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Abstract. This article deals with the stability problem for a higher-order

dispersive model governed by the so-called Kawahara equation. To do so, a
damping mechanism is introduced, which contains a distributed memory term,

and then proves that the solutions of the system are exponentially stable,

provided that specific assumptions on the memory kernel are fulfilled. This is
possible thanks to the energy method that permits us to obtain a decay rate

estimate of the energy of the problem.

1. Introduction.

1.1. Model under consideration and objective. The fifth-order nonlinear dis-
persive equation

±2∂tu+ 3u∂xu− ν∂3
xu+

1

45
∂5
xu = 0, (1)

models numerous physical phenomena. Considering suitable assumptions on the
amplitude, wavelength, wave steepness, and so on, the properties of the asymptotic
models for water waves have been extensively studied in the last years, through (1),
to understand the full water wave system. For a rigorous justification of various
asymptotic surface and internal waves models, we suggest that the reader consult
the following references [1, 5, 29].

On the other hand, we can formulate the waves as a free boundary problem of the
incompressible, irrotational Euler equation in an appropriate non-dimensional form
with at least two parameters δ := h

λ and ε := a
h , non-dimensional, where the water

depth, the wavelength and the amplitude of the free surface are parameterized as
h, λ and a, respectively. In turn, if we introduce another non-dimensional parameter
µ, so-called the Bond number, which measures the importance of gravitational forces
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compared to surface tension forces, then the physical condition δ ≪ 1 characterizes
the waves, which are called long waves or shallow water waves. On the other hand,
there are several long-wave approximations depending on the relations between ε
and δ. For instance, if we consider ε = δ4 ≪ 1 and µ = 1

3 + νε
1
2 , and in connection

with the critical Bond number µ = 1
3 , we have the so-called Kawahara equation,

represented by (1), and derived by Hasimoto and Kawahara in [23, 27].
The main concern of this article is to deal with the well-posedness and stability

of an initial-boundary-value problem related to (1). Specifically, we are concerned
with a fifth-order dispersive partial differential equation with a distributed memory
term

∂tu(x, t) + ∂3
xu(x, t)− a0∂

5
xu(x, t) + u(x, t)∂xu(x, t)

+a1∂xu(x, t) + (−1)k
∫ ∞

0

f(s)∂2k
x u(x, t− s)ds = 0, (x, t) ∈ I × (0,∞),

u(0, t) = u(L, t) = 0, t > 0,

∂xu(0, t) = ∂xu(L, t) = ∂2
xu(L, t) = 0 t > 0,

u(x,−t) = u0(x, t), x ∈ I, t≥0.

(2)

Here u represents the amplitude of the dispersive wave, k ∈ {0, 1, 2}, L > 0, I =
(0, L), while a1 ∈ R and a0 > 0 are physical parameter of the dispersive equation.
Moreover, u0 is the initial condition and f is the memory kernel satisfying f : R+ :=
[0,∞) → R so as there exists a positive constant c0 such that:

f ∈ C2(R+), f ′ < 0, 0 ≤ f ′′ ≤ −c0f
′, f(0) > 0 and lim

s→∞
f(s) = 0. (3)

After that, the energy associated with the system (2) is

E(t) =
1

2

(
∥u(t)∥2 +

∫ ∞

0

g(s)∥∂k
xη

t(·, s)∥2ds
)
, t ∈ R+. (4)

Observe that E′ < 0 and hence the energy of our system is decreasing (see Lemma
2.1). This means that the localized damping mechanism and the memory term
constitute a damping mechanism and consequently one has to study the decay of
the solutions of (2). Notwithstanding, it has been noticed that the stability property
of solutions of many physical systems may be lost when a memory effect occurs [32].
Thus, our concern is to provide an answer to the following questions:

Problem P: Does the energy E(t) decay to 0 as t is sufficiently large? If so, can
we provide a decay rate estimate?

1.2. Historical background. Let us present a review of the main results available
in the literature.

First, we shall focus on the third-order Korteweg-de Vries (KdV) equation. In
the case when a memory term occurs, numerous stability results were obtained in
[12, 13] (see also the reference therein). Chentouf [12] considered the KdV equation
with a boundary finite memory term in a bounded interval. Additionally, Chentouf
and Guesmia [13] studied the stability problem for the KdV equation subject to
the effect of a distributed infinite memory term. Recently, in [34], Parada et al.
studied the stabilization problem of the KdV equation with either a boundary or
distributed time-dependent delay. Note that this outcome extends those obtained
in [4, 36].

Concerning the analysis of the Kawahara equation in a bounded interval, a pio-
neer work is due to Silva and Vasconcellos [37, 38], where the authors studied the
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stabilization of global solutions of the linear Kawahara equation in a bounded inter-
val under the effect of a localized damping mechanism. The second endeavor, in this
line, was completed by Capistrano-Filho et al. [3], where a generalized Kawahara
equation in a bounded domain QT = (0, T )× (0, L) is considered: ∂tu+ ∂xu+ ∂3

xu− ∂5
xu+ up∂xu+ a(x)u = 0, in QT ,

u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = ∂2
xu(t, L) = 0, on [0, T ],

u(0, x) = u0(x), in [0, L],
(5)

with p ∈ [1, 4) and a(x) is a nonnegative function and positive only on an open subset
of (0, L). It is proven that the energy of the above system decays exponentially.

The internal controllability problem has been tackled by Chen [10] for the Kawa-
hara equation with homogeneous boundary conditions. Using Carleman estimates
associated with the linear operator of the Kawahara equation with an internal ob-
servation, a null controllable result was shown when the internal control is effective
in a subdomain ω ⊂ (0, L). In [8], considering the system (5) with an internal
control f(t, x) and homogeneous boundary conditions, the equation is shown to be
exactly controllable in L2-weighted Sobolev spaces and, additionally, controllable
by regions in L2-Sobolev space.

Recently, a new tool for the control properties of the Kawahara operator was
proposed. In [7], the authors showed a new type of controllability for the Kawahara
equation, what they called overdetermination control problem. A boundary control
was designed so that the solution to the problem under consideration satisfies an
integral condition.

