
STABILIZATION RESULTS FOR DELAYED FIFTH ORDER KDV-TYPE

EQUATION IN A BOUNDED DOMAIN

ROBERTO DE A. CAPISTRANO-FILHO AND VICTOR H. GONZALEZ MARTINEZ*

Abstract. Studied here is the Kawahara equation, a fifth order Korteweg-de Vries type equation,
with time-delayed internal feedback. Under suitable assumptions on the time delay coefficients
we prove that solutions of this system are exponentially stable. First, considering a damping
and delayed system, with some restriction of the spatial length of the domain, we prove that the
Kawahara system is exponentially stable for T > Tmin. After that, introducing a more general
delayed system, and by introducing suitable energies, we show using Lyapunov approach, that
the energy of the Kawahara equation goes to zero exponentially, considering the initial data small
and a restriction in the spatial length of the domain. To remove these hypotheses, we use the
compactness-uniqueness argument which reduces our problem to prove an observability inequality,
showing a semi-global stabilization result.

1. Introduction

1.1. Model under consideration. The full water wave system is too complex to allow to easily
derive and rigorously from it relevant qualitative information on the dynamics of the waves. Al-
ternatively, under suitable assumption on amplitude, wavelength, wave steepness and so on, the
study on asymptotic models for water waves has been extensively investigated to understand the
full water wave system, see, for instance, [1, 6, 7, 32, 45] and references therein for a rigorous
justification of various asymptotic models for surface and internal waves.

Particularly, formulating the waves as a free boundary problem of the incompressible,
irrotational Euler equation in an appropriate non-dimensional form, one has two non-dimensional
parameters δ := h

λ and ε := a
h , where the water depth, the wave length and the amplitude of the free

surface are parameterized as h, λ and a, respectively. Moreover, another non-dimensional parame-
ter µ is called the Bond number, which measures the importance of gravitational forces compared
to surface tension forces. The physical condition δ � 1 characterizes the waves, which are called
long waves or shallow water waves, but there are several long wave approximations according to

relations between ε and δ. For example, when ε = δ4 � 1, µ = 1
3 + νε

1
2 and, in connection with

the critical Bond number, µ = 1
3 , Hasimoto [22] derived a fifth-order KdV equation of the form

±2ut + 3uux − νuxxx +
1

45
uxxxxx = 0,

which is nowadays called the Kawahara equation.
Our main focus in this work is to investigate the behavior of the solution of the Kawahara

equation [22, 28], a fifth higher-order Korteweg-de Vires (KdV) equation

(1.1) ut + ux + uxxx − uxxxxx + uux = 0

which is a dispersive PDE describing numerous wave phenomena such as magneto-acoustic waves
in a cold plasma [26], the propagation of long waves in a shallow liquid beneath an ice sheet [24],
gravity waves on the surface of a heavy liquid [17], etc. In the literature this equation is also
referred as the fifth-order KdV equation [10], or singularly perturbed KdV equation [39].

2020 Mathematics Subject Classification. 35Q53, 93D15, 93D30, 93C20.
Key words and phrases. KdV-type system, Delayed system, Damping mechanism, Stabilization.
*Corresponding author: victor.hugo.gonzalez.martinez@gmail.com.

1



2 CAPISTRANO-FILHO AND GONZALEZ MARTINEZ

There are some valuable efforts in the last years that focus on the analytical and numerical
methods for solving (1.1). These methods include the tanh-function method [4], extended tanh-
function method [5], sine-cosine method [51], Jacobi elliptic functions method [23], direct algebraic
method [38], decompositions methods [27], as well as the variational iterations and homotopy
perturbations methods [25]. For numerical simulations, however, there appears the question of
cutting-off the spatial domain [8, 9]. This motivates the detail qualitative analysis of problems for
(1.1) in bounded regions.

1.2. Setting of the problem and main results. Our goal in this manuscript is to analyze qual-
itative properties of solutions to the initial-boundary value problem for (1.1) posed on a bounded
interval under the presence of a localized damping and delay terms, that is

(1.2)



ut(x, t) + ux(x, t) + uxxx(x, t)− uxxxxx(x, t) + u(x, t)ux(x, t)

+a (x)u(x, t) + b(x)u(x, t− h) = 0 x ∈ (0, L), t > 0,

u (0, t) = u (L, t) = ux (0, t) = ux (L, t) = uxx (L, t) = 0 t > 0,

u (x, 0) = u0 (x) x ∈ (0, L),

u(x, t) = z0(x, t) x ∈ (0, L), t ∈ (−h, 0),

where h > 0 is the time delay, L > 0 is the length of the spatial domain, u(x, t) is the amplitude
of the water wave at position x at time t, and a = a(x) and b = b(x) are nonnegative functions
belonging to L∞(Ω). For our purpose let us introduce the following assumption.

Assumption 1.1. The real functions a = a (x), b = b (x) are nonnegative functions belonging to
L∞(Ω). Moreover, a(x) ≥ a0 > 0 almost everywhere in a nonempty subset ω ⊂ (0, L).

Note that the term a(x)u designs a feedback damping mechanism (see, for instance [2]);
therefore, one can expect the global well-posedness of (1.2) for all L > 0, and the decay of solutions.
Thus, defining the energy of system (1.2) by

(1.3) Eu(t) =
1

2

∫ L

0
u2(x, t)dx+

h

2

∫ L

0

∫ 1

0
b(x)u2(x, t− ρh)dρdx,

the following questions arise:

Does Eu(t) −→ 0, as t→∞? If it is the case, can we give the decay rate?

So, the main purpose of this paper is to answer these questions. There are basically three
features to be emphasized in this way.

• The damping is effectively important, i.e. there are solutions to undamped model (at least
to its linear version) that do not decay [2];
• The nonlinear term can be estimated in appropriate norms, i.e. there are suitable functional

spaces that allow to apply corresponding methods;
• The delay in the feedback does not destabilize the system, which can be the case for other

delayed systems, see for instance [18, 37, 47].

Our first result ensures that with a restrictive assumption on the length L of the domain and
with the weight of the delayed feedback small enough the solutions of the system (1.2) are locally
stable.

Theorem 1.2. Assume that supp b(x) 6⊂ supp a(x) and the functions satisfying the conditions given
in Assumption 1.1. Let L < π

√
3, ξ > 1 and T0 given by

(1.4) T0 =
1

2γ
ln

(
2ξκ

η

)
+ 1.

Thus, for s ∈ [0, T0) with

(1.5) Tmin := −1

ν
ln
(η

2

)
+

(
2‖b‖∞
ν

+ 1

)
s,
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there exists δ > 0 (depending on ξ, L, h) and r > 0 sufficiently small such that if ‖b‖∞ < δ, for
every (u0, z0) ∈ H = L2(0, L) × L2((0, L) × (0, 1)) satisfying ‖(u0, z0)‖H ≤ r, the energy (1.3) of
the system (1.2) decays exponentially for t > Tmin.

Another goal of this paper, inspired by the work of Nicaise and Pignotti [37], is to consider
the following system

(1.6)



ut(x, t) + ux(x, t) + uxxx(x, t)− uxxxxx(x, t) + u(x, t)ux(x, t)

+a (x) (µ1u(x, t) + µ2u(x, t− h)) = 0 x ∈ (0, L), t > 0,

u (0, t) = u (L, t) = ux (0, t) = ux (L, t) = uxx (L, t) = 0 t > 0,

u (x, 0) = u0 (x) x ∈ (0, L),

u(x, t) = z0(x, t) x ∈ (0, L), t ∈ (−h, 0),

called now on of µi−system. Here h > 0 is the time delay, µ1 > µ2 are positive real number and
the initial data (u0, z0) belong to a suitable space. If a(x) satisfies Assumption 1.1, consider the
following energy associated to the solutions of the system (1.6)

(1.7) Eu(t) =
1

2

∫ L

0
u2(x, t)dx+

ξ

2

∫ L

0

∫ 1

0
a(x)u2(x, t− ρh)dρdx,

where ξ is a positive constant verifying the following

(1.8) hµ2 < ξ < h(2µ1 − µ2).
Again, we are interested to see the questions previously mentioned. Note that, in a different way
of our first goal, the derivative of the energy (1.7) satisfies

E′u(t) ≤ −C
[
u2xx(0) +

∫ L

0
a(x)u2(x)dx+

∫ L

0
a(x)u2(x, t− h)dx

]
,

for some positive constant C := C(µ1, µ2, ξ, h). This indicates that the function a(x) plays the
role of a feedback damping mechanism, at least for the linearized system. Therefore, questions
previously mentioned again arise to the solution of the system (1.6).

For the system (1.6) we split the behavior of the solutions in two parts. By using Lyapunov
approach, gives that the energy (1.7) tends to zero, however, if the initial data are small enough.
Precisely, the local result can be read as follows.

Theorem 1.3. Let L > 0, assume that a ∈ L∞(Ω), (1.8) holds and L < π
√

3. Then, there exists

0 < r < 9π2−3L2

2L
3
2 π2

such that for every (u0, z0(·,−h(·))) ∈ H satisfying ‖(u0, z0(·,−h(·)))‖H ≤ r,

the energy (1.7) of the system (1.6) decays exponentially. More precisely, there exist two positive
constants γ and κ such that

E(t) ≤ κE(0)e−2γt for all t > 0.

Here,

γ ≤ min

{
9π2 − 3L2 − 2L

3
2 rπ2

3L2(1 + 2Lα)
α,

βξ

2h(ξβ + ξ)

}
and κ = (1 + max{2αL, β}) ,

with α and β positive constants such that

α <min

{
1

2Lµ1 + Lµ2

(
µ1 −

ξ

2h
− µ2

2
− βξ

2h

)
,

1

Lµ2

(
ξ

2h
− µ2

2

)}
,

β <
2h

ξ

(
µ1 −

ξ

2h
− µ2

2

)
.

The last result of the manuscript, still related with the system (1.6), removes the hypothesis
of the initial data being small. To do that, we use compactness-uniqueness argument due to J.-L.
Lions [34], which reduces our problem to prove an observability inequality for the nonlinear system
(1.6). Thus, we have the following semi-global result.
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Theorem 1.4. Assume that a(x) satisfying the Assumption 1.1. Suppose that µ1 > µ2 and let
ξ > 0 satisfying (1.8). Let R > 0, then there exists C = C(R) > 0 and ν = ν(R) > 0 such that Eu,
defined in (1.7), satisfies

Eu(t) ≤ CEu(0)e−νt, ∀t > 0,

for solutions of (1.6) provided that ‖(u0, z0)‖H ≤ R.

1.3. Previous results. Let us now mention some bibliography comments about the stabilization
problem for KdV-type models. With respect to the Kawahara equation with damping term recently,
in [2], the authors considered this system

(1.9) ut + ux + uxxx − uxxxxx + upux + a(x)u = 0, (x, t) ∈ (0, L)× (0, T ),

for p ∈ [1, 4), with a presence of an extra damping term a(x), such that

(1.10)

{
a ∈ L∞(0, L) and a(x) > a0 > 0 a.e. in ω
with a nonempty ω ⊂ (0, L).

This damping mechanism is essential already in a linear case: if a(x) ≡ 0, then a nontrivial solution
to 

ut + ux + uxxx − uxxxxx = 0, (x, t) ∈ (0, L)× (0, T )

u (0, t) = u (L, t) = ux (0, t) = ux (L, t) = uxx (L, t) = 0, t ∈ (0, T )

u (x, 0) = u0 (x) , x ∈ (0, L),

is constructed to be not decayed as t→∞ if the length of an interval is critical (see [2]). Observe
that due to the drift term ux the same occurs for the KdV equation [42]. Indeed, if for instance
L = 2πn, n ∈ N, then the function v(x) = 1− cosx solves

ut + ux + uxxx = 0, (x, t) ∈ (0, L)× (0, T )

u (0, t) = u (L, t) = ux (L, t) = 0, t ∈ (0, T )

u (x, 0) = u0 (x) , x ∈ (0, L),

and clearly v(x) 6→ 0 as t → ∞. Despite the valuable advances in [14, 15, 16, 21], the question
whether solutions of undamped problems associated to nonlinear KdV and Kawahara equations
decay as t→∞ for all finite L > 0 is still open.

To overcome these difficulties, a damping of the type a(x)u was introduced in [36] to stabilize
the KdV system. More precisely, considering the damping localized at a subset ω ⊂ (0, L) containing
nonempty neighborhoods of the end-points of an interval, it was shown that solutions of both linear
and nonlinear problems for the KdV equation decay, independently on L > 0. In [40] it was proved
that the same holds without cumbersome restrictions on ω ⊂ (0, L). In [48, 50] the damping like in
(1.10) was used for (1.9) without the drift term ux. If, however, the linear term ux is dropped, both
the KdV and Kawahara equations do not possess critical set restrictions [42, 49], and the damping is
not necessary. The decay of solutions in such case was also proved in [19, 20] by different methods.

