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Abstract. The boundary stabilization problem of the Boussinesq KdV-KdV type system
is investigated in this paper. An appropriate boundary feedback law consisting of a linear
combination of a damping mechanism and a delay term is designed. Then, first, considering
time-varying delay feedback together with a smallness restriction on the length of the spatial
domain and the initial data, we show that the problem under consideration is well-posed.
The proof combines Kato’s approach and the fixed-point argument. Last but not least, we
prove that the energy of the linearized KdV-KdV system decays exponentially by employing
the Lyapunov method.

1. Introduction

1.1. Boussinesq system model. The Boussinesq system is a set of partial differential
equations (PDEs) that describe the behavior of waves in fluids with small-amplitude and
long-wavelength disturbances. It was first introduced by the French mathematician Joseph
Boussinesq in the 19th century as a way to model waves in shallow water [6]. Since then,
the system has been used to study a wide range of physical phenomena, including ocean
currents, atmospheric circulation, and heat transfer in fluids. The Boussinesq system is also
an important tool in the study of fluid dynamics and has applications in a variety of fields,
including meteorology, oceanography, and engineering.

Recently, Bona et al. in [3, 4] developed a four-parameter family of Boussinesq systems
to describe the motion of small-amplitude long waves on the surface of an ideal fluid under
gravity and in situations where the motion is sensibly two-dimensional. They specifically
investigated a family of systems of the form

(1.1)

#

ηtpt, xq ` ωxpt, xq ` aωxxxpt, xq ´ bηxxtpt, xq ` pηpt, xqωpt, xqqx “ 0,

ωtpt, xq ` ηxpt, xq ` cηxxxpt, xq ´ dωxxtpt, xq ` ωpt, xqωxpt, xq “ 0,

which are all Euler equation approximations of the same order. Here η represents the ele-
vation of the equilibrium point and ω “ ωθ is the horizontal velocity in the flow at height
θℓ, where θ P r0, 1s and ℓ is the undisturbed depth of the fluid. The parameters a, b, c, d,
that one might choose in a given modeling situation, are required to fulfill the relations
a ` b “ 1

2

`

θ2 ´ 1
3

˘

and c ` d “ 1
2
p1 ´ θ2q ě 0.

When b “ d “ 0 and making a scaling argument, we obtain the Boussinesq system of
KdV-KdV type

(1.2)

#

ηtpt, xq ` ωxpt, xq ` ωxxxpt, xq ` pηpt, xqωpt, xqqx “ 0,

ωtpt, xq ` ηxpt, xq ` ηxxxpt, xq ` ωpt, xqωxpt, xq “ 0,
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which is shown to admit global solutions on R and also has good control properties such
as stabilization, and controllability, in periodic framework T1. Nonetheless, stabilization
properties for the Boussinesq KdV-KdV system on a bounded domain of R is a challenging
problem due to the coupling of the nonlinear and dispersive nature of the PDEs. In this spirit,
a few works indicate that appropriate boundary feedback controls provide good stabilization
results to the system (1.2) on a bounded domain R (see, for instance, [8, 9, 13, 27]). To be
more precise, in [27], a set of boundary controls is needed so that the solutions of the system
(1.2) issuing from small data globally exist and the corresponding energy exponentially decay.
Indeed, (1.2) is coupled with the following boundary conditions:

$

’

’

’

&

’

’

’

%

ωpt, 0q “ ωxxpt, 0q “ 0, t ą 0,

ωxpt, 0q “ a0ηxpt, 0q, t ą 0,

ωxpt, Lq “ ´a1ηxpt, Lq, t ą 0,

ωxpt, Lq “ ηxpt, Lq, ωxxpt, Lq “ ´ηxxpt, Lq, t ą 0,

where a0 ě 0, whereas a1 ą 0. Later, two boundary controls are designed via the back-
stepping method to obtain a local rapid exponential stabilization result for the solutions to
(1.2) [9]. In turn, the main concern in [13] is the exact controllability of (1.2). Specifically, a
control of Neumann type is proposed to reach a local exact controllability property as well as
the exponential stability of the system. Lastly, the linear variant of (1.2) is considered and
a single linear boundary control is designed to obtain the rapid stabilization of the solutions
[8].

1.2. Problem setting. First, let us consider the KdV-KdV equation (1.2) but in a bounded
domain r0, Ls and with the following set of boundary conditions

(1.3)

#

ηpt, 0q “ ηpt, Lq “ ηxpt, 0q “ 0, t P R`,

ωpt, 0q “ ωpt, Lq “ ωxpt, Lq “ 0, t P R`.

As mentioned before, note that considering the system described above, two important facts
need to be mentioned:

‚ We first notice that the global Kato smoothing effect does not hold for the set of
boundary condition (1.3). This makes impossible the task of showing the well-posedness
findings by employing classical methods, such as semigroup theory, and hence the well-
posedness problem of this system remains open.

‚ The second issue is related to the energy of the system (1.2) and (1.3). Under the
above boundary conditions, a simple integration by parts yields

d

dt
E0ptq “ ´

ż L

0

pηpt, xqωpt, xqqxηpt, xq dx,

where

E0ptq “
1

2

ż L

0

pη2pt, xq ` ω2
pt, xqq dx

is the total energy associated with (1.2) and (1.3). This indicates that we do not have any
control over the energy in the sense that its time derivative does not have a fixed sign.

Therefore, due to the restriction presented in these two points, the following questions
naturally arise:

Question A: Is there a suitable set of boundary conditions so that the Kato smoothing effect
can be revealed?

1See [4] for the real-line case and [10, 19] for details in the periodic framework.
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Question B: Is there a feedback control law that permits the control of the nonlinear term
presented in the derivative of the energy associated with the closed-loop system? Moreover,
is this desired feedback law strong enough in the presence of a time-dependent delay?

Question C: If the answer to these previous questions is yes, does E0ptq Ñ 0 as t Ñ 8? If
this is the case, can we give an explicit decay rate?

Our motivation in this work is to give answers to these questions. In this spirit, and to
deal with the Boussinesq system of KdV-KdV type (1.2), let us consider the set of boundary
conditions:

(1.4)

#

ηpt, 0q “ ηpt, Lq “ ηxpt, 0q “ ωpt, 0q “ ωpt, Lq “ 0, t ą 0,

ωxpt, Lq “ ´αηxpt, Lq ` βηxpt ´ τptq, Lq, t ą 0,

where τptq is the time-varying delay, while α and β are feedback gains.

Remark 1. The following remarks are now in order.

i. Note that our new set of boundary conditions contains a damping mechanism αηxpt, Lq

as well as the time-varying delayed feedback βηxpt ´ τptq, Lq.
ii. The damping mechanism will guarantee the Kato smoothing effect, which is para-

mount to proving the well-posedness of the system under consideration in this article.
iii. The time-varying delay feedback, together with the damping mechanism, permits to

drive the energy to 0, as t goes to 8, giving the stabilization of the system (1.2) and
(1.4), with a precise decay rate.

iv. We point out that our main result, given in the next subsection, ensures the exponen-
tial stability of the linearized system associated with (1.2)–(1.4) employing τptq as a
time-varying delay. However, due to the lack of a priori L2-estimate, it is hard to
extend the result to the nonlinear system (1.2)–(1.4). We instruct the reader to see
the discussion about this point in Section 4.

