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Abstract. In this work, we are interested in a detailed qualitative analysis of the Kawahara
equation, a model that has numerous physical motivations such as magneto-acoustic waves in
a cold plasma and gravity waves on the surface of a heavy liquid. First, we design a feedback
control law, which combines a damping component and another one of finite memory-type.
Then, we are capable of proving that the problem is well-posed under a condition involving
the feedback gains of the boundary control and the memory kernel. Afterwards, it is shown
that the energy associated with this system exponentially decays.

1. Introduction

1.1. Background and literature review. Water wave models have been studies by many
scientists from numerous disciplines such as hydraulic engineering, fluid mechanics engineering,
physics as well as mathematics. These models are in general hard to derive, and complex
to obtain qualitative information on the dynamics of the waves. This makes their studies
interesting and challenging. Recently, appropriate assumptions on the amplitude, wavelength,
wave steepness, and so on, are invoked to investigate the asymptotic models for water waves
and understand the full water wave system (see, for instance, [1, 6, 24] and references therein
for a rigorous justification of various asymptotic models for surface and internal waves).

As a matter of fact, it has been noticed that the water waves can be considered as a
free boundary problem of the incompressible, irrotational Euler equation in an appropriate
non-dimensional form. This means that there are two non-dimensional parameters δ :“ h

λ
and ε :“ a

h
, where the water depth, the wavelength, and the amplitude of the free surface

are respectively denoted by h, λ and a. On the other hand, the parameter µ, known as the
Bond number, measures the importance of gravitational forces compared to surface tension
forces. We also note that the long waves (also called shallow water waves) are mathematically
characterised by the condition δ ! 1. Obviously, there are several long-wave approximations
depending on the relation between ε and δ.

The above discussion led to, instead of studying models that do not give good asymp-
totic properties, we can rescale the parameters mentioned above to find systems that reveal
asymptotic models for surface and internal waves, like the Kawahara model. Precisely, letting
ε “ δ4 ! 1, µ “ 1

3
`νε

1
2 , and the critical Bond number µ “ 1

3
, the so-called equation Kawahara

equation is put forward. Such an equation was derived by Hasimoto and Kawahara [17, 22]
and takes the form

˘2Wt ` 3WWx ´ νWxxx `
1

45
Wxxxxx “ 0,

Date: June 10, 2023.
2020 Mathematics Subject Classification. Primary: 37L50, 93D15, 93D30. Secondary: 93C20.
Key words and phrases. Kawahara equation; boundary memory term; behavior of solutions; energy decay.
*Corresponding author: roberto.capistranofilho@ufpe.br.
Capistrano–Filho was supported by CNPq grants numbers 307808/2021-1, 401003/2022-1, and

200386/2022-0, CAPES grants numbers 88881.311964/2018-01 and 88881.520205/2020-01, and MATHAM-
SUD 21-MATH-03.



2 CAPISTRANO-FILHO, CHENTOUF, AND DE JESUS

or, after re-scaling,

(1.1) Wt ` αWx ` βWxxx ´ Wxxxxx ` WWx “ 0.

The latter is also seen as the fifth-order KdV equation [7], or singularly perturbed KdV equa-
tion [28]. It describes a dispersive partial differential equation with numerous wave physical
phenomena such as magneto-acoustic waves in a cold plasma [23], the propagation of long
waves in a shallow liquid beneath an ice sheet [19], gravity waves on the surface of a heavy
liquid [15], etc.

Note that valuable efforts in the last decays were made to understand this model in
various research frameworks. For example, numerous works focused on the analytical and
numerical methods for solving (1.1). These methods include the tanh-function method [4],
extended tanh-function method [5], sine-cosine method [33], Jacobi elliptic functions method
[18], direct algebraic method and numerical simulations [27], decompositions methods [21], as
well as the variational iterations and homotopy perturbations methods [20]. Another direction
is the study of the Kawahara equation from the point of view of control theory and specifically,
the controllability and stabilization problem [3], which is our motivation.

Whereupon, we are interested in a detailed qualitative analysis for the system (1.1) in a
bounded region. More precisely, our primary concern is to analyze the qualitative properties
of solutions to the initial-boundary value problem associated with the model (1.1) posed on a
bounded interval under the presence of damping and memory-type controls.

Now, we will present some previous results that dealt with the asymptotic behavior of
solutions for the Kawahara model (1.1) in a bounded domain. One of the first outcomes is
due to Silva and Vasconcellos [30, 31], where the authors studied the stabilization of global
solutions of the linear Kawahara equation, under the effect of a localized damping mecha-
nism. The second endeavor is completed by Capistrano-Filho et al. [3], where the generalized
Kawahara equation in a bounded domain is considered, that is, a more general nonlinearity
W pBxW with p P r1, 4q is taken into account. It is proved that the solutions of the Kawahara
system decay exponentially when an internal damping mechanism is applied.

Recently, a new tool for the control properties of the Kawahara operator was proposed
in [11]. In this work, the authors treated the so-called overdetermination control problem for
the Kawahara equation. Precisely, a boundary control is designed so that the solution to the
problem under consideration satisfies an integral condition. Furthermore, when the control
acts internally in the system, instead of the boundary, the authors proved that this integral
condition is also satisfied.

We conclude the literature review with three recent works. In [10, 14] the stabilization
of the Kawahara equation with a localized time-delayed interior control is considered. Under
suitable assumptions on the time delay coefficients, the authors proved that the solutions of
the Kawahara system are exponentially stable. This result is established by means of either
the Lyapunov method or a compactness-uniqueness argument. More recently, the Kawahara
equation in a bounded interval and with a delay term in one of the boundary conditions was
studied in [8]. The authors used two different approaches to prove that the solutions of (1.1)
are exponentially stable under a condition on the length of the spatial domain. We point out
that this is a small sample of papers that were concerned with the stabilization problem of
the Kawahara equation in a bounded interval. Of course, we suggest that the reader, who
is interested in more details on the topic, consult the papers cited above and the references
therein.

Let us now present the framework of this article.
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1.2. Problem setting and main results. Consider the system (1.1) in a bounded domain
Ω “ p0, ℓq, where ℓ ą 0 is the spatial length, under the action of the following feedback:

(1.2)
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’

’

’
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%

Btωpt, xq`αBxωpt, xq ` βB
3
xωpt, xq ´ B

5
xωpt, xq

` ωp
pt, xqBxωpt, xq “ 0,

x P Ω, t ą 0,

ωpt, 0q “ ωpt, ℓq “ 0, t ą 0,

Bxωpt, 0q “ Bxωpt, ℓq “ 0, t ą 0,

B2
xωpt, ℓq “ Fptq, t ą 0,

B2
xωpt, 0q “ z0ptq, t P I,

ωp0, xq “ ω0pxq, x P Ω,

with ω0, z0 are initial data and the feedback law is a linear combination of the damping and
finite memory terms given by

(1.3) Fptq :“ ν1B
2
xωpt, 0q ` ν2

ż t´τ1

t´τ2

σpt ´ sqB
2
xωps, 0q ds.

Here, α ą 0 and β ą 0 are physical parameters, p P t1, 2u, whereas ν1 and ν2 are nonzero
real numbers. In turn, 0 ă τ1 ă τ2 correspond to the finite memory interval pt ´ τ1, t ´ τ2q.
Moreover, I “ p´τ2, 0q, and the memory kernel is denoted by σpsq. Of course, the presence of
a memory term is usually ubiquitous in practice. Particularly, memory is of great importance
in systems control as they are governed by equations, where the past values of one or more
variables involved in the system play a crucial role. On the other hand, the impact of a memory
term in some systems can be deleterious as it can affect their performance [12, 13, 26]. Last
but not least, we indicate that the memory term, that arises in the boundary control (1.3),
could reflect the case of a compressible (or incompressible) viscoelastic fluid. The latter is
regarded as the simplest material with memory [2, 16].

