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Abstract. In this paper, we consider the Kawahara equation in a bounded interval and with a delay
term in one of the boundary conditions. Using two different approaches, we prove that this system
is exponentially stable under a condition on the length of the spatial domain. Specifically, the first
result is obtained by introducing a suitable energy and using the Lyapunov approach, to ensure that
the unique solution of the Kawahara system exponentially decays. The second result is achieved
by means of a compactness-uniqueness argument, which reduces our study to prove an observability
inequality. Furthermore, the main novelty of this work is to characterize the critical set phenomenon
for this equation by showing that the stability results hold whenever the spatial length is related to
the Möbius transformations.
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1. Introduction

1.1. Physical motivation and goal. It is well-known that the following fifth order nonlinear
dispersive equation

(1.1) ± 2∂tu+ 3u∂xu− ν∂3xu+
1

45
∂5xu = 0,

models numerous physical phenomena. In fact, considering suitable assumptions on the amplitude,
wavelength, wave steepness and so on, the properties of the asymptotic models for water waves have
been extensively studied in the last years, through (1.1), to understand the full water wave system 1.

In some situations, we can formulate the waves as a free boundary problem of the
incompressible, irrotational Euler equation in an appropriate non-dimensional form with at least
two (non-dimensional) parameters δ := h

λ and ε := a
h , where the water depth, the wavelength

and the amplitude of the free surface are parameterized as h, λ and a, respectively. In turn, if we
introduce another non-dimensional parameter µ, so-called the Bond number, which measures the
importance of gravitational forces compared to surface tension forces, then the physical condition
δ � 1 characterizes the waves, which are called long waves or shallow water waves.

On the other hand, there are several long wave approximations depending on the relations

between ε and δ. For instance, if we consider ε = δ4 � 1 and µ = 1
3 + νε

1
2 , and in connection with

the critical Bond number µ = 1
3 , we have the so-called Kawahara equation, represented by (1.1), and

derived by Hasimoto and Kawahara in [21, 24].
The main concern of this paper is to deal with the Kawahara equation in a bounded domain

under the action of a time-delayed boundary control, namely

(1.2)


∂tu(t, x) + a∂xu(t, x) + b∂3xu(t, x)− ∂5xu(t, x) + u(t, x)p∂xu(t, x) = 0, (t, x) ∈ R+ × Ω,
u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = 0, t > 0,
∂2xu(t, L) = F(t, h), t > 0,
∂2xu(t, 0) = z0(t), t ∈ T ,
u(0, x) = u0(x), x ∈ Ω.

Date: July 14, 2022.
*Corresponding author.
1See for instance [1, 4, 25] and references therein, for a rigorous justification of various asymptotic models for surface

and internal waves.



2 CAPISTRANO–FILHO, CHENTOUF, DE SOUSA, AND GONZALEZ MARTINEZ

In (1.2), Ω = (0, L), where L > 0, while a > 0 and b > 0 are physical parameters. Moreover, p ∈ [1, 2]
and F(t, h) is the delayed control given by

(1.3) F(t) = α∂2xu(t, 0) + β∂2xu(t− h, 0),

in which h > 0 is the time-delay, α and β are two feedback gains satisfying the restriction

(1.4) |α|+ |β| < 1.

Finally, T = (−h, 0), while u0 and z0 are initial conditions.
Thereafter, the functional energy associated to the system (1.2)-(1.3) is

(1.5) E(t) =

∫ L

0
u2(t, x)dx+ h|β|

∫ 1

0
(∂2xu(t− hρ, 0))2dρ, t ≥ 0.

Now, recall that if α = β = 0, then the term ∂2xu(t, 0) represents a feedback damping mechanism
(see for instance [2, 33]) but an extra internal damping is required to achieve the stability of the
solutions. Therefore, taking into account the action of the time-delayed boundary control (1.3) in
(1.2), the following issue will be dealt with in this article:

Does E(t) −→ 0, as t→∞? If it is the case, can we provide a decay rate?

1.2. Historical background. Let us first present a review of the main results available in the
literature for the analysis of the Kawahara equation in a bounded interval. A pioneer work is due to
Silva and Vasconcellos [32, 33], where the authors studied the stabilization of global solutions of the
linear Kawahara equation in a bounded interval under the effect of a localized damping mechanism.
The second endeavor, in this line, is completed by Capistrano-Filho et al. [2], where the generalized
Kawahara equation in a bounded domain QT = (0, T )× (0, L) is considered

(1.6)

 ∂tu+ ∂xu+ ∂3xu− ∂5xu+ up∂xu+ a(x)u = 0, in QT ,
u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = ∂2xu(t, L) = 0, on [0, T ],
u(0, x) = u0(x), in [0, L],

with p ∈ [1, 4). It is proven that the solutions of the above system decays exponentially.
The internal controllability problem has been tackled by Chen [11] for the Kawahara equation

with homogeneous boundary conditions. Using Carleman estimates associated to the linear operator
of the Kawahara equation with an internal observation, a null controllable result is shown when the
internal control is effective in a subdomain ω ⊂ (0, L). In [6], considering the system (1.6) with an
internal control f(t, x) and homogeneous boundary conditions, the equation is exact shown to be
controllable in L2-weighted Sobolev spaces and, additionally, controllable by regions in L2-Sobolev
space.

Recently, a new tool for the control properties for the Kawahara operator was proposed in [8, 9].
First, in [8], the authors showed a new type of controllability for the Kawahara equation, what they
called overdetermination control problem. A boundary control is designed so that the solution of
the problem under consideration satisfies an integral condition. Furthermore, when the control acts
internally in the system, instead of the boundary, the authors proved that this integral condition is
also satisfied. After that, in [9], the authors extend this idea to the internal control problem for the
Kawahara equation on unbounded domains. Precisely, under certain hypotheses over the initial and
boundary data, an internal control input is designed so that the solutions of the Kawahara equation
satisfies an integral overdetermination condition, whether the Kawahara equation is posed in the
real line, left half-line or right half-line. We also note that the existence and uniqueness of solutions
as well their stability are investigated for the Kawahara type equation posed in the whole real line
[12, 13, 14, 15, 22], the half-line [16, 27], a periodic domain [20, 23], and a non-periodic bounded
domain [17, 18, 26, 27].

We conclude the literature review by mentioning the last works on the stabilization of the
Kawahara equation with a localized time-delayed interior control. In [7, 10], under suitable assumptions
on the time delay coefficients, the authors are able to prove that solutions of the Kawahara system
are exponentially stable. The results are obtained using Lyapunov approach and a compactness-
uniqueness argument.
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1.3. Notations and main results. First of all, let us introduce the following notations that we
will use throughout this manuscript.

(i) We consider the space of solutions

X(QT ) = C(0, T ;L2(0, L)) ∩ L2(0, T ;H2(0, L))

equipped with the norm

‖v‖X(QT ) = max
t∈(0,T )

‖v(t, ·)‖L2(0,L) +

(∫ T

0
‖v(t, ·)‖2H2(0,L)dt

) 1
2

.

(ii) Denote by

H̃ = L2(0, L)× L2(−h, 0)

the Hilbert space equipped with the inner product

〈(u1, z1), (u2, z2)〉H̃ =

∫ L

0
u1u2dx+ |β|

∫ 0

−h
z1(s)z2(s) ds,

which yields the following norm

‖(u, z)‖2
H̃

=

∫ L

0
u2(x)dx+ |β|

∫ 0

−h
z2(ρ)dρ.

(iii) Throughout all the manuscript, (·, ·)R2 denotes the canonical inner product of R2.

With the above notations in hand, let us state our first main result in this article:

Theorem 1.1. Let α 6= 0 and β 6= 0 be two real constants satisfying (1.4) and suppose that the
spatial length L fulfills

(1.7) 0 < L <

√
3b

a
π.

Then, there exists r > 0 sufficiently small, such that for every (u0, z0) ∈ H with ‖(u0, z0)‖H < r,
the energy of the system (1.2)-(1.3), denoted by E and defined by (1.5) exponentially decays, that is,
there exist two positive constants κ and λ such that

(1.8) E(t) ≤ κE(0)e−2λt, t > 0.

Here,

(1.9) λ ≤ min

{
µ2

2h(µ2 + |β|)
,
3bπ2 − r2L− L2a

2L2(1 + Lµ1)
µ1

}
and

κ ≤
(

1 + max

{
Lµ1,

µ2
|β|

})
,

for µ1, µ2 ∈ (0, 1) sufficiently small.

The second main result gives a second answer for the question presented in this introduction.
Indeed, using a different approach based on an observability inequality, we are able to highlight the
critical lengths phenomenon observed in [2] for the Kawahara equation:

Theorem 1.2. Assume that α and β satisfy (1.4), whereas L > 0 is taken so that the problem
(N ) (see Lemma 4.3) has only the trivial solution. Then, there exists r > 0 such that for every
(u0, z0) ∈ H satisfying

‖(u0, z0)‖H ≤ r,
the energy of system (1.2)-(1.3), denoted by E and defined by (1.5), decays exponentially. More
precisely, there exist two positive constants ν and κ such that

E(t) ≤ κE(0)e−νt, t > 0.
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1.4. Heuristic of the article and its structure. In this article, we are able to prove that the
Kawahara system (1.2) is exponentially stable when we consider a boundary time-delayed control
F(t) defined by (1.3).