Once the damping term a(x)u 6≡ 0 is added to (1.9), the nonlinearity uux provides the second
difficulty which should be treated with accurateness. In this context the mixed problems for the
generalized KdV equation

(1.11) ut + ux + uxxx + upux + a (x)u = 0,

were studied in [43] when p ∈ [2, 4). For the critical exponent, p = 4, the global well-posedness
and the exponential stability were studied in [33]. The reader is also referred to [29, 44] and the
references therein for an overall literature review.

Still related with damping mechanism for dispersive model, more recently, Cavalcanti et al.
[13] studied a damped KdV–Burgers equation in the real line,

(1.12)

{
ut(x, t) + uxxx(x, t)− uxx(x, t) + λ0u(x, t) + u(x, t)ux(x, t) = 0 (x, t) ∈ R× (0,∞),

u(x, 0) = u0(x) x ∈ R

The authors were able to show the well-posedness and exponential stability for an indefinite damping
λ0(x), giving exponential decay estimates on the L2−norm of solutions to (1.12) under appropriate
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conditions on the damping coefficient λ0. Additionally, recently a work due to Komornik and
Pignotti [30] studied the following equation

(1.13)


ut(x, t) + uxxx(x, t)− uxx(x, t) + λ0u(x, t)

+λu(x, t− τ) + u(x, t)ux(x, t) = 0 (x, t) ∈ R× (0,∞),

u(x, s) = u0(x, s) x ∈ R× [−τ, 0].

Precisely, the authors consider the system (1.13) in presence of a damping term and delay feed-
back. They proved the exponential decay estimates under appropriate conditions on the damping
coefficients.

It is important to point out that very recently, the robustness with respect to the delay
of the boundary stability of the nonlinear KdV equation has been studied in [3]. The authors
obtain, under an appropriate condition on the feedback gains with and without delay the locally
exponentially stable result for non critical length. Moreover, in [47], the authors extend this result
for the nonlinear Korteweg-de Vries equation in the presence of an internal delayed term. This
work is our motivation to treat more general dispersive systems in this manuscript.

1.4. Heuristic of the article. In this article, we investigated and discussed the stabilization
problems with the damping mechanism and feedback delay of a fifth order KdV, known as the
Kawahara equation. As we can see in this introduction, the agenda of the research of stabiliza-
tion problems for the Kawahara equation is quite new and does not acknowledge many results in
the literature. With this proposal to fill this gap, we intend to introduce two ways to treat the
stabilization of the solution for the Kawahara equation with damping and delay terms. In both
cases, under suitable assumptions, we prove exponential stability results of the solution which are
obtained by introducing suitable energies, using Lyapunov approach and compactness-uniqueness
argument.

First, the strategy to treat Theorem 1.2 is the following: We first prove the exponential stability
for the Kawahara system linearized around 0 (see Appendix A) by the Lyapunov approach for all
L < π

√
3 (allowing to have an estimation of the decay rate), then for ‖b‖∞ small enough, we show

the local exponential stability result by a decoupling approach inspired in [47].
The second result or the manuscript, Theorem 1.3, has a local character, that is, is necessary

to make the initial data small enough. The local stability result is based on the appropriate choice
of Lyapunov functional, which one gives a restriction of the lengths L. This happens by the fact
from the choice of the Morawetz multipliers x in the expression of V1 (see (4.2)).

Finally, Theorem 1.4, is based to prove an observability inequality, for the nonlinear delayed
Kawahara equation which one is proved using a contradiction argument. Consequently, the value
of the decay rate can not be estimated in this approach, differently than before. The two main
difficulties to the semi-global stability result are the pass to the limit in the nonlinear term and the
fact that this nonlinear term does not allow to use Holmegren’s uniqueness theorem. Instead we
will use the unique continuation property for the nonlinear system due to Saut and Scheurer [45].
In this case, the results follows without restriction in the length L > 0.

We finish our introduction with a few comments that give a generality of the problems in
consideration.

• First, observe that to prove Theorem 1.2 we do not need to localize the solution of the
transport equation1 in a small subset of (0, L) as in [47, Section 4]. Moreover, we emphasize
that we can take a = 0 in the Theorem 1.2. Finally, it is important to mention that we do
not know if the time Tmin is optimal.

• It is important to point out that the Theorem 1.3 gives an estimation of the decay rate γ.
In particular, we can note that when the delay h increases, the decay rate γ decreases.

• Note that in Theorems 1.3 and 1.4 the relation (1.8) is more general that one used in [47].
Our motivation is the general framework introduced by Nicaise and Pignotti in [37].

1See the equation (2.5) below.
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• As mentioned before, Theorem 1.4 has a semi-global character. This comes from the fact
that even if we are able to choose any radius R for the initial data, the decay rate ν (see
(4.13)) depends on R.

• The previous results are not only true for the nonlinearity uux. Using the same approach
as in [2], we can deal with a general nonlinearity as upux for p ∈ [1, 4). For simplicity here
we will treat the case p = 1.

• As mentioned in the beginning of the introduction, there are several long wave
approximations according to relations between ε and δ, for instance, to the KdV equa-
tion [31]2 we can take ε = δ2 � 1 and µ 6= 1

3 which give us

±2ut + 3uux +

(
1

3
− µ

)
uxxx = 0.

Connecting the KdV and Kawahara equations, in [35] the authors studied limit behavior of
the solutions of the Kawahara equation

ut + uxxx + εuxxxxx + uux = 0, ε > 0

as ε → 0. Note that in this previous equation uxxx and εuxxxxx compete each other and
cancel each other at frequencies of order 1/

√
ε. Thus, the authors proved that the solutions

to this equation converge in C
(
[0, T ];H1(R)

)
towards the solutions of the KdV equation for

any fixed T > 0. Due to this previous fact, we believe that considering an approximation
of the delayed system in the bounded domain
ut(x, t) + ux(x, t) + uxxx(x, t) + εuxxxxx(x, t) + u(x, t)ux(x, t)

+a (x)u(x, t) + b(x)u(x, t− h) = 0 x ∈ (0, L), t > 0,

u (x, 0) = u0 (x) x ∈ (0, L),

u(x, t) = z0(x, t) x ∈ (0, L), t ∈ (−h, 0),

with the compatible ε−boundary condition, using the approach of our work, we can recover
(as ε→ 0) the results proposed by [47].

1.5. Organization of the article. Our manuscript is outlined as follows: First, Section 2 is
related with the well-posedness results for µi−system (1.6) and its adjoint. After that, Section 3 is
devoted to prove properties of the damping–delayed system (1.2), that is, we show the Theorem 1.2,
where the analysis developed in the Appendix A is crucial. In Section 4, we give a rigorous proof
of the asymptotic stability for the solutions of the system (1.6), precisely, we prove Theorem 1.3.
After that, in this same section, to remove restrictions of the Theorem 1.3, we prove an observability
inequality, which is the key to prove Theorem 1.4.

2. Well-posedness of µi−system

Our goal in this section is to prove the well-posedness theory for the system (1.6). This analysis
is useful for the stability properties for the solutions of this system.

2.1. Linear system. For the sake of completeness, we provide below the well-posedness results
for the linear system

(2.1)



ut(x, t) + ux(x, t) + uxxx(x, t)− uxxxxx(x, t)

+a (x) (µ1u(x, t) + µ2u(x, t− h)) = 0 x ∈ (0, L), t > 0,

u (0, t) = u (L, t) = ux (0, t) = ux (L, t) = uxx (L, t) = 0 t > 0,

u (x, 0) = u0 (x) x ∈ (0, L),

u(x, t) = z0(x, t) x ∈ (0, L), t ∈ (−h, 0).

2This equation was firstly introduced by Boussinesq [11], and Korteweg and de Vries rediscovered it twenty years
later.
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A classical way to deal with the well-posedness of the delayed equations (see e.g. [37]) is to
consider z(x, ρ, t) = u(x, t− ρh), for any x ∈ (0, L), ρ ∈ (0, 1) and t > 0. So, its easily verified that
z satisfies the transport equation

(2.2)


hzt(x, ρ, t) + zρ(x, ρ, t) = 0 x ∈ (0, L), ρ ∈ (0, 1), t > 0,

z(x, 0, t) = u(x, t) x ∈ (0, L), t > 0,

z(x, ρ, 0) = z0(x,−ρh) x ∈ (0, L), ρ ∈ (0, 1).

We equipped the Hilbert space H = L2(0, L)× L2((0, L)× (0, 1)) with the following inner product

((u, z), (v, w))H =

∫ L

0
uvdx+ ξ‖a‖∞

∫ L

0

∫ 1

0
z(x, ρ)w(x, ρ)dxdρ,

where ξ is a positive constant satisfying (1.8) or, equivalently,

(2.3) µ2 <
ξ

h
< 2µ1 − µ2.

that we will use from now on.
To study the well-posedness theory in the sense of Hadamard, we need to put the equation (2.1)

into an abstract setting. To do it, let us rewrite this system as follows: Consider U(t) = (u, z(·, ·, t)),
so the equation (2.1) can be reformulated as the following system

(2.4)



ut(x, t) + ux(x, t) + uxxx(x, t)− uxxxxx(x, t)

+a (x) (µ1u(x, t) + µ2z(1)) = 0 x ∈ (0, L), t > 0,

u (0, t) = u (L, t) = ux (0, t) = ux (L, t) = uxx (L, t) = 0 t > 0,

u (x, 0) = u0 (x) x ∈ (0, L),

hzt(x, ρ, t) + zρ(x, ρ, t) = 0 x ∈ (0, L), ρ ∈ (0, 1), t > 0,

z(x, 0, t) = u(x, t) x ∈ (0, L), t > 0,

z(x, ρ, 0) = z0(x,−ρh) x ∈ (0, L), ρ ∈ (0, 1),

which is equivalent to the following abstract Cauchy problem

(2.5)


∂U

∂t
(t) = AU(t),

U(0) = (u0(x), z0(x,−ρh)).

Here, the unbounded operator A : D(A) ⊂ H → H is given by

(2.6) A(u, z) = (−ux − uxxx + uxxxxx − a(x)(µ1u+ µ2z(·, 1)),−h−1zρ)

with domain

(2.7) D(A) =

{
(u, z) ∈ H :

u ∈ H5(0, L), u(0) = u(L) = ux(0) = ux(L) = uxx(L) = 0,
zρ ∈ L2((0, L)× (0, 1)), z(0) = u

}
.

Let us now denote z(1) := z(x, 1, t) in system (2.4) which will be used throughout the article. Thus,
the first result of this section gives some properties of the operator A and its adjoint A∗.

Lemma 2.1. The operator A is closed and its adjoint A∗ : D(A∗) ⊂ H → H is given by

(2.8) A∗(u, z) = (ux + uxxx − uxxxxx − a(x)µ1u+
ξ‖a‖∞
h

z(·, 0), h−1zρ)

with domain

(2.9) D(A∗) =

(u, z) ∈ H :
u ∈ H5(0, L), u(0) = u(L) = ux(0) = ux(L) = uxx(0) = 0,

zρ ∈ L2((0, L)× (0, 1)), z(x, 1) = −a(x)hµ2
‖a‖∞ξ

u(x)

 .

Proof. The proof that A∗ is given as in the statement of the lemma is standard. To show that A
is closed, note that A∗∗ = A and the result follows from [12, Proposition 2.17]. �
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Now, we are able to prove that A is the infinitesimal generator of a C0-semigroup. Precisely,
the result can be read as follows.

Proposition 2.2. Assume that a ∈ L∞(Ω) and (2.3) holds. Then, A is the infinitesimal generator
of a C0-semigroup in H.

Proof. Let U = (u, z) ∈ D(A), then integrating by parts, using the definition of (2.7) and Young’s
inequality we have

(AU,U)H ≤−
1

2
u2xx(0) +

(
−µ1 +

µ2
2

)∫ L

0
a(x)u2(x)dx+

ξ‖a‖∞
2h

∫ L

0
u2(x)dx

+

(
µ2
2
− ξ

2h

)
‖a‖∞

∫ L

0
z2(x, 1)dx

≤ξ‖a‖∞
2h

∫ L

0
u2(x)dx.

Hence, for λ = ξ‖a‖∞
2h we have

((A− λI)U,U)H ≤ 0.

Now, let U = (u, z) ∈ D(A∗), then analogously as done previously, we get

(A∗U,U)H ≤−
1

2
u2xx(L) +

(
−µ1 +

µ22h

2ξ

)∫ L

0
a(x)u2(x)dx+

ξ‖a‖∞
2h

∫ L

0
u2(x)dx.

So, the following relation,

µ2 <
ξ

h
⇒ 2µ2 <

2ξ

h
⇒ 2

µ2
<

2ξ

hµ22
⇒ µ22h

2ξ
<
µ2
2

yields that

(A∗U,U)H ≤−
1

2
u2xx(L) +

(
−µ1 +

µ2
2

)∫ L

0
a(x)u2(x)dx+

ξ‖a‖∞
2h

∫ L

0
u2(x)dx

≤ ξ‖a‖∞
2h

∫ L

0
u2(x)dx.

Hence,

((A− λI)∗U,U)H ≤ 0,

for all U ∈ D(A∗). Finally, since A−λI is densely defined closed linear operator, and both A−λI
and (A − λI)∗ are dissipative, then A is the infinitesimal generator of a C0-semigroup on H (see,
for instance, [41, Corollary 4.4] and [41, Remark before Corollary 3.8]). �

The following theorem gives the existence of solutions for the abstract system (2.5).