On the other hand, let us note that the energy associated with the full system (1.2) is
given by

(1.4) Eptq “

ż

Ω

ω2
pt, xqdx ` |ν2|

ż

M

sσpsq

ˆ
ż

Ω0

pB
2
xωq

2
pt ´ sϕ, 0q dϕ

˙

ds, t ě 0.

Naturally, as we are interested in the behavior of the system (1.2), we need to check whether
the feedback law, given by (1.3), represents a damping mechanism. In other words, we would
like to see if, in the presence of the boundary memory-type feedback law, the energy of the
system (1.4) tends to zero state with some specific decay rate, when t goes to 0. This situation
can be presented in the following question:

Question: Does Eptq ÝÑ 0, as t Ñ 8? If it is the case, is it possible to come up with a decay
rate?

To answer the previous question for the system (1.2), we will assume, from now on, that
the memory kernel σ obeys the following conditions:

Assumptions 1. The function σ P ℓ8pMq, where M :“ pτ1, τ2q. In turn, we assume that

σpsq ą 0, a.e. in M.

Moreover, the feedback gains ν1 and ν2 together with the memory kernel satisfy

(1.5) |ν1| ` |ν2|

ż

M

σpsq ds ă 1.

Some notations, that we will use throughout this manuscript, are presented below:
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(i) We denote by p¨, ¨qR2 the canonical inner product of R2, whereas x¨, ¨y denotes the
canonical inner product of ℓ2pΩq whose induced norm is } ¨ }.

(ii) For T ą 0, consider the space of solutions

YT “ Cp0, T ;L2
pΩqq X L2

p0, T ;H2
0 pΩqq

equipped with the norm

}v}
2
YT

“

ˆ

max
tPp0,T q

}vpt, ¨q}

˙2

`

ż T

0

}vpt, ¨q}
2
H2

0 pΩq
dt.

(iii) Let Ω0 “ p0, 1q and Q :“ Ω0 ˆ M. Then, we consider the spaces

H :“ L2
pΩq ˆ L2

pQq, H :“ L2
pΩq ˆ L2

pI ˆ Mq,

respectively equipped with the following inner product:
$

’

’

&

’

’

%

xpω, zq, pv, yqyH “ xω, vy ` |ν2|

ż

M

ż

Ω0

sσpsqzpϕ, sqypϕ, sq dϕds,

xpω, zq, pv, yqyH “ xω, vy ` |ν2|

ż

I

ż

M

σpsqzpr, sqypr, sq dsdr.

Subsequently, we can state our first main result:

Theorem 1.1. Under the assumptions 1 and assuming that the length ℓ fulfills the smallness
condition

(1.6) 0 ă ℓ ă π

c

3β

α
,

there exists r ą 0 sufficiently small, such that for every pω0, z0q P H with }pω0, z0q}H ă r, the
energy of the system (1.2), given by (1.4), is exponentially stable. In other words, there exist
two positive constants κ and µ such that

(1.7) Eptq ď κEp0qe´2µt, t ą 0,

where Eptq is defined by (1.4).

The proof of this result uses an appropriate Lyapunov function, which requires the con-
dition (1.6). In turn, such a requirement can be relaxed by using a compactness-uniqueness
argument [29] (see [3, 8, 9, 30, 31]). The proof is based on the following outcome [8]:

Lemma 1.2. Let ℓ ą 0 and consider the assertion: There exist ζ P C and ω P H2
0 pΩqXH5pΩq

such that
#

ζωpxq ` ω1pxq ` ω3pxq ´ ω41pxq “ 0, x P Ω,

ωpxq “ ω1pxq “ ω2pxq “ 0, x P t0, ℓu.

If pζ, ωq P C ˆ H2
0 pΩq X H5pΩq is solution of (1.2), then ω “ 0.

We have:

Theorem 1.3. Suppose that assumptions 1 hold. Moreover, we choose ℓ ą 0 so that the
problem in Lemma 1.2 has only the trivial solution. Then, there exists ϱ ą 0 such that for
every pω0, z0q P H satisfying }pω0, z0q}H ď ϱ, the energy (1.4) of the problem (1.2) decays
exponentially.
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1.3. Further comments and paper’s outline. As mentioned above, the exponential sta-
bility result of the system (1.2) will be established using two different methods. The first one
evokes a Lyapunov function and requires an explicit smallness condition on the length of the
spatial domain ℓ. The second one is obtained via a classical compactness-uniqueness argu-
ment, where critical lengths phenomena appear with a relation with the Möbius transforms
(see for instance [8]). This permits us to answer the question raised in the introduction.

Remarks. Let us point out some important comments:

‚ Considering ν2 “ 0 and α “ 0, the authors in [9] showed the stabilization property for
(1.2) using the compactness-uniqueness argument. Since they removed the drift term
αBxω, the critical lengths phenomena did not appear.

‚ The main concern of this work is to deal with the feedback law of memory type as in
(1.3). In fact, one needs to control this term to ensure well-posedness and stabilization
results.

‚ Our results are valid for the general nonlinearities upBxu, p P t1, 2u, and also can
be extended for linearity like c1uBxu ` c2u

2Bxu. To draw more attention to the first
general nonlinearity, the decay rate in (1.7) depends on the values of p since we have
(see Section 3)

µ ă min

"

µ2|ν2|e
´δτ2δ

2p1 ` µ1|ν2|q
,

µ1

2ℓ2p1 ` ℓµ1qpp ` 2q

”

pp ` 2qp3π2β ´ αℓ2q ´ 2π2ℓ2´
p
2 rp

ı

*

.

We end our introduction with the paper’s outline: The work consists of three parts
including the Introduction. Section 2 discusses the existence of solutions for the full system
(1.2). Section 3 is devoted to proving the stabilization results, that is, Theorem 1.1 and
Theorem 1.3.

2. Well-posedness theory

In this section, we are interested in analyzing the well-posedness property of the system
(1.2). The first and the second subsections are devoted to proving the existence of solutions for
the linearized (homogenous and non-homogeneous) system associated with (1.2), respectively.
The third subsection concerns the well-posedness of the full system (1.2).

2.1. Linear problem. As in the literature (see for instance the references [32] and [25]), the
homogenous linear system associated with (1.2) can be viewed as follows:

(2.1)

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

Btωpt, xq ` αBxωpt, xq ` βB3
xωpt, xq ´ B5

xωpt, xq “ 0, pt, xq P R` ˆ Ω,
sBtzpt, ϕ, sq ` Bϕzpt, ϕ, sq “ 0, pt, ϕ, sq P R` ˆ Ω0 ˆ M,
ωpt, 0q “ ωpt, ℓq “ Bxωpt, 0q “ Bxωpt, ℓq “ 0, t ą 0,

B2
xωpt, ℓq “ ν1B

2
xωpt, 0q ` ν2

ż

M

σpsqzpt, 1, sq ds, t ą 0,

ωp0, xq “ ω0pxq, x P Ω,
zp0, ϕ, rq “ z0p´ϕrq, pϕ, rq P Ω0 ˆ p0, τ2q,

where zpt, ϕ, sq “ B2
xωpt ´ ϕs, 0q satisfies a transport equation (see (2.1)2). Letting Λptq “

„

ωpt, ¨q

zpt, ¨, ¨q

ȷ

,Λ0 “

„

ω0

z0p´ϕ¨q

ȷ

, one can rewrite this system abstractly:

(2.2)

#

Λtptq “ AΛptq, t ą 0,

Λp0q “ Λ0 P H,
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where

A “

«

´αBx ´ βB3
x ` B5

x 0

0 ´
1

s
Bϕ

ff

,

whose domain is given by

DpAq :“

$

’

’

&

’

’

%

pω, zq P H,

pω, zq P H5
pΩq X H2

0 pΩq,

z P L2
´

M;H1
pΩ0q

¯

;

∣∣∣∣∣∣
B
2
xωp0q “ zp0, ¨q,

B
2
xωpℓq “ ν1B

2
xωp0q ` ν2

ż

M

σpsqzp1, sq ds

,

/

/

.

