be estimated as∫ ∞

0
u3(x, t)dx ⩽

C2

2
∥u0∥4L2(0,∞) +

1

2
∥u(t)∥2H1(0,∞),

where C > 0 denotes the constant given by the Sobolev embedding theorem. A combination of the
(A.3) and (A.4) yields

∥u(t)∥2H1(0,∞) ⩽ ∥u0∥2L2(0,∞) +
1

6
∥u(t)∥2H1(0,∞) +

C2

6
∥u0∥4L2(0,∞) +

1

3
∥u0∥3H1(0,∞) + ∥u0∥2H1(0,∞).
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Then, we have that

∥u(t)∥H1(0,∞) ⩽ c,

for any t ∈ [0, T ], where c = c
(
∥u0∥H1(0,∞)

)
with c(s) =

√
C2

5 s
4 + 2

5s
3 + 12

5 s
2. □

Appendix B. Initial boundary value problem: Half-line cases

B.1. Boundary forcing operator. Following the ideas contained in [29], we can establish a
formula for the solution of the initial valued problem (1.1). The local existence and uniqueness
of solutions of the systems (3.1) and (3.2) is established through Theorem 2.8. Consider a cut-off
function θ(t) := θ, θ ∈ C∞

0 (R). Denote θ(t) = 1
T ψ
(
t
T

)
, for T > 0, such that{

0 ≤ ψ ≤ 1, θ ≡ 1 on [0, 1],

ψ ≡ 0 for |t| ≥ 2,

Let us now give a summary of the Riemann-Liouville fractional integral operator, the reader can
see [14, 29] for more details.

Define the function t+ as follows

t+ = t if t > 0, t+ = 0 if t ≤ 0.

The tempered distribution
tα−1
+

Γ(α) is defined as a locally integrable function for Re α > 0 by〈
tα−1
+

Γ(α)
, f

〉
=

1

Γ(α)

∫ ∞

0
tα−1f(t)dt.

It follows that

(B.1)
tα−1
+

Γ(α)
= ∂kt

(
tα+k−1
+

Γ(α+ k)

)
,

for all k ∈ N. Expression (B.1) can be used to extend the definition of
tα−1
+

Γ(α) to all α ∈ C in the

sense of distributions. A change of contour shows the Fourier transform of
tα−1
+

Γ(α) is the following one

(B.2)

(
tα−1
+

Γ(α)

)̂
(τ) = e−

1
2
πiα(τ − i0)−α,

where (τ − i0)−α is the distributional limit. For α /∈ Z, let us rewrite (B.2) on the following way

(B.3)

(
tα−1
+

Γ(α)

)̂
(τ) = e−

1
2
απi|τ |−αχ(0,∞) + e

1
2
απi|τ |−αχ(−∞,0).

Note that from (B.2) and (B.3), we have that

(τ − i0)−α = |τ |−αχ(0,∞) + eαπi|τ |−αχ(−∞,0).

For f ∈ C∞
0 (R+), define Iαf as

Iαf =
tα−1
+

Γ(α)
∗ f,

so, for Re α > 0, follows that

(B.4) Iαf(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s) ds.

The following properties easily holds I0f = f , I1f(t) =
∫ t
0 f(s) ds, I−1f = f ′ and IαIβ =

Iα+β. Moreover, the lemmas below can be found in [29], and we will omit their proofs.

Lemma B.1. [29, Lemma 2.1] If f ∈ C∞
0 (R+), then Iαf ∈ C∞

0 (R+), for all α ∈ C.
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Lemma B.2. [29, Lemma 5.3] If 0 ≤ Re α < ∞ and s ∈ R, then ∥I−αh∥Hs
0(R+) ≤ c∥h∥Hs+α

0 (R+),

where c = c(α).

Lemma B.3. [29, Lemma 5.4] If 0 ≤ Re α < ∞, s ∈ R and µ ∈ C∞
0 (R), then ∥µIαh∥Hs

0(R+) ≤
c∥h∥Hs−α

0 (R+), where c = c(µ, α).

