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ABSTRACT. In a recent article [16], the authors gave a starting point of the
study on a series of problems concerning the initial boundary value problem
and control theory of Biharmonic NLS in some non-standard domains. In this
direction, this article deals to present answers for some questions left in [16]
concerning the study of the cubic fourth order Schrédinger equation in a star
graph structure G. Precisely, consider G composed by N edges parameterized
by half-lines (0, +00) attached with a common vertex v. With this structure the
manuscript proposes to study the well-posedness of a dispersive model on star
graphs with three appropriated vertex conditions by using the boundary forcing
operator approach. More precisely, we give positive answer for the Cauchy
problem in low regularity Sobolev spaces. We have noted that this approach
seems very efficient, since this allows to use the tools of Harmonic Analysis, for
instance, the Fourier restriction method, introduced by Bourgain, while for the
other known standard methods to solve partial differential partial equations on
star graphs are more complicated to capture the dispersive smoothing effect
in low regularity. The arguments presented in this work have prospects to be
applied for other nonlinear dispersive equations in the context of star graphs
with unbounded edges.

1. Introduction.

1.1. Quantum and metric graphs. In mathematics and physics, a quantum
graph is a linear network-shaped structure of vertices connected on edges (i.e., a
graph), where a differential (or pseudo-differential) equation is posed on each edge,
while in the case of each edge is equipped with a natural metric the graph is denoted
as a metric graph. An example would be a power network consisting of power lines
(edges) connected at transformer stations (vertices); the differential equations would
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be then the voltage along each of the line and the boundary conditions for each edge
equipped at the adjacent vertices ensuring that the current added over all edges adds
to zero at each vertex.

Quantum graphs were first studied by Linus Pauling as models of free electrons
in organic molecules in the 1930s. They also appear in a variety of mathematical
contexts, e.g. as model systems in quantum chaos, in the study of waveguides, in
photonic crystals and in Anderson localization - is the absence of diffusion of waves
in a disordered medium, or as limit on shrinking thin wires. Quantum graphs
have become prominent models in mesoscopic physics used to obtain a theoretical
understanding of nanotechnology. Another, more simple notion of quantum graphs
was introduced by Freedman et al. in [26].

Aside from actually solving the differential equations posed on a quantum graph
for purposes of concrete applications, typical questions that arise are those of well-
posedness, controllability (what inputs have to be provided to bring the system
into a desired state, for example providing sufficient power to all houses on a power
network) and identifiability (how and where one has to measure something to obtain
a complete picture of the state of the system, for example measuring the pressure
of a water pipe network to determine whether or not there is a leaking pipe).

1.2. Nonlinear dispersive models on star graphs. In the last years, the study
of nonlinear dispersive models in a metric graph has attracted a lot of attention
of mathematicians, physicists, chemists and engineers, see for details [9, 10, 14,
34, 35] and references therein. In particular, the framework prototype (graph-
geometry) for description of these phenomena have been a star graph G, namely,
on metric graphs with N half-lines of the form (0,400) connecting at a common
vertex ¥ = 0, together with a nonlinear equation suitably defined on the edges
such as the nonlinear Schrédinger equation (see Adami et al. [1, 2] and Angulo
and Goloshchapova [5, 6]). We note that with the introduction of nonlinearities
in the dispersive models, the network provides a nice field, where one can look
for interesting soliton propagation and nonlinear dynamics in general. A central
point that makes this analysis a delicate problem is the presence of a vertex where
the underlying one-dimensional star graph should bifurcate (or multi-bifurcate in a
general metric graph).

Looking at other nonlinear dispersive systems on graphs structure, we have some
interesting results. For example, related with well-posedness theory, the second
author in [18], studied the local well-posedness for the Cauchy problem associated
to Korteweg-de Vries equation in a metric star graph with three semi-infinite edges
given by one negative half-line and two positives half-lines attached to a common
vertex v = 0 (the Y-junction framework). Another nonlinear dispersive equation,
the Benjamin-Bona—Mahony (BBM) equation, is treated in [11, 37]. More precisely,
Bona and Cascaval [11] obtained local well-posedness in Sobolev space H! and Mug-
nolo and Rault [37] showed the existence of traveling waves for the BBM equation
on graphs. Using a different approach Ammari and Crépeau [4] derived results of
well-posedness and, also, stabilization for the Benjamin-Bona-Mahony equation in
a star-shaped network with bounded edges.

In this aspect, regarding control theory and inverse problems, let us cite
some previous works. Ignat et al. in [31] worked on the inverse problem for
the heat equation and the Schrédinger equation on a tree. Later on, Baudouin
and Yamamoto [7] proposed a unified - and simpler - method to study the in-
verse problem of determining a coefficient. Results of stabilization and boundary
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controllability for KAV equation on star-shaped graphs was also proved by Ammari
and Crépeau [3] and Cerpa et al. [21, 22].

We caution that this is only a small sample of the extant work on graphs structure
for partial differential equations.

1.3. Presentation of the model. Let us now present the equation that we will
study in this paper. The fourth-order nonlinear Schrédinger (4NLS) equation or
biharmonic cubic nonlinear Schrédinger equation

i0pu + 0%u — Otu = Mu|?u, (1)

have been introduced by Karpman [32] and Karpman and Shagalov [33] to take into
account the role of small fourth-order dispersion terms in the propagation of intense
laser beams in a bulk medium with Kerr nonlinearity. Equation (1) arises in many
scientific fields such as quantum mechanics, nonlinear optics and plasma physics,
and has been intensively studied with fruitful references (see [8, 24, 32, 38, 39] and
references therein).

In the past twenty years such 4NLS have been deeply studied from different math-
ematical points of view. For example, Fibich et al. [25] worked various properties
of the equation in the subcritical regime, with part of their analysis relying on very
interesting numerical developments. The well-posedness problem and existence of
the solutions has been shown (see, for instance, [38, 39, 41, 42]) by means of the
energy method, harmonic analysis, etc.

Recently, in [15], the first and the second authors worked with equation (1) with
the purpose to obtain controllability results. More precisely, they proved that on
torus T, the solution of the associated linear system (1) is globally exponential
stable, by using certain properties of propagation of compactness and regularity
in Bourgain spaces. This property, together with the local exact controllability,
ensures that fourth order nonlinear Schrédinger is globally exactly controllable, we
suggest the reader to see [15] for more details.

Considering an different domain instead of the torus T, the authors, in [16],
considered the cubic fourth order Schrodinger equation on the right half-line

i0ru + Y02 + Aul?u =0, (t,z) € (0,T) x (0,00),
u(0, z) = ug(x), x € (0,00), (2)
u(ta O) = f(t)a ur(ta O) = g(t) te (OvT)v

for v,A € R. When v\ < 0 system (2) is so-called focusing otherwise, that is,
YA > 0, is called defocusing. In [16], Capistrano-Filho et al. consider v = —1 and
suitable choices of f(t) and g(¢) in the equation (2), precisely, by assuming

2543

(uo, f,g) € HS(RY) x H™5 (RY) x H™ 5 (RY),

they obtained local well-posedness on the Sobolev spaces H*(R*) for s € [0, 3). For
s > 1/2, by the Sobolev embedding and the energy method one can easily show the
local well-posedness in H*(R"), giving a starting point of the study on a series of
problems concerning of the Biharmonic NLS on bounded domains or star graphs.
Due these results presented in this recent work, naturally, we should see what
happens for the system (2) in star graph structure given by N unbounded edges
(0,00) connected with a common vertex v = 0, where a function on the graph G
is a vector u(t, z) = (u1(t,x),ua(t, ), ...,un(t,2)). Thus, let us consider the fourth
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order nonlinear Schédinger equation on G, given by

(3)

i0vu; — Oduj + Auj>u; =0, (t,z) € (0,T) x (0,00), j=1,2,... N
u;(0,2) = ujo(x), x € (0,00), j=1,2,....N

with initial conditions (uq(0, ), u2(0, ), ..., un (0, x)).

FIGURE 1. Star graph with 5 edges

Therefore, the following natural question arise.

Problem A. Which are the boundary conditions that we can impose, at least
mathematically acceptable, to ensure the well-posedness result for the system (3)?

1.4. Choosing the boundary conditions and main result. We are interested
to prove the well-posedness of (3) with appropriate boundary condition, more pre-
cisely, we will solve (3) with the following boundary conditions:

OFuy (t,0) = OFuy(t,0) = - - - = OFun(t,0), k=0,1 te(0,T),
Zj:l :ruj(tvo) - Oa k - 273 te (O,T),
k — ok — .= _
Type B: 6w§\‘,1(t’2) = 6x“i(t70) - OFun(t,0), k=2,3 tc(0,T), )
Zj:l azuj(ta O) =0, k=0,1 t e (O,T)
and
k — 9k Lk _ T
Type C: 6a:x1(t7g) 6xui(t70) B 8ZUN(t,O)7 k 0,3 te (0, ), (6)
Z_j:l aﬂcuj(tvo) - 07 k= 172 t e (O,T)

These boundary conditions are motivated by the conservation of the mass. Let
us denote the mass as

N 00
E(uy(t,z),us(t,x), - ,un(t,x)) = %Z/o |uj(t,x)\2d:v.