/

/

-

.

The following result ensures the well-posedness of the linear homogeneous system.

Proposition 2.1. Under the assumption (1), we have:

i. The operator A is densely defined in H and generates a C0-semigroup of contractions
etA. Thereby, for each Λ0 P H, there exists a unique mild solution Λ P Cpr0,`8q, Hq

for the linear system associated with (1.2). Moreover, if Λ0 P DpAq, then we have a
unique classical solution with the regularity

Λ P Cpr0,`8q, DpAqq X C1
pr0,`8q, Hq.

ii. Given Λ0 “ pω0, z0p¨qq P H, the following estimates hold:

(2.3) }B
2
xωp0, ¨q}

2
L2p0,T q `

ż T

0

ż

M

sσpsqz2pt, 1, sq dsdt ď C}pω0, z0p¨qq}
2
H ,

(2.4) }B
2
xωp¨q}

2
L2p0,T ;L2pΩqq ď C}pω0, z0p¨qq}

2
H ,

(2.5) }z0p¨q}
2
L2pQq ď }zpT, ¨, ¨q}

2
L2pQq `

ż T

0

ż

M

σpsqz2pt, 1, sq dsdt,

and

(2.6) T }ω0p¨q}
2

ď }ω}
2
L2p0,T ;L2pΩqq ` T }B

2
xωp0q}

2
L2p0,T q.

iii. The map

G : Λ0 “ pω0, z0p¨qq P H ÞÑ Λp¨q “ e¨AΛ0 P YT ˆ C
`

r0, T s; L2
pQq

˘

is continuous.

Proof. Proof of item i. This part can be proved by using the semigroup theory. In fact, note
first that for given Λ “ pω, zq P DpAq, it follows from the Cauchy-Schwarz inequality that

(2.7)

ż

M

σpsqzp1, sqds ď

ˆ
ż

M

σpsqds

˙
1
2

ˆ
ż

M

σpsqpzp1, sqq
2ds

˙
1
2

.
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Thus, using integration by parts and (2.7) yields that

xAΛ,Λy “
1

2

«

ˆ

ν1B
2
xωp0q ` ν2

ż

M

σpsqzp1, sq ds

˙2

´
`

B
2
xωp0q

˘2

´|ν2|

ż

M

σpsq pzp1, sqq
2 ds ` |ν2|

`

B
2
xωp0q

˘2
ż

M

σpsq ds

ȷ

ď
1

2

„

`

B
2
xωp0q

˘2

ˆ

ν2
1 ´ 1 ` |ν2|

ż

M

σpsq ds

˙

`2ν1ν2
`

B
2
xωp0q

˘

ˆ
ż

M

σpsqzp1, sq ds

˙

`

˜

ν2
2 ´

|ν2|

}
a

σpsq}2

¸

ˆ
ż

M

σpsqzp1, sq ds

˙2
ff

“
1

2
xGX,XyR2 ,

(2.8)

where

X “

¨

˝

B2
xωp0q

ż

M

σpsqzp1, sq ds

˛

‚

and

G “

¨

˚

˚

˝

ν2
1 ´ 1 ` |ν2|

ż

M

σpsq ds ν1ν2

ν1ν2 ν2
2 ´

|ν2|

}
a

σpsq}2

˛

‹

‹

‚

.

Due to (1.5), we have

detG “ |ν2|

ˆ
ż

M

σpsq ds

˙´1
#

„

1 ´ |ν2|

ˆ
ż

M

σpsq ds

˙ȷ2

´ ν2
1

+

ą 0

and

trG ď |ν1|p|ν1| ´ 1q ´ |ν1||ν2|

ˆ
ż

M

σpsq ds

˙´1

ă 0,

since |ν1| ă 1. Moreover, is not difficult to see that G is a negative definite matrix. Putting
these previous information together in (2.8) we have that A is dissipative. Analogously,
considering the adjoint operator of A as follows

A˚
pv, yq “

ˆ

αBxv ` βB
3
xv ´ B

5
xv,

1

s
Bϕy

˙

with domain

DpA˚
q :“

$

’

’

&

’

’

%

pv, yq P H,

pω, zq P H5
pΩq X H2

0 pΩq,

y P L2
´

M;H1
pΩ0q

¯

;

∣∣∣∣∣∣∣∣
B
2
xvpℓq “

|ν2|

ν2
yp1, sq,

B
2
xvp0q “ ν1B

2
xvpℓq ` |ν2|

ż

M

σpsqyp0, sq ds

,

/

/

.

/

/

-

,

we have that for pv, yq P DpA˚q,

xA˚
pv, yq, pv, yqy `

”

|ν2|
2

´ |ν2|}
?
σ}

2
L2pMq

ı

ˆ
ż

M

σpsqyp0, sqds

˙2

“
1

2
xG˚Z,Zy,

(2.9)
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where

Z “

¨

˝

B2
xvpℓq

ż

M

σpsqyp0, sqds

˛

‚

and

G˚ “

¨

˚

˚

˝

ν2
1 ´ 1 ` |ν2|

ż

M

σpsq ds ν1|ν2|

ν1|ν2| ν2
2 ´

|ν2|

}
a

σpsq}2

˛

‹

‹

‚

.

Again, thanks to the relation (1.5), we have detG˚ “ detG ą 0 and trG˚ “ trG ă 0, since
|ν1| ă 1. Thus, using the fact that G˚ is negative definite in (2.9), we have that A˚ is also
dissipative, showing the item i.

Proof of item ii. First, remember that etA is a contractive semigroup and therefore, for each
Λ0 “ pω0, z0q P H, the following estimate is valid

(2.10) }pωptq, zpt, ¨, ¨qq}
2
H “ }ωptq}

2
` }zpt, ¨, ¨q}

2
L2pQq ď }ω0}

2
` }z0p´¨q}

2
L2pQq, @t P r0, T s.

Moreover, the following inequality holds

(2.11)

ż T

0

ż

M

sσpsq rzpt, 1, sqs
2 dsdt ď

τ2
|ν2|

ż

Ω0

ż

M

|ν2|sσpsq
“

z20p´ϕsq
‰

dsdϕ

`
τ2

τ1|ν2|

ż T

0

ż

Ω0

ż

M

|ν2|sσpsqz2 dsdϕdt.

Indeed, multiplying the second equation of (2.1) by ϕσpsqz, rearranging the terms, integrating
by parts and taking into account that s P M “ pτ1, τ2q, we have

ż T

0

ż

M

sσpsq pzpt, 1, sqq
2 dsdt ď

τ2
|ν2|

ż T

0

ż

Ω0

ż

M

|ν2|σpsq pzpt, ϕ, sqq
2 dsdϕdt

`
τ2

|ν2|

ż

Ω0

ż

M

ϕ|ν2|σpsqs pzp0, ϕ, sqq
2 dsdϕ

´
τ2

|ν2|

ż

Ω0

ż

M

|ν2|ϕσpsqs pzpT, ϕ, sqq
2 dsdϕ

ď
τ2

τ1|ν2|

ż T

0

ż

Ω0

ż

M

s|ν2|σpsq pzpt, ϕ, sqq
2 dsdϕdt

`
τ2

|ν2|

ż

Ω0

ż

M

ϕ|ν2|σpsqs pz0p´ϕsqq
2 dsdϕ

This proves the estimate (2.11). As a consequence of (2.10), (2.11) and the hypothesis of
τ1 ď s ď τ2 and ϕ ď 1, we also have

(2.12)

ż T

0

ż

M

sσpsq pzpt, 1, sqq
2 dsdt ď

τ2
|ν2|

ˆ

T

τ1
` 1

˙

´

}ω0}
2

` }z0p´ϕsq}
2
L2pQq

¯

.