It is also noteworthy that the time-delay phenomenon is practically unavoidable because
of miscellaneous reasons. Indeed, it often occurs in numerous areas such as biology, mechan-
ics, and engineering due to the dynamics of the actuators and sensors. Having said that,
there is in literature a predominant opinion that time delay has intrinsically a disadvantage
on the performance of practical systems (see for instance the first papers that treated this
subject in the PDEs framework [16, 17, 18]). This gives rise to a monumental endeavor in
attempting to nullify any negative impact of the presence of a delay on a system. In fact, the
authors in [20, 31] show that the solutions to the wave equation remain stable provided that
the delayed term is small, otherwise the stability property is lost. This outcome is extended
in [21] to a general class of second-order evolution equations with unbounded time-dependent
delayed control. Similar results are also obtained for numerous systems with time-dependent
delay (see for instance [22, 23, 24] and the references therein). Note also that in the context
of dispersive equations, time-delayed feedback is a challenging problem as it can lead to
instability or oscillatory behavior in numerous instances. Some recent articles - not exhaus-
tive - already addressed the stabilization problem of dispersive systems with delay. We can
cite, for example, [2], [14] and [7] for KdV, KS, and Kawahara equations, where time-delay
boundary controls are considered. Furthermore, if the time delay occurs in the equation,
the authors in [30], [11, 15], and [12] showed stabilization results for the KdV, fifth-order
KdV, and Kawahara-Kadomtsev-Petviashvili equations, respectively. Finally, we point out
that using the time-varying delay, the authors in [26] obtained stabilization outcomes for
the KdV equation. To the author’s best knowledge, this is the only work that considers a
coupled dispersive system with a time-dependent delay and we believe that the techniques
presented here can be adapted to other systems.
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1.3. Main results and paper’s outline. To our knowledge, due to the previous restric-
tions, there is no result combining the damping mechanism and the boundary time-varying
delay to guarantee stabilization results for the linearized KdV-KdV system associated with
(1.2)–(1.4). In order to state the main result and provide answers to the questions previously
mentioned, we assume that there exist two positive constants M and d ă 1 such that the
time-dependent function τptq satisfies the following standard conditions:

(1.5)

#

0 ă τp0q ď τptq ď M, 9τptq ď d ă 1, @t ě 0,

τ P W 2,8pr0, T sq, T ą 0.

Furthermore, the feedback gains α and β must satisfy the following constraint

(1.6) p2α ´ |β|qp1 ´ dq ą |β|, for 0 ď d ă 1.

or equivalently,

α ą
|β|
2

ˆ

2 ´ d

1 ´ d

˙

, for 0 ď d ă 1.

Next, let X0 :“ L2p0, Lq ˆ L2p0, Lq, H :“ X0 ˆ L2p0, 1q and consider the space

B :“ Cpr0, T s, X0q X L2
p0, T, rH1

p0, Lqs
2
q,

whose norm is

∥pη, ωq∥B “ sup
tPr0,T s

∥pηptq, ωptqq∥X0 ` ∥pηx, ωxq∥L2p0,T ;X0q.

Whereupon, we are interested in the behavior of the solutions of the system

(1.7)

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

ηtpt, xq ` ωxpt, xq ` ωxxxpt, xq ` pηpt, xqωpt, xqqx “ 0, R` ˆ p0, Lq,

ωtpt, xq ` ηxpt, xq ` ηxxxpt, xq ` ωpt, xqωxpt, xq “ 0, R` ˆ p0, Lq,

ηpt, 0q “ ηpt, Lq “ ηxpt, 0q “ ωpt, 0q “ ωpt, Lq “ 0, t P R`,

ωxpt, Lq “ ´αηxpt, Lq ` βηxpt ´ τptq, Lq, t ą 0,

ηxpt ´ τp0q, Lq “ z0pt ´ τp0qq P L2p0, 1q, 0 ă t ă τp0q,

pηp0, xq, ωp0, xqq “ pη0pxq, ω0pxqq P X0, x P p0, Lq.

It is noteworthy that the total energy associated with the system (1.7) will be defined
in H by

(1.8) Eptq “
1

2

ż L

0

pη2pt, xq ` ω2
pt, xqq dx `

|β|
2
τptq

ż 1

0

η2xpt ´ τptqρ, Lq dρ.

Thereafter, the principal result of the article ensures that the energy Eptq decays exponen-
tially despite the presence of the delay. An estimate of the decay rate is also provided. This
answers each question that we tabled previously.

Theorem 1.1. Let 0 ă L ă
?
3π. Suppose that (1.5) and (1.6) are satisfied. Then, for two

positive constants µ1 and µ2 with µ1L ă 1, there exist

(1.9) ζ “
1 ` maxtµ1L, µ2u

1 ´ maxtµ1L, µ2u
,

and

(1.10) λ ď min

"

µ1p3π2 ´ L2q

L2p1 ` µ1q
,
µ2p1 ´ dq

Mp1 ` µ2q

*

such that the energy Eptq given by (1.8) associated to the linearized system of (1.7) around
the origin satisfies

Eptq ď ζEp0qe´λt, for all t ě 0.
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This outcome brings a new contribution of the stability of the KdV-KdV system with a
delay term since in [8, 9, 13, 27] no delay was considered. Moreover, unlike these papers, the
spectral analysis of the linearized system cannot be conducted due to the time dependency
of the delay. In turn, this prevents us from getting the set of critical lengths. The approach
used in the current work is direct as it is based on the Lyapunov method.

We end this section by providing an outline of this paper, which consists of four parts
including the Introduction. Section 2 discusses the existence of local solutions for the non-
linear Boussinesq KdV-KdV system (1.7). Section 3 is devoted to proving the stabilization
result, Theorem 1.1, for the linearized system associated with (1.7). Additionally, we have
shown that the decay rate λ of Theorem 1.1 can be optimized. Finally, in Section 4, we will
provide some concluding remarks and discuss open problems related to the stabilization of
the nonlinear Boussinesq KdV-KdV system (1.7).

2. Well-posedness theory

2.1. Linear problem. Consider the following linear Cauchy problem

d

dt
Uptq “ AptqUptq,

Up0q “ U0, t ą 0,
(2.1)

where Aptq : DpAptqq Ă H Ñ H is densely defined. If DpAptqq is independent of time t, i.e.,
DpAptqq “ DpAp0qq, for t ą 0. The next theorem ensures the existence and uniqueness of
the Cauchy problem (2.1).

Theorem 2.1 ([28]). Assume that:

(1) Z “ DpAp0qq is a dense subset of H and DpAptqq “ DpAp0qq, for all t ą 0,
(2) Aptq generates a strongly continuous semigroup on H. Moreover, the family tAptq : t P

r0, T su is stable with stability constants C, m independent of t.
(3) BtAptq belongs to L8

˚ pr0, T s, BpZ, Hqq, the space of equivalent classes of essentially
bounded, strongly measure functions from r0, T s into the set BpZ, Hq of bounded op-
erators from Z into H.

Then, problem (2.1) has a unique solution U P Cpr0, T s,Zq X C1pr0, T s, Hq for any initial
data in Z.

The task ahead is to apply the above result to ensure the existence of solutions for the
linear system associated with (1.7). To do that, consider the following linearized system asso-
ciated with (1.7), that is, consider the equation without ωpt, xqωxpt, xq and pηpt, xqωpt, xqqx.
Following the ideas introduced by in [31, 20, 24], let us define the auxiliary variable

zpt, ρq “ ηxpt ´ τptqρ, Lq,

which satisfies the transport equation:

(2.2)

#

τptqztpt, ρq ` p1 ´ 9τptqρqzρpt, ρq “ 0, t ą 0, ρ P p0, 1q,

zpt, 0q “ ηxpt, Lq, zp0, ρq “ z0p´τp0qρq t ą 0, ρ P p0, 1q.