Multiplying (3) by w;, taking the imaginary part, integrating by parts and using
the initial conditions of (3), we can obtain the most basic energy identity, namely
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the L?-energy, satisfying
E(ul(T7 Z’), UQ(T7 Z’), Tty uN(T7 .13))

N T
= - m 3u‘ Ui
= ;/0 Im (8 u;(t,0)u;(t,0))dt

N T
S / T (82 (1, 0)9,; (£, 0))dt
j=1"0

— E(u1(0,2),u2(0,2),- -+ ,un(0,2)).

Analyzing (7), we are interested in boundary conditions to the Cauchy problem (3)
such that the right hand side of (7) ensures the conservation of the mass. In this
sense, the boundary conditions (4), (5) and (6) are appropriated. Assuming one of
the boundary conditions (4), (5) or (6) the mass is conserved, i.e.,

E(ui(t,z),us(t,z), - ,un(t,x)) = E(u1(0,2),u2(0,z), -+ ,un(0,z)).

It is important to point out that the boundary conditions of types A, B or C are
coherent with the study of biharmonic operator on L?(G). More precisely, a simple
calculation proves that the biharmonic operator

B:=id} :D(B;) C L*(G) — L*(G), i=1,2,3,
with the following domains
D(By) = {H(G); 0%u1(0) = 0%uz(0) = --- = O*un(0), k=0,1

N
> 0ku;(0) =0, k=2,3},
j=1

D(By) = {H*(G); OFu1(0) = 0us(0) = - - = 0kun(0), k=2,3

N
> 0ku;(0) =0, k=0,1}
j=1

or

D(Bs) = {H*(G); 8*u1(0) = 8%uz(0) = - -- = &*un(0), k=0,3

N
> 0ku;(0) =0, k=1,2},
j=1

is self-adjoint. Then, by Stone’s Theorem (see e.g. [20]), B generates a linear group,
denoted by €9z that solves the linear problem

Ou(x,t) = i0tu(z,t),

u(0,z) = up € D(By),

u € C(R;D(B;))NCYR; L*(G)) i=1,2or 3.

By using the Duhamel formula together with the fact that H*(G) is a Banach algebra
it is possible to show that problem (3) is well posed in high regularity, precisely, in
D(B;),i=1,2or 3.
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Remark 1. The following remarks are now in order.

e Considering the Schrodinger equation on a star graph G, the vertex condition
Type A, when restrict on the cases k = 0 and k = 1, coincides with the
classical Kirchhoff vertex condition. For this system, these conditions are
rather natural in the context of water waves (and other fluids), corresponding
to continuity of the flow and flux balance.

e In this direction, we cite a very interesting work of Gregorio and Mugnolo [28]
that treated the bi-laplacian on star graphs and trees with bounded edges,
more precisely, they given a characterization of complete graphs in terms of
the Markovian property of the semigroup generated by £2(G), the square of
the discrete Laplacian acting on a connected discrete graph G. For a complete
picture about star graphs in unbounded edges, in the context of the Airy
equation, we cite the work of Mugnolo et al. [36].

Therefore, this work gives an answer for the Problem A, in a star graph structure,
when the boundary conditions (4), (5) or (6) are considered. This problem was left
as an open problem in [16]. Before to enunciate the principal result of this work,
we will denote the classical Sobolev space on the star graph G by

N
H*(G) = @HS(O,Jroo), for s > 0.
i=1

With this notation, the main result of this work can be read as follows.

Theorem 1.1. Let s € [0, %) For given initial-boundary data (u19, u2g, ..., ung) €
H?*(G) satisfying type A, B or C wvertex conditions, there exist a positive time T
depending on Zjvzl lwjoll zr=(r+) and a distributional solution u = (u;),(t,x) €
C((0,T); H*(G)) to (3)=(4) (or (3)=(5) or (3)~(6)) satisfying

2543

uj € C(RY; H™% (0,7)) N X**(RT x (0,T)),
8xuj eC O,T)),
8§uj eC O,T))

2s+1
8

2s

—1
8

(R H™=(

(R H™5 (

and s
8f,zuj € C(R+; H™s (O,T)),

for some b(s) < % and j = 1,2,..., N. Moreover, the map (u10,u20, ..., Uno) — U

is locally Lipschitz continuous from H*(G) to C((0,T); H*(G)).

1.5. Heuristic of the paper and further comments. In this work we prove the
existence of solution to the problem (3)—(4) (or (3)—(5) or (3)—(6)) on star graph
structure G composed by N unbounded edges. The proof of Theorem 1.1 will be
divided in several steps. Initially, we recast the partial differential equation in each
edge for a full line with a forcing term, more precisely

{iatuj — Opuj + MujPuj = Tij(@)ha;(t) + Taj(2)he; (1),  (t,2) € (0,T) xR,

8

u;(0,2) = wjo(x), ji=12..,N ®)
where 71; and 72; (j = 1,2, ..., N) are distributions supported in the negative half-
line (—o0,0); the boundary forcing functions hij, hej (j = 1,2, ..., N) are selected
to ensure that the vertex conditions are satisfied and w;o(x) are extensions of wjg
(j =1,2,...,N) on full line satisfying

ol s ) < 2llwjoll mrs (r+)-
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Upon constructing the solution @ = (a4, tg, ..., ux) of (8), we obtain the solution
u = (ug,ug,...,uy) of the problem (3) with appropriate boundary condition, by
restriction, as

u=u(z,t) = (up, us, ...,uN)’m€g7t€(07T)

= (U1]zert te(0,1) U2|oert te(0,1)s s UN |zert te(0,1))-

Secondly, the solution of forced Cauchy problem (8) satisfying the vertex types A,
B or C, is constructed using the classical Fourier restriction method due Bourgain
[12, 13]. Finally, a fixed point argument ensures the proof of the Theorem 1.1.

We present some comments about the relevance of the method used in this man-
uscript.

i. It is important to point out that, in our knowledge, this work is the first one in
a star graphs structure G composed by N unbounded edges by using boundary
forcing operator approach introduced first by Colliander and Kenig [23] and
improved by Holmer [30].

ii. The graph structure of this article is more complex than proposed in [18] in
the following sense: To treat the extended vectorial integral equation that
solves system (3), considering N unbounded edges with appropriated vertex
conditions, is more delicate since the matrices associated with this problem
have 2N—order (see Section 4).

iii. A more delicate question concerns here is the local well-posedness for the
Cauchy problem (3) in low regularity. To do this we need to use a dispersive
approach instead of Semigroup theory, where the principal difficulty is to use
the restriction Fourier method in the context of star graphs. This motivates
us to solve the problem (3) by using this approach, since the Semigroup theory
does not guarantee the lower regularity to solutions of (3).

1.6. Organization of the article. To end our introduction, we present the outline
of the manuscript. Section 2 is devoted to present the notations, more precisely,
the Sobolev spaces, the Bourgain spaces, the Riemann-Liouville fractional integral
operator and the Duhamel boundary forcing operator associated of (4NLS), which
are paramount to prove the main result of the article. In the Section 3, we will give
an overview of the main estimates proved by the authors in [16]. With these two
sections in hand, we are able to prove Theorem 1.1, in several steps, in the Section
4. The Section 5 is devoted to prove an auxiliary lemma, which one is used in the
proof of the main result of the article, namely, Theorem 1.1. Finally, at the end of
the work, we present an Appendix A, which will we given a sketch of the proof of
Theorem 1.1 with vertex conditions types B and C.

2. Preliminaries. This section is devoted to presenting the notations, introducing
the functions spaces used in this work and the Duhamel boundary forcing operator
associated with the fourth order linear Schrodinger equation.

2.1. Notations. Let us fix a cut-off function ¢ := (t) such that ¢y € C§°(R),
0 <% <1 and defined by
=1 on [0,1], ¢ =0, for |t| > 2, 9)
and, for T > 0, we denote 1r(t) = L(L).
Now, for s > 0, define the homogeneous L2-based Sobolev spaces H* = H*(R)
by natural norm ||¢| 4. = |||5|S7/’(5)HL§ and the L%-based inhomogeneous Sobolev
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spaces H® = H*(R) by the norm |[|¢|| 7. = [[(1 + |§\2)%1Z1(§)HL§, where 1 denotes

the Fourier transform of . The function f belongs to H*(R"), if there exists
F € H*(R) such that f(z) = F(«x) for = > 0, in this case we set

I fll s ey = inf || F'|| g5 w)-
a

On the other hand, for s € R, f € H§(R") provided that there exists F' € H*(R)
such that F is the extension of f on R and F(z) = 0 for < 0. In this case, we
set || fllag@+) = infp |[Fl s ). For s <0, we define H*(R") as the dual space of
Hy *(RT). It is well known that H§(RT) = H*(RT) for =3 < s < 1.