Theorem 2.3. Assume that a ∈ L∞(Ω) and (2.3) holds. Then, for each U0 ∈ H there exists a
unique mild solution U ∈ C([0,∞),H) for the system (2.5). Moreover, if U0 ∈ D(A) the solutions
are classical and satisfies the following regularity

(2.10) U ∈ C([0,∞),D(A)) ∩ C1([0,∞),H).

Proof. The result is a direct consequence of Proposition 2.2. �

For T > 0, L > 0 let us introduce the following set

(2.11) B = C([0, T ], L2(0, L)) ∩ L2(0, T,H2
0 (0, L))

endowed with its natural norm

(2.12) ‖y‖B = max
t∈[0,T ]

‖y(·, t)‖L2(0,L) +

(∫ T

0
‖y(·, t)‖2H2(0,L)dt

) 1
2

.

Next results are devoted to show a priori and regularity estimates for the solutions of (2.5).
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Proposition 2.4. Let a ∈ L∞(Ω) and consider that (2.3) holds. Then, for any mild solution of
(2.5) the energy Eu, defined by (1.7), is non-increasing and there exists a positive constant C such
that

(2.13) E′u(t) ≤ −C
[
u2xx(0) +

∫ L

0
a(x)u2(x)dx+

∫ L

0
a(x)u2(x, t− h)dx

]
where C is given by

(2.14) C = min

{
1

2
, µ1 −

ξ

2h
− µ2

2
,−µ2

2
+

ξ

2h

}
.

Proof. Multiplying (2.4)1 by u(x, t) = z(x, 0, t) and integrating over (0, L) we infer that

(2.15)
1

2

d

dt
‖u(t)‖L2(0,L) = −1

2
u2xx(0)− µ1

∫ L

0
a(x)u2(x, t)dx− µ2

∫ L

0
a(x)u(x, t− h)u(x, t)dx.

Now, Multiplying (2.4)4 by a(x)ξu(x, t− ρh) and integrating over (0, L)× (0, 1) we obtain,

ξh

2

d

dt

∫ L

0
a(x)

∫ 1

0
u2(x, t− ρh) dρdx = −

∫ L

0
a(x)

ξ

2

∫ 1

0

d

dρ
(z(x, ρ, t))2 dρdx

= −
∫ L

0
a(x)

ξ

2
[(z(x, 1, t))2 − (z(x, 0, t))2] dx

=
ξ

2

∫ L

0
a(x)[(z(x, 0, t))2 − (z(x, 1, t))2] dx.

(2.16)

From (2.15), (2.16) and applying Young’s inequality we obtain

E′u(t) ≤− 1

2
u2xx(0)− µ1

∫ L

0
a(x)u2(x, t)dx+

µ2
2

∫ L

0
a(x)u2(x, t)dx

+
µ2
2

∫ L

0
a(x)u2(x, t− h)dx+

ξ

2h

∫ L

0
a(x)u2(x, t)dx− ξ

2h

∫ L

0
a(x)u2(x, t− h)dx

and the results holds directly from the previous estimate. �

Proposition 2.5. Assume that a ∈ L∞(Ω) and (2.7) holds. Then, the map

(2.17) (u0, z0(·,−h(·)) 7→ (u, z)

is continuous from H to B×C([0, T ], L2((0, L)×(0, 1)), and for (u0, z0(·,−h(·))) ∈ H, the following
estimates hold

1

2

∫ L

0
u2(x, t)dx+

ξ

2

∫ L

0

∫ 1

0
a(x)u2(x, t− ρh)dρdx ≤1

2

∫ L

0
u20(x)dx

+
ξ

2

∫ L

0

∫ 1

0
a(x)z20(x,−ρh)dρdx

(2.18)

and

‖u0‖2L2(0,L) ≤
1

T

∫ T

0

∫ L

0
u2dxdt+

∫ T

0
u2xx(0)dt

+ (2µ1 + µ2)

∫ T

0

∫ L

0
a(x)u2dxdt+

∫ T

0

∫ L

0
a(x)µ2u

2(x, t− h)dxdt.

(2.19)

Proof. First, note that (2.18) follows from Proposition 2.13. Now, let p ∈ C∞([0, 1] × [0, T ]),
q ∈ C∞([0, L]× [0, T ]) and (u0, z0(·,−h(·))). Then multiplying (2.4)4 by p(ρ, t)z(x, ρ, t), and using
integration by parts we get∫ 1

0

∫ L

0
p(ρ, T )z2(x, ρ, T )− p(ρ, 0)z2(x, ρ, 0)dxdρ− 1

h

∫ T

0

∫ 1

0

∫ L

0
(hpt + pρ)z

2dxdρdt

+
1

h

∫ T

0

∫ L

0
p(1, t)z2(x, 1, t)− p(0, t)z2(x, 0, t)dxdt = 0.

(2.20)
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Taking p(ρ, t) = 1 in (2.20) we obtain

h

∫ 1

0

∫ L

0
z2(x, ρ, T )− z2(x, ρ, 0)dxdρ+

∫ T

0

∫ L

0
z2(x, 1, t)− z2(x, 0, t)dxdt = 0.

which implies that

1

2

∫ T

0

∫ L

0
u2(x, t− h)dxdt ≤1

2

∫ T

0

∫ L

0
u2(x, t)dxdt+

h

2

∫ 1

0

∫ L

0
z20(x,−ρh)dxdρ.(2.21)

Now, multiplying (2.4)1 by q(x, t)u(x, t) and integrating by parts we have

1

2

∫ L

0
q(x, T )u2(x, T )dx− 1

2

∫ L

0
q(x, 0)u2(x, 0)dx

− 1

2

∫ T

0

∫ L

0
(qt + qx + qxxx − qxxxxx)u2dxdt+

3

2

∫ T

0

∫ L

0
qxu

2
xdxdt

− 5

2

∫ T

0

∫ L

0
qxxxu

2
xdxdt+

5

2

∫ T

0

∫ L

0
qxu

2
xxdxdt+

1

2

∫ T

0
q(0, t)u2xx(0, t)dt

+

∫ T

0

∫ L

0
a(x)µ1qu

2dxdt+

∫ T

0

∫ L

0
a(x)µ2qu(x, t− h)udxdt = 0.

(2.22)

Taking q(x, t) = x in (2.22) follows from (2.21) that

3

2

∫ T

0

∫ L

0
u2xdx+

5

2

∫ T

0

∫ L

0
u2xxdx =

1

2

∫ L

0
x(u20(x)− u2(x, T ))dx+

1

2

∫ T

0

∫ L

0
u2dxdt

−
∫ T

0

∫ L

0
xa(x)µ1u

2dxdt−
∫ T

0

∫ L

0
xa(x)µ2u(x, t− h)u(x, t)dxdt

≤L
2
‖u0‖2L2(0,L) +

L

2
h‖a‖∞µ2

∫ 1

0

∫ L

0
z20(x,−ρh)dxdρ

+

(
1

2
+ L‖a‖∞(µ1 + µ2)

)
T

(∫ L

0
u20(x)dx+ ξ‖a‖∞

∫ L

0

∫ 1

0
z20(x,−ρh)dρdx

)
≤C(a, h, µ1, µ2, ξ, L)(1 + T )‖u0, z0(·,−h(·)‖2L2(0,L)×L2(0,1),

where

C(a, h, µ1, µ2, ξ, L) =

(
L

2
+
Lhµ2

2ξ
+ 1 + 2L‖a‖∞(µ1 + µ2)

)
.

Finally, choosing q(x, t) = T − t in (2.22) we obtain

−1

2

∫ L

0
Tu20(x)dx+

1

2

∫ T

0

∫ L

0
u2dxdt+

1

2

∫ T

0
(T − t)u2xx(0)dt

+

∫ T

0

∫ L

0
(T − t)a(x)µ1u

2dxdt+

∫ T

0

∫ L

0
(T − t)a(x)µ2u(x, t)u(x, t− h)dxdt = 0.

Therefore,

‖u0‖2L2(0,L) ≤
1

T

∫ T

0

∫ L

0
u2dxdt+

∫ T

0
u2xx(0)dt

+ (2µ1 + µ2)

∫ T

0

∫ L

0
a(x)u2dxdt+ ‖a‖∞µ2

∫ T

0

∫ L

0
u2(x, t)dxdt

+
h

2
‖a‖∞µ2

∫ 1

0

∫ L

0
z20(x,−ρh)dxdρ,

showing (2.19), and the proof is complete. �
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2.2. Linear system with source term. Consider the higher order KdV linear equation with a
source term f(x, t), in the right hand side:

(2.23)



ut(x, t) + ux(x, t) + uxxx(x, t)− uxxxxx(x, t)

+a (x) (µ1u(x, t) + µ2u(x, t− h)) = f(x, t) x ∈ (0, L), t > 0,

u (0, t) = u (L, t) = ux (0, t) = ux (L, t) = uxx (L, t) = 0 t > 0,

u (x, 0) = u0 (x) x ∈ (0, L),

u(x, t) = z0(x, t) x ∈ (0, L), t ∈ (−h, 0),

where µ1 > µ2 and a(x) satisfies the same hypothesis of the previous section. The next result deal
with the existence of solution of this system.

Proposition 2.6. Assume that a(x) ∈ L∞(Ω) and (2.3) holds. For any (u0, z0(·,−h(·)) ∈ H and
f ∈ L2(0, T, L2(0, L)), there exists a unique mild solution for (2.23) in the class

(u, u(·, t− h(·))) ∈ B × C([0, T ], L2((0, L)× (0, 1))).

Moreover, we have the following estimates

(2.24) ‖(u, z)‖C([0,T ],H) ≤ e
ξ‖a‖∞

2h
T
(
‖(u0, z0(·,−h(·)))‖H + ‖f‖L1(0,T,L2(0,L))

)
and

(2.25) ‖u‖2L2(0,T,H2(0,L)) ≤ C(1 + T + e
ξ‖a‖∞
h

T )
(
‖(u0, z0(·,−h(·)))‖2H + ‖f‖2L1(0,T,L2(0,L))

)
,

where

C = C(a, h, µ1, µ2, ξ, L) =

(
3L

2
+
Lhµ2

2ξ
+ 1 + 2L‖a‖∞(µ1 + µ2)

)
.

Proof. Thanks to the fact that A is an infinitesimal generator of a C0-semigroup (etA) satisfying

‖etA‖L(H) ≤ e
ξ‖a‖∞

2h
t and together with the fact that we can rewrite system (2.23) as a first order

system (see (2.5)) with source term (f(·, t), 0), we have that (2.23) is well-posed in C([0, T ],H).
Additionally, the proof of (2.25) follows exactly the same steps of the proof of Proposition 2.5.
However, we have to be careful to the fact that the right hand side terms are not homogeneous
anymore, so, we need to note that∣∣∣∣∫ T

0

∫ L

0
xf(x, t)u(x, t)dxdt

∣∣∣∣ ≤L2 ‖u‖2C([0,T ],L2(0,L)) +
L

2
‖f‖2L1(0,T,L2(0,L)),

and the result is achieved. �

2.3. Nonlinear system: Global results. In this section we prove the global well-posedness
result for the nonlinear system (1.6). The first step is to show that the nonlinear term uux can be
considered as a source term of the linear equation (2.23). Precisely, the result is the following.

Proposition 2.7. Let u ∈ B. Then uux ∈ L1(0, T, L2(0, L)) and the map

u ∈ B 7→ uux ∈ L1(0, T, L2(0, L))

is continuous. In particular, there exists K > 0 (K =
√

2) such that, for any u, v ∈ B, we have∫ T

0
‖uux − vvx‖L2(0,L)dt ≤ KT

1
4 (‖u‖B + ‖v‖B)‖u− v‖B

Proof. The proof is a variant of [43, Proposition 4.1] so, we just give a sketch of the proof. First,
note that for z ∈ H2

0 (0, L) we have

(2.26) ‖z‖2L∞(0,L) ≤ 2‖z‖L2(0,L)‖z′‖L2(0,L).

From Hölder’s inequality and (2.26) we obtain

‖z‖L2(0,T,L∞(0,L)) ≤
√

2T
1
4 ‖z‖

1
2

L∞(0,T,L2(0,L))
‖z‖

1
2

L∞(0,T,H2
0 (0,L))

(2.27)
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Let u, z ∈ B, then from (2.27) it follows that

‖uux − vvx‖L1(0,T,L2(0,L)) ≤
√

2

2
T

1
4 ‖u‖L2(0,T,H2

0 (0,L))

(
‖u− v‖L∞(0,T,L2(0,L)) + ‖u− v‖L2(0,T,H2

0 (0,L))

)
+

√
2

2
T

1
4 ‖u− v‖L2(0,T,H2

0 (0,L))

(
‖v‖L∞(0,T,L2(0,L)) + ‖v‖L2(0,T,H2

0 (0,L))

)
≤
√

2T
1
4 (‖u‖B + ‖v‖B) ‖u− v‖B,

and the proof is complete. �

We are now in position to prove the global existence of solutions of (1.6).