Now, we are in a position to prove (2.3). Multiplying the first equation of (2.1) by ω,
integrating over r0, T s ˆ r0, ℓs, and using the boundary conditions, it follows that

}B
2
xωp0q}

2
L2p0,T q “}ω0}

2
`

ż T

0

`

B
2
xωpℓq

˘2
dt ´ }ωpT q}

2

ď}ω0}
2

`

ż T

0

ˆ

ν1B
2
xωp0q ` ν2

ż

M

σpsqzp¨, 1, sqds

˙2

dt :“ I1 ` I2.

(2.13)
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To estimate the integral I2 on the right-hand side of (2.13), we use Young’s inequality together
with the Cauchy-Schwartz inequality, to obtain

I2 ďν2
1

`

B
2
xωpt, 0q

˘2

` 2|ν1||ν2|
`

B
2
xωpt, 0q

˘

ˆ
ż

M

σpsqds

˙
1
2

ˆ
ż

M

σpsqz2p¨, 1, sqds

˙
1
2

` ν2
2

˜

ˆ
ż

M

σpsqds

˙
1
2

ˆ
ż

M

σpsqz2p¨, 1, sqds

˙
1
2

¸2

ď

„

ν2
1 `

ν2
2

2θ

ˆ
ż

M

σpsqds

˙ȷ

`

B
2
xωpt, 0q

˘2

`

„

2θν2
1 ` ν2

2

ˆ
ż

M

σpsqds

˙ȷ ˆ
ż

M

σpsqz2p¨, 1, sqds

˙

.

(2.14)

Thereafter, inserting (2.14) into (2.13), we find
„

1 ´ ν2
1 ´

ν2
2

2θ

ˆ
ż

M

σpsqds

˙ȷ

}B
2
xωp0q}

2
L2p0,T q ď }ω0}

2

`

„

2θν2
1 ` ν2

2

ˆ
ż

M

σpsqds

˙ȷ ˆ
ż T

0

ż

M

σpsqz2p¨, 1, sqdsdt

˙

.

(2.15)

Thanks to (1.5), one can choose θ ą 0 large enough so that

(2.16) 1 ´ ν2
1 ´

ν2
2

2θ

ˆ
ż

M

σpsqds

˙

ą 0.

This, together with (2.15) and (2.12), yields

}B
2
xωp0q}

2
L2p0,T q ďďC

ˆ

}ω0}
2

`
1

τ1

ż T

0

ż

M

sσpsqz2p¨, 1, sqdsdt

˙

ďC

ˆ

1 `
τ2

τ1|ν2|

ˆ

T

τ1
` 1

˙˙

}ω0}
2

`
Cτ2
τ1|ν2|

ˆ

T

τ1
` 1

˙

}z0p´ϕsq}
2
L2pQq

ďC
´

}ω0}
2

` }z0p´ϕsq}
2
L2pQq

¯

.

(2.17)

Clearly, combining (2.12) and (2.17), we get (2.3).
Now, let us prove (2.4). Multiplying the equation (2.1) by xu, integrating by parts over

p0, T q ˆ Ω, and isolating the term }B2
xω}2L2p0,T ;L2pΩqq

, we obtain

}B
2
xω}

2
L2p0,T ;L2pΩqq ď

ż

Ω

x

5
ω2
0pxqdx `

α

5
}ω}

2
L2p0,T ;L2pΩqq

`
ℓ

5

„

ν2
1 `

ν2
2

2ϵ

ˆ
ż

M

σpsqds

˙ȷ
ż T

0

pB
2
xωpt, 0qq

2

`
ℓ

5

„

2ϵν2
1 ` ν2

2

ˆ
ż

M

σpsqds

˙ȷ
ż T

0

ż

M

σpsqz2pt, 1, sqdsdt

ď
ℓ

5
}ω0}

2
`

α

5
}ω}

2
L2p0,T ;L2pΩqq

` C1

„
ż T

0

pB
2
xωpt, 0qq

2
`

ż T

0

ż

M

σpsqz2pt, 1, sqdsdt

ȷ

,
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where (2.14) is used and

C1 “ max

"

ℓ

5

„

ν2
1 `

ν2
2

2ϵ

ˆ
ż

M

σpsqds

˙ȷ

,
ℓ

5

„

2ϵν2
1 ` ν2

2

ˆ
ż

M

σpsqds

˙ȷ*

.

Now, taking into account the fact that eAt is a semigroup of contractions and using (2.3), we

obtain (2.4) with the constant C “ max

"

ℓ

5
,
α

5
, C1

*

.

Finally, let us show (2.5) and (2.6), respectively. For (2.5), multiply the second equation
in (2.1) by σpsqz and integrates by parts over p0, T q ˆ Q, to obtain

ż

Ω0

ż

M

sσpsqz2p0, ϕ, sq dsdϕ ď

ż

Ω0

ż

M

sσpsqz2pT, ϕ, sq dsdϕ `

ż T

0

ż

M

σpsqz2pt, 1, sq dsdt,

showing (2.5). To prove (2.6), we multiply the first equation in (2.1) by 2pT ´ tqω and
integrating over r0, T s ˆ r0, ℓs, to find

T }ω0}
2

ď T }ω}
2
L2p0,T ;L2pΩqq ` T

ż T

0

`

B
2
xωp0q

˘2
dt,

giving (2.6). Last but not least, it is worth mentioning that the above estimates remain true
for solutions stemming from Λ0 P H, giving item ii.

Proof of item iii. Follows directly from (2.4) and from (2.10). □

2.2. Non-homogeneous problem. Let us now consider the linear system (2.1) with a source
term f P L1p0, T ;L2pΩqq in the right-hand side of the first equation. As done in the previous
subsection, the system can be rewritten as follows:

(2.18)

#

Λtptq “ AΛptq ` pφpt, ¨q, 0q, t ą 0,

Λp0q “ Λ0 P H,

where Λ “ pω, zq and Λ0 “ pω0, z0p´¨qq. With this in hand, the following result will be proved.

Theorem 2.2. Under the assumption (1), it follows that:

paq If Λ0 “ pω0, z0p´¨qq P H and φ P L1p0, T ;L2pΩqq, then there exists a unique mild
solution

Λ “ pω, zq P YT ˆ Cpr0, T s;L2
pQqq

of (2.18) such that

(2.19) }pω, zq}
2
Cpr0,T s;Hq ď C

´

}pω0, z0p´¨qq}
2
H ` }φ}

2
L1p0,T ;L2pΩqq

¯

,

and

(2.20) }ω}
2
YT

ď C
´

}pω0, z0p´¨qq}
2
H ` }φ}

2
L1p0,T ;L2pΩqq

¯

,

for some constant C ą 0, which is independent of Λ0 and φ.
pbq Given

ω P YT “ Cp0, T ;L2
pΩqq X L2

p0, T ;H2
0 pΩqq

and p P t1, 2u, we have ωpBxω P L1p0, T ;L2pΩqq and the map

(2.21) F : ω P YT ÞÑ ωp
Bxω P L1

p0, T ;L2
pΩqq

is continuous.
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Proof. Proof of item (a). SinceA is the infinitesimal generator of a semigroup of contractions
etA and φ P L1p0, T ;L2pΩqq it follows from semigroups theory that there is a unique mild
solution Λ “ pω, zq P Cpr0, T s;Hq of (2.18) such that

Λptq “ etAΛ0 `

ż t

0

ept´sqA
pφ, 0qds

and hence, we get

}pω, zq}Cpr0,T s;Hq ď C
`

}pω0, z0p´¨qq}H ` }φ}L1p0,T ;L2pΩqq

˘

.