Finally, the sets Cg°(RT) = {f € C>(R); suppf C [0,00)} and CF%(R*) are
defined as the subset of C§°(R™), whose members have a compact support on (0, 00).
We remark that Cg%,.(R*) is dense in H§(R™) for all s € R.

2.2. Solution spaces. Consider f € S(R?), let us denote by for F(f) the Fourier
transform of f with respect to both spatial and time variables

f(r.€) = /R ] e~ eI f (¢, x) dadt.

Moreover, we use F, and JF; to denote the Fourier transform with respect to space
and time variables, respectively (also use " for both cases).

In the 90’s Bourgain [12, 13] established a form to show the well-posedness of
some classes of dispersive systems. Precisely, on the Sobolev spaces H®, for smaller
values of s, with these new spaces, Bourgain showed a smoothing property more
suitable for solutions of these classes of dispersive equations.

In our case, considering s,b € R we present below the Bourgain spaces X
associated to the linear system of (3). The space will be a completion of &’(R?)
under the norm

11Bes = [ @ (€ Fr )P dear

where (-) = (14| -]?)/2.

It is important to note that X*’—space, with b > %, is well-adapted to study the
IVP of dispersive equations on R™ or T. However, in the study of IBVP, the standard
argument cannot be applied directly. This is due to the lack of hidden regularity,
more precisely, the control of (derivatives) time trace norms of the Duhamel parts
requires to work in X*®—type spaces for b < %, since the full regularity range
cannot be covered (see Lemma 3.6 inequality (28)).

Considering the space denoted by Z(s,b) with the following norm

3
Fllzis w2y = sup ||f & )l s r) + sup |9 f (-, x)|| 2eas-2;  + || fllxen,
s = 16 sy + Ssupl02F ol s g+ 1
our goal is to find solutions of the Cauchy problem (3).

Here, in each edge of G, we will consider the spatial and time restricted space of
Z%"(R?) defined in the standard way as follows

Z(5,0)((0,T) x RY) = Z(s’b)‘(o,T)X}R+

equipped with the norm
1 £l z(s.0) 0.7y xR+ = geiZH(E b){”g”Z(s,b) tg(t,x) = f(t,x) on (0,T) xR}
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2.3. Riemann-Liouville fractional integral. Before beginning our study of the
Cauchy problem (3), in this subsection, we just give a brief summary of the Riemann-
Liouville fractional integral operator to make the work complete. We suggest
[16, 23, 30] for the reader to see the proofs and more details.

Consider the function ¢ defined in the following way

ty=t if t>0, t,=0 if t<0.

(x 1

The tempered distribution F( is defined as a locally integrable function by

@)

tal 1 ooa_1
<<>’f> e, o

for Re a > 0. By integrating by parts, we have that

ti—l . ti+k_1
ST [ S 10
I(a) "\T(a+k))’ (10)
(y 1
for all k£ € N. Expression (10) allows to extend the definition of ( yo in the sense
of distributions, to all « € C. For f € C5°(R™"), define Z,, f as

a—1

_b
Thus, for Re a > 0, follows that
T o
Tf0) = e [ (=9 F(s) s )

and the following properties easily holds
Lof=f, IL.f(t) / f(s)ds, I_1f=f" and Z,Zg=Tn4p-

2.4. Duhamel boundary forcing operator. We present the Duhamel boundary
forcing operator, which was introduced by Colliander and Kenig [23], in order to
construct the solution to

i0pu — Otu = 0. (12)

For details about this subsection and for a well exposition about this topic, the
authors suggest the following references [16, 17, 19, 29] .
Following [16], let us consider the oscillatory integral by

1 . !
B(x) = g/ﬂgemge_zE dg, (13)

which one is the key to define the Duhamel boundary forcing operator. A change
i (%) . We will denote

of variable and contour proves that B(0) = —*—

1
M= B (1)

For f € C§°(R™), define the boundary forcing operator £° (of order 0) as

LOf(t,z): M/'“t”y 2)I_s f(')dt, (15)
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where % denotes the group associated to (12) given by

1 sz —ited d
e~ Y(&)de.

27
By using the following properties of the convolution operator

Op(fxg)=(05f)xg=f*(5g), keN, (16)
and the integration by parts in ¢ of (15), we get that
iL%(0f)(t, ) = iMdo(z)I_s f(t) + 2L f(t, ). (17)

eitOy(z) =

Using (13) and, again, by change of variable, we have

£Of(ta) = M / =102 50 ()T f(¢) '

o o)

We are now generalize the boundary forcing operator (15). For Re A > —4 and
given g € Cg°(R™T), we define

(18)

A—1
A _ %= 0 .
Lt ) = lrw LT_30)(, >] (@), (19)
22— (=)}t

where * denotes the convolution operator and - o) = TI) In particular, for

Re A > 0, we have
1 o]
A _ L AA—1p0
Polt.) = o7 [ = LT )y (20)

By using the property (16), for k = 4, and (17) give us

(At4)—1
A —|Z= 94,0 .
Lrltr) = |\ 5y * 0L (T 30) )] ()
(A+4)—-1
Y (21)
MrnTpt--390
[ (y o x)()\+4)71 0
H/I o L (0:Z_19) (¢t y)dy,
for Re A > —4, where M is defined as (14). From (17) and (19), we have
A-1
(10, — ;)L g(t, &) = iM FZ)\)I—%—%Q(U’

in the distributional sense.

3. Overview of the main estimates. With all the notations and spaces defined
in the Section 2, we present now the main estimates of this work, which are para-
mount to prove the main result of the article.
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3.1. Estimates for the function spaces. Concerning of the X space, we have
two properties which are presented in the lemma below for the functions ¥(¢) and
7, defined in (9). The first item can be found in [40, Lemma 2.11] and the second
one in Ginibre et al. [27]. The lemma can be read as follows:

Lemma 3.1. Let (t) be a Schwartz function in time. Then, we have

0@ fllxse Sb 1l xe0-
Moreover, if—%<b’<b§0 or OSb’<b<%,w€X‘9’b and s € R, thus

_n
lorwlxew ST wlxeoo.

An result that state important properties of the Riemann-Liouville fractional
integral operator is given below. The proof of this can be found in [30, Lemmas
2.1, 5.3 and 5.4].

Lemma 3.2. If f € C°(R"), then I, f € C§°(R™T), for all a € C. Moreover, we

have the following:
(a) If 0 < Re a@ < 00 and s € R, then [|Z_oh| gsm+) < CHh||Hg+“(R+)7 where
¢ =cla).
(b) If0 <Rea < oo, s € Randpu € Cg°(R), then ||uZoh| msm+) < c||hHH37a(R+),

where ¢ = ¢(p, @).
3.2. Estimates for the boundary forcing operator. Now, we will obtain the
principal properties of the boundary forcing operator. Initially, we present the well-
know properties of the spatial continuity, the decay of the £*g(¢, ) and the explicit

values for £ f(t,0), respectively, these results with their respective proofs can be
seen in [16, Lemmas 3.2 and 3.3].

Lemma 3.3. Let g € C°(RY) and M be as in (14). Then, we have

L7kg = 8’;501%9, k=0,1,2,3. (22)
Moreover, for fized 0 <t <1, O¥LOf(t,x), k = 0,1,2, is continuous in x € R and
L73g(t,x) is continuous in x € R\ {0} and has a step discontinuity at x = 0.

Lemma 3.4. For Re A\ > —4 and f € C§(RY), we have the following value of
LAf(t,0):

sin(%ﬂ) (23)

M e—iE (143N 4 o—iE(1-5X)
L f(t,0) = 5 (1) (
3.3. Energy and trilinear estimates. In the last part, we present four lemmas
related to energy and trilinear estimates for the solutions of the 4NLS equation in
the Bourgain spaces X*°. These results and their proofs can also be found in [16,

Section 4].

Lemma 3.5. Let s € R and b € R. If ¢ € H*(R), then the following estimates
holds

ito
[[(t)er: aﬁ(x)llct(R; H(R) So 191l a: (=), (24)
£)0 ¢it9= a2 N s . i e N 25
[4(t)die ¢(:v)llcm<R;Hf -2 (R)) Sosg 10y 7 (25)

and ™
()™ d(a) | o0 S 16]lzre (m)- (26)
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Lemma 3.6. Let 0 < b < % and j = 0,1,2,3, we have the following inequalities

[WOPUE ) . er,) S Il (27)
for s e R;
J . < -
OODUE D yrsges ) S Mol (28)

for =2 +j<s<i+j;

[%(#)05Dw(t, @) xs0 S llwlxs-v, (29)
for s € R.
Lemma 3.7. Let s € R. Then,

2s—7 142 1 . . .
(a) For 271 < X < 322 and X < § the following inequality holds

\lw(t)c*f(t,m)IIC(Rt;HS(RI)) < Hf||H024% &+ (30)

(b) For —44+j<A<1+4+j,j=0,1,2,3, we have

OOLL T e

R, Hy, 5 (R)))

(¢) Ifs<4—4b,b<i —5<A<3ands+4b—2<A<s+ % yields that

(LA (2, 2) | xe S Il 2sga - (32)

o & (RY)

< . .
S0

Remark 2. Let us present two remarks.

i. The previous estimates are the so-called space traces, derivative time traces
and Bourgain spaces estimates, respectively.
ii. We observe that in [16] was obtained (25), (28) and (31), for j =0 and j =1,
but the result for all j can be obtained directly by using the fact that
LN =LYy,
To close this section, let us enunciate the trilinear estimates associated to fourth

order nonlinear Schrédinger equation. The proof of this estimate can be found in
[42].