The last studies on the stabilization of the Kawahara equation deal with a local-
ized time-delayed interior control. In [9, 11], under suitable assumptions on the time
delay coefficients, the authors were able to prove that solutions of the Kawahara
system are exponentially stable. The results were obtained using the Lyapunov
approach and a compactness-uniqueness argument. More recently, the authors in
[6] gave an analysis to better understand the stabilization issue for the Kawahara
equation. Indeed, it is shown that the Kawahara equation under the action of a
time-delayed boundary control remains exponentially stable under a condition on
the length of the spatial domain. Such a desirable property is proved using two
different approaches. It is also worth mentioning that the stability of the solutions
to the Kawahara equation has been extensively studied in the context of periodic or
non-periodic bounded domain [20, 21, 24, 26] and also in the case when the spacial
variable lies in (−∞,∞) or [0,∞) [15, 16, 17, 19, 25, 30].

We end the literature review by mentioning that the occurrence of a memory
phenomenon in the Kawahara problem (2) could be explained in practice by the fact
that numerous compressible and incompressible fluids are intrinsically viscoelastic
and therefore the influence of the past values of the amplitude of the dispersive
wave of the fluid is unavoidable [2, 13, 18, 33].

Regarding the main contribution of this paper, we can claim that we go one
step further in the study of the stabilization problem for the fifth-order Korteweg-
de-Vries type system. Compared to the recent works [3, 6, 9, 11], where damping
mechanisms and delay controls are used, this paper closes the gap since it is the first
work to treat exponential stability using only infinite memory. It is also noteworthy
that the current paper shows that a memory term plays a role of a damping control
in the sense that it leads to the stability of the system without any additional
damping such as a(x)u used in [3, 11, 39] to get the stability property of the system.
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Finally, note that our results remain valid if a1 = 0 and hence the drift term ∂xu(x, t)
can be omitted.

1.3. Notations and main result. Throughout this article, C denotes a constant
that can be different from one step to another in the demonstrations presented in
the sequel. Let us use ⟨ , ⟩ and ∥ · ∥ to denote the standard real inner product in
L2(I) and its corresponding norm given by

⟨u, v⟩ =
∫ L

0

u(x)v(x)dx and ∥u∥ =

(∫ L

0

|u(x)|2dx

) 1
2

.

Consider two functions u(x, ·) and u0(x, ·) belonging to C(R+, L
2(I)) and satis-

fying the boundary conditions of (2). As in [18], introduce the following approxi-
mation

ηt(x, s) =

∫ t

t−s

u(x, τ)dτ and η0(x, s) =

∫ s

0

u0(x, τ)dτ, x ∈ I, s, t ∈ R+,

for u(x, ·) and u0(x, ·). Observe the the functional ηt satisfies
∂tη

t(x, s) + ∂sη
t(x, s) = u(x, t), x ∈ I, s, t ∈ R+,

ηt(0, s) = ηt(L, s) = 0, s, t ∈ R+,

ηt(x, 0) = 0, x ∈ I, t ∈ R+.

(6)

Indeed, differentiating formally ηt with respect to t, we obtain

∂tη
t = −u(x, t− s) + u(x, t).

Analogously, we have

∂sη
t = u(x, t− s).

Therefore,

∂tη
t + ∂sη

t = u(x, t), ∀x ∈ I, ∀s, t ∈ R+.

In addition, observe that thanks to the boundary conditions of (2), we ensure that

ηt(0, s) =

∫ t

t−s

u(0, τ)︸ ︷︷ ︸
=0

dτ = 0, ηt(L, s) =

∫ t

t−s

u(L, τ)︸ ︷︷ ︸
=0

dτ = 0,

while

ηt(x, 0) =

∫ t

t

u(x, τ)dτ = 0,

which gives us (6).
Now, in order to express the memory term

(−1)k
∫ ∞

0

f(s)∂2k
x u(x, t− s)ds

in terms of ηt, pick a function g := −f ′, with f satisfying (3). Thus, thanks to the
properties of the function f , we getg ∈ C1(R+), g > 0, 0 ≤ −g′ ≤ c0g,

g0 =

∫ ∞

0

g(s)ds = f(0) > 0 and lim
s→∞

g(s) = 0.
(7)
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On the other hand, integrating by parts with respect to s and using that ηt(x, 0) = 0
and the limit (3), we have that∫ ∞

0

g(s)∂2k
x ηt(x, s)ds =

∫ ∞

0

−f ′(s)∂2k
x ηt(x, s)ds =

∫ ∞

0

f(s)∂2k
x u(x, t− s)ds. (8)

Next, with the approximation (8) in hands, we can rewrite our system (2) as

∂tu+ ∂3
xu− a0∂

5
xu+ u∂xu+ a1∂xu+ (−1)k

∫ ∞

0

g(s)∂2k
x ηt(x, s)ds = 0. (9)

Thereafter, we introduce a variable U and its initial data U0 given by

U = (u, ηt) and U0(x, s) = (u0(x), η
0(x, s)),

where

u ∈ L2(I) and ηt ∈ Lg :=

{
v : R+ −→ Hk;

∫ ∞

0

g(s)∥∂k
xv(s)∥2ds < +∞

}
,

and the space Hk is defined as

Hk =


L2(I), if k = 0,

H1
0 (I), if k = 1,

H2
0 (I), if k = 2.

Furthermore, we will consider in the set Lg, defined above, the inner product and
norm given by

⟨v, w⟩Lg =

∫ ∞

0

g(s)⟨∂k
xv(s), ∂

k
xw(s)⟩ds

and

∥v(s)∥Lg =

(∫ ∞

0

g(s)∥∂k
xv(s)∥2ds

) 1
2

,

respectively and we define the energy space as H = L2(I) × Lg, which will be
equipped with the following inner product and its corresponding norm

⟨(v1, v2), (w1, w2)⟩H = ⟨v1, w1⟩+ ⟨v2, w2⟩Lg

and

∥(v(s), w(s))∥H =
(
∥v(s)∥2 + ∥w(s)∥2Lg

) 1
2

.

Additionally, to get our stability results we assume the following additional hy-
pothesis on g: There exists a function ξ : R+ → R+ such that

ξ ∈ C1(R+), ξ′ ≤ 0,

∫ ∞

0

ξ(s)ds = ∞ and g′ ≤ −ξg. (10)

Remark 1.1.

(i) The set of functions g satisfying (7) and (10) is very wide and contains, for
example, the ones that converge to zero exponentially like

g(s) = d1e
−q1s,

where ξ(s) = q1 = ξ0 with d1 > 0 and q1 > 0, or polynomially like

g(s) = d1(1 + s)−q1 ,

where ξ(s) =
q1

s+ 1
, ξ0 = q1 with d1 > 0 and q1 > 1, or between them like the

following one

g(s) = d1e
−q1(s+1)p1 ,
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where ξ(s) = q1p1(s+ 1)p1−1, ξ0 = q1p1, with d1 > 0, q1 > 0 and p1 ∈ (0, 1).
(ii) The assumptions on g are classical and used in numerous papers where other

types of models and problems are treated (see for instance [13] and the ref-
erences therein). However, one could relax some of the conditions on g but
at the expense of technical complexities. The reader is referred to [14, 22] for
further details about this point.