In order to prove Theorem 1.1, we use the idea of the work that treated the delayed wave
systems [35] (see also [28]). More precisely, choosing an appropriate Lyapunov functional associated
to the solutions of (1.2)-(1.3) and with some restrictions on the spatial length L and an appropriate
size of the initial data, that is, L bounded as in (1.7) and

‖(u0, z0)‖H <
2

π

√
3bπ2 − L2a

L
,

the energy (1.5) decays exponentially. The key idea of this analysis is the relation between the
linearized system associated with (1.2)-(1.3) and a transport equation (see the Section 2 for more
details).

With regard to the proof of Theorem 1.2, we proceed as in [30], i.e, combining multipliers and
compactness arguments which reduces the problem to show a unique continuation result for the state
operator. To prove the latter, we extend the solution under consideration by zero in R \ [0, L] and
take the Fourier transform. However, due to the complexity of the system, after taking the Fourier
transform of the extended solution u, it is not possible to use the same techniques used in [30]. Thus,
to prove our main result we invoke the result due Santos et al. [19]. Specifically, after taking the
Fourier transform, the issue is to establish when a certain quotient of entire functions still turns out
to be an entire function. We then pick a polynomial q : C→ C and a family of functions

(1.10) Nα : C× (0,∞)→ C,

with α ∈ C4 \ {0}, whose restriction Nα(·, L) is entire for each L > 0. Next, we consider a family of
functions fα(·, L), defined by

(1.11) fα(µ,L) =
Nα(µ,L)

q(µ)
,

in its maximal domain. The problem is then reduced to determine L > 0 for which there exists
α ∈ C4 \ {0} such that fα(·, L) is entire. In contrast with the analysis developed in [30], this
approach does not provide an explicit characterization of a critical set, if it exists, but only ensures
that the roots of f have a relations with the Möbius transform (see the proof of Lemma 4.3 above).

Finally, let us present the outline of our work: First, in the Section 2, we prove regularity
properties of the solutions to the linear system associated with (1.2)-(1.3) and then show that the
well-posedness of the problem (1.2)-(1.3). Section 3 is devoted to the proof of the first main result
of this article, Theorem 1.1. In the Section 4, with the help of the result established in [19], we show
Theorem 1.2. Finally, in the Section 5, we present some additional comments and open questions.

2. Well-posedness results

The goal of this section is to prove that the full nonlinear Kawahara system (1.2)-(1.3) is well-
posed. The proof is divided into four parts by using the strategy due to Rosier [30]:

(1) Well-posedness to the linear system associated to (1.2)-(1.3);
(2) Properties of regularity of the linear system associated to (1.2)-(1.3).
(3) Well-posedness of the linear system associated to (1.2)-(1.3) with a source term.
(4) Well-posedness of the system (1.2)-(1.3).

2.1. Well-posedness: Linear system. We begin by proving the well posedness of the linearized
system

(2.1)


∂tu(t, x) + a∂xu(t, x) + b∂3xu(t, x)− ∂5xu(t, x) = 0, (t, x) ∈ R+ × Ω,
u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = 0, t > 0,
∂2xu(t, L) = α∂2xu(t, 0) + β∂2xu(t− h, 0), t > 0,
u(0, x) = u0(x), x ∈ Ω.
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In order to investigate (2.1), let z(t, ρ) = ∂2xu(t − ρh, 0), which satisfies the transport equation [35]
(see also [28])

(2.2)

 h∂tz(t, ρ) + ∂ρz(t, ρ) = 0, ρ ∈ (0, 1), t > 0,
z(t, 0) = ∂2xu(t, 0), t > 0,
z(0, ρ) = z0(−hρ), ρ ∈ (0, 1).

Next, we consider the Hilbert space H = L2(0, L) × L2(0, 1) equipped with the following inner
product

〈(u1, z1), (u2, z2)〉H =

∫ L

0
u1u2dx+ |β|h

∫ 1

0
z1z2dρ.

Subsequently, one can rewrite (2.1)-(2.2) as follows

(2.3)

{
Ut(t) = AU(t), t > 0,

U(0) = U0 ∈ H,

where

A =

[
−a∂x − b∂3x + ∂5x 0
0 − 1

h∂ρ

]
, U(t) =

[
u(t, ·)
z(t, ·)

]
, U0 =

[
u0(·)
z0(−h(·))

]
and

D(A) = {(u, z) ∈ H5(0, L)×H1(0, 1);u(0) = u(L) = ∂xu(0) = ∂xu(L) = 0,

∂2xu(0) = z(0), ∂2xu(L) = α∂2xu(0) + βz(1)}.
The next result ensures the well-posedness for the problem (2.1).

Proposition 2.1. Assume that the constants α and β satisfy (1.4) and that U0 ∈ H. Then, there
exists a unique mild solution U ∈ C([0,+∞), H) for the system (2.1). Additionally, considering
U0 ∈ D(A), we have a classical solution with the following regularity

U ∈ C([+∞), D(A)) ∩ C1([0,+∞), H).

Proof. As the proof uses standard arguments, only a sketch of it will be provided. Let U = (u, z) ∈
D(A). Then, integrating by parts and using the boundary conditions of (2.1) and (2.2), we obtain

〈AU(t), U(t)〉H =
1

2

(
α2(∂2xu(t, 0))2 + 2αβ∂2xu(t, 0)∂2xu(t− h, 0)

)
+

1

2

(
β2(∂2xu(t− h, 0))2 − (∂2xu(t, 0))2

)
+

1

2

(
−|β|(∂2xu(t− h, 0))2 + |β|(∂2xu(t, 0))2

)
=

1

2
(Mη(t), η(t))R2 ,

(2.4)

where

(2.5) η =

[
∂2xu(t, 0)
∂2xu(t− h, 0))

]
and M =

[
α2 − 1 + |β| αβ
αβ β2 − |β|

]
.

Now, observe that for the Adjoint of A, denoted by A∗, is defined by

A∗ =

[
a∂x + b∂3x − ∂5x 0
0 1

h∂ρ

]
with

D(A∗) = {(ϕ,ψ) ∈ H5(0, L)×H1(0, 1) : ϕ(0) = ϕ(L) = ∂xϕ(0) = ∂xϕ(L) = 0,

ψ(1) =
β

|β|
∂2xϕ(L), ∂2xϕ(0) = α∂2xϕ(L) + |β|ψ(0)}.

Similarly, we have, for V = (ϕ,ψ) ∈ D(A∗), that

〈A∗V, V 〉H =
1

2

[
(α2 − 1 + |β|2)∂2xϕ(L) + 2α|β|∂2xϕ(L)ψ(0) + (|β|2 − |β|)ψ(0)2

]
=

1

2
(M∗η∗, η∗)R2 ,
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where

(2.6) η∗ =

[
∂2xϕ(L)
ψ(0)

]
and M∗ =

[
α2 − 1 + |β| α|β|
α|β| β2 − |β|

]
.

Now, let us check that M and M∗ are negative definite. For this, we will use the following lemma:

Lemma 2.2. Let M = (mij)i,j ∈ M2×2(R) be a symmetric matrix. If m11 < 0 and det(M) > 0,
then M is negative definite.

Proof. It is sufficient to note that for all u = (x y) 6= (0 0) we have

uMu> =m11x
2 + 2xym12 +m22y

2 = m11

(
x+

m12

m11
y

)2

+

(
m11m22 −m2

12

m11

)
y2 < 0,

which completes the proof. �

Now, we are in position to finish the proof. From (2.5), (2.6) and the condition (1.4), we see
that m11 = m∗11 = α2 − 1 + |β| < 0 and

detM = detM∗ = |β|((|β| − 1)2 − α2) > 0,

where M = (mij)i,j∈{1,2} and M∗ = (m∗i,j)i,j∈{1,2}. Therefore, by virtue of Lemma 2.2, it follows

that M and M∗ are negative definite and hence both A and A∗ are dissipative in view of (2.4) and
(2.1).

Finally, since A and A∗ are densely defined closed linear operators and both A and A∗ are
dissipative, one can use semigroups theory of linear operators [29] to claim that A is a generator of
a C0–semigroups of contractions on H, together with the statements of Proposition 2.1. �

Remark 2.3. It is important to point out that considering α = β = 0 or α 6= 0 and β = 0, the well
posedness of (2.1) is easily obtained. Indeed, if α = β = 0, the result follows from [2, Lemma 2.1].
In the case when α 6= 0 and β = 0, we have Au = −a∂x − b∂3xu+ ∂5xu with domain

D(A) = {u ∈ H5(0, L) : u(0) = u(L) = ∂xu(0) = ∂xu(L) = 0, ∂2xu(L) = α∂2xu(0)}.
It may be seen that A∗v = a∂xv + b∂3xv − ∂5xv with domain

D(A∗) = {v ∈ H5(0, L) : v(0) = v(L) = ∂xv(0) = ∂xv(L) = 0, ∂2xv(0) = α∂2xv(L)}
and we easily verifies that

(Au, u)L2(0,L) =
(α2 − 1)

2
(∂2xu(0))2 and (A∗v, v)L2(0,L) =

(α2 − 1)

2
(∂2xv(L))2,

so in this case, it is necessary to take |α| < 1 in order to obtain the well posedness result.