Lemma 3.8. For s > 0, there exists b= b(s) < 1/2 such that

lurug@is | xo -0 < elluallxevlluallxes sl xeo- (33)

4. Proof of the main result. The aim of this section is to prove the main result
announced in the introduction of this work, Theorem 1.1. Here, we only consider
the vertex condition (4) (type A) and to make the proof easy to understand, we
will split it in several steps which will be divided into subsections. Additionally, the
discussion of vertex conditions types B and C will be presented on Appendix A, at
the end of the article.
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4.1. Obtaining a integral equation. In this first step, we are interested in finding
an extended vectorial integral equation posed in @fil R, such that the restrictions
of this equation on G will solve, in the sense of distributions, the following Cauchy
problem

{iatuj — a;luj —+ /\|uj|2uj = 0, (t,CC) € (O’T) X (0’00)7 ‘7 (34)

u; (0, z) = ujo(x), z € (0,00),
with initial conditions (w10, u20, .-, uno) € H?(G). Let us begin rewriting the Type

A vertex conditions (4) in terms of matrices. In this way, note that (4) is equivalent
to

8§U1(t,0) = 8§UQ(t,O), 8;?1@(@0) = 8§U3(t,0), LR (')fjuN_l(t,O) = 6I;UN(7§,O),

for k=0,1,¢t € (0,T) and
N
> 0ku,(t,0) =0,
j=1

for k =2,3,¢t € (0,7). Thus, we consider the following matrices

[Crlansn : = ;

[Calonwn : =

4 Nx1

and

[03] 2N XN : = : )

L Jd2Nx1

- Nx1 (36)

[04]2N><N : = : ’

L 42N x1

4 Nx1
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where
(1 -1 0 0 0
0 -1 0 0
. N — 1 rows
0 0 0 1 -1
[Cilonwn =
0 0 0 0 0
: : : Do : N + 1 rows
L0 0 0 - 0 0|
N columns
[0 0 0O --- 0 07
0 0 0o --- 0 0
. . . . . . N_l rows
0 0 0 --- 0 0
1 -1 0o --- 0 0
[Colonn = 6o 1 -1 0 0
. . : . . : N — 1 rows
0 0 0 1 -1
0 0 0 0 0 .
L0 0 0 0 0| o
N columns
[0 0 0 0 07
0 0 O 0 0
. 2N — 2 rows
(Colan = [0 0 0 = 00
1 11 -~ 11
i 0 O O 0 0 | } 2 rows
N columns
and
[0 0 0O 0 0]
0 0 O 0 0
0 O O O 0 2N — 2 rows
[Calanun = 000 --- 00
000 -~ 00
111 11 }MWS

N columns

On the other hand, let be u;o an extension for all line R of u;o, satisfying

||:L\ij0||Hb(R) 5 ||uj0||HS(R+)7 j = 1a2,"'7N7
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respectively. Initially, we look for solutions in the form
wj(t,x) = LYy (t, @) + L2y (t, o) + Fj(t,z), j=1,2,...,N. (37)
Here, v;i(-), 7 =1,2,..., N, i = 1,2, are unknown functions and
Fy(t,z) = ztaI“JO +D(1/)T|UJ| u;)(t, ),
where D(w( =—i f (=9 (¢' 2)dt'. By using Lemma 3.4 we sce that

M [ e 5 (14+3X1) 4 o=i5(1-5X;1)
u;(t,0) =— . Vi1t
(.0 = ( i 1)

(38)

M [ e 5 (14+3X2) 4 o—i5(1-5X;2)

+ = - Vi2(t) + Fj(t,0
5 ( ) j2(t) + Fy(£,0)
::ajl’yjl(t) + ajg'ng(t) + Fj(f,O), ] = 1,2, ,N

Now, let us calculate the traces of first derivative functions. Thanks to (10), (16),
(20) and Lemma 3.4, we get that

M( e—1E(=243X1) 4 o—iF(6-5\5)

0ui(t,0) =—
U]( ) 8 Sln(2 i\glﬂ_)

) T 14751 (t)

2— )\]2

M [ e % 5(= 2+3)\12)+e—z (6—5X;2)
+ 3 ( T 1/4752(1) (39)

sin( )

+ aij(tv O)a

=bj1Z g a1 (t) + bjeT 1 /4752(t) + 0 F(t,0), j=1,2,..,N.

In the same way, we can have the traces of second and third derivatives functions,
giving us the following

M e—i%(—5+3)\j1) + e—i%(ll—SAjl)
d2u;(t,0) =3 —3—s T 1070 (1)
sin(=—¢%)

3— X2

M <e—ig(—5+3xﬂ) 4 e~ i5(11-5)2)
+ -
8 A2 7)

> Ifl/ZijZ(t) (40)

sin(
+ 02 Fy(t,0),

Z:lez_l/Q’yj‘l(t) =+ CjQI_l/Q’ij(t) =+ asz (t, 0), 7=12,.., N

and
M e*i%(*8+3)\j1) _"_671;%(1675)\_7‘1)
821@(25,0) :8— < - o I,3/4’Yj1(t)
sin(— 2 )

M e*i%(*8+3)\j2) +67i%(1675)\j2)
Ty

Sin(4_i\j2 )

) T_3/4752(t) (41)

+ aiFj(ta O)a

i=djZ_547j1(t) + djoL_547;2(t) + 05F;(t,0), j=1,2,...,N.
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Observe that Lemmas 3.3 and 3.4 ensure these calculus are valid for ReA > —4. By
substituting (38), (39), (40) and (41) into (35) and (36), yields that the functions
i and indexes Aj;, for j =1,2,..., N and 7 = 1, 2, satisfy the following equalities:

ay; ai2 0 0 e 0 0
0 0 a21 Q22 - 0 0
[C1lynun . . . )
0 O 0 0 e an1 an?2 Nxon
Fl(ta 0)
F2(t7 0)
- [CI]QNXN )
FN(t’ O) Nx1
b11 b2 O o - 0 0
0 0 by1 by --- 0 0
(Colan S
0 0 0 0 bn1 bne NN
acI%Fl (t,0)
__ia] 8IIi F5(t,0)
- 2N XN . )
8inFN(t,0) oo
ci1 c2 0 0 0 0
0 0 Co1 C22 0 0
[03]2N><N . :
0 0 0 0 CN1 CN2 Nx2N
02T, Fy (t,0)
923 2
o [CS] axl'% Fy (t, 0)
- 2N XN

Nx1

Y11(t
12(t
21(t
22(1

)

2
GIGIGIG

)

i (8)
Yna(t)

- 2N x1

2N X1

- 2N x1
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and
[ 7a(t) ]|
t
dyy diy O 0 - 0 0 7128
0 0 dy dyp -~ 0 0 721@)
[Calonwn S : 22
0 0 0 0 - dy d :
N1 N2 Nx2N ’YNl(t)
L 7N2(t) donx1
3
3§I%F1 (t,0)
awI%F2<t7 0)
= [04]2N><N :
3
3xI%FN(t,O) N
It follows that,
[ @11 @12 —a21 —az2 0 0 0 0 0 0
0 0 all a2 —agy —ag2 0 0 0 0
6 0 0 0 0 0 a(N—l)l‘ a(N—1)2' *aNl' *aNZ'
b1y bio —boy —bao 0 0 0 0 0 0
X 0 0 b1y bia —boy —boa 0 0 0 0
0 0 0 0 0 o .- b(N—l)l‘ b(N—l)Q- _bN£ —bNé
c11 c12 c21 c22 c31 €32 - B e cN1 CN2
L di1  di2 d21 da2 d31 dzz - dn1 dn2 donxon
i F1(t,0) — Fa(t,0)
Fn_1(£,0) = Fx (£,0)
9z L1 F1(t,0) — 95T Fa(t,0)
1 1
= - . s (42)
9sT1 Fr_1(t,0) — 8,71 Fy (t,0)
1 1
E;'Vzl agIl F;(t,0)
Y1 03T Fi(t,0)
L 1 Janx1
where
[ () ]
T12(t)
Y21(t)

L 7N2(t) -4 2Nx1

To simplify the notation, let us denote the equality (42) by

M<)\117A12)"' 7)\N17)\N2)7:F7 (43)
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where M(A11, A12, -+ , An1, An2) is the first matrix that appears in the left hand
side of (42), v is the matrix column given by vector (vy11,v12, " ,Yn1,Vn2) and F
is the matrix in the right hand side of (42).