In the sequel, MP is the smallest positive constant satisfying the Poincaré’s
Inequality

∥v∥2 ≤ MP ∥∂xv∥2,
for all v ∈ H1

0 (I). Furthermore, let us denote by MS the positive constant of the
Sobolev embedding H1(I) ↪→ L∞(I)

∥v∥2L∞(I) ≤ MS∥v∥2H1(I), v ∈ H1(I).

Now, we can announce the main result of this article, precisely, the stability of the
solutions of (2).

Theorem 1.2. Assume that (3) and (10) are verified. If U0 ∈ H satisfies

|a1|M2
P +

2

3
MP (MP + 1)

√
LMS∥U0∥ < 5a0, (11)

then there exist positive constants c and c̃ such that the solution U of (12) satisfies
the following stability estimates

(i) If ξ is a constant function, we have

E(t) ≤ c̃e−ct, t ∈ R+.

(ii) If ξ is not a constant function, then it holds

E(t) ≤ c̃e−c
∫ t
0
ξ(τ)dτ

(
1 +

∫ t

0

ec
∫ σ
0

ξ(τ)dτξ(σ)

∫ ∞

σ

g(s)h(σ, s)dsdσ

)
, t ∈ R+,

where

h(t, s) = t2 + t+

∥∥∥∥∫ t−s

0

∂k
xu0(·, τ)dτ

∥∥∥∥ ,
for 0 ≤ t ≤ s.

The previous theorem permits to solve the Problem P stated before. To prove
this result, we use a classical approach that combines the multiplier method with
the energy technique (for further details about this approach, the authors strongly
suggest to the reader to consult the references [28, 31, 40]).

Our work is outlined as follows: Section 2 is devoted to presenting preliminary
results which are essential for the rest of the article. In Section 3, we proved the
well-posedness of the damping-memory problem (2). After that, the main result
of the article, namely, Theorem 1.2 is shown in Section 4. Finally, we presented
further comments in Section 5.

2. Preliminaries. We shall reformulate our problem (2) (see also (9)) as an ab-
stract initial value problem, namely,{

∂tU(t) = AU(t),

U(0) = U0,
(12)
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where the operator A is given by

AU =

(
−∂3

xu+ a0∂
5
xu− u∂xu− a1∂xu− (−1)k

∫ ∞

0

g(s)∂2k
x ηt(·, s)ds, u− ∂sη

t

)
,

with domain

D(A) = {U ∈ H;A(U) ∈ H, u ∈ H2
0 (I), ∂

2
xu(L) = 0, ηt(x, 0) = 0}.

Additionally, for T > 0, we introduce the space

B = C([0, T ];L2(I)) ∩ L2(0, T ;H2(I))

equipped with the norm

∥ · ∥B = ∥ · ∥C([0,T ];L2(I)) + ∥ · ∥L2(0,T ;H2(I)).

The next lemma gives us a formal calculation of the derivative of E(t) =
1

2
∥U(t)∥2H,

defined by (4), which will be important in the work (the computations will be
rigorously justified later).

Lemma 2.1. Assume that (3) hold, then the derivative in time of the energy func-
tional E satisfies

E′(t) = −1

2
a0
[
(∂2

xu)(0)
]2

+
1

2

∫ ∞

0

g′(s)∥∂k
xη

t∥2ds. (13)

Proof. Observe that it follows from (3) that

E′(t) = ⟨∂tu, u⟩+
1

2
∂t

(∫ ∞

0

g(s)
∥∥∂k

xη
t(·, s)

∥∥2 ds) . (14)

We will analyze each part of the E′(t) separately. First, note that by multiplying
(9) by u, integrating by parts in and using the boundary condition of (2), we have∫ L

0

u∂tudx = −a0
1

2

(
∂2
xu(0)

)2 − (−1)k
∫ L

0

u

∫ ∞

0

g(s)∂2k
x ηt(x, s)dsdx. (15)

Now, multiplying (6) by (−1)k∂2k
x g(s)ηt and again, integrating by parts in I ×R+,

we get∫ L

0

∫ ∞

0

(−1)kg(s)∂2k
x ηt∂tη

tdsdx+

∫ L

0

∫ ∞

0

(−1)kg(s)∂2k
x ηt∂sη

tdsdx

=

∫ L

0

∫ ∞

0

(−1)kug(s)∂2k
x ηtdsdx

(16)

thanks to the boundary conditions of (6). When k = 0, (13) holds directly from
(14), (15) and (16). For the case k = 1 or k = 2, note that integrating by parts
k−times with respect to the variable x, in the two terms in the left-hand side of (16)
and, only once with respect to the variable s in the second term of the left-hand
side of (16), we find that

1

2
∂t

(∫ ∞

0

g(s)
∥∥∂k

xη
t
∥∥2 ds) =

1

2

∫ ∞

0

g′(s)
∥∥∂k

xη
t
∥∥2 ds

+ (−1)k
∫ L

0

u

∫ ∞

0

g(s)∂2k
x ηtdsdx,

(17)

since we have that ηt(x, 0) = 0 and that the limit (7) holds. Hence, in this case, to
get (13) just add (15) and (17).
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Remark 2.2. Let us give some comments.

(i) Since a0 > 0 and due to the assumptions on g′ (see (7)), it follows from (13)
that E′(t) ≤ 0. Hence the memory acts as a mechanism of damping feedback.

(ii) Note that the integral term of (13) is well-defined. In fact, observe that since
0 ≤ −g′ ≤ c0g, we have∣∣∣∣∫ ∞

0

g′(s)∥∂k
xη

t∥2ds
∣∣∣∣ =−

∫ ∞

0

g′(s)∥∂k
xη

t∥2ds

≤c0

∫ ∞

0

g(s)∥∂k
xη

t∥2ds

=c0∥∂k
xη

t∥2Lg
< ∞,

for any ηt ∈ Lg, showing our claim.

3. Well-posedness of the memory problem. In this section, we will study the
well-posedness of the system (2). Precisely, we will initially study the well-posedness
of the linearized system associated with (2). Then, we will show that the system
with source term is well-posed and, finally, we prove that the original nonlinear
system (2) is well-posed.