2.2. Regularity estimates: Linear system. In the sequel, let {S(t)}t≥0 be the semigroup of
contractions associated with the operator A. We have some a priori estimates and regularity
estimates for the linear systems (2.1) and (2.2).

Proposition 2.4. Suppose that (1.4) holds. Then, the application

(2.7)
S : H −→ X(QT )× C(0, T ;L2(0, 1))
(u0, z0(−h(·))) 7−→ S(·)(u0, z0(−h(·)))

is well defined and continuous. Moreover, for every (u0(·), z0(−h(·))) ∈ H, we have

(∂2xu(·, 0), z(·, 1)) ∈ L2(0, T )× L2(0, T )

and the following estimates hold

(2.8) ‖∂2xu(·, 0)‖2L2(0,T ) + ‖z(·, 1)‖2L2(0,T ) ≤ C
(
‖u0‖2L2(0,L) + ‖z0(−h(·))‖2L2(0,1)

)
,

(2.9) ‖u0‖2L2(0,L) ≤
1

T
‖u‖2L2(0,T ;L2(0,L)) + ‖∂2xu(·, 0)‖2L2(0,T ),

and

(2.10) ‖z0(−h(·))‖2L2(0,1) ≤ ‖z(T, ·)‖
2
L2(0,1) +

1

h
‖z(·, 1)‖2L2(0,T )
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for some constant C > 0 that may depend of a, b, α, β, L, T and h.

Proof. We split the proof in several steps.

Step 1. Main identities.

For every (u0, z0(−h(·))) ∈ H, the semigroups theory gives that

S(·)(u0, z0(−h(·))) ∈ C(0, T ;H)

and due to the fact that A generates a C0-semigroup of contractions, we have that

(2.11) ‖u(t)‖2L2(0,L) + h|β|‖z(t)‖2L2(0,1) ≤ ‖u0‖
2
L2(0,L) + h|β|‖z0(−h(·))‖2L2(0,1),∀t ∈ [0, T ].

Now, let φ ∈ C∞([0, 1]× [0, T ]), ψ ∈ C∞([0, L]× [0, T ]) and (u, z) ∈ D(A). Then, multiplying (2.2)
by φz and (2.1) by ψu, using integrations by parts and the initial conditions, we have∫ 1

0
[φ(T, ρ)z(T, ρ)2 − φ(0, ρ)z0(−hρ)2]dρ− 1

h

∫ T

0

∫ 1

0
[h∂tφ(t, ρ) + ∂ρφ(t, ρ)]z(t, ρ)2dρdt

+
1

h

∫ T

0
[φ(t, 1)z(t, 1)2 − φ(t, 0)(∂2xu(t, 0))2]dt = 0

(2.12)

and

−
∫ T

0

∫ L

0
[∂tψ(t, x) + a∂xψ(t, x) + b∂3xψ(t, x)− ∂5xψ(t, x)]u2(t, x)dxdt

+ 3b

∫ T

0

∫ L

0
∂xψ(t, x)(∂xu(t, x))2dxdt+

∫ L

0
[ψ(T, x)u2(t, x)− ψ(0, x)u0(x)2]dx

+ 5

∫ T

0

∫ L

0
[∂xψ(t, x)(∂2xu(t, x))2 − ∂3xψ(t, x)(∂xu(t, x))2]dxdt

−
∫ T

0
ψ(t, L)[α∂2xu(t, 0) + βz(t, 1)]2dt+

∫ T

0
ψ(t, 0)(∂2xu(t, 0))2dt = 0.

(2.13)

Step 2. Proof of (2.8).

Let us pick φ(t, ρ) = ρ in (2.12) to get∫ 1

0
(z(T, ρ)2 − z0(−ρh)2)ρdρ− 1

h

∫ T

0

∫ 1

0
z(t, ρ)2dρdt+

1

h

∫ T

0
z(t, 1)2dt = 0.

Owing to (2.11), the latter gives

(2.14) ‖z(·, 1)‖2L2(0,T ) ≤ (T + 1)

(
1 +

1

h|β|

)(
‖u0‖2L2(0,L) + ‖z0(−h(·))‖2L2(0,1)

)
.

Now, choosing ψ(t, x) = 1 in (2.13) yields that∫ L

0
[u2(t, x)− u0(x)2]dx+

∫ T

0
(∂2xu(t, 0))2dt−

∫ T

0
[α∂2xu(t, 0)2 + βz(t, 1)]2dx = 0,

which implies

(2.15)

∫ T

0
(∂2xu(t, 0))2dt ≤

∫ T

0
(α∂2xu(t, 0) + βz(t, 1))2dt+ ‖u0‖2L2(0,L).

Since

(2.16) (α∂2xu(t, 0) + βz(t, 1))2 ≤ (α2 + β2)((∂2xu(t, 0))2 + (z(t, 1))2),

it follows from (2.15) and (2.16) that∫ T

0

(
1− (α2 + β2)

)
(∂2xu(t, 0))2dt ≤

∫ T

0
(α2 + β2)z(t, 1)2dt+ ‖u0‖2L2(0,L).

In view of (2.14) and (1.4), the last estimate yields

(2.17) ‖∂2xu(·, 0)‖2L2(0,T ) ≤ (T + 1)
1

1− (α2 + β2)

(
1 +

1

h|β|

)(
‖u0‖2L2(0,L) + ‖z(−h(·)))‖2L2(0,1)

)
.
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Combining (2.17) and (2.14), the estimate (2.8) follows.

Step 3. The map (2.7) is well-defined and continuous.

Letting ψ(t, x) = x in (2.13) gives

−a
∫ T

0

∫ L

0
u2(t, x)dxdt+ 3b

∫ T

0

∫ L

0
(∂xu(t, x))2dxdt+ 5

∫ T

0

∫ L

0
(∂2xu(t, x))2dxdt

+

∫ L

0
x[u2(t, x)− u0(x)2]dx− L

∫ T

0
[α∂2xu(t, 0) + βz(t, 1)]2dt = 0.

which implies, using (2.11) and (2.16), that

3b

∫ T

0

∫ L

0
(∂xu(t, x))2dxdt+5

∫ T

0

∫ L

0
(∂2xu(t, x))2dxdt ≤ a

(
‖u0‖2L2(0,L) + h|β|‖z0(−h(·))‖2L2(0,1)

)
+ L‖u0‖2L2(0,L) + L(α2 + β2)

(
‖∂2xu(·, 0)‖2L2(0,T ) + ‖z(·, 1)‖2L2(0,T )

)
.

In light of (2.8), we deduce that

‖∂xu‖2L2(0,T ;L2(0,L)) + ‖∂xxu‖2L2(0,T,L2(0,L)) ≤
a

min{3b, 5}
(
‖u0‖2L2(0,L) + h|β|‖z0(−h(·))‖2L2(0,1)

)
+ (T + 1)

2− (α2 + β2)

1− (α2 + β2)

(
1 +

1

h|β|

)
L

min{3b, 5}
(α2 + β2)

×
(
‖u0‖2L2(0,L) + ‖z0(−h(·))‖2L2(0,1)

)
+

L

min{3b, 5}
‖u0‖2L2(0,L)

≤C0(T + 1)
(
‖u0‖2L2(0,L) + ‖z0(−h(·))‖2L2(0,1)

)
,

(2.18)

where

C0 = max

{
a

min{3b, 5}
,

a

min{3b, 5}
|β|h,

(
2− (α2 + β2)

1− (α2 + β2)

(
1 +

1

h|β|

)
L

min{3b, 5}
(α2 + β2)

)}
.

Combining (2.18) and (2.11), we obtain the desired result.

Step 4. Proof of (2.9) and (2.10).

In order to show these inequalities, choose ψ = T − t in (2.13) and φ(t, ρ) = 1 in (2.12),
respectively. Performing similar computations as we did in step 2, the result follows. Moreover,
owing to the density of D(A) in H, the proof of Proposition 2.4 is achieved. �

2.3. Well-posedness: Linear system with a source term. Now we consider the linear system
with a source term

(2.19)


∂tu(t, x) + a∂xu(t, x) + b∂3xu(t, x)− ∂5xu(t, x) = f(t, x), (t, x) ∈ R+ × Ω,
u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = 0, t > 0,
∂2xu(t, L) = α∂2xu(t, 0) + β∂2xu(t− h, 0), t > 0,
∂2xu(t, 0) = z0(t), t > 0,
u(0, x) = u0(x), x ∈ Ω.