4.2. Choosing the appropriate parameters and functions. In this second
step, we need to choose the parameters Aj; and the functions v;;, with j = 1,2,..., N,
i = 1,2, in such a way that we can be able to write the solution u;(¢, z), in a integral
form.

To do this, let us start by using the hypothesis of Lemma 3.7. We need, firstly,
to fix parameters Aj;, such that

96 — 11
max{ 52 7’1}<>\ji(3)<min{5+272}7 j=12.,Ni=12  (44)

With this restriction in hand we choose the parameters Aj; as follows

1 1
A1 = Ado1 = = ANt =3 and Adjg = Agp = -+ = Ayg = T (45)
then, we have the equation
11 11
M(—=,=,-,—=, = =F. 46
< 27 47 ) 27 4) "/ ( )
The following lemma gives us that M (—%, %, S —%, i) is invertible.
Lemma 4.1. The determinant of matriz M (—%, i, ceey —%, %) 1S nonzero.

We will prove Lemma 4.1 on the next section. Thus, these good choices of the
parameters satisfying (44) together with this lemma ensures that M is invertible
and, consequently, the following holds

11 11
=M (-=,-,-,—=,2 | F. 4
P}/ ( 2747 ) 2’4> (7)

We empathize that v;; depends on F; and F5, which depend on the unknown
functions w; and uy. Thus, by substituting (47) into (37), we get u;(t,z) in the
integral form

Uj(t,l’) :ﬁié’yjl(tx)+£%7j2(tvx)+Fj(t7I)v j: 1527~'~7N' (48)

4.3. Defining the truncated integral operator and functional space. Using
the previous subsection, we have the solution of the Cauchy problem (34) with
Type A boundary condition (4) in the integral form (48). In order to use the
Fourier restriction method, the third step is to define a truncated version for the
integral form (48).

Pick s € [0,1/2), we fix the parameters \;; as in (45) and define

Y= (7117’712,’721,’)/22, s 77N177N2)

by (47). Consider b = b(s) < 1 and that the estimates given in Lemmas 3.5, 3.6,
3.7 and 3.8 are valid. Now, define the operator A by

A= (AluAZu"' 7AN)
where

Aju(t,z) = b(O)L 2y (t x) + b0 Liva(t ) + Fi(t,z), j=1,2,...,N.
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Here,
- 4 __ .
Fy(t, @) = () ("% tj0 + XD (Yrlu;Puy)(t, @), §=1,2,..,N,
with

¢
D(w(t,x)) = —i/ e =%y, )t
0

We consider A defined on the Banach space Z(s,b) = 69;\/:1 Z;(s,b) by

2543

Z,(s,b) = {w € O(Ry; H¥(R,)) N O(Ry; H¥5 (Ry)) N X5

2541 2s5—1 2s5—3

w, € C(Ry; HF (Ry)), w0 € CRai BT (R0)), Waro € C(Rys HT (Ry)) }

for j=1,2,..., N, with norm

l(ur,uz, - s un)llzes,m) = luallz, ) + luzll zosp) + -+ lunllzy s,0)- (49)

Each norm of |lu]|z, (s on (49) is defined by

Iy = Il + 1ol g ) + e

+ ||uz||C<RZ;H%(Rt)> + Humx”C(Rm;H%(Rto + HuwIIHC<Rz;H25§3(Rt))7
for j=1,2,...,N.

4.4. Proving that the functions E_%fyjl and Ei'ng, for j =1,2,...,N, are
well-defined. Indeed, by using Lemma 3.7 it suffices to show that these functions
are in the closure of the spaces C§°(R™). By using expression (47), we see that v;;
(j=1,2,...,N and ¢ = 1,2) are linear combinations of the functions

Fi(t,0) — F5(t,0), F»(t,0) — F5(¢,0),---, Fn—1(t,0) — Fn(¢,0),

axI%Fl(t, 0) — aﬁcIiFg(t,O), 8zI%F2(t,O) — aTI%Fg(t,O),
sy ainFN_l(t,O) 78rI%FN(t,O),

OFTL Fi(1,0) + 02T1 Fo(t,0) + - - + 03T1 Fn(t,0),

O3T3 F1(t,0) + 03Ts Fo(t,0) + - - + 03Ts Fy (t,0).

Thus, we need to show that the functions Fj(t,0), 9,71 Fj(t,0), 8§I% F;(t,0) are
in appropriate spaces. By Lemmas 3.5, 3.7, 3.6 and 3.8 we obtain

158, )] 2 ) < elllwgollre ey + ol e.0)- (50)

2543 2543

If 0 < s < 3 we have that 3 < 2222 < 1 then H s (RT) = H;*® (RT). It follows

2543
that F(¢,0) € Hy ® (RT) for 0 < s < 3. Again by using Lemmas 3.5, 3.7, 3.6 and
3.8 we get

10 F5 (£, 0] 204

3
5 ey < cllwgollms ey + lusl%e)
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Since 0 < s < 5 we have § < 251 < 1 then the functions 0, F;(t,0) € Hy ® (RT).
Then, thanks to Lemma 3.2, we have that

HBII%FJ (t,0)

3
||Ho2s;3 . c(llujoll sy + llujllxe)-
Therefore, this yields that
0Ty Fj(t,0) = 0, T3 Fjya(t,0) € Hy 5 (RT), j=1,2,..,N. (51)
In a similar way, we can obtain

12Ty Fy (L) sees S lwgoll ey + g [,

IIHO 5

||3§IgFi(f,0)||Hc%(R+) < Nwjollzre ey + Il -

It follows that

2543
03T F1(t,0) + 0;T1 Fo(t,0) + -+ 0,1 Fn(t,0) € Hy & (RY),

)
sesa (52)
03Z3 F1(t,0) + 03Zs Fo(t,0) + - - + 03 L3 Fx(t,0) € Hy & (RT).

Thus, (50), (51) and (52) imply that the functions L_%’le and Ling, for j =
1,2,..., N, are well-defined.

4.5. Showing that A is a contraction in a ball of Z. Lemmas 3.2, 3.5, 3.7, 3.6
and 3.8 guarantee that

[A(ur,--- un) = Alvr, -+ on)| z,,

< T (I(ur, - un)lZ + I on)lZ) [ug, - un) = (on, - o)l 2

and
||A(U,1, e )UN)|

2z < ¢ (luorll sy + - + lluon || s =)
+ T (5o + - + llunl¥en),

for € adequately small.
Consider in Z the ball defined by

B = {(ula"' 7UN) € ZSJ); H(ul’ 7uN)HZva < M}’

where
M = 2¢ (HUOIHHS(R+) —+ -4 ||UON||HS(]R+)) .
Lastly, choosing T' = T'(M) sufficiently small, such that

”A(uh 7UN)| g0 < M
and
1
”A(Ul, ,UN) _A(Ul,~.. ,UN)| Zsb < 5||(u1, ;UN) — (Ulv"‘ ,UN)‘ Zeb,
it follows that A is a contraction map on B and has a fixed point (uy, - ,un).

Therefore, the restriction
(ur, -+ un) = (ﬂllR*x(O,T)"” ’ﬂN|1R<+><(0,T))

solves the Cauchy problem (34) with Type A vertex boundary condition (4), in
the sense of distributions. Thus, Theorem 1.1 is a consequence of the above steps,
described in the previous subsections, finalizing so the proof. O
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5. Proof of Lemma 4.1. First, we will prove the case N = 2. The vertex condi-
tions (4), for this case, is given by

{

D

2 ak

j=1"z

Okuy(t,0) = Okuy(t,0), k=0,1 t€(0,T)
uj(t,0) =0, k=2,3

te(0,7).

In this way, we consider the vertex conditions as the following matrices

1 -1
0 0 us(t,0)
0 0 us(t,0)
0 0

and
00
0 0 02uy (,0)
11 02us(t,0)
00

0 0
1 -1
]_0’ 0 0
0 0
0 0
0 0
]_0’ 0 0
11

D3uq(t,0)
6§’u2 (t, 0)

| -0

(54)

By substituting, for N = 2, (38), (39), (40) and (41) into (53) and (54), yields
that the functions v;; and indexes Aj;, for j = 1,2 and ¢ = 1, 2, satisfy the equality

of matrices:

1 -1
0 0 ail  ai2 0
0 O 0 0 a2
0 0
0 0 ]
1 -1 bi1  bia 0
0 0 0 0 b
0 0 |
0 0]
0 0 C11 C12 0
1 1 0 0 ca
0 0 |
and
0 0
0 0 di1  dio 0
00 0 0 da
1 1

Putting all matrices together, we have

ail] a2 —a21 —a22

b11 b12 *b21 *b22

C11 C12 C21 C22
| di1 diz  da1 da

0

d22

Y11

Y12

Y21

Y22

O OO0 OO O OO0 0o+

= o O O

-1
0
0

Fl(tao)_F2(t’0) ]

0, Ty Fi(t,0) — 0,7, Fy(t,0)

Ty F1(t,0) + 93Ty Fa(t,0)

| T3 F(t,0) + 03Ts F(t,0) |
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In the case N = 2, the matrix M, given by (42), can be read as follows

ailp a2 —a21 —a22
bir b1z —bar  —bao
M= , (55)
€11 C12 C21 C22
L din  di2 do1 dao ]

where a;;, b5, ¢;; and d;; are given by (38), (39), (40) and (41), respectively.
Claim 1. M has determinant different of zero with appropriate choice of Aj;, j =
1,2 and i =1,2.