Now, the space H will be equipped with the inner product

(2.3) xpη, ω, zq , pη̃, ω̃, z̃qyt “ xpη, ωq , pη̃, ω̃qyX0
` |β|τptq xz, z̃yL2p0,1q

,

for any pη, ω; zq, pη̃, ω̃; z̃q P H.
Now, we pick up U “ pη, ω; zqT and consider the time-dependent operator

Aptq : DpAptqq Ă H Ñ H
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given by

(2.4) Aptq pη, ω, zq :“

ˆ

´ωx ´ ωxxx,´ηx ´ ηxxx,
9τptqρ ´ 1

τptq
zρ

˙

,

with domain defined by

(2.5) DpAptqq “

#

pη, ωq P
“

H3
p0, Lq X H1

0 p0, Lq
‰2
,

z P H1
p0, 1q,

∣∣∣∣ηxp0q “ 0, zp0q “ ηxpLq,

ωxpLq “ ´αηxpLq ` βzp1q

+

.

Whereupon, we rewrite (2.2)-(2.5) as an abstract Cauchy problem (2.1). Moreover, note
that DpAptqq is independent of time t since DpAptqq “ DpAp0qq.

Subsequently, consider the triplet tA,H,Zu, with A “ tAptq : t P r0, T su for some T ą 0
fixed and Z “ DpAp0qq. Now, we can prove a well-posedness result of (2.1) related to
tA,H,Zu.

Theorem 2.2. Assume that α and β are real constants such that (1.6) holds. Taking U0 P H,
there exists a unique solution U P Cpr0,`8q, Hq to (2.1). Moreover, if U0 P DpAp0qq, then
U P Cpr0,`8q, DpAp0qqq X C1pr0,`8q, Hq.

Proof. The result will be proved classically (see, for instance, [24]). First, it is not difficult
to see that Z “ DpAp0qq is a dense subset of H and DpAptqq “ DpAp0qq, for all t ą 0.
Therefore, the condition (1) of Theorem 2.1 holds.

For the requirement (2) of Theorem 2.1, observe that integrating by parts and using the
boundary conditions, we have that

xAptqU,Uyt ´ κptq xU,Uyt ď
1

2
pηxpLq, ηxpt ´ τptq, LqqΦα,β pηxpLq, ηxpt ´ τptq, Lqq

T

where

κptq “
p 9τptq2 ` 1q

1
2

2τptq
and Φα,β “

ˆ

´2α ` |β| β
β |β|pd ´ 1q

˙

.

Invoking (1.6), we deduce that Φα,β is a negative definite matrix and consequently we get

xAptqU,Uyt ´ κptq xU,Uyt ď 0.

Thereby, Ãptq “ Aptq ´ κptqI is dissipative.
On the other hand, we claim the following:

Claim 1. For all t P r0, T s, the operator Aptq is maximal, or equivalently, we have that
λI ´ Aptq is surjective, for some λ ą 0.

In fact, let us fix t P r0, T s. Given pf1, f2, hqT P H, we look for U “ pη, ω, zqT P DpAptqq

solution of

(2.6) pλI ´ AptqqU “ pf1, f2, hq ðñ

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

λη ` ωx ` ωxxx “ f1,

λω ` ηx ` ηxxx “ f2,

λz `

ˆ

1 ´ 9τptqρ

τptq

˙

zρ “ h,

ηp0q “ ηpLq “ ωp0q “ ωpLq “ ηxp0q “ 0,

ωxpLq “ ´αηxpLq ` βzp1q, zp0q “ ηxpLq.

A straightforward computation gives that z has the explicit form

zpρq “

$

’

’

&

’

’

%

ηxpLqe´λτptqρ
` τptqe´λτptqρ

ż ρ

0

eλτptqσhpσq dσ, if 9τptq “ 0,

eλ
τptq

9τptq
lnp1´ 9τptqρq

„

ηxpLq `

ż ρ

0

hpσqτptq

1 ´ 9τptqσ
e´λ τptq

9τptq
lnp1´ 9τptqσq dσ

ȷ

, if 9τptq ‰ 0.
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In particular, zp1q “ ηxpLqg0ptq ` ghptq, where

g0ptq “

#

e´λτptq, if 9τptq “ 0,

eλ
τptq

9τptq
lnp1´ 9τptqq, if 9τptq ‰ 0,

and

ghptq “

$

’

’

&

’

’

%

τptqe´λτptq

ż 1

0

eλτptqσhpσqdσ, if 9τptq “ 0,

eλ
τptq

9τptq
lnp1´ 9τptqq

ż 1

0

hpσqτptq

1 ´ 9τptqσ
e´λ τptq

9τptq
lnp1´ 9τptqσqdσ, if 9τptq ‰ 0.

This, together with (2.6), leads to claim that η and ω should satisfy

(2.7)

#

λη ` ωx ` ωxxx “ f1,

λω ` ηx ` ηxxx “ f2,

with boundary conditions

(2.8)

#

ηp0q “ ηpLq “ ωp0q “ ωpLq “ ηxp0q “ 0,

ωxpLq “ p´α ` βg0ptqqηxpLq ` βghptq.

Pick ψpx, tq “
xpx ´ Lq

L
βghptq P C8pr0, Lsq and let ω̂ :“ ω ´ ψ. Then, the system (2.7) can

be rewritten as follows:

(2.9)

#

λη ` ωx ` ωxxx “ f1 ´ ψx “: f̃1,

λω ` ηx ` ηxxx “ f2 ´ λψ “: f̃2,

and must be coupled with (2.8). Here, let us mention that for the sake of presentation clarity,
we still use ω after translation. One can check that 0 ă g0ptq ă 1. Indeed, if 9τptq “ 0, then
we clearly have 0 ă g0ptq ă 1. In turn, if 9τptq ‰ 0, then we have two cases to consider,
namely 0 ă 9τptq ă 1 and 9τptq ă 0. In the first case, we have lnp1 ´ 9τptqq ă lnp1q “ 0

and λτptq{ 9τptq ą 0, which implies that 0 ă g0ptq “ eλ
τptq

9τptq
lnp1´ 9τptqq

ă e0 “ 1. In the second
case, we have lnp1 ´ 9τptqq ą lnp1q “ 0 and λτptq{ 9τptq ă 0, which ensures that 0 ă g0ptq “

eλ
τptq

9τptq
lnp1´ 9τptqq

ă e0 “ 1. We infer from this discussion that ´α̃ :“ ´α ` βg0ptq ă 0, thanks

to (1.6). Thereby, our Claim 1 is reduced to proving that λI ´ Â is surjective, where Â is
given by

Âpη, ωq “ p´ωx ´ ωxxx,´ηx ´ ηxxxq,

while its dense domain is

DpÂq :“
!

pη, ωq P
“

H3
p0, Lq X H1

0 p0, Lq
‰2

: ηxp0q “ 0, ωxpLq “ ´α̃ηxpLq

)

Ă X0.

Thanks to [13, Proposition 4.1], the operators Â and Â˚ are dissipative, and the desired
result follows by Lummer-Phillips Theorem (see, for example, [25]). This shows the Claim
1. Consequently, Ãptq generates a strongly semigroup on H and Ã “ tÃptq, t P r0, T su is a
stable family of generators in H with a stability constant independent of t, and hence the
condition (2) of Theorem 2.1 is satisfied.