Young’s inequality gives

}pω, zq}
2
Cpr0,T s;Hq ď 2C2

´

}pω0, z0p´¨qq}
2
H ` }φ}

2
L1p0,T ;L2pΩqq

¯

,

which proves (2.19). To complete the proof of item paq, we must verify the validity of (2.20).
For this, observe that from (2.19), we have

(2.22) max
tPr0,T s

}ω}
2

ď 2C2
´

}pω0, z0p´¨qq}
2
H ` }φ}

2
L1p0,T ;L2pΩqq

¯

.

In turn, if we multiply the second equation in (2.18) by ϕσpsqz, integrating over r0, T sˆr0, 1sˆ

rτ1, τ2s and arguing as for the proof of (2.11), we obtain

(2.23)

ż T

0

ż

M

sσpsq pzpt, 1, sqq
2 dsdt

ď
τ2

|ν2|

ˆ

T

τ1
` 1

˙

´

}ω0}
2

` }z0p´ϕsq}
2
L2pQq ` }φ}

2
L1p0,T ;L2pΩqq

¯

.

Now, multiplying the first equation in (2.18) by ω, integrating over r0, T s ˆ r0, ℓs, and thanks
to (2.23), we get

}B
2
xωp0q}

2
L2p0,T q ď}ω0}

2
`

ż T

0

ˆ

ν1B
2
xωp0q ` ν2

ż

M

σpsqzp¨, 1, sqds

˙2

dt

` 2

ˆ

max
tPr0,T s

}ωpt, xq}

˙
ż T

0

}φpt, xq} dt.

(2.24)

Now, replacing (2.14) in (2.24), we find

(2.25)

}B2
xωp0q}2L2p0,T q

ď }ω0}
2

`

„

ν2
1 `

ν2
2

2θ

ˆ
ż

M

σpsqds

˙ȷ
ż T

0

`

B
2
xωpt, 0q

˘2
dt

`

„

2θν2
1 ` ν2

2

ˆ
ż

M

σpsqds

˙ȷ ˆ
ż T

0

ż

M

σpsqz2p¨, 1, sqdsdt

˙

`2

ˆ

max
tPr0,T s

}ωpt, xq}

˙
ż T

0

}φpt, xq} dt.

Isolating }B2
xωp0q}2L2p0,T q

and using Young’s inequality for the last term of the right-hand side,

we reach

(2.26)

„

1 ´ ν2
1 ´

ν2
2

2θ

ˆ
ż

M

σpsqds

˙ȷ

}B
2
xωp0q}

2
L2p0,T q

ď }ω0}
2

`

„

2θν2
1 ` ν2

2

ˆ
ż

M

σpsqds

˙ȷ ˆ
ż T

0

ż

M

σpsqz2p¨, 1, sqdsdt

˙

`

ˆ

max
tPr0,T s

}ωpt, xq}

˙2

` }φ}
2
L1p0,T ;L2pΩqq.
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Thanks to (1.5), (2.16) and (2.26), the estimate (2.19) becomes

}B
2
xωp0q}

2
L2p0,T q ďC1

ˆ

2 ` C2 `
τ2

τ1|ν2|

ˆ

T

τ1
` 1

˙˙

}ω0}
2

` C1

ˆ

τ2
τ1|ν2|

ˆ

T

τ1
` 1

˙

` 1 ` C2

˙

}z0p´ϕsq}
2
L2pQq

` C1p1 ` C2q}φ}
2
L1p0,T ;L2pΩqq

ďC
´

}pω0, z0p´ϕsqq}
2
H ` }φ}

2
L1p0,T ;L2pΩqq

¯

.

(2.27)

Now, multiply the equation (2.18) by xu and integrate by parts over p0, T q ˆ p0, ℓq and then
perform similar calculations to those of the previous item to get

5

2
}B

2
xω}

2
L2p0,T ;L2pΩqq ď

ℓ

2
}ω0}

2
`

aT

2
C

´

}pω0, z0p´ϕsqq}
2
H ` }φ}

2
L1p0,T ;L2pΩqq

¯

`
ℓ

2
C

´

}pω0, z0p´ϕsqq}
2
H ` }φ}

2
L1p0,T ;L2pΩqq

¯

`
ℓ

2
}φ}

2
L1p0,T ;L2pΩqq

`
ℓ

2

„

ν2
1 `

ν2
2

2ϵ

ˆ
ż

M

σpsqds

˙ȷ

C
´

}pω0, z0p´ϕsqq}
2
H ` }φ}

2
L1p0,T ;L2pΩqq

¯

`
ℓ

2τ1

„

2ϵν2
1 ` ν2

2

ˆ
ż

M

σpsqds

˙ȷ

τ2
|ν2|

ˆ

T

τ1
` 1

˙

´

}pω0, z0p´ϕsqq}
2
H ` }φ}

2
L1p0,T ;L2pΩqq

¯

,

(2.28)

where we have used Cauchy-Schwarz inequality, Young inequality, estimates (2.14), (2.23),
and (2.27). Therefore, taking any ϵ ą 0 in (2.28), there exists C ą 0 such that

(2.29) }ω}
2
L2p0,T ;H2

0 pΩqq
“ }B

2
xω}

2
L2p0,T ;L2pΩqq ď C

´

}pω0, z0p´ϕsqq}
2
H ` }φ}

2
L1p0,T ;L2pΩqq

¯

.

The estimate (2.20) follows directly from the estimates (2.22) and (2.29), and item (a) is
achieved.

Proof of item (b). Given ω, v P YT we have, for p “ 1, that

(2.30) }ωBxω}L1p0,T ;L2pΩqq ď k

ż T

0

}ω}L2pΩq}Bxω}dt ď k

ż T

0

}ω}
2
H2pΩqdt ď k}ω}

2
YT

ă 8,

where k is the positive constant of the Sobolev embedding L2pΩq ãÑ L8pΩq. Therefore,
ωBxω P L1p0, T ;L2pΩqq, for each ω P YT . Thus, using the triangle inequality, together with the
Cauchy-Schwarz inequality, we get the classical estimate

(2.31) }Fpωq ´ Fpvq}L1p0,T ;L2pΩqq ď k}ω ´ v}YT
p}ω}YT

` }v}YT
q , for anyu, v P YT .

Therefore, the map F is continuous concerning the corresponding topologies. On the other
hand, when p “ 2, we have for ω, v P YT that

(2.32) }Fpωq}L1p0,T ;L2pΩqq ď k}ω}Cp0,T ;L2pΩqq

ż T

0

}ω}
2
H2pΩqdt ď k}ω}

3
YT

ă `8.

Hence, Fpωq is well-defined and for any u, v in YT , we have

}Fpωq ´ Fpvq}L1p0,T ;L2pΩqq ď
3k

2

`

}ω}
2
YT

` }v}
2
YT

˘

}ω ´ v}YT
.(2.33)

Thereby, the map F is continuous for the corresponding topologies. □
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2.3. Nonlinear problem. We are now in a position to prove the main result of the section.
Precisely, the next result gives the well-posedness for the full system (1.2).

Theorem 2.3. Suppose that (1.5) holds. Then, there exist constants r, C ą 0 such that, for
every Λ0 “ pω0, z0p´¨qq P H with }Λ0}

2
H ď r, the problem (1.2) admits a unique global solution

ω P YT , which satisfies }ω}YT
ď C}Λ0}H .