Proposition 2.8. Let L > 0 and assume that a(x) ∈ L∞(Ω) and (2.3) holds. Then, for every
(u0, z0(·,−h(·))) ∈ H, there exists a unique u ∈ B solution of system (1.6). Moreover, there exists
C > 0 such that

(2.28) ‖ux‖2L2(0,T,L2(0,L)) + ‖uxx‖2L2(0,T,L2(0,L)) ≤ C(‖(u0, z0(·,−h(·)))‖2H + ‖(u0, z0(·,−h(·)))‖4H).

Proof. To prove this result we can follow a standard argument in the literature (see e.g. [36, 40]).
Thus, our goal is to obtain the global existence of solutions proving the local existence and using
the following a priori estimate

(2.29) ‖(u(·, t), u(·, t− h(·)))‖2H ≤ e
ξ‖a‖∞

2
t‖(u0, z0(·,−h(·)))‖2H.

Then, we are concentrated to prove the local existence and uniqueness of solutions to (1.6). Let
(u0, z0(·,−h(·))) ∈ H and u ∈ B, we consider the map Φ : B → B defined by Φ(u) = ũ where ũ is
solution of

ũt(x, t) + ũx(x, t) + ũxxx(x, t)− ũxxxxx(x, t)

+a (x) (µ1ũ(x, t) + µ2ũ(x, t− h)) = −u(x, t)ux(x, t) x ∈ (0, L), t > 0,

ũ (0, t) = ũ (L, t) = ũx (0, t) = ũx (L, t) = ũxx (L, t) = 0 t > 0,

ũ (x, 0) = u0 (x) x ∈ (0, L),

ũ(x, t) = z0(x, t) x ∈ (0, L), t ∈ (−h, 0).

Notice that u ∈ B is solution of (1.6) if and only if u is a fixed point of the map Φ. Thus, let us
prove that the map Φ is a contraction.

In fact, thanks to (2.24), (2.25) and Proposition 2.7, we get

‖Φu‖B ≤
√
C(1 +

√
T + e

ξ‖a‖∞
2h

T )
(
‖(u0, z0(·,−h(·)))‖H + ‖uux‖L1(0,T,L2(0,L))

)
≤
√
C(1 +

√
T + e

ξ‖a‖∞
2h

T )
(
‖(u0, z0(·,−h(·)))‖H +KT

1
4 ‖u‖2B

)
≤
√
C(1 +

√
T + e

ξ‖a‖∞
2h

T )‖(u0, z0(·,−h(·)))‖H +
√
CK(2T

1
4 + T

1
4 e

ξ‖a‖∞
2h

T )‖u‖2B,
if T < 1. Moreover, for the same reasons, we have

‖Φ(u1)− Φ(u2)‖B ≤
√
CK(1 +

√
T + e

ξ‖a‖∞
2h

T )T
1
4 (‖u1‖B + ‖u2‖B) ‖u1 − u2‖B.

Now, consider Φ restricted to the closed ball {u ∈ B : ‖u‖B ≤ R} with R > 0 to be chosen later.
Then,

‖Φ(u)‖B ≤
√
C(1 +

√
T + e

ξ‖a‖∞
2h

T )‖(u0, z0(·,−h(·)))‖H +
√
CK(2T

1
4 + T

1
4 e

ξ‖a‖∞
2h

T )R2

and

‖Φ(u1)− Φ(u2)‖B ≤ 2
√
CK(1 +

√
T + e

ξ‖a‖∞
2h

T )T
1
4R‖u1 − u2‖B.

So, pick R = 4
√
C‖(u0, z0(·,−h(·)))‖H and T > 0 satisfying

√
T + 8

√
CKT

1
4 + 4

√
CKT

1
4 e

ξ‖a‖∞
2h

T < 1,

2T
1
4 + T

1
4 e

ξ‖a‖∞
2h

T < 1
2
√
CKR

,

T < 1, e
ξ‖a‖∞

2h
T < 2,
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then ‖Φ(u)‖B < R and ‖Φ(u1) − Φ(u2)‖B ≤ C1‖u1 − u2‖B, with C1 < 1, showing that Φ is a
contraction. Consequently, we can apply the Banach fixed point theorem and the map Φ has a
unique fixed point.

In this last part, let us show (2.28). Following the same steps of the proof of Proposition 2.5,
that is, multiplying (1.6) xu, integrating by parts and using (2.29), we obtain

3

2

∫ T

0

∫ L

0
u2xdx+

5

2

∫ T

0

∫ L

0
u2xxdx ≤ C(1 + T )‖(u0, z0(·,−h(·)))‖2H +

1

3

∫ T

0

∫ L

0
u3(x, t)dxdt.

As H1(0, L) ↪→ C([0, L]) we obtain, by using the Cauchy-Schwarz inequality and (2.29), that∫ T

0

∫ L

0
|u(x, t)|3dxdt ≤

∫ T

0
‖u‖L∞(0,L)

∫ L

0
u2(x, t)dxdt

≤
√
L

∫ T

0
‖u(·, t)‖H1(0,L)

∫ L

0
u2(x, t)dxdt

≤
√
LT‖u‖2L∞(0,T,L2(0,L))‖u‖L2(0,T,H1(0,L))

≤
√
LT‖(u0, z0(·,−h(·)))‖2H‖u‖L2(0,T,H1(0,L)).

(2.30)

Consequently, we obtain

3

2

∫ T

0

∫ L

0
u2xdx+

5

2

∫ T

0

∫ L

0
u2xxdx ≤C(1 + T )‖(u0, z0(·,−h(·)))‖2H +

√
LT

4ε
‖(u0, z0(·,−h(·)))‖4H

+ ε
√
LT‖u‖2L2(0,T,H1(0,L)).

For ε > 0 small enough we obtain

1

2

∫ T

0

∫ L

0
u2xdx+

5

2

∫ T

0

∫ L

0
u2xxdx ≤ C(1 + T )‖(u0, z0(·,−h(·)))‖2H +

√
LT

4ε
‖(u0, z0(·,−h(·)))‖4H,

which completes the proof. �

3. Study of the damping–delayed system

In this section we are interested in studying the time–delayed system (1.2). Note that if we
choose a(x) := µ1a(x) and b(x) := µ2a(x), where µ1 and µ2 are real constants, in the system (1.2)
we recovered the system (1.6). Thus, in this section, we deal with the exponential stability of the
solutions associated to the system (1.6) considering the case when supp b 6⊂ supp a. In this case,
the derivative of the energy E defined by

(3.1) Eu(t) =
1

2

∫ L

0
u2(x, t)dx+

h

2

∫ L

0

∫ 1

0
b(x)u2(x, t− ρh)ρdx,

satisfies

d

dt
Eu(t) =− u2xx(0)−

∫ L

0
a(x)u2(x, t)dx−

∫ L

0
b(x)u(x, t)u(x, t− h)dx

+
1

2

∫ L

0
b(x)u2(x, t)dx− 1

2

∫ L

0
b(x)u2(x, t− h)dx

≤− u2xx(0)−
∫ L

0
a(x)u2(x, t)dx+

1

2

∫ L

0
b(x)u2(x, t)dx+

1

2

∫ L

0
b(x)u2(x, t− h)dx

+
1

2

∫ L

0
b(x)u2(x, t)dx− 1

2

∫ L

0
b(x)u2(x, t− h)dx

≤
∫ L

0
b(x)u2(x, t)dx.



14 CAPISTRANO-FILHO AND GONZALEZ MARTINEZ

The previous inequality means that the energy is not decreasing in general, since the term b(x) ≥ 0
on (0, L). So, inspired by [47], we consider the following perturbation system

(3.2)



ut(x, t) + ux(x, t) + uxxx(x, t)− uxxxxx(x, t) + u(x, t)ux(x, t)

+b(x)u(x, t− h) + a (x)u(x, t) + ξb(x)u(x, t) = 0 x ∈ (0, L), t > 0,

u (0, t) = u (L, t) = ux (0, t) = ux (L, t) = uxx (L, t) = 0 t > 0,

u (x, 0) = u0 (x) x ∈ (0, L),

u(x, t) = z0(x, t) x ∈ (0, L), t ∈ (−h, 0),

which is “close” to (1.2) but with a decreasing energy, with ξ a positive constant. So, considering
the energy defined by

(3.3) Eu(t) =
1

2

∫ L

0
u2(x, t)dx+

ξh

2

∫ L

0

∫ 1

0
b(x)u2(x, t− ρh)ρdx,

we get, for ξ > 1, that the derivative of the energy Eu(t), for classical solutions of (3.2), satisfies

d

dt
Eu(t) ≤− u2xx(0)−

∫ L

0
a(x)u2(x, t)dx+

1

2

∫ L

0
b(x)u2(x, t)dx+

1

2

∫ L

0
b(x)u2(x, t− h)dx

−
∫ L

0
ξb(x)u2(x, t)dx+

1

2

∫ L

0
ξb(x)u2(x, t)dx− 1

2

∫ L

0
ξb(x)u2(x, t− h)dx

≤− u2xx(0)−
∫ L

0
a(x)u2(x, t)dx+

1

2

∫ L

0
(b(x)− ξb(x))u2(x, t)dx

+
1

2

∫ L

0
(b(x)− ξb(x))u2(x, t− h)dx ≤ 0.

3.1. Local stability: A perturbation argument. In this subsection, before to present the main
result of this section, we will study the asymptotic stability of the linear system associated to (3.2),
namely,

(3.4)



ut(x, t) + ux(x, t) + uxxx(x, t)− uxxxxx(x, t) + a (x)u(x, t)

+b(x)u(x, t− h) = 0 x ∈ (0, L), t > 0,

u (0, t) = u (L, t) = ux (0, t) = ux (L, t) = uxx (L, t) = 0 t > 0,

u (x, 0) = u0 (x) x ∈ (0, L),

u(x, t) = z0(x, t) x ∈ (0, L), t ∈ (−h, 0),

in the case supp b 6⊂ supp a and ξ > 1. Note that this system can write as the first order system

(3.5)


∂U

∂t
(t) = AU(t),

U(0) = (u0(x), z0(x,−ρh)).

where the corresponding operator A is defined by

A = A0 +B

with domain D(A) = D(A0) and the bounded operator B is defined by

B(u, z) = (ξb(x)u, 0) for all (u, z) ∈ H.
Here, A0 is defined by (A.4). The first result ensures that the system (3.4) is well-posed. It is
consequence of the analysis made for an auxiliary system in Appendix A.

Proposition 3.1. Assume that a(x) and b(x) are nonnegative function in L∞(0, L), b(x) ≥ b0 > 0
in ω, L < π

√
3 and ξ > 1. Then, for every (u0, z0(·,−h(·))) ∈ H, there exists a unique mild solution

U ∈ C([0,∞),H) for system (3.4). Additionally, for every U0 ∈ D(A), the solution is classical and
satisfies

U ∈ C([0,∞),D(A)) ∩ C1([0,∞),H).
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Proof. Assume that ‖b‖∞ ≤ 1. From Theorem A.1 we have that

((A0 +B)U,U)H ≤
(3ξ + 1)

2
‖U‖2H.

for all U ∈ D(A). In the same way, we obtain

((A0 +B)∗ U,U)H ≤
(3ξ + 1)

2
‖U‖2H

for all U ∈ D(A∗).
Finally, since for λ = (3ξ+1)

2 , A − λI is a densely defined closed linear operator, and both
A − λI and (A − λI)∗ are dissipative, then A is the infinitesimal generator of a C0-semigroup on

H satisfying ‖etA‖L(H) ≤ e
(3ξ+1)

2
t. �

The next result ensures that the energy

(3.6) Eu(t) =
1

2

∫ L

0
u2(x, t)dx+

h

2

∫ L

0

∫ 1

0
b(x)u2(x, t− ρh)ρdx,

associated of the system (3.4) decays exponentially, and it is a consequence of the analysis made in
the Appendix A.

Proposition 3.2. Assume that a and b are nonnegative function in L∞(0, L), b(x) ≥ b0 > 0 in ω,
L < π

√
3 and ξ > 1. So, there exists δ > 0 (depending on ξ, L, h) such that is, ‖b‖∞ ≤ δ then, for

every (u0, z0(·,−h(·))) ∈ H the energy of system Eu, defined in (3.6), is exponentially stable. More
precisely, there exists T0 > 0 and two positive constants ν and C such that

Eu(t) ≤ Ce−νtEu(0), for all t > T0.