In fact, firstly noting that

. 2—a _ (al)
sin 1 7| = cos 1

and it is easy to see that

_ix 3 A ST 2im CBimAgs 5imAGy
a__:Me 8 e 8 +4e 8 b__:Me8 e 8 —e B8
i B Sin((l—zji)w) ; ji B COS(A{Z:#> )
(56)
Sim CBimdy BimAjg Sin CBimdy BimAj
. _ Me'38 e 8 H4e 8 d,,—MeS e 8§ —e 8
C]’L - 8 . (S—in)vr ) 7T — 8 . AjiT 9
sm(i4 ) sm( P )
for j =1,2 and i = 1,2. Then, the determinant of M can be write as
14i
Mie &"
|M| = —i X M,
where M is denoted by
_dimAy simAy _dimAp | simdg _dimAgy  simdgy _3imdgp  Bimdy
e +e e te e +e e te
sirA(i(l_);ll)ﬂ-) sin(42—(1_21 )"> sin(42—(l_)zl 1)") Sin(J—(l_z )’T)
_3imAqq 54T _BimAqg 5imA]9 _ 3imAgy 5imAgq _ BimAgg 5imAgg
e 8 —¢ 8 e 8 . 8 e 8 e 8 e 5 o 8
COS(7A141’") COS(7A15W> CUS(7A241W) COD(7A2427‘7>
_dimAy simAy _dimAip  simdiy _dimAgy  Bimdgy _3imAgp  Bimdgy
e +e e e e +e e te
sin<W) sin(W) Sin(%) sin(%)
_3imAqq 5imA]] _3imAqg 5imA]o _3imAgy 5im A1 _ BimAgg 5imAog
e 8 - 8 8 . 8 e 8 —e 8 e 8 . 8
sin(k{fl’ﬁ sin()\lfﬂ-) sin()‘%Tl") sin(hf")
By using the identity
ela _ ezb ¢ a—b
crren (T )
we have that
14ir
M2e~s ST 5AL1T - 3A1a7 - 5A1a7 -
|M()\11,/\12,/\21,/\22)|=784 x{(e 8§ '4e 8 Z)(e s '4e s Z)}X

3 . 5\ . 3 . 5\ .
(et e ),
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1

_ 1

n( 121
BIH(T‘IT)

itan( A% )

~ 71-X12
bln(#ﬂ')

itan(%w)

/1231
blﬂ(fﬂ')

itan(%ﬂ')

in( 1222
BIH(T‘IT)

itan()‘%ﬂ')

Cos(%w)

1

cos(%ﬂ')

1

cos(%w)

1

COS(%TK‘)

1

—3—211
SIH(TTK’)

itan(Lélw)

—3—21g
SIH(TW)

itan(%ﬂ)

sin(37’\%ﬂ')

itan(%ﬂ-)

[ 3—2gs
Sln(Tﬂ')

itan(%ﬂ)

sin(%w)

sin(%ﬂ')

sin(%ﬂ)

sin(%ﬂ)

3421

By choosing A1 = Ao1 and A2 = A9s we have that the constant that appears
before of the matrix A takes the form:

2M4€1§4m(€—unw + 1)2(€—i>\127r + 1)263w(,\11+/\12)i
|4
Note that this number is zero only in the case A\;; = 2k + 1 and A2 = 2/ 4+ 1 for
k,leZ.

Let us denote the entries of the matrix A as follows:

a n —a -n
A — f g 7f —g (57)
c e c e
d m d m
Thus, its determinant is given by
detA = 4(de — cm)(nf — ag). (58)
In particular for A\y; = Aoy = —% and Az = gy = i matrix A can be seen as
follows,
Al
V2V2 - V2 \/5%172\/54”/2(1077\/5) —V2V2 - V2 7\/5\/472\@4“/2(1077\/5)
i itan(m/8) i itan(w/8)
_ \/217 ctos('/r/16) - \/217 7ctos(7r/16)
V2V2 + V2 \/5\/4—2\/5— 2(10 — 7v/2) V2V2 + V2 V244 — 2¢/2 — /2(10 — 7V2)
e R e  santee)

By using determinant properties the determinant of A’ is equivalent of the de-
terminant of the following matrix:

V2 -2 \/472\/§+ 2(10 — 7v2)  —V2 -2 7\/472\/§+\/2(1077\/§)
1 tan((‘lr//&)) 1 _ tan((‘lr//&))
2cos(mw /16 2cos(mw /16
—(4i)(v/29) 2+v2 242
V2 + V2 \/4—2\/5—‘/2(10—7\/5) V2 4+ V2 \/4—2\/5— 2(10 — 7v/2)
/5T 5 tan(mw/8) VT tan(mw/8)
2+v2 \/Esin(lls) 2+v2 \/Esin(%)
Therefore, we can rewrite matrix (57) as follows
a n —a -n
1 1
c 9 —¢ 9
c e c e
c m c m

and its determinant is given by

4(e —m)(n — acg).
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We only need to check that e —m # 0 and n — acg # 0. An calculation proves that
e—m~ —0,6508 and n —acg ~ 0,9741.
Thus, we have that

det(A") = —4(2i)(V/2i)(e — m)(n — acg) ~ —7,1722 (59)

that is, the determinant of matrix M (—3, 3, =1, 1) given by (55) is nonzero, prov-

ing the Claim 1 and Lemma 4.1, for the case N = 2.

For a better understanding of the reader, before to do the general case, we will
present briefly also the proof of Lemma 4.1 considering N = 3. For instance, vertex
conditions (4), in this case, are given in the matrices form as follows:

1 -1 0 0 0 0
0 L -1 uy(t,0) -l _0 Dy (,0)
0 0 0 0 1 1
UQ(t, 0) = 0, &Eug(t, 0) = 0,
0 0 0 (t.0) 0 0 0 Drn(t.0)
0 0 0 Uit 0 0 0 z U3l
0 0 0 0 0 0
and
00 0 000
00 0 000
1 1 1 8%’&1(15,0) 0 0 O Q‘Z’ul(t,O)
8%7!2(15, 0) = O, 8§uz(t, O) =0.
0 001 920+, 0) R N I R
000 @35 0 0 0 235
00 0 000

Thus, combining the above matrices and the integral form of solution (37), as in
the case N = 2, we obtain

ailr a2 —a1  —a22 0 0 Y11
0 0 ao az2  —a31 —ase Y12
bir bi2 —bai  —ba 0 0 Vo1

0 0 ba1 bao  —b31  —b32 Y22
ci1 Ci2  Ca1 C22 €31 €32 Y31

dir  di2 doy das ds ds2 Y32
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Fi(t,0) — Fy(t,0)
F5(¢,0) — F5(t,0)
0,1 Fi(t,0) — 0,1 Fy(t,0)
0,1 Fy(t,0) — 0,1 Fi(t,0)

2T F1(t,0) + 93T, Fo(t,0) + 077, F3(t,0)

L3 F1(t,0) + 93T3 Fo(t,0) + 0375 F3(t,0)
Let us consider M the following matrix

ain a2 —az —az 0 0
0 0 a1 G2  —az1 —as2
bir bz —bar —b 0 0
0 0  bar b2 —bz1 —bs

C11  C12 C21 C22 C31 C32

dll d12 d21 d22 d31 d32

Claim 2. M has determinant different of zero with appropriate choice of Aj;, j =
1,2,3 andi=1,2.