3.1. Well-posedness: The linearized problem. In this subsection, we give the
details about the well-posedness of the linearized system associated with (2), namely

∂tu+ ∂3
xu− a0∂

5
xu+ a1∂xu

+(−1)k
∫∞
0

g(s)∂2k
x ηt(x, s)ds = 0, (x, t) ∈ I × (0,∞),

∂tη
t(x, s) + ∂sη

t(x, s)− u(x, t) = 0, x ∈ I, s, t ∈ R+,

ηt(0, s) = ηt(L, s) = ηt(x, 0) = 0, x ∈ I, s, t ∈ R+,

u(0, t) = u(L, t) = 0, t > 0,

∂xu(0, t) = ∂xu(L, t) = ∂2
xu(L, t) = 0, t > 0,

u(x, 0) = u0(x), x ∈ I,

(18)

with some initial data (u0, η
0). Note that the system (18) can be written in an

abstract form in H as follows{
∂tΦ(t) = AΦ(t), t > 0

Φ(0) = Φ0,
(19)

with Φ = (u, ηt), Φ0 = (u0, η
0) and A is a linear operator giving by

AΦ =

(
−∂3

xu+ a0∂
5
xu− a1∂xu− (−1)k

∫ ∞

0

g(s)∂2k
x ηt(x, s)ds, u− ∂sη

t

)
(20)

with domain

D(A) = {Φ ∈ H;A(Φ) ∈ H, u ∈ H2
0 (I), ∂

2
xu(L) = 0, ηt(x, 0) = 0}.

In turn, recall that, in this section, the generic positive constant C is independent
of the initial data Φ0 but may depend on T, g0 and the system’s parameters ai,
i = 0, 1. The following result ensures the well-posedness of the linearized system.

Theorem 3.1. If the condition (3) is satisfied, then the following assertions are
valid:
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(i) The linear operator A defined by (20) generates a C0-semigroup of contractions
S(t). Moreover, given an initial data Φ0 ∈ D(A), the problem (19) admits a
unique classical solution

Φ ∈ C(R+;D(A)) ∪ C1(R+,H). (21)

In turn, if Φ0 ∈ H, then (19) have a unique mild solution

Φ ∈ C(R+;H). (22)

(ii) For any Φ0 ∈ H and T > 0, the following estimates holds

∥u∥2L2(0,T ;H2(0,L)) ≤ C∥(u0, η
0)∥2H, (23)

for some positive constant C. Additionally, the mapping

∆ : Φ0 = (u0, η
0)T ∈ H → Φ(·) := S(·)Φ0 ∈ B × C([0, T ];Lg)

is continuous.

Proof. In order to show (i), consider Φ = (u, ηt) ∈ D(A). Owing to (13) and (19),
we find

⟨A(Φ),Φ⟩H = ⟨∂tΦ,Φ⟩H =

(
1

2
∥Φ∥2H

)′

= E′(t) < 0.

Thus, A is dissipative thanks to Remark 2.2. On the other hand, we can check that
the adjoint operator of A is defined by

A∗Ψ =

(
∂3
xv − a0∂

5
xv + a1∂xv + (−1)k

∫ ∞

0

g(s)∂2k
x ζt(x, s)ds,−v +

g′(s)

g(s)
ζt + ∂sζ

t

)
with domain

D(A∗) = {Ψ ∈ H;A∗(Ψ) ∈ H, v ∈ H2
0 (I), ∂

2
xv(0) = 0, ζt(x, 0) = 0}.

The same line of thought may be applied to obtain

⟨A∗(Ψ),Ψ⟩H = −a0
(∂2

xv(L))
2

2
+

1

2

∫ ∞

0

g′(s)∥∂k
xζ

t∥2ds ≤ 0,∀Ψ ∈ D(A∗),

and hence A∗ is also dissipative. Now, since A is densely defined and closed, the
assertion in (i) is a direct consequence of the semigroups theory of linear operators,
see for instance [35].

Now, we will show (ii). Let Φ0 = (u0, η
0) ∈ H. As we know that S(t) is a C0-

semigroup of contractions, we have

∥S(t)Φ0∥H = ∥(u, ηt)∥H ≤ ∥Φ0∥H = ∥(u0, η
0)∥H, ∀t ∈ [0, T ]. (24)

Next, consider the function p(x, t), to be chosen later, and consider a classical
solution Φ = (u, ηt) of (19) with initial data Φ0 ∈ D(A). In this case, Φ has the
regularity (21). Then, multiplying the equation (18) by 2xu, integrating by parts
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over [0, T ]× I and using the boundary conditions, we have:

4

∫ T

0

∥∂xu∥2dt+ 5a0

∫ T

0

∥∂2
xu∥2dt

=

∫ L

0

xu2
0dx−

∫ L

0

xu2(x, T )dx

− (−1)k
∫ T

0

∫ L

0

2xu

∫ ∞

0

g(s)∂2k
x ηt(x, s)dsdxdt+ a1

∫ T

0

∥u∥2dt

≤L∥u0∥2 + a1

∫ T

0

∥u∥2dt

− (−1)k
∫ T

0

∫ L

0

2xu

∫ ∞

0

g(s)∂2k
x ηt(x, s)dsdxdt.

(25)

Let us treat the case k = 0 and k ∈ {1, 2} separately.

Case 1: k = 0.

First, note that

−
∫ T

0

∫ L

0

∫ ∞

0

2g(s)xuηt(x, s)dsdxdt ≤L2

∫ T

0

∫ ∞

0

g(s)∥u∥2dsdt

+

∫ T

0

∥ηt(·, s)∥2Lg
dt

=L2g0

∫ T

0

∥u∥2dt+
∫ T

0

∥ηt(·, s)∥2Lg
dt.

(26)

Thus, amalgamating (25) and (26), we deduce that∫ T

0

(
∥u∥2 + ∥∂xu∥2 + ∥∂2

xu∥2
)
dt ≤ C∥(u0, η

0)∥2H,

where C = C(T, L, a0, |a1|, g0) > 0, showing (23) for Φ ∈ D(A). Finally, the result
for Φ ∈ H follows by a density argument. This, together with (24) implies the
continuity of ∆.

Case 2: k = 1.