Proof. To prove this result, let us consider the two systems

(3.7)



vt(x, t) + vx(x, t) + vxxx(x, t)− vxxxxx(x, t) + a (x) v(x, t)

+b(x)z1(1) + ξb(x)v(x, t) = 0 x ∈ (0, L), t > 0,

v (0, t) = v (L, t) = vx (0, t) = vx (L, t) = vxx (L, t) = 0 t > 0,

v (x, 0) = u0 (x) x ∈ (0, L),

hz1t (x, ρ, t) + z1ρ(x, ρ, t) = 0 x ∈ (0, L), ρ ∈ (0, 1), t > 0,

z1(x, 0, t) = v(x, t) x ∈ (0, L), t > 0,

z1(x, ρ, 0) = v(x,−ρh) = z0(x,−ρh) x ∈ (0, L), ρ ∈ (0, 1)

and

(3.8)



wt(x, t) + wx(x, t) + wxxx(x, t)− wxxxxx(x, t)

+a (x)w(x, t) + b(x)z2(1) = ξb(x)v(x, t) x ∈ (0, L), t > 0,

w (0, t) = w (L, t) = wx (0, t) = wx (L, t) = wxx (L, t) = 0 t > 0,

w (x, 0) = 0 x ∈ (0, L),

hz2t (x, ρ, t) + z2ρ(x, ρ, t) = 0 x ∈ (0, L), ρ ∈ (0, 1), t > 0,

z2(x, 0, t) = w(x, t) x ∈ (0, L), t > 0,

z2(x, ρ, 0) = 0 x ∈ (0, L), ρ ∈ (0, 1).
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Define u = v + w and z = z1 + z2, then

(3.9)



ut(x, t) + ux(x, t) + uxxx(x, t)− uxxxxx(x, t)

+a (x)u(x, t) + b(x)z(1) = 0 x ∈ (0, L), t > 0,

u (0, t) = u (L, t) = ux (0, t) = ux (L, t) = uxx (L, t) = 0 t > 0,

u (x, 0) = u0 (x) x ∈ (0, L),

hzt(x, ρ, t) + zρ(x, ρ, t) = 0 x ∈ (0, L), ρ ∈ (0, 1), t > 0,

z(x, 0, t) = u(x, t) x ∈ (0, L), t > 0,

z(x, ρ, 0) = z0(x,−ρh) x ∈ (0, L), ρ ∈ (0, 1).

Fix 0 < η < 1 and pick

T0 =
1

2γ
ln

(
2ξκ

η

)
+ 1,

so κe−2γT0 < η
2ξ , where α, β, γ, κ are given according to Proposition A.2. As we have that Ev(0) ≤

ξEu(0), we obtain

Ev(T0) ≤ κe−2γT0Ev(0) ≤ η

2ξ
Ev(0) ≤ η

2
Eu(0).

Now, consider ε > 0 such that 0 < η + ε < 1 and

‖b‖∞ ≤ min


√
ε√

ξ3κ
1
2 e

(3ξ+1)
2

(
1
2γ

ln
(

2ξκ
η

)
+2

) , 1
 .

Therefore,

Eu(T0) ≤
∫ L

0
v2(x, T0)dx+ hξ

∫ L

0

∫ 1

0
b(x)v2(x, T0 − ρh)dρdx

+

∫ L

0
w2(x, T0)dx+ hξ‖b‖∞

∫ L

0

∫ 1

0
w2(x, T0 − ρh)dρdx

≤2Ev(T0) + ‖(w(T0, w(·, T0 − h(·))))‖H.

Noting that

(w(T0), w(·, T0 − h(·))) =

∫ T0

0
eA(t−s)(ξb(x)v, 0)ds,

we get

‖(w(T0), w(·, T0 − h(·)))‖H ≤
∫ T0

0
e

(3ξ+1)
2

(T0−s)
(∫ L

0
|ξb(x)v|2dx

) 1
2

ds

≤
√

2ξ‖b‖∞
∫ T0

0
e

(3ξ+1)
2

(T0−s)κ
1
2 e−γsE

1
2
v (0)ds

≤
√

2ξ‖b‖∞κ
1
2E

1
2
v (0)

∫ T0

0
e

(3ξ+1)
2

(T0−s)e−γsds

≤2ξ2‖b‖2∞e(3ξ+1)T0κEv(0),

where we have used that∫ T0

0
e

(3ξ+1)
2

(T0−s)e−γsds =
e

(3ξ+1)
2

T0 − e−γT0
(3ξ+1)

2 + γ
and

(3ξ + 1)

2
+ γ > 2.

Therefore, by the previous inequality we have

Eu(T0) ≤ ηEu(0) + 2ξ3‖b‖2∞e(3ξ+1)T0κEu(0) < (η + ε)Eu(0).
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Finally, for T0 > 0 defined in (1.4), let us consider the following two systems

(3.10)



vt(x, t) + vx(x, t) + vxxx(x, t)− vxxxxx(x, t) + a (x) v(x, t)

+b(x)z1(1) + ξb(x)v(x, t) = 0 x ∈ (0, L), t > 0,

v (0, t) = v (L, t) = vx (0, t) = vx (L, t) = vxx (L, t) = 0 t > 0,

v (x, 0) = u (x, T0) x ∈ (0, L),

hz1t (x, ρ, t) + z1ρ(x, ρ, t) = 0 x ∈ (0, L), ρ ∈ (0, 1), t > 0,

z1(x, 0, t) = v(x, t) x ∈ (0, L), t > 0,

z1(x, ρ, 0) = z(x, ρ, T0) x ∈ (0, L), ρ ∈ (0, 1)

and

(3.11)



yt(x, t) + yx(x, t) + yxxx(x, t)− yxxxxx(x, t) + a (x) y(x, t)

+b(x)z2(1) = ξb(x)v(x, t) x ∈ (0, L), t > 0,

y (0, t) = y (L, t) = yx (0, t) = yx (L, t) = yxx (L, t) = 0 t > 0,

y (x, 0) = 0 x ∈ (0, L),

hz2t (x, ρ, t) + z2ρ(x, ρ, t) = 0 x ∈ (0, L), ρ ∈ (0, 1), t > 0,

z2(x, 0, t) = y(x, t) x ∈ (0, L), t > 0,

z2(x, ρ, 0) = 0 x ∈ (0, L), ρ ∈ (0, 1),

where z1(x, ρ, t) = v(x, t− ρh) and z2(x, ρ, t) = w(x, t− ρh). Define w(x, t) = v(x, t) + y(x, t) and
z(x, ρ, t) = z1(x, ρ, t) + z2(x, ρ, t), we get

(3.12)



wt(x, t) + wx(x, t) + wxxx(x, t)− wxxxxx(x, t)

+a (x)w(x, t) + b(x)z(1) = 0 x ∈ (0, L), t > 0,

w (0, t) = w (L, t) = wx (0, t) = wx (L, t) = wxx (L, t) = 0 t > 0,

w (x, 0) = u(x, T0) x ∈ (0, L),

hzt(x, ρ, t) + zρ(x, ρ, t) = 0 x ∈ (0, L), ρ ∈ (0, 1), t > 0,

z(x, 0, t) = w(x, t) x ∈ (0, L), t > 0,

z(x, ρ, 0) = z(x, ρ, T0) x ∈ (0, L), ρ ∈ (0, 1).

Therefore, w(x, t) = u(x, t + T0) and z(x, ρ, t) = z(x, ρ, t + T0). Thanks to the fact that Ev(0) ≤
ξEu(T0) it follows that

Eu(2T0) ≤
∫ L

0
v2(x, T0)dx+

∫ L

0
y2(x, T0)dx+ h

∫ L

0
b(x)v2(x, T0 − ρh)dρdx

+ h

∫ L

0

∫ 1

0
b(x)y2(x, T0 − ρh)dρdx

≤2Ev(T0) + 2ξ2‖b‖2∞e(3ξ+1)T0κEv(0)

≤η
ξ
Ev(0) + εEu(T0)

≤ηEu(T0) + εEu(T0)

≤(η + ε)2Eu(0).

Preceding in an analogous way, we get

Eu(mT0) ≤ (η + ε)mEu(0),

for all m ∈ N∗. Now, to finish, let t > T0, then there exists m ∈ N∗ such that t = mT0 + s with
0 ≤ s < T0, we have

Eu(t) ≤e(2‖b‖∞+ν)se−νtEu(0),
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where

(3.13) ν =
1

T0
ln

(
1

(η + ε)

)
,

showing the proposition. �

3.2. Proof of Theorem 1.2. By a classical way (see Section 2.3) we can ensures that the the
system (1.2) is well-posed. Additionally, u satisfies

‖(u(·, t), u(·, t− h(·)))‖2H ≤ e2ξ‖b‖∞t‖(u0, z0(·,−h(·)))‖2H,

which implies that

‖u‖C([0,T ],L2(0,L)) ≤ eξ‖b‖∞T ‖(u0, z0(·,−h(·)))‖H
and

‖u‖L2(0,T,L2(0,L)) ≤ T
1
2 eξ‖b‖∞T ‖(u0, z0(·,−h(·)))‖H.

Let us now divide the rest of the proof in several steps.

Step 1: First estimate for the linear system associated to (1.2).

Multiplying the linear system associated to (1.2) by u, integrating by parts we have

3

2

∫ T

0

∫ L

0
u2xdx+

5

2

∫ T

0

∫ L

0
u2xxdx ≤

L

2
‖u0‖2L2(0,L) +

1

2
(1 + 2L‖a‖∞ + L‖b‖∞)

∫ T

0

∫ L

0
u2(x, t)dxdt

+
L

2h
hξ‖b‖∞

∫ T

0

∫ L

0
u2(x, t− h)dρdx

≤L
2
‖u0‖2L2(0,L)

+
1

2

(
1 +

L

h
+ 2L‖a‖∞ + L‖b‖∞

)
Te2ξ‖b‖∞T ‖(u0, z0(·,−h(·)))‖2H.

Step 2: First estimate for the nonlinear system (1.2).

Now, multiplying the nonlinear system (1.2) by u, integrating by parts we have

1

2

∫ T

0

∫ L

0
u2xdx+

5

2

∫ T

0

∫ L

0
u2xxdx ≤C1(a, b, h, L)(1 + Te2ξ‖b‖∞T + e4ξ‖b‖∞T )‖(u0, z0(·,−h(·)))‖2H

+

√
LT

4ε
‖(u0, z0(·,−h(·)))‖4H,

where

C1(a, b, h, L) =
1

2

(
1 + L+

L

h
+ 2L‖a‖∞ + L‖b‖∞

)
.

Here, we have used that as H1(0, L) ↪→ C([0, L]) we obtain, using the Cauchy-Schwarz inequality,
that ∫ T

0

∫ L

0
|u(x, t)|3dxdt ≤

√
LT‖u‖2L∞(0,T,L2(0,L))‖u‖L2(0,T,H1(0,L))

≤
√
LTe2‖b‖∞T ‖(u0, z0(·,−h(·)))‖2H‖u‖L2(0,T,H1(0,L)).

Thus,

3

2

∫ T

0

∫ L

0
u2xdx+

5

2

∫ T

0

∫ L

0
u2xxdx ≤C2(a, b, h, L)(1 +

√
T + Te2ξ‖b‖∞T + e4ξ‖b‖∞T )

× (‖(u0, z0(·,−h(·)))‖2H + ‖(u0, z0(·,−h(·)))‖4H),
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with

C2(a, b, h, L) =
1

2

(
1 +

√
L

4ε
+ L+

L

h
+ 2L‖a‖∞ + L‖b‖∞

)
.

Step 3: Second estimate for the linear system associated to (1.2).

Multiplying the linear system associated to (1.2) by xu, integrating by parts we also have,

3

2

∫ T

0

∫ L

0
u2xdx+

5

2

∫ T

0

∫ L

0
u2xxdx ≤LEu(0) +

1

2
(1 + 2L‖a‖∞ + 2L‖b‖∞)

∫ T

0

∫ L

0
u2(x, t)dxdt

+
Lh

2

∫ L

0

∫ 1

0
b(x)z20(x,−ρh)dρdx

≤(2L+ 1 + 2L‖a‖∞ + 2L‖b‖∞)(1 + Te2‖b‖∞T )Eu(0).

Step 4: Second estimate for the nonlinear system (1.2).

Multiplying the system (1.2) by xu, integrating by parts and using the fact that Eu(0) ≤ 1,
yields that

1

2

∫ T

0

∫ L

0
u2xdx+

5

2

∫ T

0

∫ L

0
u2xxdx ≤(2L+ 1 + 2L‖a‖∞ + 2L‖b‖∞)(1 + Te2‖b‖∞T )Eu(0)

+

√
LT

4ε
e4‖b‖∞TEu(0)

which implies that

1

2

∫ T

0

∫ L

0
u2xdx+

5

2

∫ T

0

∫ L

0
u2xxdx ≤ C3(a, b, h, L)(1 +

√
Te4‖b‖∞T + Te2‖b‖∞T )Eu(0)

where

C3(a, b, h, L) =

(
2L+

√
L

4ε
+ 1 + 2L‖a‖∞ + 2L‖b‖∞

)
.

Here, we used again that H1(0, L) ↪→ C([0, L]) and so∫ T

0

∫ L

0
|u(x, t)|3dxdt ≤

√
LTe2‖b‖∞TEu(0)‖u‖L2(0,T,H1(0,L)).

Consequently,

‖u‖2B ≤ C3(a, b, h, L)(1 +
√
Te4‖b‖∞T + e2‖b‖∞T + 2Te2‖b‖∞T )Eu(0)

where

C3(a, b, h, L) =

(
2L+

√
L

4ε
+ 1 + 2L‖a‖∞ + 2L‖b‖∞

)
.

Step 5: Asymptotic behavior of the energy (1.3).