Finally, due to the fact that τ P W 2,8pr0, T sq for all T ą 0, we have

9κptq “
:τptq 9τptq

2τptq p 9τptq2 ` 1q
1{2

´
9τptq p 9τptq2 ` 1q

1{2

2τptq2
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is bounded on r0, T s for all T ą 0. Moreover,

d

dt
AptqU “

ˆ

0, 0,
:τptqτptqρ ´ 9τptqp 9τptqρ ´ 1q

τptq2
zρ

˙

,

while the coefficient of zρ is bounded on r0, T s and the regularity (3) of Theorem 2.1 is
fulfilled.

As a consequence, all the assumptions of Theorem 2.1 are verified. Therefore, for
U0 P DpAp0qq, the Cauchy problem

Ũtptq “ ÃptqŨptq, Ũp0q “ U0, t ą 0,

has a unique solution Ũ P Cpr0,8q, Hq and Ũ P Cpr0,8q, DpAp0qqq X C1pr0,8q, Hq, and

consequently the solution of (2.1) is Uptq “ e
şt
0 κpsqdsŨptq. □

The next proposition states that the energy (1.8) is decreasing along the solutions of
(2.1). The proof is straightforward and hence omitted.

Proposition 2.3. Suppose α and β are real constants such that (1.6) holds. Then, for any
mild solution of (2.1) the energy Eptq defined by (1.8) is non-increasing and

(2.10)
d

dt
Eptq “

1

2

ˆ

ηxpLq

ηxpt ´ τptq, Lq

˙T

Φα,β

ˆ

ηxpLq

ηxpt ´ τptq, Lq

˙

.

We end this section by giving a priori estimates and the Kato smoothing effect which
are essential to obtain the well-posedness of the system (1.7). Here, we consider pStpsqqsě0

to be the semigroup of contractions associated with the operator Aptq.

Proposition 2.4. Let α and β are real constant such that (1.6) holds. Then, the map

pη0, ω0; z0q P H ÞÑ pη, ω; zq P B ˆ Cp0, T ;L2
p0, 1qq

is well-defined, continuous, and fulfills

(2.11) ∥pη, ωq∥2X0
` |β|∥z∥2L2p0,1q ď ∥pη0, ω0q∥2X0

` |β|∥z0p´τp0q¨q∥2L2p0,1q,

Furthermore, for every pη0, ω0, z0q P H, we have that

(2.12) ∥ηxp¨, Lq∥2L2p0,T q ` ∥zp¨, 1q∥2L2p0,T q ď ∥pη0, ω0q∥2X0
` ∥z0p´τp0q¨q∥2L2p0,1q.

Moreover, the Kato smoothing effect is verified

(2.13)

ż T

0

ż L

0

`

η2x ` ω2
x

˘

dx dt ď CpL, T, αq

´

∥pη0, ω0q∥2X0
` ∥z0p´τp0q¨q∥2L2p0,1q

¯

.

Finally, for the initial data, we have the following estimates

∥pη0, ω0q∥2X0
ď
1

T
∥pη, ωq∥2L2p0,T ;X0q

` p2α ` |β|q∥ηxp¨, Lq∥2L2p0,T q ` |β|∥zp¨, 1q∥2L2p0,1q

(2.14)

and

(2.15) ∥z0p´τp0q¨q∥2L2p0,1q ď C1pd,Mq

´

∥zpT, ¨q∥L2p0,1q ` ∥zp¨, 1q∥2L2p0,T q

¯

.

Proof. From (2.10) and using that Φα,β is a symmetric negative definite matrix we obtain
that E 1ptq ` η2xpt, Lq ` z2pt, 1q ď 0. Integrating in r0, ss, for 0 ď s ď T , we get

(2.16) Epsq `

ż s

0

η2xpt, Lq dt `

ż s

0

z2pt, 1q dt ď Ep0q,
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and (2.11) is obtained. Taking s “ T and since Eptq is a non-increasing function (see
Proposition 2.3), the estimate (2.12) holds. Now, multiplying the first equation of the
linearized system associated with (1.7) by xω and the second one by xη, adding the results,
then integrating by parts in p0, Lq ˆ p0, T q and using (2.12), we obtain

(2.17)

3

2

ż T

0

ż L

0

η2x ` ω2
x dx dt ď pL ` T q∥pη0, ω0q∥2X0

`

ˆ

α2
`

1

2

˙

L
´

∥ηxp¨, Lq∥2L2p0,T q ` ∥zp¨, 1q∥2L2p0,T q

¯

ďCpL, T, αq

´

∥pη0, ω0q∥2X0
` ∥z0p´τp0q¨q∥2L2p0,1q

¯

,

where CpL, T, αq :“ max
␣

1, L ` T,
`

α2 ` 1
2

˘

L
(

, showing (2.13). Secondly, we multiply the
first equation of the linearized system associated with (1.7) by pT ´ tqη, while the second
one is multiplied by pT ´ tqω. Then, adding the results yields

T

2
∥pη0, ω0q∥2X0

ď
1

2
∥pη, ωq∥2L2p0,T,X0q ` T

ˆ

α `
|β|
2

˙
ż T

0

η2xpt, Lq dt

` T
|β|
2

ż T

0

z2pt, 1q dt,

where we have used Young’s inequality, verifying (2.14). Finally, multiplying (2.2)1 by z and
integrating by parts in p0, T q ˆ p0, 1q,

τ0

ż 1

0

z20p´τp0qρq dρ ď

ż T

0

p1 ´ 9τptqqz2pt, 1q dt ` τpT q

ż 1

0

z2pT, ρq dρ,

giving (2.15). □

The next result ensures the existence of solutions to the KdV-KdV system with source
terms.

Theorem 2.5. Suppose that (1.6) and (1.5) holds. Let U0 “ pη0, ω0, z0q P H and the source
terms pf1, f2q P L1p0, T ;X0q. Then there exists a unique solution U “ pη, ω, zq P Cpr0, T s, Hq

to

(2.18)

#

ηtpt, xq ` ωxpt, xq ` ωxxxpt, xq “ f1, t ą 0, x P p0, Lq,

ωtpt, xq ` ηxpt, xq ` ηxxxpt, xq “ f2, t ą 0, x P p0, Lq,

with boundary condition as in (1.7). Moreover, for T ą 0, the following estimates hold

(2.19)

$

’

&

’

%

∥pη, ω; zq∥Cpr0,T s,Hq ď Cp∥pη0, ω0, z0q∥H ` ∥pf, gq∥L1p0,T,X0qq,

∥pηxp¨, Lq, zp¨, 1qq∥2
rL2p0,T qs2

ď Cp∥pη0, ω0, z0q∥2H ` ∥pf, gq∥2L1p0,T,X0q
q,

∥pη, ωq∥L2pr0,T s,X1q ď Cp∥pη0, ω0, z0q∥H ` ∥pf, gq∥L1p0,T,X0qq,

for some constant C ą 0.

Proof. Analogously to the proof of Proposition 2.4, it suffices to use (2.10) and take into
account that Φα,β is a symmetric negative definite matrix. This implies that there exists
C ą 0 such that

E 1
ptq ` η2xpt, Lq ` z2pt, 1q ď C xpη, ωq, pf1, f2qyX0

.