Then, we have the following result.

Proposition 2.5. Let |α| and |β| satisfying (1.4). For every (u0, z0) ∈ H and f ∈ L2(0, T ;L2(0, L)),
there exists a unique mild solution (u, ∂2xu(t−h., 0)) ∈ X(QT )×C(0, T ;L2(0, 1)) to (2.19). Moreover,
there exists a constant C > 0 such that

(2.20) ‖(u, z)‖C(0,T ;H) ≤ C
(
‖(u0, z0(−h(·)))‖H + ‖f‖L1(0,T ;L2(0,L))

)
and

(2.21) ‖∂2xu‖2L2(0,T ;L2(0,L)) ≤ C
(
‖(u0, z0(−h(·)))‖2H + ‖f‖2L1(0,T ;L2(0,L))

)
.

Proof. This proof is analogous to that of [3, Proposition 2] and hence we omit it. �
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2.4. Well-posedness of the nonlinear system (1.2)-(1.3). Let us now prove that the system
(1.2)-(1.3) is well-posed. To do so, we first deal with the properties of the nonlinearities, through
the following lemma.

Lemma 2.6. Let u ∈ L2(0, T ;H2(0, L)) = L2(H2). Then, u∂xu and u2∂xu belong to L1(0, T ;L2(0, L)).
Besides, there exists positives constants C0 and C1, depending of L, such that for every u, v ∈
L2(0, T ;H2(0, L)), one has

(2.22)

∫ T

0
‖u1∂xu1 − u2∂xu2‖L2(0,L)dt ≤ C0(‖u1‖L2(H2) + ‖u2‖L2(H2))‖u1 − u2‖L2(H2)

and

(2.23)

∫ T

0
‖u21∂xu1 − u22∂xu2‖L2(0,L)dt ≤ C0(1 + T

1
2 )
(
‖u‖2X(QT )

+ ‖v‖2X(QT )

)
‖u− v‖X(QT ).

Proof. Observe that (2.22) follows from [34, Lemma 2.1, p. 106]. Concerning (2.23), note that

sup
x∈(0,L)

|u(x)2| ≤ ‖u‖2L2(0,L) + ‖u‖L2(0,L)‖∂xu‖L2(0,L),

for u ∈ H1(0, L). As we have that H2(0, L) ↪→ H1(0, L) ↪→ L2(0, L), we get that

(2.24) z2(x)− z2(0) =

∫ x

0
(z2(s))′ds =

∫ x

0
2z(s)z′(s)ds ≤ 2‖z‖L2(0,L)‖z′‖L2(0,L),

for u, v ∈ L2(0, T ;H2(0, L)). Consequently, in light of (2.24), we obtain

(2.25) ‖z‖2L∞(0,L) ≤ 2‖z‖L2(0,L)‖z′‖L2(0,L).

Let u, z ∈ X(QT ). We have

‖u2(∂xu− ∂xv)‖L1(0,T ;L2(0,L)) =

∫ T

0
‖u(t, ·)‖2L∞(0,L)‖(∂xu− ∂xv)(t, ·)‖L2(0,L)dt

≤ T
1
2 ‖u‖2L∞(0,T ;L2(0,L))‖u− v‖L2(0,T ;H2(0,L))

+ ‖u‖L∞(0,T ;L2(0,L))‖u‖L2(0,T ;H2(0,L))‖u− v‖L2(0,T ;H2(0,L)).

On the other hand, we have

‖(u2 − v2)∂xv‖L1(0,T ;L2(0,L)) =

∫ T

0

(∫ L

0
|u+ v|2|u− v|2|∂xv|2dx

) 1
2

dt

≤
∫ T

0

(
‖(u+ v)(t, ·)‖2L∞(0,L)‖(u− v)(t, ·)‖2L∞(0,L)

∫ L

0
|∂xv|2dx

) 1
2

dt

=

∫ T

0
‖(u+ v)(t, ·)‖L∞(0,L)‖(u− v)(t, ·)‖L∞(0,L)‖∂xv(t, ·)‖L2(0,L)dt.

Now, observe that

‖(u+ v)(t, ·)‖L∞(0,L)‖(u− v)(t, ·)‖L∞(0,L) ≤(
‖(u+ v)(t, ·)‖L2(0,L) + ‖(u+ v)(t, ·)‖

1
2

L2(0,L)
‖(∂xu+ ∂xv)(t, ·)‖

1
2

L2(0,L)

)
×
(
‖(u− v)(t, ·)‖L2(0,L) + ‖(u− v)(t, ·)‖

1
2

L2(0,L)
‖(∂xu− ∂xv)(t, ·)‖

1
2

L2(0,L)

)
≤‖(u+ v)(t, ·)‖L2(0,L)‖(u− v)(t, ·)‖L2(0,L) + ‖(u+ v)(t, ·)‖L2(0,L)‖(u− v)(t, ·)‖L2(0,L)

+ ‖(u+ v)(t, ·)‖L2(0,L)‖(∂xu− ∂xv)(t, ·)‖L2(0,L) + ‖(u− v)(t, ·)‖L2(0,L)‖(u+ v)(t, ·)‖L2(0,L)

+ ‖(u− v)(t, ·)‖L2(0,L)‖(∂xu+ ∂xv)(t, ·)‖L2(0,L) + ‖(u+ v)(t, ·)‖L2(0,L)‖(∂xu− ∂xv)(t, ·)‖L2(0,L)

+ ‖(∂xu+ ∂xv)(t, ·)‖L2(0,L)‖(u− v)(t, ·)‖L2(0,L).
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Hence

‖u2∂xu− v2∂xv‖L1(0,T ;L2(0,L)) ≤ (1 + T
1
2 )
(
‖u‖2X(QT )

+ ‖v‖2X(QT )

)
‖u− v‖X(QT ),

and thus (2.23) is proved. �

Finally, combining the previous lemma with the Proposition 2.5, with a classical fixed-point
argument (see, for instance, [2]), we can obtain the following well-posedness result.

Theorem 2.7. Let L > 0, a, b > 0 and α, β ∈ R satisfying (1.4). Assume p ∈ [1, 2] and h > 0.
If u0 ∈ L2(0, L) and z0 ∈ L2(0, 1) are sufficient small, then the system (1.2)-(1.3) admits a unique
solution u ∈ X(QT ).

3. A stabilization result via Lyapunov approach

The aim of this part of the work is to prove our first main result presented in Theorem 1.1.
Precisely, we will prove the case p = 2, that is, when the nonlinearity takes the form u2∂xu. The
case u∂xu can be shown in a similar way, therefore, we will omit its proof.

Proof of Theorem 1.1. First, we choose the following Lyapunov functional

V (t) = E(t) + µ1V1(t) + µ2V2(t).

Here µ1, µ2 ∈ (0, 1), V1 is defined by

(3.1) V1(t) =

∫ L

0
xu2(t, x)dx

and V2 is defined by

V2(t) = h

∫ 1

0
(1− ρ)(∂2xu(t− hρ, 0))2dρ,

for any regular solution of (1.2)-(1.3). Clearly, we have the following

(3.2) E(t) ≤ V (t),

for all t ≥ 0. On the other hand, we have

µ1V1(t) + µ2V2(t) =µ1

∫ L

0
xu2(t, x)dx+ hµ2

∫ 1

0
(1− ρ)(∂2xu(t− hρ, 0))2dρ

≤µ1L
∫ L

0
u2(t, x)dx+ µ2

h

|β|
|β|
∫ 1

0
(1− ρ)(∂2xu(t− hρ, 0))2dρ

≤max

{
µ1L,

µ2
|β|

}
E(t),

that is,

(3.3) E(t) ≤ V (t) ≤
(

1 + max

{
µ1L,

µ2
|β|

})
E(t),

for all t ≥ 0.
Now, consider a sufficiently regular solution u of (1.2)-(1.3). Differentiating V1(t), using integration

by parts and the boundary condition of (1.2)-(1.3), it follows that

d

dt
V1(t) =− 2

∫ L

0
xu(t, x)

[
a∂xu+ b∂3xu− ∂5xu+ u2∂xu

]
(t, x)dx

=a

∫ L

0
u2(t, x)dx− 3b

∫ L

0
(∂xu(t, x))2dx− 5

∫ L

0
(∂2xu(t, x))2dx+

1

2

∫ L

0
u4(t, x)dx

+ L

[
α2(∂2xu(t, 0))2 + 2αβ∂2xu(t, 0)∂2xu(t− h, 0) + β2(∂2xu(t− h, 0))2

]
.

(3.4)
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Similarly, in view of (2.2), we have

d

dt
V2(t) =2h

∫ 1

0
(1− ρ)∂2xu(t− ρh, 0)

d

dt
∂2xu(t− ρh, 0)dρ

=∂2xu(t, 0)2 −
∫ 1

0
(∂2xu(t− ρh, 0))2dρ.