Pick the initial data ‖(u0, z0(·,−h(·)))‖H ≤ r, where r to be chosen later. The solution u of
(1.2) can be written as u = u1 + u2 where u1 is solution of

u1t (x, t) + u1x(x, t) + u1xxx(x, t)− u1xxxxx(x, t) + a (x)u1(x, t)

+b(x)u1(x, t− h) = 0 x ∈ (0, L), t > 0,

u1 (0, t) = u1 (L, t) = u1x (0, t) = u1x (L, t) = u1xx (L, t) = 0 t > 0,

u1 (x, 0) = u0 (x) x ∈ (0, L),

u1(x, t) = z0(x, t) x ∈ (0, L), t ∈ (−h, 0)
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and u2 is solution of

u2t (x, t) + u2x(x, t) + u2xxx(x, t)− u2xxxxx(x, t) + a (x)u2(x, t)

+b(x)u2(x, t− h) = −u(x, t)ux(x, t) x ∈ (0, L), t > 0,

u2 (0, t) = u2 (L, t) = u2x (0, t) = u2x (L, t) = u2xx (L, t) = 0 t > 0,

u2 (x, 0) = 0 x ∈ (0, L),

u2(x, t) = 0 x ∈ (0, L), t ∈ (−h, 0).

Fix η ∈ (0, 1), thanks to the Proposition 3.2, there exists T1 > 0 such that

e(2‖b‖∞+ν)s−νT1 <
η

2
⇐⇒ T1 > −

1

ν
ln
(η

2

)
+

(
2‖b‖∞
ν

+ 1

)
s

with ν defined by (3.13) satisfying

Eu1(T1) ≤
η

2
Eu1(0).

Thus, we have thanks to the previous inequality that

Eu(T1) ≤
∫ L

0
|u1(x, T1)|2dx+

∫ L

0
|u2(x, T1)|2dx

+ h

∫ L

0

∫ 1

0
b(x)|u1(x, T1 − ρh)|2dρdx+ h

∫ L

0

∫ 1

0
b(x)|u2(x, T1 − ρh)|2dρdx

≤2Eu1(T1) +

∫ L

0
|u2(x, T1)|2dx+ h‖b‖∞

∫ L

0

∫ 1

0
|u2(x, T1 − ρh)|2dρdx

≤ηEu(0) + ‖(u2(T1, u2(·, T1 − h(·))))‖2H

(3.14)

So, with (3.14) in hand together with the estimates of the steps 1, 2, 3 and 4, we get

Eu(T1) ≤ηEu(0) + e(3ξ+1)T1‖uux‖2L1(0,T1,L2(0,L)

≤ηEu(0) + e(3ξ+1)T12T
1
2
1 ‖u‖

4
B

≤Eu(0)(η + e(3ξ+1)T12T
1
2
1 C

2
3 (a, b, h, L)(1 +

√
T1e

4‖b‖∞T1 + e2‖b‖∞T1 + 2T1e
2‖b‖∞T1)2r).

Therefore, given ε > 0 such that η + ε < 1, we can take r > 0 small enough such that

r <
ε

e(3ξ+1)T12T
1
2
1 C

2
3 (a, b, h, L)(1 +

√
T1e4‖b‖∞T1 + e2‖b‖∞T1 + 2T1e2‖b‖∞T1)2

,

in order to have

(3.15) Eu(T1) ≤ (η + ε)Eu(0),

with η + ε < 1.
Finally, the solution of the problem

vt(x, t) + vx(x, t) + vxxx(x, t)− vxxxxx(x, t) + a (x) v(x, t)

+b(x)v(x, t− h) + v(x, t)vx(x, t) = 0 x ∈ (0, L), t > 0,

v (0, t) = v (L, t) = vx (0, t) = vx (L, t) = vxx (L, t) = 0 t > 0,

v (x, 0) = u(x, T1) x ∈ (0, L),

v(x, t) = u(x, T1 + t) x ∈ (0, L), t ∈ (−h, 0),

can be write as u1 + u2, where u1 is solution of

u1t (x, t) + u1x(x, t) + u1xxx(x, t)− u1xxxxx(x, t)

+a (x)u1(x, t) + b(x)u1(x, t− h) = 0 x ∈ (0, L), t > 0,

u1 (0, t) = u1 (L, t) = u1x (0, t) = u1x (L, t) = u1xx (L, t) = 0 t > 0,

u1 (x, 0) = u (x, T1) x ∈ (0, L),

u1(x, t) = u(x, T1 + t) x ∈ (0, L), t ∈ (−h, 0),
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and u2 is solution of

u2t (x, t) + u2x(x, t) + u2xxx(x, t)− u2xxxxx(x, t) + a (x)u2(x, t)

+b(x)u2(x, t− h) = −v(x, t)vx(x, t) x ∈ (0, L), t > 0,

u2 (0, t) = u2 (L, t) = u2x (0, t) = u2x (L, t) = u2xx (L, t) = 0 t > 0,

u2 (x, 0) = 0 x ∈ (0, L),

u2(x, t) = 0 x ∈ (0, L), t ∈ (−h, 0),

From the uniqueness of solutions, we obtain that v(x, t) = u(x, T1 + t) and v(x, t− ρh) = u(x, t+
T1 − ρh) with ρ ∈ (0, 1). Moreover, analogously as we did before

Eu(2T1) ≤ηEu1(0) + ‖(u2(T1, u2(·, T1 − h(·))))‖2H

So, by the previous inequality, using again steps 1, 2, 3, 4 and (3.15), we have that

Eu(2T1) ≤ηEu(T1) + e(3ξ+1)T1‖vvx‖2L1(0,T1,L2(0,L)

≤ηEu(T1) + e(3ξ+1)T12T
1
2
1 ‖v‖

4
B

≤ηEu(T1) + e(3ξ+1)T12T
1
2
1 C

2
3 (a, b, h, L)(1 +

√
T1e

4‖b‖∞T1 + e2‖b‖∞T1 + 2T1e
2‖b‖∞T1)2E2

v(0)

≤(η + ε)Eu(0)(η + e(3ξ+1)T12T
1
2
1 C

2
3 (a, b, h, L)(1 +

√
T1e

4‖b‖∞T1 + e2‖b‖∞T1 + 2T1e
2‖b‖∞T1)r)

≤(η + ε)2Eu(0).

From now on the proof follows the same steps as was done in Proposition 3.2, so Theorem 1.2 is
achieved. �

4. Asymptotic behavior of µi− system

Let us return to study the behavior of the solution of µi−system. The task of this section is
to prove the exponential stability for the solution of (1.6).

4.1. Proof of Theorem 1.3. We prove the local stability result which is based on the appropriate
choice of Lyapunov functional. We start proving that the energy, associated to the solutions of
(1.6), when (1.8) is verified, decays exponentially. To do it let us consider the following Lyapunov
functional

(4.1) V (t) = E(t) + αV1(t) + βV2(t),

where α and β are positive constants that will be fixed small enough later on and E(t) is the energy
defined by (1.7). Here, V1 and V2 are defined by

(4.2) V1(t) =

∫ L

0
xu2(x, t)dx

and

(4.3) V2(t) =
ξ

2

∫ L

0

∫ 1

0
(1− ρ)a(x)u2(x, t− ρh)dρdx,

respectively. It is clear that the two functional E and V are equivalent in the sense that

(4.4) E(t) ≤ V (t) ≤ (1 + max {2αL, β})E(t).
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Now, let u be a solution of (1.6) with (u0, z0(·,−h(·))) ∈ D(A) satisfying ‖(u0, z0(·,−h(·)))‖H ≤ r.
Differentiating (4.2), using the equation (1.6) and integrating by parts, we obtain that

d

dt
V1(t) =

∫ L

0
u2(x, t)dx− 3

∫ L

0
u2x(x, t)dx

− 2

∫ L

0
xu(x, t)a(x)µ1u(x, t)dx− 2

∫ L

0
xa(x)µ2u(x, t− h)u(x, t)dx

+
2

3

∫ L

0
u3(x, t)dx− 5

∫ L

0
u2xx(x, t)dx.

(4.5)

Moreover, differentiating (4.3) and using integration by parts, we have

d

dt
V2(t) = ξ

∫ L

0

∫ 1

0
(1− ρ)a(x)u(x, t− ρh)ut(x, t− ρh)dρdx

=
ξ

2h

∫ L

0
a(x)u2(x, t)dx− ξ

2h

∫ L

0

∫ 1

0
a(x)u2(x, t− ρh)dρdx,

(4.6)

since

2

∫ 1

0
(1− ρ)u(x, t− ρh)uρ(x, t− ρh)dρ = −u2(x, t) +

∫ 1

0
u2(x, t− ρh)dρ.

An argument analogous to the one made in Proposition 2.4 yields that

E′u(t) ≤− 1

2
u2xx(0) +

(
−µ1 +

ξ

2h
+
µ2
2

)∫ L

0
a(x)u2(x)dx

+

(
µ2
2
− ξ

2h

)∫ L

0
a(x)u2(x, t− h)dx,

(4.7)

and consequently,

(4.8) E′u(t) ≤ −C0

[
u2xx(0) +

∫ L

0
a(x)u2(x)dx+

∫ L

0
a(x)u2(x, t− h)dx

]
where C0 > 0 is given by

C0 = min

{
1

2
, µ1 −

ξ

2h
− µ2

2
,−µ2

2
+

ξ

2h

}
for all solutions of system (1.6). Thus, from (4.7), (4.1), (4.5), (4.6) and Cauchy-Schwarz inequality,
we have for any γ > 0,

V ′(t) + 2γV (t) ≤− 1

2
u2xx(0) +

(
−µ1 +

ξ

2h
+
µ2
2

+ 2αLµ1 + αLµ2 +
βξ

2h

)∫ L

0
a(x)u2(x, t)dx

+

(
µ2
2
− ξ

2h
+ αLµ2 −

βξ

2h
+ γξ + γξβ

)∫ L

0

∫ 1

0
a(x)u2(x, t− ρh)dρdx

+ (α+ γ + 2γLα)

∫ L

0
u2(x, t)dx− 3α

∫ L

0
u2x(x, t)dx

+
2α

3

∫ L

0
u3(x, t)dx− 5α

∫ L

0
u2xx(x, t)dx.
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Thanks to the Poincaré’s inequality, we get

V ′(t) + 2γV (t) ≤− 1

2
u2xx(0) +

(
−µ1 +

ξ

2h
+
µ2
2

+ 2αLµ1 + αLµ2 +
βξ

2h

)∫ L

0
a(x)u2(x, t)dx

+

(
µ2
2
− ξ

2h
+ αLµ2

)∫ L

0

∫ 1

0
a(x)u2(x, t− ρh)dρdx

+

(
L2

π2
(α+ γ + 2γLα)− 3α

)∫ L

0
u2x(x, t)dx+

2α

3

∫ L

0
u3(x, t)dx

− 5α

∫ L

0
u2xx(x, t)dx+

(
γξβ + γξ − βξ

2h

)∫ L

0

∫ 1

0
a(x)u2(x, t− ρh)dρdx.

Similar argument as in (2.30), Cauchy-Schwarz inequality, (4.8) and since H1
0 (0, L) ↪→ C([0, L]),

yields that ∫ L

0
u3(x, t)dx ≤L

3
2 r‖ux(·, t)‖2L2(0,L).

Therefore,

V ′(t) + 2γV (t) ≤

(
L2

π2
(γ(1 + 2Lα) + α)− 3α+

2αL
3
2 r

3

)∫ L

0
u2x(x, t)dx

+

(
γξβ + γξ − βξ

2h

)∫ L

0

∫ 1

0
a(x)u2(x, t− ρh)dρdx.

Consequently, taking α, β, γ and r as in the statement of proposition we have that

(4.9) V ′(t) + 2γV (t) ≤ 0.

Finally, from (4.4) and (4.9), we obtain

E(t) ≤ V (t) ≤ e−2γtV (0) ≤ (1 + max {2αL, β}) e−2γtE(0), for all t > 0.

By the density of D(A) in H the result extend to arbitraty (u0, z0(·,−h(·))) ∈ H. �

4.2. Proof of Theorem 1.4. Now let us remove the hypotheses of the initial data being small in
Theorem (1.3). To do it, let u be the solution of (1.6) with (u0, z0(·,−h(·))) ∈ D(A). Integrating
(4.8) between 0 and T > h, we have

E(T )− E(0) ≤ −C0

(∫ T

0
u2xx(0, t)dt+

∫ T

0

∫ L

0
a(x)u2(x)dxdt+

∫ T

0

∫ L

0
a(x)u2(x, t− h)dxdt

)
,

where

C0 = min

{
1

2
, µ1 −

ξ

2h
− µ2

2
,−µ2

2
+

ξ

2h

}
,

which is equivalent to

(4.10)

∫ T

0
u2xx(0, t)dt+

∫ T

0

∫ L

0
a(x)u2(x)dxdt+

∫ T

0

∫ L

0
a(x)u2(x, t−h)dxdt ≤ 1

C0
(E(0)−E(T )).