Now, considering k = 1, integrating the last term of (25) by parts and using
Hölder’s inequality and Young’s inequality, we get

(4− ϵg0L
2)

∫ T

0

∥∂xu∥2dt+ 5a0

∫ T

0

∥∂2
xu∥2dt ≤L∥u0∥2 + (a1 + g0)

∫ T

0

∥u∥2dt

+

(
1 +

1

ϵ

)∫ T

0

∥ηt∥2Lg
dt.

Taking ϵ =
3

g0L2
> 0, we have∫ T

0

(
∥u∥2 + ∥∂xu∥2 + ∥∂2

xu∥2
)
dt ≤ C∥(u0, η

0)∥2H,

where C = C(T, L, a0, |a1|, g0) > 0 showing (23) for Φ ∈ D(A). Again, a density
argument permits to claim that (23) holds for Φ ∈ H and also the continuity of the
mapping ∆ is verified.

Case 3: k = 2.
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One has merely to argue as in the previous case. The only difference is that we
need to handle the term involving ∥∂2

xu∥2 in addition to ∥∂xu∥2.

3.2. Well-posedness: The equation with source term. The goal of this part
is to deal with the well-posedness of the system (18) with a source term φ(x, t)

∂tu+ ∂3
xu− a0∂

5
xu+ a1∂xu

+(−1)k
∫ ∞

0

g(s)∂2k
x ηt(x, s)ds = φ(x, t), (x, t) ∈ I × (0,∞),

∂tη
t(x, s) + ∂sη

t(x, s)− u(x, t) = 0, x ∈ I, s, t ∈ R+,

ηt(0, s) = ηt(L, s) = ηt(x, 0) = 0, x ∈ I, s, t ∈ R+,

u(0, t) = u(L, t) = 0, t > 0,

∂xu(0, t) = ∂xu(L, t) = ∂2
xu(L, t) = 0, t > 0,

u(x, 0) = u0(x), x ∈ I.

(27)

We have the following result:

Theorem 3.2. Let us consider T > 0. If (3) is verified, then we have:

(i) If Φ0 = (u0, η
0)T ∈ H and φ ∈ L1(0, T ;L2(I)), then there exists a unique mild

solution Φ = (u, ηt)T of (27) such that Φ ∈ B × C([0, T ];Lg),

∥(u, ηt)∥2C([0,T ];H) ≤ C0

(
∥(u0, η

0)∥2H + ∥φ∥2L1(0,T ;L2(I))

)
(28)

and

∥u∥2B ≤ C1

(
∥(u0, η

0)∥2H + ∥φ∥2L1(0,T ;L2(I))

)
, (29)

for some positive constants C0, C1 independent of Φ0 and φ.
(ii) Given u ∈ L2(0, T ;H2(I)), we have u∂xu ∈ L1(0, T ;L2(I)) and the map

Θ : u ∈ L2(0, T ;H2(I)) → u∂xu ∈ L1(0, T ;L2(I))

is continuous.

Proof. (i) Since A generates a C0-semigroup of contractions S(t),

φ ∈ L1(0, T ;L2(I))

and to ensure the validity of the computations, we shall work with a regular solution
Φ of (27) stemmed from an initial data Φ0 = (u0, η

0)T ∈ D(A). It is well-known
from the semigroups theory [35] that the solution of (27) satisfies

∥(u, ηt)∥H ≤C

(
∥(u0, η

0)∥H +

∫ t

0

∥φ∥dt
)

≤C
(
∥(u0, η

0)∥H + ∥φ∥L1(0,T ;L2(I))

)
,

(30)

and consequently (28) holds. We also have, thanks to (30), that

∥u∥C([0,T ];L2(I)) ≤ C
(
∥(u0, η

0)∥H + ∥φ∥L1(0,T ;L2(I))

)
.

Therefore, to obtain the H2-norm of the solution, that is, (29), we use an analogous
argument as in the proof of (23), and hence we will omit it. On the other hand, a
density argument allows us to extend the results to any initial condition Φ0 ∈ H.
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(ii) First, consider y, z ∈ L2(0, T ;H2(I)). We have

∥y∂xy∥L1(0,T ;L2(I)) ≤K

∫ T

0

∥y∥H2(I)∥∂xy∥dt

≤K

∫ T

0

∥y∥2H2(I)dt

=K∥y∥2L2(0,T ;H2(I)),

(31)

where K is the positive constant of the Sobolev embedding H2 ↪→ L∞(I). Thus,

y∂xy ∈ L1(0, T ;L2(I)),

for each y ∈ L2(0, T ;H2(I)).
In turn, using triangle inequality together with Cauchy–Schwarz inequality, we

get

∥Θ(y)−Θ(z)∥L1(0,T ;L2(I)) ≤K

∫ T

0

∥y − z∥H2(I)∥y∥H2(I)dt

+K

∫ T

0

∥z∥H2(I)∥y − z∥H2(I)dt

≤K∥y − z∥L2(0,T ;H2(I))∥y∥L2(0,T ;H2(I))

+K∥z∥L2(0,T ;H2(I))∥y − z∥L2(0,T ;H2(I))

=K∥y − z∥L2(0,T ;H2(I))∥y∥L2(0,T ;H2(I))

+K∥y − z∥L2(0,T ;H2(I))∥z∥L2(0,T ;H2(I)).

Thus, the mapping Θ is continuous with respect to the corresponding topologies.

3.3. Well-posedness: The nonlinear problem. The next result ensures the
well-posedness of the system (2), which is represented by the problem (12).

Theorem 3.3. Let us consider T > 0 and a0 > 0. If (3) is verified, then there
exists a positive constant C such that, for every U0 ∈ H with

∥U0∥2 <
1

16C2
1K

2
(32)

where C1 is as in (29) and K is the positive constant of the Sobolev embedding H2 ↪→
L∞(I), the problem (12) has a unique global solution U satisfying the regularity (22)
and consequently, the problem (2) admits a unique global solution u ∈ B.

Proof. First, consider U0 = (u0, η
0) ∈ H satisfying (32). Next, define the map

Γ : B → B by Γ(z) = u, where u is a solution of (27) with source term φ(x, t) =
−z(x, t)∂xz(x, t) and initial data U0.

Claim 1: Γ is well-defined.

In fact, take α > 0 such that

∥U0∥2B ≤ α <
1

16C2
1K

2
.