Indeed, similarly as in the case N = 2 and by using the identities (56), yields

that
i 3imA 5imA 24 3T, 5imAjy
Qii = Me 8 e 8 4e 8 b = Me 8 e 8 —e 8
Jji — 8 sin((l_zﬁ)”) ) ji — g COS(X]ZW) ;

5im _3mAG BimAG 8i _BimAjy BimAgy
_ Me 8 e 8 +e 8 d___Me8 e 8 —e 8
) 7t — I

. (B=Xjm
51n(+)

for 7 =1,2,3 and ¢ = 1,2. By determinant properties, we can get the determinant
of M as

im \ 2 2im \ 2 5im 8im
Me™ s M M M 3imA 5imAi;
|M|< = >< es)( 68>< es) || (e* 5 +e 8])|A\
8 8 8 8 i=1,2,j=1,2,3

3imAj; 5imhj;
) Al

o

I
o]
[=2}
o
Il
i
[
()
Il
—
“M
w
/N
)
|
00
+
®
0]
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where A is the following matrix

where

and

By choosing A\11 = A21 = A31 and A2 = Aog = A32, we have that the constant

1 1 1 1
Sm(07) Sm(03) ~ 5m(03) Ty 0 0
1 1 1 1
0 0 sin(03) sin(0y4) " sin(65) " sin(6g)
itan( Aél ) B itan(%w) itan( Agl ) itan( A%2 ) 0 0
cos( Ail ) cos( AiQ ) cos( kzl ) cos( >\£212 )
o o B itan(:gl L itan(:%2 ) ican()\%&w) itan(félﬂ')
cos(=2L ) cos( =22 ) cos(=4L ) cos( =42 m)
1 1 1 1 1 1
ETYEED) Sn(B2) ETGEY) ETYE:P) Sn(B5) S0 Ag)
itan(241 ) B itan(242 ) _atan( 221 .y B itan(232 m) B itan(23L ) B itan(232 )
win(M sin(22 ) sin(22L ) sin(222 1) sin(23L ) sin(282 )
9_1—)\11 9_1—)\12 9_1—)\21
e - e e e
0_1—)\22 0_1—)\31 9_1—)\32
4 — 4 T, Us = 4 T, Ug = 4 T,
3= 3= A 3=
61 - 4 T, 52 4 T, 63 4 T,
3= 3= A3 33— A3
64 - 4 , 55 4 T, /86 - 4 ™

that appears before of the matrix A takes the form:

Note that this number is zero only in the case \;; = 2n 4+ 1 and A2 = 2m + 1 for

(efi‘ll')\ll + 1)3(671'71')\12 + 1)3€%ﬂ(>\11+)\12)i.

n,m € Z. Let us rewrite the entries of matrix A as follows:

a n —-a -n 0
0 0 a n —a
a—|f 9 -f -9 0
o0 f g —f
c e ¢ e c
d m d m d

Thus, its determinant is given by

0

|A’| = 9(de — ecm)(ag — nf)>.

Finally, considering /\11 = /\21 = /\31 = —% and )\12 = )\22 = )\32 = %, thanks to
the case N = 2, we have that (ag— fn) # 0 and (de —cm) # 0, thus |A| # 0. Claim
2 is thus proved and Lemma 4.1 is achieved, when N = 3.

Let us now deal with the general situation, that is, when N > 3. Consider

M = M(Ai1, Ai2, - 5 AN1, An2)
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defined by (42), namely,
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Manx2N =
[ @11 @12 —az21  —a22 0 0 0 0 0 0 7
0 0 all a2 —agy —ag2 0 0 0 0
0 0 0 0 0 0 a(N-1)1 A(N—1)2 —anN1 —anN2
b11 bi2 —ba1 —baa 0 0 0 0 0 0
0 0 bi1 b1z —ba1  —ba2 0 0 0 0
0 0 0 0 0 0 bn-1)1  bn—1)2  —bn1  —bn2
c11 c12 c21 c22 €31 c32 CN1 CN2 ’
L di1  di2 day da2 d31 d3z2 dn1 dng

where a;;, b;j, ¢;; and d;; are given by (38), (39), (40) and (41), respectively. As we
noted in the cases N = 2, 3, this function of \;; can be take the form

_im _ BTG 5imAGe 2i CBimAjp BimAj;
e Me™ '8 e 8 +e 8 b Me 8 e 8 —e 8
ji — VA YD ) 5% N )
8 sm<+) 8 cos( —Lf
Sim _ Bimhyy 5imA Sim _ BimAyy 5imA g
C"fMe 8 e 8 +e 8 d,,—Mes e 8 —e
Jr — 8 . B=NT ’ Ji ] YT s
sin( ——3— sin ( —L—

for j=1,2,..., N and ¢ = 1,2. Thus, by using the determinant properties, we have
that the determinant |M]| is
e TN T (e PENTT P M 3imNji
() () () )L
8 8 8 8 i=1,2,j=1,-- ,N

3imAj; 5imA g
= 2N I1 (‘37 s pe s )\M/\,
8 i=1,2,j=1,--- N

(124 N)im
M?2Ne 8

5imA

+e 8

where M’ is a matrix, depending only of \;;, given by

[ @11 a2 —a21 —ag2 0 0 0 0 0 0
0 0 a1 G1p —ag1  —adgy - 0 0 0 0
0 0 0 0 0 0 aN—-1)1  9N-1)2 —AaN1 —an2
b11 b12 —b —bao 0 0 . 0 0 0 0
0 0 b b1z —bz1  —baz - 0 0 0 0
0 0 0 0 0 0 bv-n1  bv—n2  —bni —bne
1 C12 €21 C22 €31 €32 CN1 CN2
L di1  di2 da1 da2 d31 dz2 dn1 dn2 Jonxon
Here, the coefficients of matrix M’ are given by
. Nis
1 B i tan (#)
P N S
7 (A=xm) Ajim )
S1n — COSs 4
(61)
3 N
1 B 7 tan ( 72’)
G —— .=
Jr . (3—)\7‘,’,)7\' ’ Jr . )\jirr ’
sSin | 5 — sin ( ==

forj=1,2,...,N and i = 1,2. By choosing A\11 = Ao; = -+ = Any1 and Ajg = Agp =
.- = An2, we have that the constant that appears before of the matrix M’ takes
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the form:
M2N6(12+8N)m

(677;71')\11 =+ 1)N(efi7l‘)\12 4 1)N€%’n‘(}\11+)\12)i
2N :

Note that this number is zero only in the case \;; = 2n 4+ 1 and A3 = 2m + 1 for
n,m € Z. Let us denote the entries of matrix M’ as follows:

a n —a -n 0 0o --- 0 0 0 0
0 0 a n —-a -n --- 0 0 0 0
0 0 0 0 0 0 a n —a -n
M — f g9 —f —g 0 0 0 0 0 0
10 O f g —f —g 0 0 0 0
00 0 0 0 0 9 =5 —g
c e c e c € ... e e c e

d m d m d m ... - e d

L - 2N xX2N
Moreover, by using the determinant properties, it yields that
a n —a —n 0 o --- 0 0 0 0
f g9 —f -g 0 0 0 0 0 0
0 0 a n —a -n 0 0 0 0
0 O f g —f —g 0 0 0 0
M| = . . : . .
0 0 0 0 0 0 a n —a -n
0 0 0 0 0 0 f g —f —g
c e c e c e c e
d m d m d m d m
2N X2N

Considering the matrix

a n c e
A:{f g} and B:{d m}’

the determinant of M’ can be write as a block matrices, namely,

A2><2 _A2><2 02><2 02><2 02><2
02><2 A2><2 _A2><2 O2><2 02><2
|M/‘ — . . . . : . (62)
02><2 02><2 02><2 A2><2 _A2><2
B2><2 Bz><2 Bz><2 B?><2 BQ><2 ONX2N

From now on, we denote 0,,,,, and I,,,, the null and identity matrices, respectively.
Let us introduce the properties of determinants that helped us to prove Lemma
4.1 in general form. Consider a block matrix N of size (n + m) x (n + m) of the

form
C D
v=l% el
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where C, D, F and G are of size n X n, n X m, m X n and m X m, respectively. If
G is invertible, then

det N = det(C — DG~ F) det(G). (63)
In fact, this property follows immediately from the following identity

C D I 0] [C-DG'F D
F G||-G'F 1|~ 0 G

Finally, recall that the determinant of a block triangular matrix is the product of
the determinants of its diagonal blocks.
With these two properties in hand, define C, D, F' and G, respectively, by

A2><2 _A2><2 02><2 O2><2 02><2
02><2 A2><2 7A2><2 02><2 02><2
02><2 02><2 02><2 A2><2 2(N—2)x2(N—2) _A2><2 2(N—2)x2
and
F= [ Bzxz B2><2 Bzx2 B2><2 ]2><2(N—2)’ G:B2><2-
Thanks to the case N = 2, we already know that
det G = det B,,, = cm — de # 0, (64)

which implies that G is invertible. Thus, the determinant (62) takes the form

|M/| — ‘ C2(N—2)><2(N—2) -D2><2(N—2)

2X2(N—-2) B2><2 AN X2N

and by using the property (63), it yields that

det M/ = det (02(N—2)><2(N72) - D2><2(N—2) (Bz><2)_1 F2><2(N—2)) det Bzxz- (65)

Claim 3. M’ has determinant different of zero with appropriate choice of A,
ji=1,2,., N andi=1,2.