(3.5)

Consequently, (3.4) and (3.5) imply that for any λ > 0

d

dt
V (t) + 2λV (t) =

(
α2 − 1 + |β|+ Lµ1α

2 + µ2

)
(∂2xu(t, 0))2 +

(
β2 − |β|+ Lµ1β

2

)
(∂2xu(t− h, 0))2

+ 2αβ

(
1 + Lµ1

)
∂2xu(t, 0)∂2xu(t− h, 0) + (2λh|β| − µ2)

∫ 1

0
(∂2xu(t− ρh, 0))2dρ

+ 2λµ2h

∫ 1

0
(1− ρ)(∂2xu(t− ρh, 0))2dρ+ 2λµ1

∫ L

0
xu2(t, x)dx+

µ1
2

∫ L

0
u4(t, x)dx

+ (µ1a+ 2λ)

∫ L

0
u2(t, x)dx− 3bµ1

∫ L

0
(∂xu(t, x))2dx− 5µ1

∫ L

0
(∂2xu(t, x))2dx,

or equivalently, by reorganizing the terms

d

dt
V (t) + 2λV (t) ≤

(
Mµ2
µ1 η(t), η(t)

)
R2 − 3bµ1

∫ L

0
(∂xu(t, x))2dx− 5µ1

∫ L

0
(∂2xu(t, x))2dx

+
(
2λh(µ2 + |β|)− µ2

) ∫ 1

0
(∂2xu(t− ρh, 0))2dρ

+
(
µ1a+ 2λ(1 + Lµ1)

) ∫ L

0
u2(t, x)dx+

µ1
2

∫ L

0
u4(t, x)dx,

(3.6)

where η(t) = (∂2xu(t, 0), ∂2xu(t− h, 0)) and

Mµ2
µ1 =

[
(1 + Lµ1)α

2 − 1 + |β|+ µ2 αβ(1 + Lµ1)
αβ(1 + Lµ1) β2 − |β|+ Lµ1β

2

]
.

Observe that

Mµ2
µ1 = M + Lµ1

[
α2 αβ
αβ β2

]
+ µ2

[
1 0
0 0

]
,

where M is defined by (2.5). Since M is negative definite (see the proof of Proposition 2.1 and by
virtue of the continuity of the determinant and the trace, one can claim that for µ1 and µ2 > 0 small
enough, the matric Mµ2

µ1 can also be made negative definite.
Finally, taking into account µ1 and µ2 > 0 are small enough and using Poincaré inequality2, we

find

d

dt
V (t) + 2λV (t) ≤

(
2λh(µ2 + |β|)− µ2

) ∫ 1

0
(∂2xu(t− ρh, 0))2dρ

− 5µ1

∫ L

0
(∂2xu(t, x))2dx+

µ1
2

∫ L

0
u4(t, x)dx

+

(
L2

π2
(µ1a+ 2λ(1 + Lµ1))− 3bµ1

)∫ L

0
(∂xu

2(t, x))2dx.

(3.7)

2‖u‖2L2(0,L) ≤
L2

π2 ‖∂xu‖L2(0,L) for u ∈ H2
0 (0, L).
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Additionally, applying Cauchy-Schwarz inequality and using the facts that the energy E defined by
(1.5) is nonincreasing, together with H1

0 (0, L) ↪→ L∞(0, L), we have

µ1
2

∫ L

0
u4(t, x)dx ≤µ1

2
‖u(t, ·)‖2L∞(0,L)

∫ L

0
u2(t, x)dx

≤µ1
2
L‖∂xu(t, ·)‖2L2(0,L)‖u(t, x)‖2L2(0,L)

≤Lµ1
2

(
‖u0‖2L2(0,L) + h|β|‖z0(−h(·))‖2L2(0,1)

)
‖∂xu(t, ·)‖2L2(0,L)

≤Lµ1
2
‖(u0, z0)‖2H‖∂xu(t, ·)‖2L2(0,L) ≤ r

2Lµ1
2
‖∂xu(t, ·)‖2L2(0,L).

(3.8)

Combining (3.7) and (3.8) yields

(3.9)
d

dt
V (t) + 2λV (t) ≤ Ξ‖∂2xu(t, x)‖2L2(0,L) +

(
2λh(µ2 + |β|)− µ2

)
‖∂2xu(t− ρh, 0)‖2L2(0,1),

where

Ξ =
Lµ1

2
r2 +

L2

π2
(
µ1a+ 2λ(1 + Lµ1)

)
− 3bµ1.

In view of the constraint (1.7) on the length L, one can choose r small enough to get

0 < r <
2

π

√
3bπ2 − L2a

L
.

Then, we pick λ > 0 such that (1.9) holds to ensure that

(3.10)
d

dt
V (t) + 2λV (t) ≤ 0,

for all t > 0. Therefore, integrating (3.10) over (0, t), and thanks to (3.2) and (3.3), yields that

(3.11) E(t) ≤
(

1 + max

{
µ1L,

µ2
|β|

})
E(0)e−2λt,

for all t > 0, which completes the proof. �

4. Second stability result via compactness-uniqueness argument

The second part of this manuscript is devoted to the proof of another stability result of (1.2)-
(1.3) stated in Theorem 1.2. To be more precise, we shall show a generic exponential stability result
of the solutions to (1.2)-(1.3) by attempting to study the critical set phenomenon of the system.

4.1. Stability of the linear system. We first prove that the following observability inequality
ensures that the linear system (2.1) is exponentially stable.

Proposition 4.1. Assume that α and β satisfies (1.4) and L > 0. Thus, there exists a constant
C > 0, such that for all (u0, z0) ∈ H∫ L

0
u20(x)dx+ |β|h

∫ 1

0
z20(−hρ)dρ |≤ C

∫ T

0

(
(∂2xu(0, t))2 + z2(1, t)

)
dt(4.1)

where (u, z) = S(.) (u0, z0(−h·)) is the solution of the system (2.1)-(2.2).

Indeed, if (4.1) is true, we get

E(T )− E(0) ≤ −E(0)

C
⇒ E(T ) ≤ E(0)− E(0)

C
≤ E(0)− E(T )

C
,

where E(t) is defined by (1.5). Thus,

(4.2) E(T ) ≤ γE(0), where γ =
C

1 + C
< 1.

Now, the same argument used on the interval [(m− 1)T,mT ] for m = 1, 2, . . ., yields that

E(mT ) ≤ γE((m− 1)T ) ≤ · · · ≤ γmE(0).
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Thus, we have

E(mT ) ≤ e−νmTE(0) with ν =
1

T
ln

(
1 +

1

C

)
> 0.

For an arbitrary positive t, there exists m ∈ N∗ such that (m − 1)T < t ≤ mT , and by the non-
increasing property of the energy, we conclude that

E(t) ≤ E((m− 1)T ) ≤ e−ν(m−1)TE(0) ≤ 1

γ
e−νtE(0),

showing the exponential stability result for the linear system.
For sake of clarity, the proof of Proposition 4.1 will be achieved by steps.

Step 1: Compactness-uniqueness argument

We argue by contradiction. Suppose that (4.1) does not hold and hence there exists a sequence
((un0 , z

n
0 (−h·)))n ⊂ H such that

(4.3)

∫ L

0
(un0 )2 (x)dx+ |β|h

∫ 1

0
(zn0 )2 (−hρ)dρ = 1

and

(4.4)
∥∥∂2xun(0, .)

∥∥2
L2(0,T )

+ ‖zn(1, .)‖2L2(0,T ) → 0 as n→ +∞,

where (un, zn) = S (un0 , z
n
0 (−h·)).

Owing to Proposition 2.1, (un)n is a bounded sequence in L2
(
0, T,H2(0, L)

)
, and consequently

∂tu
n = −∂xun − ∂3xun + ∂5xu is bounded in L2

(
0, T,H−3(0, L)

)
.

Thanks to a result of [31], (un)n is relatively compact in L2
(
0, T, L2(0, L)

)
and we may assume that

(un)n is convergent in L2
(
0, T, L2(0, L)

)
. Moreover, using (2.9) and (4.4), we have that (un0 )n is a

Cauchy sequence in L2(0, L).

Claim 1. If T > h, then (zn0 (−h·))n is a Cauchy sequence in L2(0, 1).

In fact, since zn(ρ, T ) = unxx(0, T − ρh), if T > h, we have∫ 1

0
(zn(ρ, T ))2 dρ =

∫ 1

0

(
∂2xu

n(0, T − ρh)
)2
dρ ≤ 1

h

∫ T

0

(
∂2xu

n(0, t)
)2
dt.

Using (2.10), for T > h yields that

‖zn0 (−h·)‖2L2(0,1) ≤
1

h

∥∥∂2xun(0, ·)
∥∥2
L2(0,T )

+
1

h
‖zn(1, ·)‖2L2(0,T ) .

Thus, (zn0 (−h·))n is a Cauchy sequence in L2(0, 1) by means of (4.4) and hence the Claim 1 is
ascertained.