Theorem 3.2 ensures that for each initial data U0, there exists a unique solution
U = (u, ηt) of (27) satisfying, thanks to (32), the estimate

∥Γ(z)∥B ≤ C1

(
α+ ∥z∂xz∥2L1(0,T ;L2(I))

)
. (33)
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Moreover, by using (31), we get

∥Γ(z)∥2B ≤C1

(
∥(u0, η

0)∥2H + ∥z∂xz∥2L1(0,T ;L2(I))

)
≤C1

(
α+K2∥z∥4L2(0,T ;H2(I))

)
≤C1

(
α+K2∥z∥4B

)
,

(34)

for all z ∈ B, showing the claim 1.

Claim 2: Γ is a contraction.

Indeed, we have

∥Γ(y)− Γ(z)∥2B ≤2K2∥y − z∥2L2(0,T ;H2(I))

(
∥y∥2L2(0,T ;H2(I)) + ∥z∥2L2(0,T ;H2(I))

)
≤2K2∥y − z∥2B

(
∥y∥2B + ∥z∥2B

)
.

Then, consider the restriction of Γ to the closed ball B =
{
z ∈ B; ∥z∥2B ≤ r

}
, with

r =

√
α

2K
. Thus, (33) and (34) yields that

∥Γ(z)∥2B ≤ C1(α+K2∥z∥4B) ≤ C1(α+K2r2) < 2C1α < r

and

∥Γ(y)− Γ(z)∥2B ≤ 4rK2∥y − z∥2B ≤ 1

2
∥y − z∥2B.

The mapping Γ is well-defined and contractive on the ball B according to the choice
(32), showing claim 2.

Therefore, using the Banach Fixed Point Theorem, we deduce that Γ has a unique
fixed element u ∈ B, which turns out to be the unique solution to our problem (2).
Lastly, the system (2) being dissipative as its energy is decreasing, the solution is
global.

4. Proof of the main result. This section is devoted to the proof of the main
result, namely, Theorem 1.2. The principal ingredient of the proof is the utilization
of the energy method.

Proof of Theorem 1.2. First, multiplying (9) by xu, integrating by parts several
times, observing that ∂x(xu) = u + x∂xu, and thanks to the boundary conditions
of (2), we have that

5a0
2

∥∂2
xu∥2 =− ∂t

(
1

2

∫ L

0

xu2dx

)
− 3

2
∥∂xu∥2 +

1

3

∫ L

0

u3dx+
a1
2
∥u∥2

− (−1)k
∫ L

0

xu

∫ ∞

0

g(s)∂2k
x ηt(x, s)dsdx.

(35)

We are now in a position to estimate the terms of the right-hand side of (35).

Estimate 1: First, the Sobolev embedding yields that∣∣∣∣∣
∫ L

0

u3dx

∣∣∣∣∣ ≤ ∥u∥2L∞(I)

∫ L

0

|u|dx ≤ MS∥u∥2H1(I)

∫ L

0

|u|dx.
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Thus, the previous inequality together with Hölder’s and Poincaré’s inequalities
give us ∣∣∣∣∣

∫ L

0

u3dx

∣∣∣∣∣ ≤MS∥u∥2H1(I)

(∫ L

0

12dx

) 1
2
(∫ L

0

|u|2dx

) 1
2

≤MSL
1
2

(
∥u∥2 + ∥∂xu∥2

)
∥u∥

≤MSL
1
2 (MP + 1) ∥∂xu∥2(2E(t))

1
2

≤MSL
1
2 (MP + 1) (2E(0))

1
2 ∥∂xu∥2.

Estimate 2: We claim that for each ϵ > 0, there exists a constant Cϵ > 0 such
that∣∣∣∣∣−(−1)k

∫ L

0

xu

∫ ∞

0

g(s)∂2k
x ηt(x, s)dsdx

∣∣∣∣∣ ≤ ϵ∥∂2
xu∥2 + Cϵ

∫ ∞

0

g(s)∥∂k
xη

t∥2ds.

We split this estimates in two parts, namely, k = 0 and k ∈ {1, 2}.
Indeed, for the case k = 0, using the Young’s and Poincaré’s inequalities we have∣∣∣∣∣

∫ L

0

xu

∫ ∞

0

g(s)ηtdsdx

∣∣∣∣∣ ≤
∫ ∞

0

g(s)

∫ L

0

|xu|
∣∣ηt∣∣ dxds

≤L

∫ ∞

0

g(s)

∫ L

0

(
δ |u|2 + 1

4δ

∣∣ηt∣∣2) dxds

≤Lδ

∫ ∞

0

g(s)ds︸ ︷︷ ︸
=g0

∥u∥2 + L
1

4δ

∫ ∞

0

g(s)∥ηt∥2ds

≤LM2
P g0δ︸ ︷︷ ︸
ϵ

∥∂2
xu∥2 + L

1

4δ︸︷︷︸
Cϵ

∫ ∞

0

g(s)∥ηt∥2ds

≤ϵ∥∂2
xu∥2 + Cϵ

∫ ∞

0

g(s)∥ηt∥2ds,

where δ =
ϵ

Lc2pg0
> 0, showing the estimate 2.

Now, we turn to the case k = 1. Applying once again Young’s and Poincaré’s
inequalities gives the following∣∣∣∣∣−

∫ ∞

0

g(s)

∫ L

0

u∂xη
t(x, s)dxds

∣∣∣∣∣ ≤
∫ ∞

0

∫ L

0

∣∣g(s)u∂xηt(x, s)∣∣ dxds
≤δ

∫ ∞

0

g(s)∥u∥2ds

+
1

4δ

∫ ∞

0

g(s)∥∂xηt∥2ds

≤δ

∫ ∞

0

g(s)∥u∥2ds

+
1

4δ
∥ηt∥2Lg

≤δg0M
2
P ∥∂2

xu∥2 +
1

4δ
∥ηt∥2Lg

.

(36)
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Similarly, we also have the following estimate∣∣∣∣∣−
∫ ∞

0

g(s)

∫ L

0

x∂xu∂xη
t(x, s)dxds

∣∣∣∣∣ ≤δ

∫ ∞

0

g(s)∥x∂xu∥2ds

+
1

4δ

∫ ∞

0

g(s)∥∂xηt∥2ds

≤δL2

∫ ∞

0

g(s)∥∂xu∥2ds

+
1

4δ
∥ηt∥2Lg

=δg0L
2∥∂xu∥2 +

1

4δ
∥ηt∥2Lg

≤δg0MPL
2∥∂2

xu∥2 +
1

4δ
∥ηt∥2Lg

.