B.1.1. Oscillatory integral. In this subsection, we will define the oscillatory integral which is the
key to defining, in the next section, the Duhamel boundary forcing operator. The Airy function is

(B.5) A(x) =
1

2π

∫
ξ
eixξeiξ

3
dξ

From [29], the function Airy function has the following properties:

i. A(x) is a smooth function with the asymptotic properties

A(x) ∼ c1x
−1/4e−c2x

3/2
(
1 +O

(
x−3/4

))
as x→ +∞

and

A(−x) ∼ c2x
−1/4 cos

(
c2x

3/2 − π

4

)(
1 +O

(
x−3/4

))
as x→ +∞,

where c1, c2 > 0.
ii. We can compute:

A(0) =
1

2π

∫
ξ
eiξ

3
dξ =

1

6π

∫
η
η−2/3eiηdη =

√
3
2 Γ

(
1
3

)
3π

=
1

3Γ
(
2
3

) ,
A′(0) =

1

2π

∫
ξ
iξeiξ

3
dξ = − 1

3Γ
(
1
3

) , and∫ +∞

0
A(y)dy =

1

3
.

On the other hand, consider the following group as

(B.6) e−t(∂+∂
3
x)ϕ(x) =

1

2π

∫
ξ
eixξeit(ξ+ξ

3)ϕ̂(ξ)dξ,

so that

(B.7)


(
∂t + ∂x + ∂3x

) [
e−t∂

3
xϕ
]
(x, t) = 0, for (x, t) ∈ R× R,[

e−t∂
3
xϕ
]
(x, 0) = ϕ(x), for x ∈ R.

On the other hand, we define the Duhamel inhomogeneous solution operator D as

(B.8) Dw(x, t) =

∫ t

0
e−(t−t′)(∂x+∂3x)w

(
x, t′

)
dt′,

so that

(B.9)

{(
∂t + ∂x + ∂3x

)
Dw(x, t) = w(x, t), for (x, t) ∈ R× R

Dw(x, 0) = 0, for x ∈ R.

We now introduce the Duhamel boundary forcing operator (see [14]). For f ∈ C∞
0 (R+), let

(B.10)

L 0f(x, t) = 3

∫ t

0
e−(t−t′)∂3xδ0(x)I−2/3f

(
t′
)
dt′

= 3

∫ t

0
A

(
x

(t− t′)1/3

)
I−2/3f (t

′)

(t− t′)1/3
dt′

so that {(
∂t + ∂3x

)
L 0f(x, t) = 3δ0(x)I−2/3f(t), for (x, t) ∈ R× R,

L 0f(x, 0) = 0, for x ∈ R.
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We define the Duhamel boundary forcing operator class for Reλ > −3, and f ∈ C∞
0 (R+) as

(B.11)

L λ
−f(x, t) =

[
xλ−1
+

Γ(λ)
∗ L 0

(
I−λ/3f

)
(−, t)

]
(x)

=
1

Γ(λ)

∫ x

−∞
(x− y)λ−1L 0

(
I−λ/3f

)
(y, t)dy

= 3
x
(λ+3)−1
+

Γ(λ+ 3)
I− 2

3
−λ

3
f(t)−

∫ x

−∞

(x− y)(λ+3)−1

Γ(λ+ 3)
L 0

(
∂tI−λ

3
f
)
(y, t)dy

and, with
xλ−1
−
Γ(λ) = eiπλ(−x)

λ−1
+

Γ(λ)
(λ) define

(B.12)

L λ
+f(x, t) =

[
xλ−1
−

Γ(λ)
∗ L 0

(
I−λ/3f

)
(−, t)

]
(x)

=
1

Γ(λ)

∫ ∞

x
x(x− y)λ−1L 0

(
I−λ/3f

)
(y, t)dy

= 3
x
(λ+3)−1
−

Γ(λ+ 3)
I− 2

3
−λ

3
f(t) + eiπλ

∫ x

−∞

(−x+ y)(λ+3)−1

Γ(λ+ 3)
L 0

(
∂tI−λ

3
f
)
(y, t)dy.