Now, let us pick (u0, z0(−h·)) = limn→∞ (un0 , z
n
0 (−h·)) in H. This, together with (4.3), yields

that ∫ L

0
u20(x)dx+ |β|h

∫ 1

0
z20(−hρ)dρ = 1.

Furthermore, let (u, z) = S(·) (u0, z0(−h·)) , which implies, thanks to Proposition 2.1, that(
∂2xu(0, ·), z(1, ·)

)
= lim

n→∞

(
∂2xu

n(0, ·), zn(1, ·)
)

in L2(0, T ). Combining the latter with (4.4) gives
(
∂2xu(0, ·), z(1, .)

)
= 0. As we have z(1, t) =

∂2xu(0, t− h) = 0, we deduce that z0 = 0 and z = 0. Consequently u is solution of

(4.5)


∂tu− ∂xu+ ∂3xu− ∂5xu = 0, x ∈ (0, L), t > 0

u(0, t) = u(L, t) = ∂xu(L, t) = ∂xu(0, t) = ∂2xu(L, t) = ∂2xu(0, t) = 0, t > 0

u(x, 0) = u0(x), x ∈ (0, L)

with

(4.6) ‖u0‖L2(0,L) = 1.
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Step 2: Reduction to a spectral problem

Lemma 4.2. For any T > 0, let NT denote the space of the initial state u0 ∈ L2(0, L), such that
the solution of the Kawahara system u(t) = S(t)u0 satisfies (4.5). Then, NT = {0}.

Proof. We argue as in [30, Theorem 3.7]. If NT 6= {0}, then the map u0 ∈ CNT → A (NT ) ⊂ CNT

(CNT denotes the complexification of NT ) has (at least) one eigenvalue. Hence, there exists a pair
(λ, u0) ∈ C×H5(0, L)\{0} such that{

λu0 + u′0 + u′′′0 − u′′′′′0 = 0, in (0, L),

u0(0) = u0(L) = u′0(0) = u′0(L) = u′′0(0) = u′′0(L) = 0.

To obtain the contradiction, it remains to prove that such a pair (λ, u0) does not exist. This will be
done in the next step. �

Step 3: Möbius transformation

To simplify the notation, henceforth we denote u0 := u. Moreover, the notation {0, L} means
that the function is applied to 0 and L, respectively.

Lemma 4.3. Let L > 0 and consider the assertion

(N ) : ∃λ ∈ C,∃u ∈ H2
0 (0, L) ∩H5(0, L) such that

{
λu+ u′ + u′′′ − u′′′′′ = 0, on (0, L),

u(x) = u′(x) = u′′(x) = 0, in {0, L}.

If (λ, u) ∈ C×H2
0 (0, L) ∩H5(0, L) is solution of (N ), then u = 0.

Proof. Consider the following system

(4.7)

{
λu+ u′ + u′′′ − u′′′′′ = 0, on (0, L),

u(x) = u′(x) = u′′(x) = 0, in {0, L}.

Multiplying the equation (4.7) by u and integrating in [0, L], we have that λ is purely imaginary, i.e.,
λ = ir, for r ∈ R. Now, extending the function u to R by setting u = 0 for x 6∈ [0, L], we have that
the extended function satisfies

λu+ u′ + u′′′ − u′′′′′ = −u′′′′(0)δ
′
0 + u′′′′(L)δ

′
L − u′′′(0)δ0 + u′′′(L)δL,

in S ′(R), where δζ denotes the Dirac measure at x = ζ and the derivatives u′′′′(0), u′′′′(L), u′′′(0) and
u′′′(L) are those of the function u when restricted to [0, L]. Taking the Fourier transform of each
term in the above system and integrating by parts, we obtain

λû(ξ) + iξû(ξ) + (iξ)3û(ξ)− (iξ)5û(ξ) = −(iξ)u′′′(0) + (iξ)u′′′(L)e−iLξ − u′′′′(0) + u′′′′(L)e−iLξ.

Take λ = −ir and let fα(ξ, L) = iû(ξ). The latter gives

fα(ξ, L) =
Nα(ξ, L)

q(ξ)
,

where Nα(·, L) is defined by

(4.8) Nα(ξ, L) = α1iξ − α2iξe
−iξL + α3 − α4e

−iξL

and

q(ξ) = ξ5 + ξ3 − ξ + r,

where αi, for i = 1, 2, 3, 4, are the traces of u′′′ and u′′′′.
For each r ∈ R and α ∈ C4 \ {0}, let Fαr be the set of L > 0 values, for which the function

fα(·, L) is entire. Now, let us recall the equivalent following statements:

A1. fα(·, L) is entire;
A2. all zeros, taking the respective multiplicities into account, of the polynomial q are zeros of

Nα(·, L);
A3. the maximal domain of fα(·, L) is C.
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Whereupon, the function fα(·, L) is entire, due to the equivalence between statement A1 and A2, if
the following holds

α1iξi + α3

α2iξi + α4
= e−iLξi ,

where ξi denotes the zeros of q(ξ), for i = 1, 2, 3, 4, 5. Thereafter, let us define, for α ∈ C4 \ {0}, the
following discriminant

(4.9) d(α) = α1α3 − α2α4.

Then, for α ∈ C4 \ {0}, such that d(α) 6= 0 the Möbius transformations can be introduced by

(4.10) M(ξi) = e−iLξi ,

for each zero ξi of the polynomial q(ξ).

The next claim describes the behavior of the roots of polynomial q(·):
Claim 2. The polynomial q(·) has exactly one real root with multiplicity 1 and two pairs of complex
conjugate roots.

Indeed, we suppose that r 6= 0 (the case r = 0 will be discussed later). Note that the derivative
of q is given by

q′(ξ) = 5ξ4 + 3ξ2 − 1,

and its zeros are ±z1 and ±z2, where

z1 =

√
−3−

√
29

10
and z2 =

√
−3 +

√
29

10
.

It is easy to see that z1 belongs to C \ R and z2 belongs to R. Hence, the polynomial q(·) does not
have critical points, which means that q(·) has exactly one real root. Suppose that ξ0 ∈ R is the root
of q(·) with multiplicity m ≤ 5. Consequently,

q(ξ0) = q′(ξ0) = ... = q(m−1)(ξ0) = 0.

Consider the following cases:

(i) If ξ0 has multiplicity 5, it follows that q(ξ0) = 0 and q′′′′(ξ0) = −120ξ0 = 0, implying that
ξ0 = 0 and r = 0.

(ii) If ξ0 has multiplicity 4, it follows that q′′′(ξ0) = 60ξ20 + 6 = 0 and thus ξ0 ∈ iR.
(iii) If ξ0 has multiplicity 3, it follows that q(ξ0) = 0 and q′′(ξ0) = 20ξ30 +6ξ0 = 0 and hence ξ0 = 0

and r = 0 or ξ0 ∈ iR.
(iv) If ξ0 has multiplicity 2, it follows that q′(ξ0) = 5ξ40 + 3ξ2 − 1 = 0, implying that ξ0 ∈ C \ R.

Note that in all cases, since r 6= 0 and ξ0 ∈ R, we get a contradiction. Consequently, q(·) has
exactly one real root, with multiplicity 1. This means that this polynomial has two pairs of complex
conjugate roots.

Now, we assume that r = 0. Then, we obtain that q(ξ) = ξ(ξ4 + ξ2 − 1), whose roots are 0,±ρ
and ±k where

(4.11) ρ =

√√
5− 1

2
and k = i

√
1 +
√

5

2

Thus, q(·) has two pairs of complex conjugate roots and three real roots, proving Claim 2.
Further to Claim 2, and in order to conclude the proof of Lemma 4.3, we need two additional

lemmas whose proofs are given in [19] (see Lemmas 2.1 and 2.2).

Lemma 4.4. Let non null α ∈ C4 with d(α) = 0 and L > 0 for d(α) defined in (4.9). Then, the set
of the imaginary parts of the zeros of Nα(·, L) in (4.8) has at most two elements.