(37)

Observe that∣∣∣∣∣(−1)k
∫ L

0

xu

∫ ∞

0

g(s)∂2
xη

tdsdx

∣∣∣∣∣ ≤
∣∣∣∣∣−
∫ ∞

0

g(s)

∫ L

0

u∂xη
t(x, s)dxds

∣∣∣∣∣
+

∣∣∣∣∣−
∫ ∞

0

g(s)

∫ L

0

x∂xu∂xη
t(x, s)dxds

∣∣∣∣∣ .
Thus, thanks to the inequalities (36) and (37) applied on the right-hand side of the
previous inequality we have∣∣∣∣∣(−1)k

∫ L

0

xu

∫ ∞

0

g(s)∂2
xη

tdsdx

∣∣∣∣∣ ≤δg0M
2
P ∥∂2

xu∥2 +
1

4δ
∥ηt∥2Lg

+ δg0MPL
2∥∂2

xu∥2 +
1

4δ
∥ηt∥2Lg

= δg0(MP +M2
P )︸ ︷︷ ︸

ϵ

∥∂2
xu∥2 +

1

2δ︸︷︷︸
Cϵ

∥ηt∥2Lg
,

where δ =
ϵ

g0(MP +M2
P )

> 0, showing the estimate 2.

Now, we turn to the case k = 2. Thanks to Young’s and Poincaré’s inequalities,
we have ∣∣∣∣∣2

∫ ∞

0

g(s)

∫ L

0

∂xu∂
2
xη

t(x, s)dxds

∣∣∣∣∣ ≤δg0MP ∥∂2
xu∥2 +

1

δ
∥ηt∥2Lg

. (38)

Using the same arguments as for the case k = 1, we have∣∣∣∣∣−
∫ ∞

0

g(s)

∫ L

0

x∂2
xu∂

2
xη

t(x, s)dxds

∣∣∣∣∣ ≤δg0L
2∥∂2

xu∥2 +
1

δ
∥ηt∥2Lg

. (39)

Moreover, since∣∣∣∣∣−(−1)k
∫ L

0

xu

∫ ∞

0

g(s)∂4
xη

tdsdx

∣∣∣∣∣ ≤
∣∣∣∣∣2
∫ ∞

0

g(s)

∫ L

0

∂xu∂
2
xη

t(x, s)dxds

∣∣∣∣∣
+

∣∣∣∣∣
∫ ∞

0

g(s)

∫ L

0

x∂2
xu∂

2
xη

t(x, s)dxds

∣∣∣∣∣ ,
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and thanks to (38) and (39), we reach∣∣∣∣∣−(−1)k
∫ L

0

xu

∫ ∞

0

g(s)∂4
xη

tdsdx

∣∣∣∣∣ ≤δg0MP ∥∂2
xu∥2 + δg0L

2∥∂2
xu∥2 +

2

δ
∥ηt∥2Lg

= δg0(MP + L2)︸ ︷︷ ︸
ϵ

∥∂2
xu∥2 +

2

δ︸︷︷︸
Cϵ

∥ηt∥2Lg
,

where δ =
ϵ

g0(MP + L2)
> 0, showing the estimate 2.

Estimate 3: There are two constants C1 > 0 and C2 > 0 such that

∥∂2
xu∥2 ≤ −C1∂t

(∫ L

0

xu2dx

)
+ C2

∫ ∞

0

g(s)∥∂k
xη

t∥2ds. (40)

Indeed, Estimates 1 and 2 together with the Poincaré inequality yield

5a0
2

∥∂2
xu∥2 ≤ −∂t

(
1

2

∫ L

0

xu2dx

)
+

1

3

∣∣∣∣∣
∫ L

0

u3dx

∣∣∣∣∣
+
a1
2
∥u∥2 +

∣∣∣∣∣−(−1)k
∫ L

0

xu

∫ ∞

0

g(s)∂2k
x ηt(x, s)dsdx

∣∣∣∣∣
≤ −∂t

(
1

2

∫ L

0

xu2dx

)
+

1

3
MSL

1
2 (MP + 1)(E(0))

1
2 ∥∂xu∥2

+
a1
2
∥u∥2 + ϵ∥∂2

xu∥2 + Cϵ

∫ ∞

0

g(s)∥∂k
xη

t∥2ds

≤ −∂t

(
1

2

∫ L

0

xu2dx

)
+

1

3
MSL

1
2MP (MP + 1)(E(0))

1
2 ∥∂2

xu∥2

+
|a1|M2

P

2
∥∂2

xu∥2 + ϵ∥∂2
xu∥2 + Cϵ

∫ ∞

0

g(s)∥∂k
xη

t∥2ds

which ensures(
5a0 −

2

3
MSL

1
2MP (MP + 1)(E(0))

1
2 − |a1|M2

P − 2ϵ

)
︸ ︷︷ ︸

:=D

∥∂2
xu∥2

≤ −∂t

(∫ L

0

xu2dx

)
+ 2Cϵ

∫ ∞

0

g(s)∥∂k
xη

t∥2ds.

Thus, taking ϵ > 0 small enough, it follows from (11) that D > 0 and hence (40)

holds true for C1 =
1

D
> 0 and C2 =

2Cϵ

D
> 0, showing the estimate 3.

To conclude the proof, consider the following function

F (t) = µE(t) + C1ξ(t)

(∫ L

0

xu2dx

)
,
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where µ = 2

(
C2 +

1

M2
P

)
. As ξ′ ≤ 0, we have

0 ≤ ξ(t)

(∫ L

0

xu2dx

)
≤ ξ(0)

(∫ L

0

xu2dx

)
≤ ξ(0)L∥u∥2 ≤ 2Lξ(0)2E(t).

Consequently, owing to the previous inequality, we get

µE(t) ≤F (t) ≤ µE(t) + C1ξ(t)

(∫ L

0

xu2dx

)
≤µE(t) + 2LC1ξ(0)E(t) = (µ+ 2LC1ξ(0))E(t).

(41)

Observe that ξ′ ≤ 0 ensures that

F ′(t) =µE′(t) + C1ξ
′(t)

(∫ L

0

xu2dx

)
+ C1ξ(t)∂t

(∫ L

0

xu2dx

)

≤µE′(t) + C1ξ(t)∂t

(∫ L

0

xu2dx

)
.