It is straightforward from these definitions, in the sense of distributions(
∂t + ∂x + ∂3x

)
L λ

−f(x, t) = 3
xλ−1
+

Γ(λ)
I− 2

3
−λ

3
f(t) + 3(λ+ 2)

xλ+1
+

Γ(λ+ 3)
I− 2

3
−λ

3
f(t)

and (
∂t + ∂x + ∂3x

)
L λ

+f(x, t) = 3
xλ−1
−

Γ(λ)
I− 2

3
−λ

3
f(t) + 3(λ+ 2)

xλ+1
−

Γ(λ+ 3)
I− 2

3
−λ

3
f(t).

B.1.2. Solution of the systems. To address the nonlinear problem (1.1) with given data f and
ϕ, take −1 < λ < 1, we set

u(x, t) = θ(t)e−t(∂x+∂
3
x)ϕ(x)− 1

2
θ(t)D∂u2(x, t) + θ(t)L λ

+h(x, t),

where

(B.13) h(t) = e−πiλ
[
f(t)− θ(t)e−t(∂x+∂

3
x)ϕ
∣∣∣
x=0

+
1

2
θ(t)D∂xu

2(0, t)

]
.

Then (
∂t + ∂x + ∂3x

)
u(x, t) =− 1

2
∂xu

2(x, t) + 3
xλ−1
−

Γ(λ)
θ(t)I− 2

3
−λ

3
f(t)

+ 3(λ+ 2)
xλ+1
−

Γ(λ+ 3)
θ(t)I− 2

3
−λ

3
f(t).

Due to the support properties of xλ±1
− and (B.13), we have that u is the solution of (1.1).

Additionally, if we take −1 < λ1, λ2 < 1, λ1 ̸= λ2, and set

u(x, t) = θ(t)e−t(∂x+∂
3
x)ϕ(x)− 1

2
θ(t)D∂xu

2(x, t) + θ(t)L λ1
− h1(x, t) + θ(t)L λ2

− h2(x, t),

where

(B.14)

[
h1(t)
h2(t)

]
=M

 g1(t)− θ(t)e−t(∂x+∂
3
x)ϕ
∣∣∣
x=0

+ 1
2θ(t)D∂xu

2(0, t)

θ(t)I1/3
(
g2 − θ∂xe

−t(∂x+∂3x)ϕ
∣∣∣
x=0

+ 1
2θ∂xD∂xu

2(0, ·)
)
(t)

 .
with

(B.15) M =
1

2
√
3 sin

[
π
3 (λ2 − λ1)

] [ sin
(
π
3λ2 −

π
6

)
− sin

(
π
3λ2 +

π
6

)
− sin

(
π
3λ1 −

π
6

)
sin
(
π
3λ1 +

π
6

)
,

]
.
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we have that, in the sense of distribution, u satisfies

(∂t + ∂x + ∂3x)u(x, t) =− 1

2
∂xu

2(x, t) + 3
xλ1−1
+

Γ(λ1)
I− 2

3
−λ1

3

h1(t) + 3(λ1 + 2)
xλ1+1
+

Γ(λ1 + 3)
I− 2

3
−λ1

3

h1(t)

+ 3
xλ2−1
+

Γ(λ2)
I− 2

3
−λ2

3

h2(t) + 3(λ2 + 2)
xλ2+1
+

Γ(λ2 + 3)
I− 2

3
−λ2

3

d2(t).

Due to the support properties of xλ±1
+ and (B.14), we have that u is the solution of (1.2).

B.1.3. Main estimates. The operator e−t(∂x+∂
3
x) was defined above in (B.6) satisfying (B.7).

Thus, the following lemma holds.