Integrating the previous inequality on r0, ss for 0 ď s ď T , we get

(2.20) Epsq `

ż s

0

η2xpt, Lq dt `

ż s

0

z2pt, 1q dt ď C

ˆ
ż s

0

xpη, ωq, pf1, f2qyX0
` Ep0q

˙

.
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From Cauchy-Schwarz inequality, it follows that

∥pηps, ¨q, ωps, ¨q; zps, ¨q∥2H ďC
`

∥pη0, ω0; z0q∥2H
`∥pf1, f2q|L1p0,T ;X0q∥pη, ωq∥Cpr0,T s,X0q

˘

,

and consequently, taking the sup-norm for s P r0, T s and applying Young’s inequality, the
estimate (2.19)1 is obtained. Additionally, if we consider s “ T in (2.20), the estimate
for the traces (2.19)2 is guaranteed. Finally, by using the same Morawetz multipliers as in
Proposition 2.4, we have

ż T

0

ż L

0

x pf1ωpt, xq ` f2ηpt, xqq dxdt ďL∥pη, ω, zq∥Cpr0,T s,Hq∥pf1, f2q∥L1p0,T,X0q

ďC
´

∥pη0, ω0; z0q∥2H ` ∥pf1, f2q∥2L1p0,T,X0q

¯

,

proving (2.19)3. □

2.2. Nonlinear problem. Using the theory of local well-posedness of nonlinear systems
in [29], it amounts to proving that the map Γ: B Ñ B has a unique fixed-point in some
closed ball Bp0, Rq Ă B where Γpη̃, ω̃q “ pη, ωq and pη, ωq are the solution of the system
(1.7). The next result ensures that the nonlinear terms can be considered as a source term
of the linear equation (2.18). The proof can be found in [13].

Proposition 2.6. Let pη, ωq P L2p0, T, rH1p0, Lqs2q, so pηωqx, ωωx P L1p0, T,X0q and
pη, ωq P B ÞÑ ppηωqx, pωωxqq P L1p0, T,X0q is continuous. In addition, the following esti-
mate holds,

ż T

0

∥ppη1ω1qx ´ pη2ω2qx, ω1ω1,x ´ ω2ω2,xq∥X0
dt ďKT

1
4 p∥pη1, ω1q∥B ` ∥pη2, ω2q∥Bq

ˆ ∥pη1 ´ η2, ω1 ´ ω2q∥B
for a constant K ą 0.

Finally, we are in a position to present the existence of local solutions to (1.7).

Theorem 2.7. Let L, T ą 0 and consider α and β real constants such that (1.6) is satisfied.
For each initial data pη0, ω0; z0q P H sufficiently small, Γ: B Ñ B defined by Γpη̃, ω̃q “ pη, ωq

is a contraction. Moreover, there exists a unique solution pη, ωq P Bp0, Rq Ă B of the
Boussinesq KdV-KdV nonlinear system (1.7).

Proof. It follows from Theorem 2.5 that the map Γ is well defined. Using Proposition 2.6
and the a priori estimates we obtain

∥Γpη̃, ω̃q∥B “ ∥pη, ωq∥B ď C
`

∥pη0, ω0, z0q∥H ` ∥pη̃, ω̃q∥2B
˘

and

∥Γpη̃1, ω̃1q ´ Γpη̃2, ω̃2q∥B ď KT
1
4 p∥pη̃1, ω̃1q∥B ` ∥pη̃2, ω̃2q∥Bq ∥pη̃1 ´ η̃2, ω̃1 ´ ω̃2q∥B.

Now, we restrict Γ to the closed ball tpη̃, ω̃q P B : ∥pη̃, ω̃q∥B ď Ru, with R ą 0 to be
determined later. Then, ∥Γpη̃, ω̃q∥B ď C p∥pη0, ω0, z0q∥H ` R2q and

∥Γpη̃1, ω̃1q ´ Γpη̃2, ω̃2q∥B ď 2RKT
1
4∥pη̃1 ´ η̃2, ω̃1 ´ ω̃2q∥B.

Next, we pick R “ 2C∥pη0, ω0, z0q∥H and T ą 0 such that 2KT
1
4R ă 1, with C ă 2KT

1
4 .

This leads to claim that

∥Γpη̃, ω̃q∥B ď R
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and
∥Γpη̃1, ω̃1q ´ Γpη̃2, ω̃2q∥B ă C1∥pη̃1 ´ η̃2, ω̃1 ´ ω̃2q∥B,

with C1 ă 1. Lastly, the result is an immediate consequence of the Banach fixed point
theorem. □

Remark 2. We point out that the solutions of the system (1.7) obtained in Theorem 2.7 are
only local. Due to a lack of a priori L2-estimate, the issue of the global existence of solutions
is difficult to address in the energy space for the nonlinear system with a delay term.

3. Linear stabilization result

Since the L2 a priori estimate is valid for the linear system, the solutions of the linearized
system associated with (1.7) are globally well-posed. Thereby, we are ready to prove the
main result of this work.

3.1. Proof of Theorem 1.1. Consider the following Lyapunov functional

V ptq “ Eptq ` µ1V1ptq ` µ2V2ptq,

where µ1, µ2 P R` will be chosen later. Here, Eptq is the total energy given by (1.8), while

V1ptq “
1

2

ż L

0

xηpt, xqωpt, xq dx

and

V2ptq “
|β|
2
τptq

ż 1

0

p1 ´ ρqη2xpt ´ τptqρ, Lq dρ.

Observe that,

p1 ´ maxtµ1L, µ2uqEptq ď V ptq “ Eptq ` µ1V1ptq ` µ2V2ptq ď p1 ` maxt2µ1L, µ2uqEptq.

The Young’s inequality yields that

(3.1)

∣∣∣∣µ1

ż L

0

xηω dx

∣∣∣∣ ď µ1L

ż L

0

|ηω| dx ď
µ1L

2

ż L

0

`

η2 ` ω2
˘

dx.

Moreover,

(3.2)

∣∣∣∣µ1

ż L

0

xηω dx ` µ2 ¨
|β|
2
τptq

ż 1

0

p1 ´ ρqη2xpt ´ τptqρ, Lq dρ

∣∣∣∣
ď

∣∣∣∣µ1

ż L

0

xηω dx

∣∣∣∣ `

∣∣∣∣µ2 ¨
|β|
2
τptq

ż 1

0

p1 ´ ρqη2xpt ´ τptqρ, Lq dρ

∣∣∣∣
ď
µ1L

2

ż L

0

`

η2 ` ω2
˘

dx ` µ2 ¨
|β|
2
τptq

ż 1

0

η2xpt ´ τptqρ, Lq dρ

ď maxtµ1L, µ2u

ˆ

1

2

ż L

0

`

η2 ` ω2
˘

dx `
|β|
2
τptq

ż 1

0

η2xpt ´ τptqρ, Lq dρ.

˙

“ maxtµ1L, µ2uEptq,

and, consequently,

(3.3) p1 ´ maxtµ1L, µ2uqEptq ď V ptq ď p1 ` maxtµ1L, µ2uqEptq,

since µ1L ă 1 by hypothesis.
To obtain the derivative of V1, we have

V 1
1ptq “

d

dt

ˆ
ż L

0

xηωdx

˙

“

ż L

0

xηtωdx `

ż L

0

xηωtdx “ I1 ` I2.
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Let us analyze each term. For I1, using the boundary condition, we get that
ż L

0

xηtωdx “ ´

ż L

0

xωxωdx ´

ż L

0

xωxxxωdx

“
1

2

ż L

0

ω2dx ´

ż L

0

ω2
xdx `

ż L

0

x

2
pω2

xqxdx

“
1

2

ż L

0

ω2dx ´

ż L

0

ω2
xdx `

´x

2
pω2

xq

¯

ˇ

ˇ

L

0
´

1

2

ż L

0

ω2
xdx

“
1

2

ż L

0

ω2dx ´

ż L

0

ω2
xdx `

L

2
p´αηxpLq ` βηxpt ´ τptq, Lqq

2
´

1

2

ż L

0

ω2
xdx.