(42)

Now, putting (40) into (42) and using the Poincaré’s inequality, we get

F ′(t) ≤µE′(t) + ξ(t)

(
C2

∫ ∞

0

g(s)∥∂k
xη

t∥2ds− ∥∂2
xu∥2

)
≤µE′(t) + ξ(t)

(
C2

∫ ∞

0

g(s)∥∂k
xη

t∥2ds− 1

M2
P

∥u∥2
)

=µE′(t) + ξ(t)

(
C2 +

1

M2
P

)∫ ∞

0

g(s)∥∂k
xη

t∥2ds− 2

M2
P

ξ(t)E(t)

≤µE′(t) + ξ(t)

(
C2 +

1

M2
P

)∫ ∞

0

g(s)∥∂k
xη

t∥2ds− λ0ξ(t)F (t),

(43)

where in the last inequality we have used (41). Here,

λ0 =
2

M2
P [µ+ 2LC1ξ(0)]

.

Now on, we shall distinguish two cases.

Case 1: ξ is a constant function.

In this case, taking into account (10) and (13), we have

ξ

∫ ∞

0

g(s)∥∂k
xη

t∥2ds ≤ −
∫ ∞

0

g′(s)∥∂k
xη

t∥2ds ≤ −2E′(t)

that substituting in (43) gives us

F ′(t) ≤ µE′(t)− 2

(
C2 +

1

M2
P

)
E′(t)− λ0ξF (t) = −λ0ξF (t)

implying F (t) = e−ctF (0), with c = λ0ξ. Finally, (41) yields

E(t) ≤ 1

µ
F (t) =

F (0)

µ
e−ct ≤ 2ξ(0)E(0)

µ
e−ct,

which ensures item (i) of the Theorem 1.2.

Case 2: ξ is not a constant function.
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First, observe that integrating (40) over [0, t] and using the definition of E(t),
since E is decreasing, we get∫ t

0

∥∂2
xu∥2ds ≤− C1

∫ t

0

∂τ

(∫ L

0

xu2dx

)
dτ + C2

∫ t

0

∫ ∞

0

g(s)∥∂k
xη

t∥2dsdτ

≤C1

(∫ L

0

xu2
0dx

)
+ C2

∫ t

0

∫ ∞

0

g(s)∥∂k
xη

t∥2dsdτ

≤C1

(∫ L

0

xu2
0dx

)
+ C2

∫ t

0

2E(τ)dτ

≤C1

(∫ L

0

xu2
0dx

)
+ C2

∫ t

0

2E(0)dτ := C3(1 + t),

(44)

where C3 = max

{
C1

(∫ L

0

xu2
0dx

)
, 2C2E(0)

}
. Now, Young’s and Hölder’s in-

equalities together with (44) , ensures that∥∥∥∥∫ t

t−s

∂k
xu(·, τ)dτ

∥∥∥∥2 ≤2

∥∥∥∥∫ 0

t−s

∂k
xu(·, τ)dτ

∥∥∥∥2 + 2

∥∥∥∥∫ t

0

∂k
xu(·, τ)dτ

∥∥∥∥2
≤2

∥∥∥∥∫ t−s

0

∂k
xu0(·, τ)dτ

∥∥∥∥2 + 2t

∫ L

0

∫ t

0

(∂k
xu)

2(·, τ)dτdx

≤2

∥∥∥∥∫ t−s

0

∂k
xu0(·, τ)dτ

∥∥∥∥2 + 2t

∫ t

0

∥∂k
xu∥2dτ := c1h(t, s),

for 0 ≤ t ≤ s. Here c1 = 2max{1,M2−k
P C3} and

h(t, s) = t2 + t+

∥∥∥∥∫ t−s

0

∂k
xu0(·, τ)dτ

∥∥∥∥2 .
On the other hand, thanks to (13)

ξ(t)

∫ ∞

0

g(s)∥∂k
xη

t∥2ds =ξ(t)

∫ t

0

g(s)∥∂k
xη

t∥2ds+ ξ(t)

∫ ∞

t

g(s)∥∂k
xη

t∥2ds

≤−
∫ t

0

g′(s)∥∂k
xη

t∥2ds+ ξ(t)

∫ ∞

t

g(s)∥∂k
xη

t∥2ds

≤−
∫ t

0

g′(s)∥∂k
xη

t∥2ds+ c1ξ(t)

∫ ∞

t

g(s)h(t, s)ds

≤−
∫ ∞

0

g′(s)∥∂k
xη

t∥2ds+ c1ξ(t)

∫ ∞

t

g(s)h(t, s)ds

≤− 2E′(t) + c1ξ(t)

∫ ∞

t

g(s)h(t, s)ds.

Recall that

F (t) = µE(t) + C1ξ(t)

(∫ L

0

xu2dx

)
.
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Analogously to the previous case, we have

F ′(t) ≤− λ0ξ(t)F (t) + µE′(t) + ξ(t)
µ

2

∫ ∞

0

g(s)∥∂k
xη

t∥2ds

≤− λ0ξ(t)F (t) + µE′(t)− µE′(t) + c1
µ

2
ξ(t)

∫ ∞

t

g(s)h(t, s)ds.

(45)

Setting c := λ0, (45) ensures that

F ′(t) + cξ(t)F (t) ≤µE′(t)− µE′(t) +
c1µ

2
ξ(t)

∫ ∞

t

g(s)h(t, s)ds

=
c1µ

2
ξ(t)

∫ ∞

t

g(s)h(t, s)ds,

or equivalently,(
ec

∫ t
0
ξ(τ)dτF (t)

)′
≤ c1µ

2
ec

∫ t
0
ξ(τ)dτξ(t)

∫ ∞

t

g(s)h(t, s)ds.

Finally, the previous inequality and E(t) ≤ 1

µ
F (t), gives us

E(t) ≤ c̃e−c
∫ t
0
ξ(τ)dτ

(
1 +

∫ t

0

ec
∫ σ
0

ξ(τ)dτξ(σ)

∫ ∞

σ

g(s)h(σ, s)dsdσ

)
,

where c̃ =
max

{
F (0),

c1µ

2

}
µ

. Thereby, the proof of the second part (ii) of Theorem

1.2 is complete.

5. Conclusion. In this paper, we considered the well-known Kawahara equation
under the presence of only an internal infinite memory term. Then, it is shown that
the energy of the system decays under some assumptions of the memory kernel.
Moreover, an estimate of the energy decay is provided depending on the property
of the kernel. The main ingredient of the proof is the utilization of the Fixed Point
Theorem and the energy method. Based on this outcome, one can conclude that the
distributed memory term creates enough dissipation for the energy of the system so
that the exponential stability holds. On the other hand, we believe that our results
remain valid if the memory term occurs in a boundary condition. Of course, this
could be the subject of future work to ascertain the claim.
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