From (64) is enough to prove that
-1
det (CZ(N—2)><2(N—2) - D2><2(N—2) (B2><2) F2><2(N—2))
is nonzero. In order to analyze the above determinant, note that

(Bzxz)il F2><2(N—2) = (B2><2)71 [ B2><2 B2><2 Bzxz Bz><2 ]
= [ IZ><2 I2><2 Iz><2 I2><2 ]

2% 2(N—2)

2x2(N—2)
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and

—1
-D2><2(N—2) (B2><2) F2><2(N—2)

i 02><2
O2><2
. [sz2 I2><2 szz I2><2]

2x2(N—2)

L _A2><2 2(N-2)x2

02><2 O2><2 02><2

02><2 02><2 02><2

02><2 O2><2 02><2
L *A2><2 *A2><2 *A2><2

2(N—2)x2(N—-2)

Therefore, we get

—1
CQ(N—2)><2(N—2) - D2><2(N—2) (B2><2) F2><2(N—2)

A2><2 _A2><2 02><2 02><2
02><2 A2><2 _A2><2 O2><2

A2><2 A2><2 A2><2 2Az><2

2(N—2)x2(N—2)

Then,
-1

CQ(N—2)><2(N—2) - D2><2(N—2) (B2><2) F2><2(N—2)

only depends of A,,, and, consequently, if

-1
det <C2(N—2)><2(N—2) - D2><2(N—2) (B2><2) F2><2(N—2)) = 0;
we have that
. -1
dim Ker (CZ(N—Q)X2(N—2) - D2><2(N—2) (Bzxz) F2><2(N72)) > 0. (66)

Thus, (66) implies that there exists a vector

—1
X2(N—2)><1 € Ker (02(N—2)><2(N—2) - D2><2(N—2) (Bzx’z) F2><2(N—2)>
such that

X2(N—2)><1 = (zla Lo, XT3,T4 """ 7x2(N—3)7x2(N—2))T ?"é O2(N—2)><1 (67)

and
-1
(CZ(N—2)><2(N—2) - D2><2(N—2) (B2><2) F2><2(N—2)> ' X2(N—2)><1 = 02(N—2)><17

or equivalent,

Z1
T
Azxa  —Aayo O2x2 O2x2 xz
3
022 Aszxa —Aaxz - 02x2 o4
= O2(v-2)x1-
Az Aaxa Azxa 2Az2x2 2(N—2)x2(N—2) Ta(n—3)
L T2(N-2)

d2(N-—2)x1

(68)
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To finalize the proof of the Claim 3, denote

€T T _ X (2(N-3))
I 1 2 3 (N—-2) __
H2><1 - ’ H2><1 - ’ R H2><1 - ( .
Ty Ty ,CE(z(N72))
Therefore, the product (68) can be write in the form
1
Agxa  —Aaxe 02x2 022 2x1
O2x2 Agxa —Agxa - 022 H3xq
= 02(N—2)><1'
A2xz  Azxz Asxz o 24mx2 Jovogyooay [ BN 2(N—2)x1
Thus, we have that
_ L ) -
A2><2 (H2><1 - H2x1)
2 3
A2><2 (H2><1 - H2><1)
= 02(N—2)><1-
(N-1) (N—2)
A2><2 (H2><1 - H2><1 )
1 2 (N-2)
L Azys (H2><1 + H2><1 +-+2H:, ) d2(n=2)x1

Now, let us now argue by contradiction. If there exists k € {1,2,--- N — 1} such
that

Hy o = HL3Y # 02,
we obtain
Asvn (H;Xl - Hz(itl)) = Ozx1,
which implies that dim kerA,,, > 0, it means that det A,,, = 0. However, from
the case N = 2, we known that
det Ay, = ag — fn #0,

and hence we obtain a contradiction. On the other hand, suppose that

HI  —HY* =0, Vj=12 ., N-2. (69)

2x1 2x1

Thus, from (67) and (69), we deduce that HJ , # 0,,, for some j € {1,2,..., N — 2}
and

A2><2 (Hl +H2 +"'+2H(N_2)) = (N_l)A2><2H§><1 202(N—2)><1~

2x1 2x1 2x1

Which is again a contradiction, by using the case N = 2. Hence, in the two cases,
we only have that

det (Cz(N—Z)XZ(N—2) - D2><2(N—2) (B2><2)_1 F2><2(N—2)) 7é 0,

it implies that det M’ # 0. Consequently, the determinant of M is nonzero, implying
that the matrix M is invertible and the Claim 3 follows. Thus, Lemma 4.1 is
proved. O
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Appendix A. Vertex conditions types B and C. In this appendix, we will
outline how to prove that matrices associated with vertex conditions (5) (type B)
and (6) (type C) are invertible. We will consider the vertex conditions

k =9k — .=k _
Type B: {af}y(t’g) = Jgus(t,0) = Fun(t,0), k=23 te(0,T),
Zj:l axuj(tao) =0, k=0,1 te (071'1)7
and
; =0k — ... =0k _
Type C: ‘9%1“72) = Oz us(t,0) = Fun(t,0), k=0,3 te(0,T),
> Opuy(t,0) =0, k=1,2 te(0,7),

which may be expressed in matrices form as follows
Mg v8 =Fp, and Mc ve = Fe,

respectively. Here Fg and F¢ are the function vectors defined by

J%:;Vzl Fj (ta O)
YN 0.T1 F(t,0)

agI%Fl(t, 0) — 8§I%F2(t,0)

FB = — :

02Ty Fn-1(t,0) — 0371 Fn(t,0)
831%F1 (t,0) — 8gI%F2(t, 0)
i ai’I%FN_l(t,O) — (()EI%FN(LO) Lowas
and
i Fl(tao)_FQ(tvo) ]
Fyn_1(t,0) — Fn(t,0)
I et 0.3 Fy(t,0)
¢ Sl 02T Fy(t,0) ’
8§I%F1(t, 0) — 35:[%]‘7‘2(15,0)
| 03T3Fn—1(t,0) — 93T3 Fn(t,0) | vt
~s and ¢ are the matrices column given by vectors (72,5, - ,75,,7%,) and
(1,752, 781 Yir2), Tespectively.
Note that choosing A1; = Ag;1 = --- = Ay and Mg = dgg = --- = Ay2 and

arguing as in the Section 5, the determinants of the matrices

Mg = Mp(—1/2,1/4,-- ,—1/2,1/4) and M = Mc(=1/2,1/4,--- ,—1/2,1/4)
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are given by

2N (124+N)in 3im 5iTA 4
Mol = —gy— T[T My
i=1,2,j=1,---,N
and
2N i Bim g Bimdgi
M| = % I1 (e* s e s ) M|,
i=1,2,j=1,-- ,\N
where
a n a n a n - a n a n
fr9 £ 9 f 9 f 9 fF 9
c e —c —e 0 0 0 0 0 0
0 0 c e —c —e 0 0 0 0
. :
|MB|_ 0 0 0 0 0 0 c e —c —e )
d m —d -m 0 0 PO
00 d m —-d -m 00 0 0
0 0 0 0 0 0 d m —d —m
2N X2N
and
a n —a -n 0 0 0 0 0 0
0 O a n —-a -n 0 0 0 0
0 O 0 0 0 0 a n —a —n
M| f 9 L 9 0 9 S g
C cC e c € c € ¢ ¢ ¢ ¢
d m —d -m 0 0 SO
00 d m —-d -m 00 0 0
0 0 0 0 0 0 -~ d m —d —m/|_ =

As in the case vertex type A, we need to study the determinants of the matrices
Mj; and Mp. In order to see the determinant of My and M, are nonzero, we use
the determinant properties together with (63) to observe that

f f

So, these two matrices, namely, My and M, have the following two following
properties:

det M, detMgdet[“ Z} and detM’cdetM’c’det[c ;]

Cc

(i) If det [ y

ne% ] = cm — de # 0, then det M} # 0.



3432 R. A. CAPISTRANO-FILHO, M. CAVALCANTE AND F. A. GALLEGO

a

(ii) If det [ y

:1 ] =am — dn # 0, then det My, # 0.

Claim 4. The relations
ag— fn#, cg— fe#0
and
cm—de#0, am—dn#0

are valid.

In fact, choosing
1 1
A1l = Ao =+ = Ayt :—5 and  Aj; = A2 :"'Z)\le—i,
together with (58), (59) and (61), we already now that ag — fn and ¢m — de are
nonzero. Finally, easy calculations yield that

e 1 Ctan(3)) [ 1\ [ tan(=%)
g1 <sin(g7r)>< cos(f%)) (sin(}éw))( cos(é“))
~ —2.4053 # 0,
amdn< 1 )(tw@)(l) <<>>
sin(§m) )\ sin(f5) ) \sin(fm) )\ sin(=§)
~ 0.8446 # 0,

showing the Claim 4, and thus the matrices Mg and M¢ are invertible.

A.1. Proof of Theorem 1.1: Vertex conditions type B and C. The analysis
developed above give us the following representations for v and ~¢

Y8 =Mp ' Fs and ~c=Mc ' Fe,

respectively. Therefore, the solution u;(t, x) of the Cauchy problem (34) with vertex
conditions type B and C can be express in a integral forms

uB(t,x) = L7395 (t, ) + LTA5(t,2) + F(t,x), j=1,2,.,N  (70)

and
WS (t,x) = L7545 (t2) + LISt x) + Fj(t2), j=1,2,.,N.  (71)
Finally, in order to establish Theorem 1.1 with boundary conditions type B and
C, we closely follow the same steps of subsection 4.3, 4.4 and 4.5, for use the Fourier
restriction method to define a truncated version for (70) and (71), proving thus that
/j_%vﬁ, E_%’yfl, Eivj% and £_%7]C1 for j =1,2,..., N, are well-defined. With this
in hand, a contraction mapping argument gives us the result desired. O
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