Observe that the prove of Theorem 1.4 is a direct consequence of the following observability
inequality

(4.11) E(0) ≤ C
(∫ T

0
u2xx(0, t)dt+

∫ T

0

∫ L

0
a(x)u2(x)dxdt+

∫ T

0

∫ L

0
a(x)u2(x, t− h)dxdt

)
,

for the solutions of the nonlinear system (1.6).
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In fact, suppose that (4.11) is verified and, as the energy is non-increasing, we have, thanks
to (4.10), that

E(T ) ≤C
(∫ T

0
u2xx(0, t)dt+

∫ T

0

∫ L

0
a(x)u2(x)dxdt+

∫ T

0

∫ L

0
a(x)u2(x, t− h)dxdt

)
≤ C

C0
(E(0)− E(T )),

which implies that

(4.12) E(T ) ≤ γE(0), with γ =
C
C0

1 + C
C0

< 1.

The same argument used on the interval [(m− 1)T,mT ] for m = 1, 2, . . . ,yields that

E(mT ) ≤ γE((m− 1)T ) ≤ · · · ≤ γmE(0).

Thus, we have

E(mT ) ≤ e−νmTE(0)

with

(4.13) ν =
1

T
ln

(
1 +

C0

C

)
> 0.

For an arbitrary positive t, there exists m ∈ N∗ such that (m − 1)T < t ≤ mT , and by the
non-increasing property of the energy, we conclude that

E(t) ≤ E((m− 1)T ) ≤ e−ν(m−1)TE(0) ≤ 1

γ
e−νtE(0).

By the density of D(A) in H, we deduce that the exponential decay of the energy E holds for any
initial data in H, showing so Theorem 1.4. �

Let us now prove the inequality (4.11).

Proof of the observalibity inequality. First, we can obtain, similarly to (2.19), the following inequal-
ity

T

∫ L

0
u20(x)dx ≤‖u‖2L2(0,T,L2(0,L)) + T

∫ T

0
u2xx(0, t)dt+ T (2µ1 + µ2)

∫ T

0

∫ L

0
a(x)µ1u

2(x, t)dxdt

+ Tµ2

∫ T

0

∫ L

0
a(x)µ2u

2(x, t− h)dxdt(4.14)

Now, multiplying (2.4)4 by ξa(x)z(x, ρ, s) and integrating in (0, L)× (0, 1) we have that

(4.15)
d

ds

ξ

2

∫ L

0
a(x)

∫ 1

0
(z(x, ρ, s))2 dρdx =

ξ

2h

∫ L

0
a(x)[(z(x, 0, s))2 − (z(x, 1, s))2] dx.

Therefore,

(4.16)
ξ

2h

∫ t

0

∫ L

0
a(x)(z2(x, 0, s)− z2(x, 1, s))dxds =

ξ

2

∫ L

0

∫ 1

0
a(x)(z2(x, ρ, t)− z2(x, ρ, 0))dρdx.

From (4.16) we obtain,

ξ

2

∫ L

0

∫ 1

0
a(x)z2(x, ρ, 0)dρdx ≤ξ

2

∫ L

0

∫ 1

0
a(x)z2(x, ρ, t)dρdx

+
ξ

2h

∫ t

0

∫ L

0
a(x)z2(x, 1, s)dxds.

(4.17)
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So, integrating (4.17) from 0 to T yields that

T
ξ

2

∫ L

0

∫ 1

0
a(x)z2(x, ρ, 0)dρdx ≤ξ

2

∫ T

0

∫ L

0

∫ 1

0
a(x)z2(x, ρ, t)dρdxdt

+
Tξ

2h

∫ T

0

∫ L

0
a(x)z2(x, 1, t)dxdt.

(4.18)

Noting that z(x, ρ, t) = u(x, t− ρh) it follows that

(4.19)

ξ

2

∫ L

0
a(x)

∫ 1

0
(z(x, ρ, 0))2 dρdx =

ξ

2

∫ L

0
a(x)

∫ 1

0
(u(x,−ρh))2 dρdx

=
ξ

2

∫ L

0
a(x)

∫ −h
0

(u(x, s))2
(
−1

h

)
dsdx

≤ ξ

2h

∫ L

0
a(x)

∫ T

0
(z(x, 1, t))2 dtdx,

where, in the second equality, we have used the following change of variable s = −ρh. From (4.15)
and (4.19) we also have

ξ

2

∫ L

0
a(x)

∫ 1

0
(z(x, ρ, t))2 dρdx ≤ ξ

2h

∫ L

0
a(x)

∫ T

0
(z(x, 1, t))2 dtdx

+
ξ

2h

∫ T

0

∫ L

0
a(x)(z(x, 0, t))2 dxdt,

(4.20)

Hence, from (4.18) and (4.20) we obtain

T
ξ

2

∫ L

0

∫ 1

0
a(x)z2(x, ρ, 0)dρdx ≤

(
ξ

2h
+
Tξ

2h

)∫ T

0

∫ L

0
a(x)u2(x, t− h)dxdt

+
ξ

2h

∫ T

0

∫ L

0
a(x)u2(x, t)dxdt.

(4.21)

Gathering (4.21) with (4.14), we see that in order to prove the observability inequality (4.11)
it is sufficient to prove that for any T,R > 0 there exists K := K(R, T ) > 0 such that

‖u‖2L2(0,T,L2(0,L)) ≤ K
(∫ T

0
u2xx(0, t)dt+

∫ T

0

∫ L

0
a(x)u2(x)dxdt+

∫ T

0

∫ L

0
a(x)u2(x, t− h)dxdt

)(4.22)

holds for all solutions of the nonlinear system (1.6) with ‖(u0, z0(·,−h(·)))‖H ≤ R.
Let us now argue by contradiction. If (4.22) does not hold, there exists a sequence {un}n∈N ⊂ B

of solutions to system (1.6) with ‖(un0 , zn0 (·,−h(·)))‖H ≤ R such that

lim
n→∞

‖un‖2L2(0,T,L2(0,L))

‖unxx(0, ·)‖2
L2(0,T )

+
∫ T
0

∫ L
0 a(x)|un(x, t)|2dxdt+

∫ T
0

∫ L
0 a(x)|un(x, t− h)|2dxdt

=∞.

We define λn = ‖un‖L2(0,T,L2(0,L)) and vn = un

λn
. Then, vn satisfies

(4.23)



vnt (x, t) + vnx(x, t) + vnxxx(x, t)− vnxxxxx(x, t) + λnv
nvnx(x, t)

+a (x) (µ1v
n(x, t) + µ2v

n(x, t− h)) = 0 x ∈ (0, L), t > 0,

vn (0, t) = vn (L, t) = vnx (0, t) = vnx (L, t) = vnxx (L, t) = 0 t > 0,

vn (x, 0) =
un0
λn

(x) x ∈ (0, L),

vn(x, t) =
zn0
λn

(x, t) x ∈ (0, L), t ∈ (−h, 0),

(4.24) ‖vn‖L2(0,T,L2(0,L)) = 1
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and

(4.25) ‖vnxx(0, ·)‖2L2(0,T ) +

∫ T

0

∫ L

0
a(x)

(
|vn(x, t)|2 + |vn(x, t− h)|2

)
dxdt→ 0 as n→∞.

Claim 1. {vn(·, 0)} is bounded in L2(0, L).

Indeed, since ∫ T

0

∫ L

0
(T − t)(vn)2v2xdxdt = 0.

we have, as for the linear case, that

‖vn(x, 0)‖2L2(0,L) ≤
1

T
‖vn‖2L2(0,T,L2(0,L)) + ‖vnxx(0, ·)‖2L2(0,T )

+ (2µ1 + µ2)

∫ L

0

∫ T

0
a(x)|vn(x, t)|2dxdt

+

∫ L

0

∫ T

0
a(x)|vn(x, t− h)|2dxdt.

(4.26)

Gathering (4.24), (4.25) and (4.26) the Claim 1 follows.

Claim 2. {
√
a(x)vn(·,−h(·))} is bounded in L2((0, L)× (0, 1)) and {λn} is bounded in R.

In fact, as we have that

T
ξ

2

∫ L

0

∫ 1

0
a(x)|zn0 (x, ρ, 0)|2dρdx ≤

(
ξ

2h
+
Tξ

2h

)∫ T

0

∫ L

0
a(x)|un(x, t− h)|2dxdt

+
ξ

2h

∫ T

0

∫ L

0
a(x)|un(x, t)|dxdt

it follows that

T
ξ

2

∫ L

0

∫ 1

0
a(x)

1

λ2n
|zn0 (x, ρ, 0)|2dρdx ≤

(
ξ

2h
+
Tξ

2h

)∫ T

0

∫ L

0
a(x)|vn(x, t− h)|2dxdt

+
ξ

2h

∫ T

0

∫ L

0
a(x)|vn(x, t)|dxdt,

and consequently, {
√
a(x)vn(·,−h(·))} in bounded. Moreover, thanks to (4.8) we see that

λ2n = ‖un‖2L2(0,T,L2(0,L)) ≤ T‖(u
n
0 (·), zn0 (·,−h(·)))‖2H ≤ TR2,

that is, {λn} is bounded, and so, the Claim 2 holds.

Claim 3. {vn} is bounded in L2(0, T,H2(0, L)).

This follows noting first that, as in the proof of Proposition 2.5, we have that

3

2

∫ T

0

∫ L

0
|vnx(x, t)|2dx+

5

2

∫ T

0

∫ L

0
|vnxx(x, t)|2dx =

1

2

∫ L

0
x((vn0 )2(x)− (vn)2(x, T ))dx

+
1

2

∫ T

0

∫ L

0
|vn(x, t)|2dxdt

−
∫ T

0

∫ L

0
xa(x)µ1|vn(x, t)|2dxdt

−
∫ T

0

∫ L

0
xa(x)µ2v

n(x, t− h)vn(x, t)dxdt

−
∫ T

0

∫ L

0
xλnv

nvnxv
ndxdt.
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Now, observe that

−
∫ T

0

∫ L

0
xλnv

nvnxv
ndxdt ≤

√
LTλn‖vn‖2L∞(0,T,L2(0,L))‖v

n‖L2(0,T,H1(0,L))

≤
√
LTλnξ

2
‖vn‖L2(0,T,H1(0,L))

∫ L

0
|vn0 (x)|2dx

+

√
LTλnξ

2
‖vn‖L2(0,T,H1(0,L))

∫ L

0

∫ 1

0
a(x)|vn(x,−ρh)|2dρdx.

Thus, for ε > 0 small enough, we have, putting the two previous inequalities together, that

‖vn‖2L2(0,T,H2(0,L)) ≤L‖v
n
0 ‖2L2(0,L) + ‖vn‖2L2(0,T,L2(0,L))

+ L(2µ1 + µ2)

∫ T

0

∫ L

0
a(x)|vn(x, t)|2dxdt

+ Lµ2

∫ T

0

∫ L

0
a(x)|vn(x, t− h)|2dxdt

+
√
LTλn

(
ξ

2

∫ L

0
|vn0 (x)|2dx+

ξ

2

∫ L

0

∫ 1

0
a(x)|vn(x,−ρh)|2dρ, dx

)2
1

2ε

showing the Claim 3.

Claim 4. {vnvnx} is bounded in L2(0, T, L1(0, L)).

This claim is a direct consequence of the following inequality

‖vnvnx‖L2(0,T,L1(0,L)) ≤ ‖vn‖C([0,T ],L2(0,L))‖vn‖L2(0,T,H2(0,L)),

where we used the Cauchy-Schwarz inequality.
Thus, putting together all this results we showed that

vnt (x, t) = −(vnx(x, t) + vnxxx(x, t)− vnxxxxx(x, t) + λnv
nvnx(x, t) + a (x) (µ1v

n(x, t) + µ2v
n(x, t− h)))

is bounded in L2(0, T,H−3(0, L)) and using the classical compactness results (see e.g. [46]), we
obtain that {vn} is relatively compact in L2(0, T, L2(0, L)). Thus, there exists a subsequence of
{vn}, still denoted by {vn}, such that

vn −→ v, strongly in L2(0, T, L2(0, L)),

verifying

‖v‖L2(0,T,L2(0,L)) = 1.

Furthermore, by weak lower semicontinuity, we have

v(x, t) = 0 ∈ ω × (0, T ) and vxx(0, t) = 0 in (0, T ).

Since {λn} is bounded, we can also extract a subsequence, still denoted by {λn} which converges
to λ ≥ 0. Consequently, the limit v satisfies

(4.27)



vt(x, t) + vx(x, t) + vxxx(x, t)− vxxxxx(x, t) + λv(x, t)vx(x, t) = 0 x ∈ (0, L), t > 0,

v (0, t) = v (L, t) = vx (0, t) = vx (L, t) = vxx (L, t) = 0 t > 0,

v(x, t) = 0 x ∈ ω, t ∈ (0, T ),

vxx(0, t) = 0 t ∈ (0, T ),

‖v‖L2(0,T,L2(0,L)) = 1.

At this moment we shall divide our proof into two cases:

Case (i): λ = 0.

In this case, the system satisfied by v is linear and we can apply the Holmgren’s uniqueness
theorem to obtain that v = 0, which contradicts the fact that ‖v‖L2(0,T,L2(0,L)) = 1.