Proof. Given Λ0 “ pω0, z0p´¨qq P H such that }Λ0}
2
H ď r, where r is a positive constant to be

chosen, define a mapping Υ : YT Ñ YT as follows: Υpωq “ y, where y is the solution of (2.18)
with a source term φ “ ωpBxω “ Fpωq, p P t1, 2u. The mapping Υ is well defined because of
item paq of Theorem 2.2 from which we obtain from (2.20) that

}Υpωq}
2
YT

ď C
´

}Λ0}
2
H ` }Fpωq}

2
L1p0,T :L2pΩqq

¯

.

Note that Υpωq ´Υpvq is a solution of (2.18) with initial condition Λ0 “ p0, 0q P H and source
term φ “ Fpωq ´ Fpvq. It follows from (2.20) that

}Υpωq ´ Υpvq}
2
YT

ď C}Fpωq ´ Fpvq}
2
L1p0,T :L2pΩqq,

where the constant C ą 0 above does not depend on Λ0 and φ.
Now, considering p “ 1, we have from (2.30) that

}Υpωq}
2
YT

ď C
`

r ` k2
}ω}

4
YT

˘

, @ω P YT ,

while from (2.31), we have that

}Υpωq ´ Υpvq}
2
YT

ď Ck2
`

}ω}
2
YT

` }v}
2
YT

˘2
}ω ´ v}

2
YT
, @ω, v P YT .

Thus, when }ω}2YT
ď R we get

(2.34)
}Υpωq}2YT

ď C pr ` k2R2q , @ω P B,

}Υpωq ´ Υpvq}2YT
ď 4Ck2R2}ω ´ v}2YT

, @ω, v P B.

Next, pick R “
1

5k2C
and r “

1

25k2C2
. For ω P B “ tω P YT ; }ω}2YT

ď Ru, we have that

(2.35)

}Υpωq}2YT
ď R, @ω P B,

}Υpωq ´ Υpvq}2YT
ď

4

5
}ω ´ v}2YT

, @ω, v P B.

On the other hand, when p “ 2, we have from (2.32) that

}Υpωq}
2
YT

ď C
`

r ` k2
}ω}

6
YT

˘

, @ω P YT

and from (2.33), we have that

}Υpωq ´ Υpvq}
2
YT

ď C

ˆ

3k

2

˙2
`

}ω}
2
YT

` }v}
2
YT

˘2
}ω ´ v}

2
YT
, @ω, v P YT .

Thus, when }ω}2YT
ď R, we get

(2.36)
}Υpωq}2YT

ď C pr ` k2R3q , @ω P B,

}Υpωq ´ Υpvq}2YT
ď 9Ck2R2}ω ´ v}2YT

, @ω, v P B.
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Therefore, just take R “
1

4k
?
C

and r “
1

16kC
3
2

and we will have that

(2.37)

}Υpωq}2YT
ď R, @ω P B,

}Υpωq ´ Υpvq}2YT
ď

9

16
}ω ´ v}2YT

, @@ω, v P B.

Consequently, due to (2.35) and (2.36), the restriction of the map Λ to B is well-defined, and
Λ is a contraction on the ball B. As an application of Banach Fixed Point Theorem, the map
Λ possesses a unique fixed element ω, which turns out to be the unique solution to problem
(1.2). Finally, the solution is global thanks to the dissipation property. Indeed, the energy
Eptq (see (1.4)) of the system (1.2) satisfies

E1
ptq ď

1

2
xGX,XyR2 ď 0,

where G and X are given in Proposition 2.1. □

3. Exponential stability of solutions

In this section, we will prove the two main results of our work. The first stabilization
result will be proved via the Lyapunov approach. The second one is obtained showing an
observability inequality which will be proved by the compactness-uniqueness argument.

3.1. Proof of Theorem 1.1. Initially, let us remember that the energy of the system (2.18),
for φ “ ωpBxω, with p P t1, 2u, is defined by

Eptq “ }Λptq}
2
H “ }ωptq}

2
` }zptq}

2
L2pQq,

where }zptq}
2
L2pQq “ |ν2|

ż

M

sσpsq

ż 1

0

z2pt, ϕ, sqdϕds. Thus, using (2.18), we get

(3.1)

E1ptq “ 2xΛtptq,ΛptqyH “ 2xAΛptq,ΛptqyH ` 2xpωpBxω, 0q,ΛptqyH

“ xGX,XyR2 ` 2

ż

Ω

up`1
Bxωdx

“ xGX,XyR2 ` 2
ωp`2pℓq

p ` 2
´ 2

ωp`2p0q

p ` 2
“ xGX,XyR2 ď 0,

where G and X were given in (2.8). Let us now define a Lyapunov function

Φptq “ Eptq ` µ1E1ptq ` µ2E2ptq, t ě 0,

where E1ptq and E2ptq are given by

E1ptq “

ż

Ω

xu2
px, tqdx and E2ptq “ |ν2|

ż

Ω0

ż

M

se´δϕsσpsqz2pt, ϕ, sqdsdϕ,

µ1 and µ2 are positive constants to be determined and δ ą 0 is arbitrary constant. Note that

µ1E1ptq “ µ1

ż

Ω

xu2
px, tqdx ď ℓµ1

ż

Ω

ω2
px, tqdx “ ℓµ1}ω}

2

and

µ2E2ptq ď µ2|ν2|

ż

Ω0

ż

M

sσpsqz2pt, ϕ, sqdsdϕ “ µ2}zptq}
2
ℓ2pQq.

Consequently,
µ1E1ptq ` µ2E2ptq ď maxtℓµ1, µ2uEptq

and, therefore

(3.2) Eptq ď Φptq ď p1 ` maxtℓµ1, µ2uqEptq.
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Differentiating E1ptq and E2ptq using integration by parts and the boundary conditions of
(1.2) and (2.1), we get

(3.3)

E 1
1ptq “ α}ω}

2
´ 3β}Bxω}

2
´ 5}B

2
xω}

2
`

2

p ` 2

ż

Ω

ωp`2dx

`ℓ

„

ν2
1

`

B
2
xωpt, 0q

˘2
` 2ν1ν2

`

B
2
xωpt, 0q

˘

ˆ
ż

M

σpsqzpt, 1, sqds

˙

`ν2
2

ˆ
ż

M

σpsqzpt, 1, sqds

˙2
ff

and

(3.4)
E 1

2ptq “ ´|ν2|

ż

M

e´δsσpsq pzpt, 1, sqq
2 ds ` |ν2|

ˆ
ż

M

σpsqds

˙

`

B
2
xωpt, 0q

˘2

´|ν2|

ż

M

ż

Ω0

δse´δϕsσpsqz2dϕds.

Thus, for Φptq “ Eptq ` µ1E1ptq ` µ2E2ptq, we find that

Φ1
ptq`2µΦptq “ xGX,XyR2 ` αµ1}ω}

2
´ 3βµ1}Bxω}

2
´ 5µ1}B

2
xω}

2
`

2µ1

p ` 2

ż

Ω

ωp`2dx

` ℓµ1

„

ν2
1

`

B
2
xωpt, 0q

˘2
` 2ν1ν2

`

B
2
xωpt, 0q

˘

ˆ
ż

M

σpsqzpt, 1, sqds

˙

`ν2
2

ˆ
ż

M

σpsqzpt, 1, sqds

˙2
ff

´ µ2|ν2|

ż

M

e´δsσpsq pzpt, 1, sqq
2 ds ` µ2|ν2|

ˆ
ż

M

σpsqds

˙

`

B
2
xωpt, 0q

˘2

´ µ2|ν2|

ż

M

ż

Ω0

δse´δϕsσpsqz2dϕds ` 2µ}ωptq}
2

` 2µ}zptq}
2
L2pQq ` 2µµ1

ż

Ω

xu2
px, tqdx

` 2µµ1|ν2|

ż

Ω0

ż

M

se´δϕsσpsqzpt, ϕ, sqdsdϕ.

