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Abstract. In a recent article [16], the authors gave a starting point of the

study on a series of problems concerning the initial boundary value problem

and control theory of Biharmonic NLS in some non-standard domains. In this
direction, this article deals to present answers for some questions left in [16]

concerning the study of the cubic fourth order Schrödinger equation in a star
graph structure G. Precisely, consider G composed by N edges parameterized

by half-lines (0,+∞) attached with a common vertex ν. With this structure the

manuscript proposes to study the well-posedness of a dispersive model on star
graphs with three appropriated vertex conditions by using the boundary forcing

operator approach. More precisely, we give positive answer for the Cauchy

problem in low regularity Sobolev spaces. We have noted that this approach
seems very efficient, since this allows to use the tools of Harmonic Analysis, for

instance, the Fourier restriction method, introduced by Bourgain, while for the

other known standard methods to solve partial differential partial equations on
star graphs are more complicated to capture the dispersive smoothing effect

in low regularity. The arguments presented in this work have prospects to be

applied for other nonlinear dispersive equations in the context of star graphs
with unbounded edges.

1. Introduction.

1.1. Quantum and metric graphs. In mathematics and physics, a quantum
graph is a linear network-shaped structure of vertices connected on edges (i.e., a
graph), where a differential (or pseudo-differential) equation is posed on each edge,
while in the case of each edge is equipped with a natural metric the graph is denoted
as a metric graph. An example would be a power network consisting of power lines
(edges) connected at transformer stations (vertices); the differential equations would
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be then the voltage along each of the line and the boundary conditions for each edge
equipped at the adjacent vertices ensuring that the current added over all edges adds
to zero at each vertex.

Quantum graphs were first studied by Linus Pauling as models of free electrons
in organic molecules in the 1930s. They also appear in a variety of mathematical
contexts, e.g. as model systems in quantum chaos, in the study of waveguides, in
photonic crystals and in Anderson localization - is the absence of diffusion of waves
in a disordered medium, or as limit on shrinking thin wires. Quantum graphs
have become prominent models in mesoscopic physics used to obtain a theoretical
understanding of nanotechnology. Another, more simple notion of quantum graphs
was introduced by Freedman et al. in [26].

Aside from actually solving the differential equations posed on a quantum graph
for purposes of concrete applications, typical questions that arise are those of well-
posedness, controllability (what inputs have to be provided to bring the system
into a desired state, for example providing sufficient power to all houses on a power
network) and identifiability (how and where one has to measure something to obtain
a complete picture of the state of the system, for example measuring the pressure
of a water pipe network to determine whether or not there is a leaking pipe).

1.2. Nonlinear dispersive models on star graphs. In the last years, the study
of nonlinear dispersive models in a metric graph has attracted a lot of attention
of mathematicians, physicists, chemists and engineers, see for details [9, 10, 14,
34, 35] and references therein. In particular, the framework prototype (graph-
geometry) for description of these phenomena have been a star graph G, namely,
on metric graphs with N half-lines of the form (0,+∞) connecting at a common
vertex ν = 0, together with a nonlinear equation suitably defined on the edges
such as the nonlinear Schrödinger equation (see Adami et al. [1, 2] and Angulo
and Goloshchapova [5, 6]). We note that with the introduction of nonlinearities
in the dispersive models, the network provides a nice field, where one can look
for interesting soliton propagation and nonlinear dynamics in general. A central
point that makes this analysis a delicate problem is the presence of a vertex where
the underlying one-dimensional star graph should bifurcate (or multi-bifurcate in a
general metric graph).

Looking at other nonlinear dispersive systems on graphs structure, we have some
interesting results. For example, related with well-posedness theory, the second
author in [18], studied the local well-posedness for the Cauchy problem associated
to Korteweg-de Vries equation in a metric star graph with three semi-infinite edges
given by one negative half-line and two positives half-lines attached to a common
vertex ν = 0 (the Y-junction framework). Another nonlinear dispersive equation,
the Benjamin–Bona–Mahony (BBM) equation, is treated in [11, 37]. More precisely,
Bona and Cascaval [11] obtained local well-posedness in Sobolev space H1 and Mug-
nolo and Rault [37] showed the existence of traveling waves for the BBM equation
on graphs. Using a different approach Ammari and Crépeau [4] derived results of
well-posedness and, also, stabilization for the Benjamin-Bona-Mahony equation in
a star-shaped network with bounded edges.

In this aspect, regarding control theory and inverse problems, let us cite
some previous works. Ignat et al. in [31] worked on the inverse problem for
the heat equation and the Schrödinger equation on a tree. Later on, Baudouin
and Yamamoto [7] proposed a unified - and simpler - method to study the in-
verse problem of determining a coefficient. Results of stabilization and boundary
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controllability for KdV equation on star-shaped graphs was also proved by Ammari
and Crépeau [3] and Cerpa et al. [21, 22].

We caution that this is only a small sample of the extant work on graphs structure
for partial differential equations.