Therefore,
ż L

0

xηtωdx “
1

2

ż L

0

ω2dx ´
3

2

ż L

0

ω2
xdx

`
L

2
p´αηxpLq ` βηxpt ´ τptq, Lqq

2.

(3.4)

For I2, thanks to the boundary condition, we have that
ż L

0

xηωtdx “ ´

ż L

0

xηηxdx ´

ż L

0

xηηxxxdx

“
1

2

ż L

0

η2dx ´

ż L

0

η2xdx `

´x

2
η2x

¯

ˇ

ˇ

L

0
´

1

2

ż L

0

η2xdx

“
1

2

ż L

0

η2dx ´

ż L

0

η2xdx ´
1

2

ż L

0

η2xdx `
L

2
η2xpLq

“
1

2

ż L

0

η2dx ´
3

2

ż L

0

η2xdx ´

ż L

0

xηωωxdx `
L

2
η2xpLq.

(3.5)

Adding the identities (3.4) and (3.5) we obtain the following identity

V 1
1ptq “

1

2

ż L

0

ω2dx ´
3

2

ż L

0

ω2
xdx `

L

2
p´αηxpLq ` βηxpt ´ τptq, Lqq

2

`
1

2

ż L

0

η2dx ´
3

2

ż L

0

η2xdx `
L

2
η2xpLq.

Hence,

V 1
1ptq “

L

2

ˆ

ηxpt, Lq

ηxpt ´ τptq, Lq

˙T ˆ
α2 ` 1 ´αβ
´αβ β2

˙ˆ

ηxpt, Lq

ηxpt ´ τptq, Lq

˙

`
1

2

ż L

0

`

ω2
` η2

˘

dx ´
3

2

ż L

0

`

ω2
x ` η2x

˘

dx.

Let

V2ptq “
|β|
2
τptq

ż 1

0

p1 ´ ρqη2xpt ´ τptqρ, Lqdρ.

Remembering that

´τptqBtηxpt ´ τptqρ, Lq “ p1 ´ 9τptqρqBρηxpt ´ τptqρ, Lq



STABILIZATION OF A KDV-KDV SYSTEM WITH DELAY 13

we have, by integration by parts, that

V 1
2ptq “

|β|
2

9τptq

ż 1

0

p1 ´ ρqη2xpt ´ τptqρ, Lqdρ

` |β|τptq

ż 1

0

p1 ´ ρqηxpt ´ τpt ´ τptqρ, LqBtηxpt ´ τptqρ, Lqdρ

“
|β|
2

9τptq

ż 1

0

p1 ´ ρqη2xpt ´ τptqρ, Lqdρ

` |β|
ż 1

0

pρ ´ 1qp1 ´ 9τptqρqηxpt ´ τptqρ, LqBρηxpt ´ τptqρ, Lqdρ

“
|β|
2

9τptq

ż 1

0

p1 ´ ρqη2xpt ´ τptqρ, Lqdρ `
|β|
2

ż 1

0

pρ ´ 1qp1 ´ 9τptqρq
`

η2xpt ´ τptqρ, Lq
˘

ρ
dρ

“
|β|
2

9τptq

ż 1

0

p1 ´ ρqη2xpt ´ τptqρ, Lqdρ `
|β|
2

ż 1

0

rp1 ´ ρqp1 ´ 9τptqρqsρ η
2
xpt ´ τptqρ, Lqdρ

`
|β|
2

“

pρ ´ 1qp1 ´ 9τptqρqη2xpt ´ τptqρ, Lq
‰ρ“1

ρ“0

“ ´
|β|
2

ż 1

0

p1 ´ 9τptqρqη2xpt ´ τptqρ, Lqdρ `
|β|
2
η2xpt, Lq,

that is,

(3.6) V 1
2ptq “ ´

|β|
2

ż 1

0

p1 ´ 9τptqρqη2xpt ´ τptqρ, Lqdρ `
|β|
2
η2xpt, Lq.

Since the energy of our problem is given by

Eptq “
1

2

ż L

0

`

η2 ` ω2
˘

dx `
|β|
2
τptq

ż 1

0

η2xpt ´ τptqρ, Lqdρ,

yields that

E 1
ptq “

1

2

ˆ

ηxpt, Lq

ηxpt ´ τptq, Lq

˙T

Φα,β

ˆ

ηxpt, Lq

ηxpt ´ τptq, Lq

˙

,

with

Φα,β “

ˆ

´2α ` |β| β
β |β|pd ´ 1q

˙

.

Let

V ptq “ Eptq ` µ1V1ptq ` µ2V2ptq.
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Then,

V 1
ptq ` λV ptq “E 1

ptq ` µ1V
1
1ptq ` µ2V

1
2ptq ` λEptq ` λµ1V1ptq ` λµ2V2ptq

“
1

2

ˆ

ηxpt, Lq

ηxpt ´ τptq, Lq

˙T

Φα,β

ˆ

ηxpt, Lq

ηxpt ´ τptq, Lq

˙

`
µ1L

2

ˆ

ηxpt, Lq

ηxpt ´ τptq, Lq

˙T ˆ
α2 ` 1 ´αβ
´αβ β2

˙ˆ

ηxpt, Lq

ηxpt ´ τptq, Lq

˙

`
µ1

2

ż L

0

`

ω2
` η2

˘

dx ´
3µ1

2

ż L

0

`

ω2
x ` η2x

˘

dx

´ µ2
|β|
2

ż 1

0

p1 ´ 9τptqρqη2xpt ´ τptqρ, Lqdρ `
µ2|β|
2

η2xpt, Lq

`
λ

2

ż L

0

`

η2 ` ω2
˘

dx `
λ|β|
2
τptq

ż 1

0

η2xpt ´ τptqρ, Lqdρ

` µ1λ

ż L

0

xηωdx `
µ2|β|λ

2
τptq

ż 1

0

p1 ´ ρqη2xpt ´ τptqρ, Lqdρ.

Therefore,

V 1
ptq ` λV ptq “

1

2
xΨµ1,µ2pηxpt, Lq, ηxpt ´ τptq, Lqq, pηxpt, Lq, ηxpt ´ τptq, Lqqy

`
µ1

2

ż L

0

`

ω2
` η2

˘

dx ´
3µ1

2

ż L

0

`

ω2
x ` η2x

˘

dx

`
λ

2

ż L

0

`

η2 ` ω2
˘

dx ` µ1λ

ż L

0

xηωdx

´ µ2
|β|
2

ż 1

0

p1 ´ 9τptqρqη2xpt ´ τptqρ, Lqdρ `
λ|β|
2
τptq

ż 1

0

η2xpt ´ τptqρ, Lqdρ

`
µ2|β|λ

2
τptq

ż 1

0

p1 ´ ρqη2xpt ´ τptqρ, Lqdρ

“M ` S1 ` S2.