Case (ii): λ > 0.
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For that case, we need to prove that v ∈ L2(0, T,H5(0, L)). In this way, let us consider u = vt.
Then, u is solution of the following equation

ut(x, t) + ux(x, t) + uxxx(x, t)− vxxxxx(x, t)

+λu(x, t)vx(x, t) + λv(x, t)ux(x, t) = 0 x ∈ (0, L), t > 0,

u (0, t) = u (L, t) = ux (0, t) = ux (L, t) = uxx (L, t) = 0 t > 0,

u(x, t) = 0 x ∈ ω, t ∈ (0, T ),

uxx(0, t) = 0 t ∈ (0, T ),

u(x, 0) = −vx(x, 0)− vxxx(x, 0)− v5x(x, 0)− λv(x, 0)vx(x, 0) ∈ H−5(0, L)

Thus, u(·, 0) ∈ L2(0, L) and so u = vt ∈ B. It follows from (4.27) that uxxxxx ∈ L2 ((0, L)× (0, T )).
Therefore,

u ∈ L2(0, T ;H5 (0, L)) ∩H1(0, T ;H2 (0, L))

which is sufficiently to the unique continuation principle from [45] be applied. This gives u ≡ 0 in
(0, L)× (0, T ) which completes the proof. �

Appendix A. Study of an auxiliary system

The goal of this appendix is to treat the system (3.2) linearized around 0.

(A.1)



ut(x, t) + ux(x, t) + uxxx(x, t)− uxxxxx(x, t) + a (x)u(x, t)

+b(x)u(x, t− h) + ξb(x)u(x, t) = 0 x ∈ (0, L), t > 0,

u (0, t) = u (L, t) = ux (0, t) = ux (L, t) = uxx (L, t) = 0 t > 0,

u (x, 0) = u0 (x) x ∈ (0, L),

u(x, t) = z0(x, t) x ∈ (0, L), t ∈ (−h, 0),

The results contained herein are essential to prove one of the main results of this work.

A.1. Well-posedness of the auxiliary system. We start showing that system (A.1) is well-
posed. As in Section 3, setting z(x, ρ, t) = u(x, t − ρh) for any x ∈ (0, L), ρ ∈ (0, 1) and t > 0,
(u(·, t), z(·, ·, t)) satisfies the system

(A.2)



ut(x, t) + ux(x, t) + uxxx(x, t)− uxxxxx(x, t) + a (x)u(x, t)

+b(x)z(1) + ξb(x)u(x, t) = 0 x ∈ (0, L), t > 0,

u (0, t) = u (L, t) = ux (0, t) = ux (L, t) = uxx (L, t) = 0 t > 0,

u (x, 0) = u0 (x) x ∈ (0, L),

hzt(x, ρ, t) + zρ(x, ρ, t) = 0 x ∈ (0, L), ρ ∈ (0, 1), t > 0,

z(x, 0, t) = u(x, t) x ∈ (0, L), t > 0,

z(x, ρ, 0) = z0(x,−ρh) x ∈ (0, L), ρ ∈ (0, 1).

Consider also the Hilbert space H = L2(0, L)× L2((0, L)× (0, 1)) with the inner product

((u, z), (v, w))H =

∫ L

0
uvdx+ hξ‖b‖∞

∫ L

0

∫ 1

0
z(x, ρ)w(x, ρ)dxdρ.

Rewriting system (A.2) as a first order system

(A.3)


∂U

∂t
(t) = A0U(t)

U(0) = (u0(x), z0(x,−ρh)),

with the unbounded operator A0 : D(A) ⊂ H → H given by

(A.4) A0(u, z) = (−ux − uxxx + uxxxxx − a(x)u− ξb(x)u− b(x)z(·, 1),−h−1zρ)
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with domain

(A.5) D(A0) =

{
(u, z) ∈ H :

u ∈ H5(0, L), u(0) = u(L) = ux(0) = ux(L) = uxx(L) = 0,
zρ ∈ L2((0, L)× (0, 1)), z(0) = u,

}
so the following result holds.

Theorem A.1. Assume that a and b are nonnegative functions in L∞(0, L) with b(x) ≥ b0 > 0
in ω, U0 ∈ H and ξ > 1. Then, there exists a unique mild solution U ∈ C([0,∞),H) for system
(A.3). Moreover, if U0 ∈ D(A0), then the solution is classical and satisfies

U ∈ C([0,∞),D(A0)) ∩ C1([0,∞),H).

Proof. Let U = (u, z) ∈ D(A0), then we have

(A0U,U) ≤(1 + ξ)

2
‖b‖∞

∫ L

0

∫ L

0
u2(x)dx.

It is note difficult to prove that the adjoint of A0 denoted by A∗0 is defined by

(A.6) A∗0(u, z) = (ux + uxxx − uxxxxx − a(x)u− ξb(x)u+ ξ‖b‖∞z(·, 0), h−1zρ)

with domain

(A.7) D(A∗0) =

(u, z) ∈ H :
u ∈ H5(0, L), u(0) = u(L) = ux(0) = ux(L) = uxx(0) = 0,

zρ ∈ L2((0, L)× (0, 1)), z(x, 1) = − b(x)

ξ‖b‖∞
u(x)

 .

Let U = (u, z) ∈ D(A∗0), then

(A∗0U,U)H ≤
(1 + ξ)

2
‖b‖∞

∫ L

0
u2(x)dx.

Hence, for λ = (1+ξ)
2 ‖b‖∞,

((A0 − λI)U,U)H ≤ 0 and ((A0 − λI)∗V, V )H ≤ 0,

for all U ∈ D(A0) and V ∈ D(A∗0). Finally, since A0 − λI is a densely defined closed linear
operator, and both A0−λI and (A0−λI)∗ are dissipative, then A0 is the infinitesimal generator of
a C0-semigroup on H (see for instance Corollary 4.4 and remark before Corollary 3.8 in [41]). �

A.2. Exponential stability of the auxiliary system. We denote by {eA0t, t ≥ 0} the C0-
semigroup associated with A0. To prove the exponential stability of the system (A.1), we closely
follow the Subsection 4.1. Precisely, we choose the following Lyapunov functional

(A.8) V (t) = E(t) + αV1(t) + βV2(t),

where α and β are positive constants that will be fixed small enough later on, E is the energy
defined by (3.3), V1 is defined by (4.2) and V2 is defined by

(A.9) V2(t) =
h

2

∫ L

0

∫ 1

0
(1− ρ)b(x)u2(x, t− ρh)dρdx.

It is clear that the two energies E and V are equivalent, in the sense that

(A.10) E(t) ≤ V (t) ≤
(

1 + max

{
2αL,

β

ξ

})
E(t).

Thus, the following result gives a positive answer for the exponential stability to the system (A.1).

Proposition A.2. Assume that a and b are nonnegative function in L∞(0, L), b(x) ≥ b0 > 0 in
ω, L < π

√
3 and ξ > 1. Then, for every (u0, z0(·,−h(·))) ∈ H, the energy of system (A.1), denoted

by E and defined by (3.3), decays exponentially. More precisely, there exists two positive constants
γ and κ such that

E(t) ≤ κE(0)e−2γt for all t > 0,
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with

γ ≤min

{
(3π2 − L2)α

L2(1 + 2αL)
,

β

2h(ξ + β)

}
κ =

(
1 + max

{
2αL,

β

ξ

})
,

where α and β are positive constants such that

α <
ξ − 1

2L(1 + 2ξ)
,

β <ξ − 1− 2αL(1 + 2ξ).

Proof. Let u be a solution of (A.1) with (u0, z0(·,−h(·))) ∈ D(A0). Differentiating (4.2) and using
the first equation of (A.1), we have that

d

dt
V1(t) =− 3

∫ L

0
u2x(x, t)dx+

∫ L

0
u2(x, t)dx− 5

∫ L

0
u2xx(x, t)dx

− 2

∫ L

0
xa(x)u2(x, t)dx− 2

∫ L

0
xb(x)u(x, t)u(x, t− h)dx− 2

∫ L

0
xξb(x)u2(x, t)dx.

Moreover, differentiating (A.9), using integration by parts, we obtain

d

dt
V2(t) =

1

2

∫ L

0
b(x)u2(x, t)dx− 1

2

∫ L

0

∫ 1

0
b(x)u2(x, t− ρh)dρdx.

Consequently, for any γ > 0, we get

d

dt
V (t) + 2γV (t) ≤1

2

∫ L

0
b(x)(1− ξ + β + 2αL(1 + 2ξ))u2(x, t)dx

+
1

2

∫ L

0
b(x)(1− ξ + 2αL)u2(x, t− h)dx

+

(
L2

π2
(α+ γ + 2αγL)− 3α

)∫ L

0
u2x(x, t)dx

+

∫ L

0

∫ 1

0
b(x)

(
γξh+ γβh− β

2

)
u2(x, t− h)dρdx.

Therefore, for α, β and γ chosen as in the statement of proposition we have

(A.11) V ′(t) + 2γV (t) ≤ 0.

From (A.10) and (A.11), we obtain

E(t) ≤ V (t) ≤ e−2γtV (0) ≤
(

1 + max

{
2αL,

β

ξ

})
e−2γtE(0), for all t > 0.

By the density of D(A) in H the result extend to arbitraty (u0, z0(·,−h(·))) ∈ H. �
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Paris, Séries I Math., 312, 841–843 (1991).
[30] V. Komornik and C. Pignotti, Well-posedness and exponential decay estimates for a Korteweg–de Vries–Burgers

equation with time-delay, Nonlinear Analysis (191),111646 ( 2020).



32 CAPISTRANO-FILHO AND GONZALEZ MARTINEZ

[31] D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on
a new type of long stationary waves, Phil. Mag. 39(1895) 422–443.

[32] D. Lannes, The water waves problem. Mathematical analysis and asymptotics. Mathematical Surveys and Mono-
graphs, 188. American Mathematical Society, Providence, RI, 2013. xx+321 pp. ISBN: 978–0–8218–9470–5

[33] F. Linares and A. F. Pazoto, On the exponential decay of the critical generalized Korteweg-de Vries equation with
localized damping, Proc. Amer. Math. Soc., 135, 1515–1522 (2007).

[34] J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems. SIAM Rev;30 (1), 1–68
(1988).

[35] Luc Molinet and Yuzhao Wang, Dispersive limit from the Kawahara to the KdV equation, Journal of Differential
Equations, 255 (8), 21960–2219 (2013)

[36] G. P. Menzala, C. F. Vasconcellos and E. Zuazua, Stabilization of the Korteweg-de Vries equation with localized
damping, Quarterly of Appl. Math., 1, 111–129 (2002).

[37] S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary
or internal feedbacks, SIAM J. Control Optim. 45, no. 5, 1561–1585 (2006).

[38] N. Polat, D. Kaya and H.I. Tutalar, An analytic and numerical solution to a modified Kawahara equation and a
convergence analysis of the method, Appl. Math. Comput., 179, 466–472 (2006).

[39] Y. Pomeau, A. Ramani and B. Grammaticos, Structural stability of the Korteweg-de Vries solitons under a
singular perturbation, Physica D, 31 , 127–134 (1988).

[40] A. F. Pazoto, Unique continuation and decay for the Korteweg-de Vries equations with localized damping, ESAIM
Control Optim. Calc. Var., 11 , 473–486 (2005).

[41] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Spronger-Verlag,
New York, 1983.

[42] L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain, ESAIM
Control Optim. Calc. Var., 2, 33–55 (1997).

[43] L. Rosier and B. Y. Zhang, Global stabilization of the generalized Korteweg-de Vries equation posed on a finite
domain, SIAM J. Control Opt., 45 (3), 927–956 (2006).

[44] D. L. Russell and B. Y. Zhang, Controllability and stabilizability of the third order linear dispersion equation on
a periodic domain, SIAM J. Cont. Optim., 31, 659–676 (1993).

[45] J.-C. Saut and B. Scheurer, Unique continuation for some evolutions equations, J. Diff. Equations, 66, 118–139
(1987).

[46] S. Simon, Compact sets in the space Lp (0, T ;B), Annali di Matematica Pura ed Appicata CXLXVI, IV (1987),
65–96.

[47] J. Valein, On the asymptotic stability of the Korteweg-de Vries equation with time-delayed internal feedback,
Mathematical Control & Related Fields doi: 10.3934/mcrf.2021039.

[48] C. F. Vasconcellos and P. N. Silva, Stabilization of the linear Kawahara equation with localized damping, Asymp-
totic Analysis, 58, 229–252 (2008).

[49] C. F. Vasconcellos and P. N. Silva,Erratum:Stabilization of the linear Kawahara equation with localized damping,
Asymptotic Analysis, 66, 119–124 (2010).

[50] C. F. Vasconcellos and P. N. Silva, Stabilization of the Kawahara equation with localized damping, ESAIM:
Control, Optimisation and Calculus of Variations, 17, 102–116 (2011).

[51] E. Yusufoglu, A. Bekir and M. Alp, Periodic and solitary wave solutions of Kawahara and modified Kawahara
equations by using Sine-Cosine method, Chaos, Solitons and Fractals, 37, 1193–1197 (2008).
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