Next, let

Gµ1 “ µ1ℓ

ˆ

ν2
1 ν1ν2

ν1ν2 ν2
2

˙

, Gµ2 “ µ2

¨

˝

|ν2|

ż

M

σpsqds 0

0 0

˛

‚

and

X “

¨

˝

B2
xωpt, 0q

ż

M

σpsqzpt, 1, sqds

˛

‚.
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Thus, we have that

Φ1
ptq`2µΦptq “ xpG ` Gµ1 ` Gµ2qX,XyR2 ` pαµ1 ` 2µq}ω}

2
´ 3βµ1}Bxω}

2
´ 5µ1}B

2
xω}

2

`
2µ1

p ` 2

ż

Ω

ωp`2dx ´ µ2|ν2|

ż

M

e´δsσpsq pzpt, 1, sqq
2 ds

´ µ2|ν2|

ż

M

ż

Ω0

δse´δϕsσpsqz2dϕds ` 2µ}zptq}
2
L2pQq ` 2µµ1

ż

Ω

xu2
px, tqdx

` 2µµ1|ν2|

ż

Ω0

ż

M

se´δϕsσpsqzpt, ϕ, sqdsdϕ

ďxpG ` Gµ1 ` Gµ2qX,XyR2 ` pαµ1 ` 2µp1 ` µ1ℓqq }ω}
2

´ 3βµ1}Bxω}
2

´ 5µ1}B
2
xω}

2

`
2µ1

p ` 2

ż

Ω

ωp`2dx ´ µ2|ν2|e
´δτ2

ż

M

σpsq pzpt, 1, sqq
2 ds

´ µ2|ν2|e
´δτ2δ

ż

M

ż

Ω0

sσpsqz2dϕds

` 2µ}zptq}
2
L2pQq ` 2µµ1|ν2|

ż

Ω0

ż

M

sσpsqzpt, ϕ, sqdsdϕ.

Now, observe that

T pµ1, µ2q :“ G ` Gµ1 ` Gµ2 “ G ` µ1ℓ

ˆ

ν2
1 ν1ν2

ν1ν2 ν2
2

˙

` µ2

ˆ

|ν2|
ş

M
σpsqds 0
0 0

˙

is a continuous map of R2 on the vector space of square matrices M2ˆ2pRq and that the
determinant and trace are continuous functions of M2ˆ2pRq over R, we have that h1pµ1, µ2q “

detT pµ1, µ2q and h2pµ1, µ2q “ trT pµ1, µ2q are continuous from R2 over R. Therefore, knowing
that h1p0, 0q “ detG ą 0 and h2p0, 0q “ trG ă 0 for µ1, µ2 small enough, one can claim that
h1pµ1, µ2q ą 0 and h2pµ1, µ2q ă 0. Thereby, G`Gµ1 `Gµ2 is negative defined for µ1, µ2 small
enough. Moreover, using the Poincaré inequality1 we find

Φ1
ptq ` 2µΦptq ď

„

ℓ2

π2
pαµ1 ` 2µp1 ` µ1ℓqq ´ 3βµ1

ȷ

}Bxω}
2

´ 5µ1}B
2
xω}

2

`
2µ1

p ` 2

ż

Ω

ωp`2dx ´ µ2|ν2|e´δτ2

ż

M

σpsq pzpt, 1, sqq
2 ds

`
`

2µp1 ` µ1|ν2|q ´ µ2|ν2|e
´δτ2δ

˘

}zptq}
2
L2pQq.

(3.5)

Now, we are going to estimate the integral

2µ1

p ` 2

ż

Ω

ωp`2dx.

For this, applying the Cauchy-Schwarz inequality and using the fact that the energy of the
system Eptq is non-increasing, together with the embedding H1

0 pΩq ãÑ L8pΩq we have, for
}pω0, z0q}H ă r, that

(3.6)

2µ1

p ` 2

ż

Ω

ωp`2dx ď
2µ1

p ` 2
}ω}

2
L8pΩq

ż

Ω

ωpdx ď
2ℓµ1

p ` 2
}Bxω}

2

ż

Ω

ωpdx

ď
2ℓµ1

p ` 2
}Bxω}

2ℓ1´
p
2 }ω}

p
ď

2ℓ2´
p
2µ1

p ` 2
}Bxω}

2
}pω0, z0q}

p
H

ď
2ℓ2´

p
2µ1r

p

p ` 2
}Bxω}

2.

1}ω}2 ď
ℓ2

π2
}Bxω}2, for ω P H2

0 pΩq,
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Combining (3.6) and (3.5) yields

Φ1
ptq ` 2µΦptq ď

„

ℓ2

π2
pαµ1 ` 2µp1 ` µ1ℓqq ´ 3βµ1

ȷ

}Bxω}
2

´ 5µ1}B
2
xω}

2

`
2ℓ2´

p
2µ1r

p

p ` 2
}Bxω}

2
´ µ2|ν2|e´δτ2

ż

M

σpsq pzpt, 1, sqq
2 ds

`
`

2µp1 ` µ1|ν2|q ´ µ2|ν2|e
´δτ2δ

˘

}zptq}
2
L2pQq

ď

„

ℓ2

π2
pαµ1 ` 2µp1 ` µ1ℓqq ´ 3βµ1 `

2ℓ2´
p
2µ1r

p

p ` 2

ȷ

}Bxω}
2

´ 5µ1}B
2
xω}

2

`
`

2µp1 ` µ1|ν2|q ´ µ2|ν2|e
´δτ2δ

˘

}zptq}
2
L2pQq.

(3.7)

Note that Φ1ptq ` 2µΦptq ă 0 when

2µp1 ` µ1|ν2|q ´ µ2|ν2|e
´δτ2δ ă 0

and

ℓ2

π2
pαµ1 ` 2µp1 ` µ1ℓqq ´ 3βµ1 `

2ℓ2´
p
2µ1r

p

p ` 2
ă 0,

which holds for µ ą 0 satisfying, respectively

µ ă
µ2|ν2|e

´δτ2δ

2p1 ` µ1|ν2|q

and

0 ă µ ă
µ1

2ℓ2p1 ` ℓµ1qpp ` 2q

”

pp ` 2qp3π2β ´ αℓ2q ´ 2π2ℓ2´
p
2 rp

ı

,

where we need to take r ą 0 satisfying

pp ` 2qp3π2β ´ αℓ2q ´ 2π2ℓ2´
p
2 rp ą 0

or, equivalently, r ą 0 must satisfy

r ă

ˆ

pp ` 2qp3π2β ´ αℓ2q

2π2ℓ2´
p
2

˙
1
p

.

Thus, for µ1, µ2 small enough and an arbitrary δ ą 0, taking

r ă

ˆ

pp ` 2qp3π2β ´ αℓ2q

2π2ℓ2´
p
2

˙
1
p

and

µ ă min

"

µ2|ν2|e
´δτ2δ

2p1 ` µ1|ν2|q
,

µ1

2ℓ2p1 ` ℓµ1qpp ` 2q

”

pp ` 2qp3π2β ´ αℓ2q ´ 2π2ℓ2´
p
2 rp

ı

*

,

we get that

Φ1
ptq ` 2µΦptq ă 0 ðñ Φptq ď Φp0qe´2µt.