Here, the terms Ψµ1,µ2 , M , S1 and S2 are given by

(3.7) Ψµ1,µ2 “ Φα,β ` Lµ1

ˆ

α2 ` 1 ´αβ
´αβ β2

˙

` |β|µ2

ˆ

1 0
0 0

˙

,

M “
1

2
xΨµ1,µ2pηxpt, Lq, ηxpt ´ τptq, Lqq, pηxpt, Lq, ηxpt ´ τptq, Lqqy ,

S1 “
µ1

2

ż L

0

`

ω2
` η2

˘

dx ´
3µ1

2

ż L

0

`

ω2
x ` η2x

˘

dx `
λ

2

ż L

0

`

η2 ` ω2
˘

dx ` µ1λ

ż L

0

xηωdx,

and

S2 “ ´ µ2
|β|
2

ż 1

0

p1 ´ 9τptqρqη2xpt ´ τptqρ, Lqdρ `
λ|β|
2
τptq

ż 1

0

η2xpt ´ τptqρ, Lqdρ

`
µ2|β|λ

2
τptq

ż 1

0

p1 ´ ρqη2xpt ´ τptqρ, Lqdρ,

respectively.
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Now we need to prove that V 1ptq ` λV ptq ď 0. To do that, let us analyze each term
above.

Estimate for M : From the properties of Φα,β and the continuity of the trace and determi-
nant functions, we can ensure that Ψµ1,µ2 is negative definite. Thus,

M ď 0.

Estimate for S1: Observe that using Poincaré inequality, we get that

S1 ď
1

2
pλp1 ` µ1Lq ` µ1q

ż L

0

`

ω2
` η2

˘

dx ´
3µ1

2

ż L

0

`

ω2
x ` η2x

˘

dx

ď

„

L2

2π2
pλp1 ` µ1Lq ` µ1q ´

3µ1

2

ȷ
ż L

0

`

ω2
x ` η2x

˘

dx.

Thus,

S1 ă 0,

if

λ ă
µ1p3π

2 ´ L2q

L2p1 ` µ1q
.

Estimate for S2: Note that

S2 ď ´
µ2|β|
2

p1 ´ dq

ż 1

0

η2xpt ´ τptqρ, Lqdρ `
λ|β|M

2

ż 1

0

η2xpt ´ τptqρ, Lqdρ

`
λµ2|β|M

2

ż 1

0

η2xpt ´ τptqρ, Lqdρ

ď
|β|
2

pλM ` λµ2M ´ µ2p1 ´ dqq

ż 1

0

η2xpt ´ τptqρ, Lqdρ.

Then, choosing

λ ă
µ2p1 ´ dq

Mp1 ` µ2q

we have that
|β|
2

pλM ` λµ2M ´ µ2p1 ´ dqq ă 0.

Therefore, for ζ ą 0 and λ ą 0 fulfilling (1.9) and (1.10), respectively, we have

d

dt
V ptq ` λV ptq ď 0 ðñ Eptq ď ζEp0qe´λt, @t ě 0,

since V ptq satisfies (3.3). This achieves the proof of the theorem. □

3.2. Optimization of the decay rate. We can optimize the value of λ in Theorem 1.1 to
obtain the best decay rate for the linear system associated with (1.7) in the following way:

Proposition 3.1. Choosing the constant µ1 as follows

(3.8) µ1 P

„

0,
p2α ´ |β|qp1 ´ dq ´ |β|
Lp1 ´ dqp1 ` α2q

˙

,

we claim that λ has the largest possible value.
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Proof. Define the functions f and g :
”

0, p2α´|β|qp1´dq´|β|
Lp1´dqp1`α2q

ı

Ñ R by

fpµ1q “
µ1 p3π2 ´ L2q

L2p1 ` µ1Lq
,

and

gpµ1q “
p2α ´ |β|qp1 ´ dq ´ |β| ´ Lp1 ´ dqp1 ` α2qµ1

Mp2αp1 ´ dq ´ |β| ´ Lp1 ´ dqp1 ` α2qµ1q
p1 ´ dq.

Then, let λpµ1q “ mintfpµ1q, gpµ1qu we have the following claims.

Claim 2. The function f is increasing in the interval
”

0, p2α´|β|qp1´dq´|β|
Lp1´dqp1`α2q

¯

while the function

g is decreasing in the same interval.

In fact, note that if

fpµ1q “
p3π2 ´ L2q

L3

ˆ

1 ´
1

1 ` µ1L

˙

ùñ f 1
pµ1q “

p3π2 ´ L2q

L2p1 ` µ1Lq2
ą 0.

In particular, f 1pµ1q ą 0 for µ1 P

”

0, p2α´|β|qp1´dq´|β|
Lp1´dqp1`α2q

¯

. Analogously, as

gpµ1q “
1 ´ d

M
´

|β|p1 ´ dq2

MLp1 ´ dqp1 ` α2q

˜

1
2αp1´dq´|β|

Lp1´dqp1`α2q
´ µ1

¸

,

so

g1
pµ1q “ ´

|β|p1 ´ dq2

MLp1 ´ dqp1 ` α2q

»

—

–

1
´

2αp1´dq´|β|

Lp1´dqp1`α2q
´ µ1

¯2

fi

ffi

fl

ă 0,

since

µ1 ă
p2α ´ |β|qp1 ´ dq ´ |β|
Lp1 ´ dqp1 ` α2q

ă
2αp1 ´ dq ´ |β|
Lp1 ´ dqp1 ` α2q

,

showing the claim 2.

Claim 3. There exists only one point satisfying (3.8) such that fpµ1q “ gpµ1q.

Indeed, to show the existence of this point, it is sufficient to note that fp0q “ 0,

f

ˆ

p2α ´ |β|qp1 ´ dq ´ |β|
Lp1 ´ dqp1 ` α2q

˙

“
p3π2 ´ L2q

2L3

ˆ

1 ´
p1 ´ dqp1 ` α2q

p1 ´ dqp1 ` α2q ` p2α ´ |β|qp1 ´ dq ´ |β|

˙

ą 0

and

gp0q “
1 ´ d

M

ˆ

1 ´
|β|p1 ´ dq

2αp1 ´ dq ´ |β|

˙

ą 0, g

ˆ

p2α ´ |β|qp1 ´ dq ´ |β|
Lp1 ´ dqp1 ` α2q

˙

“ 0.

The uniqueness follows from the fact that f is increasing while g is decreasing in this interval,
and claim 3 holds.

Finally, taking into account the claims 2 and 3, the maximum value of the function λ
must be reached at the point µ1 satisfying (3.8), where fpµ1q “ gpµ1q, and the Proposition
3.1 is achieved. □
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We can illustrate, in Figure 1 below, the situation of the previous proposition taking,
for instance, L “ 5, d “ 1

2
, α “ 1, β “ 1

2
and M “ 3, when λpµ1q “ mintfpµ1q, gpµ1qu:

Figure 1. Ilustration of Proposition 3.1

4. Concluding discussion

This article was concerned with the local well-posedness for the system (1.7) and stabi-
lization of the energy associated with the linearized KdV-KdV system posed on a bounded
domain. We proved the local well-posedness result by considering a linear combination of
the damping mechanism and a time-varying delay term. Moreover, since we have the global
solution associated with the linearized system, so, the energy method is used to show the
exponential stabilization outcome for the linearized system.

4.1. Further comments. The following remarks are worth mentioning.

(1) The well-posedness finding is not proved directly. The main issue is due to the time-
varying delay term that makes the associated operator for the system time-dependent.
Therefore, we invoked the ideas introduced by Kato [28] to solve an abstract Cauchy
problem of the “hyperbolic” type.