Lemma 4.5. For any L > 0, there is no Möbius transformation M , such that

M(ξ) = e−iLξ, ξ ∈ {ξ1, ξ2, ξ̄1, ξ̄2},

with ξ1, ξ2, ξ̄1, ξ̄2 all distinct in C.
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We are now in position to prove the Lemma 4.3. Let us consider two cases:

i. d(α) 6= 0;
ii. d(α) = 0,

where d(α) was defined in (4.9).
First, supposing that d(α) 6= 0, we are able to define the Möbius transformation. In fact,

suppose by contradiction that there exists L > 0 such that the function fa(·, L) is entire. Then, all
roots of the polynomial q(·) must satisfy (4.10), i.e., there exists a Möbius transformation that takes
each root ξ0 of q(·) into e−iLξ0 . However, this contradicts Lemma 4.5 and proves that if (N ) holds
then Fαr = ∅ for all r ∈ R. On the other hand, suppose that d(α) = 0 and note that by using the
claim 2, we can conclude that the set of the imaginary parts of the polynomial q(·) has at least three
elements, thus it follows from Lemma 4.4 that Fαr = ∅ for all r ∈ R. Note that in both cases, we
have that Fαr = ∅, which implies that (N ) only has the trivial solution for any L > 0, and the proof
of Lemma 4.3 is archived. �

Proof of Proposition 4.1. Notice that (4.6) implies that the solution u can not be identically zero.
However, from Lemma 4.2, one can conclude that u = 0, which drives us to a contradiction. �

4.2. Proof of Theorem 1.2. Let us consider the nonlinear Kawahara system (1.2)-(1.3). Consider
‖(u0, z0)‖H ≤ r, where r will be chosen later. The solution u of (1.2)-(1.3), with p = 2, can be
written as u = u1 + u2, where u1 is the solution of

∂tu1 − ∂5xu1 + ∂3xu1 + ∂xu1 = 0, x ∈ (0, L), t > 0

u1(0, t) = u1(L, t) = ∂xu1(0, t) = ∂xu1(L, t) = 0, t > 0

∂2xu1(L, t) = α∂2xu1(0, t) + β∂2xu1(0, t− h), t > 0

∂2xu1(0, t) = z0(t), t ∈ (−h, 0)

u1(x, 0) = u0(x), x ∈ (0, L),

and u2 is solution of

∂tu2 − ∂5xu2 + ∂2xu2 + ∂xu2 = −u2∂xu, x ∈ (0, L), t > 0

u2(0, t) = u2(L,

∂2xu2(L, t) = α∂2xu2(0, t) + β∂2xu2(0, t− h), t ∈ (−h, 0)

∂2xu2(0, t) = 0, x ∈ (0, L),

u2(x, 0) = 0, x ∈ (0, L),

Note that, in this case, u1 is the solution of (2.1)-(2.2) with the initial data (u0, z0) ∈ H and u2 is
solution of (2.19) with null data and right-hand side f = u2∂xu ∈ L1(0, T ;L2(0, L)), as in Lemma
2.6.

Now, thanks to (4.2), Proposition 2.5 and Lemma 2.6, we have that

‖(u(T ), z(T ))‖H ≤
∥∥(u1(T ), z1(T )

)∥∥
H

+
∥∥(u2(T ), z2(T )

)∥∥
H

≤γ ‖(u0, z0(−h·))‖H + C ‖upux‖L1(0,T,L2(0,L))

≤γ ‖(u0, z0(−h·))‖H + C‖u‖2L2(0,T,H2(0,L)),

(4.12)

with γ ∈ (0, 1). The goal now is to deal with the lest term of the previous inequality. To this end, we
use the multipliers method. First, we multiply the first equation of (1.2)-(1.3) by xu and integrate
by parts to obtain

1

2

∫ L

0
x|u(x, T )|2dx+

3

2

∫ T

0

∫ L

0
|∂xu(x, t)|2 dxdt+

5

2

∫ T

0

∫ L

0

∣∣∂2xu(x, t)
∣∣2 dxdt

=
1

2

∫ T

0

∫ L

0
|u(x, t)|2dxdt+

L

2

∫ T

0
(∂2xu(L, t))2dt+

1

2

∫ L

0
x |u0(x)|2 dx+

1

4

∫ T

0

∫ L

0
|u|4 dxdt.
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Consequently, using the boundary condition of (1.2)-(1.3) and (1.5), we get∫ T

0

∫ L

0
|∂xu(x, t)|2 dxdt+

∫ T

0

∫ L

0

∣∣∂2xu(x, t)
∣∣2 dxdt ≤ (T + L) ‖(u0, z0)‖2H

+ L

∫ T

0
(α∂2xu(0, t) + βz(1, t))2dt+

1

2

∫ T

0

∫ L

0
|u|4 dxdt.

Note that Gagliardo–Nirenberg inequality ensures that∫ T

0

∫ L

0
u4dxdt ≤C

∫ T

0
‖u‖3L2(0,L) ‖ux‖L2(0,L) dt

≤C 1

2ε

∫ T

0
‖u‖6L2(0,L)dt+ C

ε

2

∫ T

0
‖ux‖2L2(0,L) dt

≤C(T )
1

2ε
‖u‖6L∞(0,T ;L2(0,L)) + C

ε

2
‖u‖2L2(0,T ;H2(0,L))

≤C(T )
1

2ε
‖(u0, z0)‖6H + C

ε

2
‖u‖2L2(0,T ;H2(0,L)).

Putting together the previous inequalities we have∫ T

0

∫ L

0
|∂xu(x, t)|2 dxdt+

∫ T

0

∫ L

0

∣∣∂2xu(x, t)
∣∣2 dxdt ≤ (T + L) ‖(u0, z0)‖2H

+ L

∫ T

0
(α∂2xu(0, t) + βz(1, t))2dt+ C(T )

1

2ε
‖(u0, z0)‖6H + C

ε

2
‖u‖2L2(0,T ;H2(0,L)).

(4.13)

Now, multiplying the first equation of (1.2) by u and integrating by parts yields that∫ L

0
u2(x, T )dx−

∫ L

0
u20(x)dx−

∫ T

0
(αuxx(0, t) + βz(1, t))2 dt+

∫ T

0
u2x(0, t)dt = 0

Using the same idea as in the proof of (2.8), we have that∫ T

0
(∂2xu)2(0, t)dt+

∫ T

0
z2(1, t)dt ≤ C ‖(u0, z0)‖2H .

Consequently, the previous inequality gives∫ T

0

(
α∂2xu(0, t) + βz(1, t)

)2
dt ≤ 2C

(
α2 + β2

)
‖(u0, z0)‖2H .

Thus, putting the previous inequality in (4.13), and choosing ε > 0 sufficiently small, there exists
C > 0 such that

(4.14) ‖u‖2L2(0,T ;H2(0,L)) ≤ C
(
‖(u0, z0)‖2H + ‖(u0, z0)‖6H

)
.

Finally, gathering (4.12) and (4.14), there exists C > 0 such that the following holds true

‖(u(T ), z(T ))‖H ≤ ‖(u0, z0)‖H
(
γ + C ‖(u0, z0)‖H + C ‖(u0, z0)‖5H

)
,

which implies

‖(u(T ), z(T ))‖H ≤ ‖(u0, z0)‖H
(
γ + Cr + Cr5

)
.

Given ε > 0 small enough such that γ + ε < 1, we can take r small enough such that r + r5 < ε
C , in

order to have

‖(u(T ), z(T ))‖H ≤ (γ + ε) ‖(u0, z0)‖H ,

with γ + ε < 1. Theorem 1.2 follows using the semigroup property as in (4.2). �
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5. Further comments and open problems

Our work presents a further step after the work [2] for a better understanding of the stabilization
problem for the Kawahara equation. Indeed, a boundary time-delayed damping control is proposed
to stabilize the equation in contrast to [2], where an interior damping is required and no delay is
taken into consideration. We conclude our paper with a few comments and also some open problems.

Remark 5.1. In what concerns our main results, Theorems 1.1 and 1.2, the following remarks are
worth mentioning:

• Note that the rate λ of the Theorem 1.1 decreases as the delay h increases, since we have the
restriction (1.9).
• A simple calculation shows that taking µ1, µ2 ∈ (0, 1) in Theorem 1.1 such that

µ2 < min

{
1− |β| − α2,

(|β| − 1)2 − α2

1− |β|
,
α2 − β2 + |β|

|β|

}
and

µ1 < min

{
1− |β| − µ2 − α2

Lα2
,
(|β| − 1)2 − α2 − µ2(1− |β|)
L(α2 − β2 + |β|(1− µ2))

}
implies that Mµ2

µ1 is negative definite.
• Note that the presence of the nonlinearity on the equation yields the restriction about the

initial data. Hence, if we remove it, that is, by considering the linear system, it is possible to
obtain the same result of the Theorem 1.1, with the same process. Nevertheless, the decay
rate λ is given by

(5.1) λ ≤ min

{
µ2

2h(µ2 + |β|)
,

3bπ2 − L2a

2L2(1 + Lµ1)

}
.

• For sake of simplicity, we only considered in this article the nonlinearity u2ux. However,
Theorems 1.1 and 1.2 are still valid for upux, p ∈ [1, 2), where the proof is very similar and
hence omitted.
• Recently, Zhou [36] proved the well-posedness of the following initial boundary value problem

(5.2)


∂tu− ∂5xu = c1u∂xuu+ c2u

2∂xu+ b1∂xu∂
2
xu+ b2u∂

3
xu, x ∈ (0, L), t ∈ R+,

u(t, 0) = h1(t), u(t, L) = h2(t), ∂xu(t, 0) = h3(t), t ∈ R+,
∂xu(t, L) = h4(t), ∂2xu(t, L) = h(t), t ∈ R+,
u(0, x) = u0(x), x ∈ (0, L),

Thus, due to this result, when we consider b1 = b2 = 0 and the combination c1u∂xu+c2u
2∂xu

instead of up∂xu, for p ∈ [1, 2], in (1.2), the main results of our article remains valid.
• We point out that considering a = 0 in (1.2), Theorem 1.1 holds true. Additionally, no

restriction is necessary in the length L > 0, and also Theorem 1.2 is still verified (see, for
instance, [5, 34]).