Lastly, from (3.2), we get

Eptq ď Φptq ď Φp0qe´2µt
ď p1 ` maxtℓµ1, µ2uqEp0qe´2µt

ď κEp0qe´2µt,

for κ ą 1 ` maxtℓµ1, µ2u, proving the theorem. □
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3.2. Proof of Theorem 1.3. First, we deal with the linear system (2.1) and claim that the
following observability inequality holds

(3.8) }ω0}
2

` }z0}
2
L2pQq ď C

ż T

0

ˆ

pB
2
xωpt, 0qq

2
`

ż

M

sσpsqz2pt, 1, sq ds

˙

dt,

where pω0, z0q P H and pω, zqptq “ etA pω0, z0q is the unique solution of (2.1). This leads to
the exponential stability in H of the solution py, zq to (2.1). The proof of this inequality can
be obtained by a contradiction argument. Indeed, if (3.8) is not true, then there exists a
sequence tpωn

0 , z
n
0 qun Ă H such that

(3.9) }ωn
0 }

2
` }zn0 }

2
L2pQq “ 1

and

(3.10)
›

›B
2
xω

n
p¨, 0q

›

›

2

L2p0,T q
`

ż

M

sσpsqz2pt, 1, sq ds Ñ 0 as n Ñ `8,

where pωn, znq ptq “ etA pωn
0 , z

n
0 q. Then, arguing as in [8], we can deduce from Proposition 2.1

that tωnun is convergent in L2 p0, T, L2pΩqq. Moreover, tωn
0 un is a Cauchy sequence in L2pΩq,

while tzn0 un is a Cauchy sequence in L2pQq. Thereafter, let pω0, z0q “ limnÑ8 pωn
0 , z

n
0 q in H

and hence }ω0}2`}z0}
2
L2pQq

“ 1, by virtue of (3.9). Next, take pω, zq “ e¨A pω0, z0q , and assume,

for the sake of simplicity and without loss of generality, that α “ β “ 1. This, together with
Proposition 2.1 and (3.10), implies that ω is solution of the system

$

’

&

’

%

Btω ` Bxω ` B3
xω ´ B5

xω “ 0, x P Ω, t ą 0,

ωp0, tq “ ωpℓ, tq “ Bxωpℓ, tq “ Bxωp0, tq “ B2
xωpℓ, tq “ B2

xωp0, tq “ 0, t ą 0,

ωpx, 0q “ ω0pxq, x P Ω,

with }ω0}L2pΩq
“ 1. The latter contradicts the result obtained in [8, Lemma 4.2], which states

that the above system has only the trivial solution (see also Lemma 1.2). This proves the
observability inequality (3.8).

Now, let us go back to the original system (1.2) and use the same arguments as in [29].
First, we restrict ourselves to the case p “ 1 as the case p “ 2 is similar. Next, consider an
initial condition }pω0, z0q}H ď ϱ, where ϱ will be fixed later. Then, the solution ω of (1.2) can
be written as ω “ ω1 ` ω2, where ω1 is the solution of (2.1) with the initial data pω0, z0q P H
and ω2 is solution of (2.18) with null data and right-hand side φ “ ωBxω P L1p0, T ;L2pΩqq,
as in Lemma 2.2. In other words, ω1 is the solution of

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

Btω1 ´ B5
xω1 ` B3

xω1 ` Bxω1 “ 0, x P Ω, t ą 0,

ω1pt, 0q “ ω1pt, ℓq “ Bxω1pt, 0q “ Bxω1pt, ℓq “ 0, t ą 0,

B2
xω1pt, ℓq “ ν1B2

xω1pt, 0q ` ν2

ż t´τ1

t´τ2

σpt ´ sqB
2
xωps, 0q ds, t ą 0,

B2
xω1pt, 0q “ z0ptq, t P p´τ2, 0q,

ω1p0, xq “ ω0pxq, x P Ω,

and ω2 is solution of
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

Btω2 ´ B5
xω2 ` B3

xω2 ` Bxω2 “ ´ωBxω, x P Ω, t ą 0,

ω2pt, 0q “ ω2pt, ℓq “ Bxω2pt, 0q “ Bxω2pt, ℓq “ 0, t ą 0,

B2
xω2pt, ℓq “ ν1B

2
xω2pt, 0q ` ν2

ż t´τ1

t´τ2

σpt ´ sqB
2
xωps, 0q ds, t P p´τ2, 0q,

B2
xω2pt, 0q “ 0, x P Ω,

ω2p0, xq “ 0, x P Ω.
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In light of the exponential stability of the linear system (2.1) (see the beginning of this sub-
section) and Theorem 2.2, we have

(3.11) }pωpT q, zpT qq}H ď χ }pω0, z0q}H ` C}ω}
2
L2p0,T,H2pΩqq,

in which χ P p0, 1q. Subsequently, multiply (1.2)1 by xu and performing the same computations
as for (3.3), we get

ż

Ω

xω2
pT, xqdx ` 3

ż T

0

ż

Ω

pBxωpt, xqq
2 dxdt ` 5

ż T

0

ż

Ω

`

B
2
xupt, xq

˘2
dxdt “

ż T

0

ż

Ω

ω2
pt, xqdxdt ` ℓ

ż T

0

ˆ

ν1B
2
xωpt, 0q ` ν2

ż

M

σpsqzpt, 1, sq ds

˙2

dt `

ż

Ω

xω2
0pxqdx

`
2

3

ż T

0

ż

Ω

ω3
pt, xqdxdt.

(3.12)

On one hand, multiplying the first equation of (1.2) by ω and arguing as done for (2.3) (see
(2.13)), we get

(3.13)

ż T

0

ˆ

ν1B
2
xωpt, 0q ` ν2

ż

M

σpsqzpt, 1, sq ds

˙2

dt ď C}pω0, z0q}
2
H .

On the other hand, using Gagliardo–Nirenberg and Cauchy-Schwarz inequalities, together
with the dissipativity of the system (1.2), we deduce that

ż T

0

ż

Ω

ω3dxdt ď CpT q }pω0, z0q}
2
H }ω}L2p0,T ;H2pΩqq.

Applying Young’s inequality to the last estimate and combining the obtained result with
(3.12)-(3.13), we reach

(3.14) }ω}
2
L2p0,T ;H2pΩqq ď C }pω0, z0q}

2
H

`

1 ` }pω0, z0q}
2
H

˘

.

Finally, recalling that }pω0, z0q}H ď ϱ, and inserting (3.14) into (3.11), we get

}pωpT q, zpT qq}H ď }pω0, z0q}H

`

χ ` Cϱ ` Cϱ3
˘

.

Given η ą 0 sufficiently small so that χ` η ă 1, one can choose ϱ small such that ϱ` ϱ3 ă
η
C
,

to obtain

}pωpT q, zpT qq}H ď pχ ` ηq }pω0, z0q}H .

Lastly, using the semigroup property and the fact that χ`η ă 1, we conclude the exponential
stability result of Theorem 1.3. □

4. Conclusion

This article presented a study on the stability of the Kawahara equation with a boundary-
damping control of finite memory type. It is shown that such a control is good enough to obtain
the desirable property, namely, the exponential decay of the system’s energy. The proof is
based on two different approaches. The first one invokes a Lyapunov functional and provides
an estimate of the energy decay. In turn, the second one uses a compactness-uniqueness
argument that reduces the issue to a spectral problem.

Finally, we would like to point out that our well-posedness result (see Theorem 2.3) is
shown for the nonlinearity ωpBxω, where p P t1, 2u. Notwithstanding, we believe that using an
interpolation argument, this finding should remain valid if p P p1, 2q. The same remark applies
to the second stability result (see Theorem 1.3). It is also noteworthy that our first stability
outcome (see Theorem 1.1) is established for a more general nonlinearity ωpBxω, p P r1, 2s.
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