(2) In [13], the authors showed the stabilization result when β “ 0. In this case, using
the classical compactness-uniqueness argument, they found a restrictive condition on
the spatial length, that is, the stabilization follows if only if

L R N :“

"

2π
?
3

?
k2 ` kl ` l2 : k, l P N˚

*

.

Additionally, in [13], the decay rate could not be characterized. In turn, due to the
presence of the time-varying delay term in our problem, the restriction on the spatial
length is L P p0,

?
3πq, which seems reasonable. Last but not least, the decay rate
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of the energy is explicitly provided contrary to [13]. However, the drawback of our
result is that it is only true for the linearized system.

(3) It is noteworthy that the strategy used in [27], and more recently in [13] ensures
the global solution of the nonlinear system (1.7) without delay. However, such
a strategy can not be applied when a time-dependent delay occurs. This is due
to the fact that in this case, the system is non-autonomous. In addition to that,
this strategy fails to provide the desired result (global existence of solutions) for the
nonlinear system even if a constant delay τptq “ h is considered. The reason is our
operator A, defined by (2.4), has a transport part with nonhomogeneous boundary
conditions given by the equation (2.2) and hence we can not expect to control the
solution of the transport part in the space H1{3p0, 1q in terms of the L2p0, 1q norm
of the initial data. Thus, for the full system (1.7) with a constant delay τptq “ h,
another approach needs to be applied. We discuss it in the last subsection of the
work.

(4) Naturally, it would be interesting to make a comparison between the KdV-KdV and
the KdV models. Two important facts appear:

‚ The Lyapunov approach provides a direct way to deal with the nonlinear sys-
tem KdV equation, as shown in [26]. In this work, stability results for the KdV
equation with time-varying delay are established using the same techniques. In
comparison to our work, two KdV equations are coupled by the nonlinearities;
thus the complexity of the problem suggests choosing a different Lyapunov func-
tional and deals only with the linearized system.

‚ Another interesting comparison is about the energy decay rate associated with
the KdV and KdV-KdV models, at least for the linear problem. In both cases,
the explicit decay rate is shown.

(5) A calculation shows that taking µ1 and µ2 in Theorem 1.1 such that

µ1 ă min

"

2α ´ |β|

Lp1 ` α2q
,

p2α ´ |β|qp1 ´ dq ´ |β|
Lp1 ´ dqp1 ` α2q

*

“
p2α ´ |β|qp1 ´ dq ´ |β|
Lp1 ´ dqp1 ` α2q

and

µ2 “min

"

p2α ´ |β|q ´ Lp1 ` α2qµ1

|β|
,

p2α ´ βqp1 ´ dq ´ |β| ´ Lp1 ´ dqp1 ` α2qµ1

|β|p1 ´ dq

*

“
p2α ´ βqp1 ´ dq ´ |β| ´ Lp1 ´ dqp1 ` α2qµ1

|β|p1 ´ dq
,

implies that Ψµ1,µ2 , given by (3.7), is negative definite provide that |α| ă 1.

In fact, recall

Ψµ1,µ2 “

ˆ

´2α ` |β| ` µ1Lp1 ` α2q ` µ2|β| βp1 ´ Lµ1αq

βp1 ´ Lµ1αq |β|pd ´ 1q ` Lµ1β
2

˙

“

ˆ

a11 a12
a21 a22

˙

.

In order to Ψµ1,µ2 be negative definite, the term a11 must be negative,

´2α ` |β| ` Lµ1p1 ` α2
q ` |β|µ2 ă 0 ðñ µ2 ă

p2α ´ |β|q ´ Lp1 ` α2qµ1

|β|
with

2α ´ |β| ´ Lp1 ` α2
qµ1 ą 0,

which implies that µ1 must satisfy

µ1 ă
2α ´ |β|

Lp1 ` α2q
.
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Moreover, we need that

detΨµ1,µ2 “

∣∣∣∣´2α ` |β| ` Lµ1pα2 ` 1q ` |β|µ2 βp1 ´ Lµ1αq

βp1 ´ Lµ1αq |β|pd ´ 1q ` Lµ1β
2

∣∣∣∣ ą 0.

Note that,

detΨµ1,µ2 “|β|
“

pLµ1q
2|β| ` Lµ1p1 ` µ2q|β|2 ´ Lµ1pα2

` 1qp1 ´ dq

´ pp´2α ` |β|qp1 ´ dq ` |β|µ2p1 ´ dq ` |β|qs .

Since

pLµ1q
2|β| ` Lµ1|β|2p1 ` µ2q ą 0,

in order to the determinant of Ψµ1,µ2 be positive, we only need

´Lµ1p1 ´ dqp1 ` α2
q ´ pp´2α ` |β|qp1 ´ dq ` |β|µ2p1 ´ dq ` |β|q “ 0

that is,

´Lµ1p1 ´ dqp1 ` α2
q ` p2α ´ |β|qp1 ´ dq ´ |β|µ2p1 ´ dq ´ |β| “ 0.

Thus, we have

µ2 “
p2α ´ |β|qp1 ´ dq ´ |β| ´ Lp1 ´ dqp1 ` α2qµ1

|β|p1 ´ dq

with

µ1 ă
p2α ´ |β|qp1 ´ dq ´ |β|
Lp1 ´ dqp1 ` α2q

.

(6) From Theorem 1.1 and item (4), it follows that when L ă
?
3π and by taking

µ1, µ2 ą 0 so that µ1L ă 1 and

µ1 ă
p2α ´ |β|qp1 ´ dq ´ |β|
Lp1 ´ dqp1 ` α2q

, µ2 “
p2α ´ |β|qp1 ´ dq ´ |β| ´ Lp1 ´ dqp1 ` α2qµ1

|β|p1 ´ dq
,

we reach that Eptq ď ζEp0qe´λt, for all t ě 0 where

λ ď min

"

µ1p3π2 ´ L2q

L2p1 ` µ1q
,
µ2p1 ´ dq

Mp1 ` µ2q

*

and ζ “
1 ` maxtµ1L, µ2u

1 ´ maxtµ1L, µ2u
.

4.2. Open problems. There are some points to be raised.

4.2.1. A time-varying delay feedback. The main difficulty when dealing with the problem
(1.7) is how to prove the global well-posedness. This is due to the lack of the L2 a priori
estimate. It is worth mentioning that, in this case, the semigroup theory or multipliers
method cannot be applied, due to a restriction of ”controlling” the solutions of the transport
equation in specific norms. We believe that a variation of the approach introduced by Bona
et al. in [5] can be adapted. However, this remains a promising research avenue, and the
stabilization problem for the nonlinear system (1.7) needs to be investigated.

4.2.2. Variation of feedback-law. Considering two internal damping mechanisms and a linear
combination of boundary damping and time-varying delay feedback, similar result of our
work can be proved. Due to the restriction of the well-posedness problem, we cannot remove
the boundary damping. However, an open problem is to remove one internal damping
mechanism and make β “ 0. We believe that the Carleman estimate shown in [1] can be
used to investigate all these cases.
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4.2.3. Optimal decay rate. Note that the Proposition 3.1 gives the optimality of λ for the
stabilization problem related to the linear system associated with (1.7). In turn, it is still an
open problem to obtain an optimal decay rate for both the linear and nonlinear problems
without additional conditions for the parameters α and β.
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