5.1. Open problems. Based on the outcomes of this paper on the dispersive Kawahara equation,
some interesting open problems appear.

5.1.1. Restriction in the Lyapunov approach. Observe that in our first result, Theorem 1.1, due the
fact that the result is based on the appropriate choice of Lyapunov functional, we have a restriction
(1.7) on the length L. This is due to the choice of the Morawetz multipliers x in the expression of
V1 defined by (3.1). Therefore, the following natural question arises.

Question A: Can we choose another Lyapunov functional, instead of the previous one to remove
the restriction over L?
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5.1.2. Critical set. As observed in [2], considering the following initial boundary value problem for
Kawahara equation

(5.3)


ut − ux + uxxx − uxxxxx = 0, x ∈ (0, L), t > 0

u(0, t) = u(L, t) = ux(L, t) = ux(0, t) = uxx(L, t) = 0, t > 0,

u(x, 0) = u0(x), x ∈ (0, L),

it is possible to construct a nontrivial steady-state solution to (5.3) with a non-zero initial datum
u0(x) 6≡ 0 and homogeneous boundary conditions upon the endpoints of the interval with a critical
length. Precisely, when the authors considered the following constants

a =

√√
5 + 1/2, b =

√√
5− 1/2, A = C2 + C3, B = C2 − C3

C2 = 1− e−aL, C3 = eaL − 1, C1 = −
(

1 +
a2

b2

)
A, C4 =

a2

b2
A, C5 = −a

b
B,

they were able to define the set

N =

{
L > 0 : eibL =

(
C4 + iC5

|C4 + iC5|

)2
}
⊂ R+

and

u(x) = C1 + C2e
ax + C3e

−ax + C4 cos(bx) + C5 sin(bx) 6≡ 0, x ∈ (0, L).

If L ∈ N , then u = u(x) solves −u′′′′′ + u′′′ + u′ = 0, and satisfies u(0) = u′(0) = u′′(0) = u(L) =
u′(L) = u′′(L) = 0.

So, in our context, if we consider a function Nα : C × (0,∞) → C, with α ∈ C4 \ {0}, whose
restriction Nα(·, L), given by (1.10), is entire for each L > 0 and a family of functions fα(·, L), defined
by (1.11), in its maximal domain, the following issue appears.

Question B: Is it possible to find a ∈ C4 \ {0} such that the function fa(·, L) is an entire function?

Note that the proof of Theorem 1.2 heavily relies on a unique continuation property of the
spectral problem associated with the space operator (see Lemma 4.3). However, due the structure of
the terms ∂3x and ∂5x (see Lemma 4.3), we are unable to study the spectral problem in a direct way
as in [30]. Hence, due of these two different dispersions third and fifth order, we believe that a new
approach is needed to tackle the previous open question.
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[3] L. Baudouin, E. Crépeau, J. Valein. Two approaches for the stabilization of nonlinear KdV equation with boundary
time-delay feedback, IEEE Trans. Automat. Control., 64 (2019), 1403–1414.

[4] J. L. Bona, D. Lannes and J.-C. Saut, Asymptotic models for internal waves, J. Math. Pures Appl., (9):89 (2008),
538–566.

[5] R. A. Capistrano-Filho and I. M. de Jesus, Massera’s theorems for a higher order dispersive system,
arXiv:2205.12200 [math.AP].

[6] R. A. Capistrano-Filho and M. M. de S. Gomes, Well-posedness and controllability of Kawahara equation in
weighted Sobolev spaces, Nonlinear Analysis, 207 (2011), 1–24.

[7] R. A. Capistrano-Filho and V. H. Gonzalez Martinez, Stabilization results for delayed fifth order KdV-type
equation in a bounded domain, arXiv:2112.14854 [math.AP].

[8] R. A. Capistrano-Filho and L. S. de Sousa, Control results with overdetermination condition for higher order
dispersive system, Journal of Mathematical Analysis and Applications, 506 (2022), 1–22.



20 CAPISTRANO–FILHO, CHENTOUF, DE SOUSA, AND GONZALEZ MARTINEZ

[9] R. A. Capistrano-Filho, L. S. de Sousa and F. A. Gallego, Control of Kawahara equation with overdetermination
condition: The unbounded cases, arXiv:2110.08803 [math.AP].

[10] B. Chentouf, Well-posedness and exponential stability of the Kawahara equation with a time-delayed localized
damping, Mathematical Methods in the Applied Sciences, https://doi.org/10.1002/mma.8369.

[11] M. Chen, Internal controllability of the Kawahara equation on a bounded domain, Nonlinear Analysis, 185 (2019),
356–373.

[12] G. M. Coclite and L. di Ruvo. On the classical solutions for a Rosenau-Korteweg-deVries-Kawahara type equation,
Asymptot. Anal., 129 (2022), 51–73.

[13] G. M. Coclite and L. di Ruvo, Wellposedness of the classical solutions for a Kawahara–Korteweg–de Vries type
equation., J. Evolution Equations, 21 (2021), 625–651.

[14] G. M. Coclite and L. di Ruvo, Convergence results related to the modified Kawahara equation, Boll. Unione Mat.
Ital., 8 (2016), 265–286.

[15] S. Cui, S. Tao, Strichartz estimates for dispersive equations and solvability of the Kawahara equation, J. Math.
Anal. Appl., 304 (2005), 683-702.

[16] G. G. Doronin, N. A. Larkin, Kawahara equation in a quarter-plane and in a finite domain, Bol. Soc. Parana.
Mat., 25 (2007) 9–16.

[17] G. G. Doronin and N. A. Larkin, Boundary value problems for the stationary Kawahara equation, Nonlinear
Analysis, 69 (2008), 1655-1665.

[18] G. G. Doronin and N. A. Larkin, Kawahara equation in a bounded domain, Discrete Contin. Dyn. Syst. Ser. B,
10 (2008) 783-799.

[19] A. L. C. dos Santos, P. N. da Silva and C. F. Vasconcellos, Entire functions related to stationary solutions of the
Kawahara equation, Electron. J. Differential Equations, (43) (2016), 13 pp.

[20] H. Hirayama, Local well-posedness for the periodic higher order KdV type equations, NoDEA Nonlinear
Differential Equations Appl., 19 (2012) 677–693.

[21] H. Hasimoto, Water waves, Kagaku, 40, 401–408 [Japanese] (1970).
[22] P. Isaza, F. Linares, G. Ponce, Decay properties for solutions of fifth order nonlinear dispersive equations, J.

Differential Equations, 258 (2015), 764-795.
[23] T. Kato, Low regularity well-posedness for the periodic Kawahara equation, Differential Integral Equations, 25

(2012), 1011-1036.
[24] T. Kawahara, Oscillatory solitary waves in dispersive media, J. Phys. Soc. Japan, 33 (1972), 260–264.
[25] D. Lannes, The water waves problem. Mathematical analysis and asymptotics. Mathematical Surveys and

Monographs, 188. American Mathematical Society, Providence, RI, 2013. xx+321 pp.
[26] N. A. Larkin, Correct initial boundary value problems for dispersive equations, J. Math. Anal. Appl. 344 (2008),

1079-1092.
[27] N. A. Larkin, M.H. Simoes, The Kawahara equation on bounded intervals and on a half-line, Nonlinear Anal.

TMA, 127 (2015), 397-412.
[28] S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary

or internal feedbacks, SIAM J. Control Optim. 45 (2006), 1561–1585.
[29] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New

York, 1983.
[30] L. Rosier, Exact boundary controllability for the Korteweg–de Vries equation on a bounded domain, ESAIM

Control Optim. Calc. Var., 2 (1997), 33–55.
[31] J. Simon, Compact sets in the space Lp(0, T ;B), Ann. Mat. Pura Appl., vol. 146 (1986), 65–96.
[32] C. F. Vasconcellos and P. N. Silva, Stabilization of the linear Kawahara equation with localized damping, Asymp-

totic Analysis, 58 (2008), 229–252.
[33] C. F. Vasconcellos and P. N. Silva, Stabilization of the linear Kawahara equation with localized damping, Asymp-

totic Analysis, 66 (2010), 119–124.
[34] C. F. Vasconcellos and P. N. Silva, Stabilization of the Kawahara equation with localized damping, ESAIM Control

Optim. Calc. Var., 17 (2011), 102–116.
[35] G. Q. Xu, S. P. Yung, and L. K. Li, Stabilization of wave systems with input delay in the boundary control,

ESAIM Control Optim. Calc. Var., 12 (2006), 770–785.
[36] D. Zhou, Non-homogeneous initial-boundary-value problem of the fifth-order Korteweg-de Vries equation with a

nonlinear dispersive term, Journal of Mathematical Analysis and Applications, 497 (2021).
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