Lemma B.4. [29, Lemma 5.5] Let s ∈ R. Then:

(a) (Space traces)
∥∥∥e−t(∂x+∂3x)ϕ(x)∥∥∥

C(Rt;Hs
x)

≤ c∥ϕ∥Hs;

(b) (Time traces)
∥∥∥θ(t)e−t(∂x+∂3x)ϕ(x)∥∥∥

C

(
Rx;H

s+1
3

t

) ≤ c∥ϕ∥Hs;

(c) (Derivative time traces)
∥∥∥θ(t)∂xe−t(∂x+∂3x)ϕ(x)∥∥∥

C

(
Rx;H

s
3
t

) ≤ c∥ϕ∥Hs;

(d) (Bourgain space estimate) If 0 < b < 1 and 0 < α < 1, then∥∥∥θ(t)e−t(∂x+∂3x)ϕ(x)∥∥∥
Xs,b∩Dα

≤ c∥θ∥H1∥ϕ∥Hs ,

where c is independent of θ.

In addition to the previous lemma, and taking into account that the operator D was defined
above in (B.8) satisfying (B.9). Consider

∥u∥Ys,b =
(∫∫

ξ,τ
⟨τ⟩2s/3

〈
τ − ξ3

〉2b |û(ξ, τ)|2dξdτ)1/2

.

Thus, the next result is the following one.

Lemma B.5. [29, Lemma 5.6] Let s ∈ R. Then:

(a) (Space traces) If 0 ≤ b < 1
2 , then

∥θ(t)Dw(x, t)∥C(Rt;Hs
x)

≤ c∥w∥Xs,−b
;

(b) (Time traces) If 0 < b < 1
2 , then

∥θ(t)Dw(x, t)∥
C

(
Rx;H

s+1
3

t

) ≤

{
c∥w∥Xs,−b

, if − 1 ≤ s ≤ 1
2 ,

c
(
∥w∥Xs,−b

+ ∥w∥Ys,−b

)
, for any s.

If s < 7
2 , then ∥θ(t)Dw(x, t)∥

C

(
Rx;H

s+1
3

0 (R+
t )

)has the same bound.

(c) (Derivative time traces) If 0 < b < 1
2 , then

∥θ(t)∂xDw(x, t)∥
C

(
Rx;H

s
3
t

) ≤

{
c∥w∥Xs,−b

, if 0 ≤ s ≤ 3
2 ,

c
(
∥w∥Xs,−b

+ ∥w∥Ys,−b

)
, for any s.

If s < 9
2 , then ∥θ(t)∂xDw(x, t)∥

C

(
Rx;H

s
3
0 (R

+
t )

)has the same bound.

(d) (Bourgain space estimate) If 0 ≤ b < 1
2 and α ≤ 1− b, then

∥θ(t)Dw(x, t)∥Xs,b∩Dα ≤ c∥w∥Xs,−b
.

Finally, the operators L λ
± defined in (B.11) and (B.12), have the following properties.

Lemma B.6. [29, Lemma 5.8] Let s ∈ R. Then:
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(a) (Space traces) If s− 5
2 < λ < s+ 1

2 , λ < 1
2 , and supp f ⊂ [0, 1], then∥∥∥L λ

±f(x, t)
∥∥∥
C(Rt;Hs

x)
≤ c∥f∥

H
s+1
3 (R+)

0

.

(b) (Time traces) If −2 < λ < 1, then∥∥∥θ(t)L λ
±f(x, t)

∥∥∥
C

(
Rx;H

s+1
3

0 (R+
t )

) ≤ c∥f∥
H

s+1
3

0 (R+)

(c) (Derivative time traces) If −1 < λ < 2, then∥∥∥θ(t)∂xL λ
±f(x, t)

∥∥∥
C

(
Rx;H

s
3
0 (R

+
t )

) ≤ c∥f∥
H

s+1
3

0 (R+
t )

(d) (Bourgain space estimate) If s− 1 ≤ λ < s+ 1
2 , λ <

1
2 , α ≤ s−λ+2

3 , and 0 ≤ b < 1
2 , then∥∥∥θ(t)L λ

±f(x, t)
∥∥∥
Xs,b∩Dα

≤ c∥f∥
H

s+1
3 (R+t )

0

.
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