1.3. Presentation of the model. Let us now present the equation that we will
study in this paper. The fourth-order nonlinear Schrödinger (4NLS) equation or
biharmonic cubic nonlinear Schrödinger equation

i∂tu+ ∂2
xu− ∂4

xu = λ|u|2u, (1)

have been introduced by Karpman [32] and Karpman and Shagalov [33] to take into
account the role of small fourth-order dispersion terms in the propagation of intense
laser beams in a bulk medium with Kerr nonlinearity. Equation (1) arises in many
scientific fields such as quantum mechanics, nonlinear optics and plasma physics,
and has been intensively studied with fruitful references (see [8, 24, 32, 38, 39] and
references therein).

In the past twenty years such 4NLS have been deeply studied from different math-
ematical points of view. For example, Fibich et al. [25] worked various properties
of the equation in the subcritical regime, with part of their analysis relying on very
interesting numerical developments. The well-posedness problem and existence of
the solutions has been shown (see, for instance, [38, 39, 41, 42]) by means of the
energy method, harmonic analysis, etc.

Recently, in [15], the first and the second authors worked with equation (1) with
the purpose to obtain controllability results. More precisely, they proved that on
torus T, the solution of the associated linear system (1) is globally exponential
stable, by using certain properties of propagation of compactness and regularity
in Bourgain spaces. This property, together with the local exact controllability,
ensures that fourth order nonlinear Schrödinger is globally exactly controllable, we
suggest the reader to see [15] for more details.

Considering an different domain instead of the torus T, the authors, in [16],
considered the cubic fourth order Schrödinger equation on the right half-line

i∂tu+ γ∂4
xu+ λ|u|2u = 0, (t, x) ∈ (0, T )× (0,∞),

u(0, x) = u0(x), x ∈ (0,∞),

u(t, 0) = f(t), ux(t, 0) = g(t) t ∈ (0, T ),

(2)

for γ, λ ∈ R. When γλ < 0 system (2) is so-called focusing otherwise, that is,
γλ > 0, is called defocusing. In [16], Capistrano-Filho et al. consider γ = −1 and
suitable choices of f(t) and g(t) in the equation (2), precisely, by assuming

(u0, f, g) ∈ Hs(R+)×H
2s+3

8 (R+)×H
2s+1

8 (R+),

they obtained local well-posedness on the Sobolev spaces Hs(R+) for s ∈ [0, 1
2 ). For

s > 1/2, by the Sobolev embedding and the energy method one can easily show the
local well-posedness in Hs(R+), giving a starting point of the study on a series of
problems concerning of the Biharmonic NLS on bounded domains or star graphs.

Due these results presented in this recent work, naturally, we should see what
happens for the system (2) in star graph structure given by N unbounded edges
(0,∞) connected with a common vertex ν = 0, where a function on the graph G
is a vector u(t, x) = (u1(t, x), u2(t, x), ..., uN (t, x)). Thus, let us consider the fourth



4 R. A. CAPISTRANO–FILHO, M. CAVALCANTE AND F. A. GALLEGO

order nonlinear Schödinger equation on G, given by{
i∂tuj − ∂4

xuj + λ|uj |2uj = 0, (t, x) ∈ (0, T )× (0,∞), j = 1, 2, ..., N

uj(0, x) = uj0(x), x ∈ (0,∞), j = 1, 2, ..., N
(3)

with initial conditions (u1(0, x), u2(0, x), ..., uN (0, x)).

(0,+∞)

(0,+∞
)

(0,
+∞

)
(0
,+
∞

)

(0,+∞
)

Figure 1. Star graph with 5 edges

Therefore, the following natural question arise.

Problem A. Which are the boundary conditions that we can impose, at least
mathematically acceptable, to ensure the well-posedness result for the system (3)?

1.4. Choosing the boundary conditions and main result. We are interested
to prove the well-posedness of (3) with appropriate boundary condition, more pre-
cisely, we will solve (3) with the following boundary conditions:

Type A:

{
∂kxu1(t, 0) = ∂kxu2(t, 0) = · · · = ∂kxuN (t, 0), k = 0, 1 t ∈ (0, T ),∑N
j=1 ∂

k
xuj(t, 0) = 0, k = 2, 3 t ∈ (0, T ),

(4)

Type B:

{
∂kxu1(t, 0) = ∂kxu2(t, 0) = · · · = ∂kxuN (t, 0), k = 2, 3 t ∈ (0, T ),∑N
j=1 ∂

k
xuj(t, 0) = 0, k = 0, 1 t ∈ (0, T )

(5)

and

Type C:

{
∂kxu1(t, 0) = ∂kxu2(t, 0) = · · · = ∂kxuN (t, 0), k = 0, 3 t ∈ (0, T ),∑N
j=1 ∂

k
xuj(t, 0) = 0, k = 1, 2 t ∈ (0, T ).

(6)

These boundary conditions are motivated by the conservation of the mass. Let
us denote the mass as

E(u1(t, x), u2(t, x), · · · , uN (t, x)) =
1

2

N∑
j=1

∫ ∞
0

|uj(t, x)|2dx.

Multiplying (3) by uj , taking the imaginary part, integrating by parts and using
the initial conditions of (3), we can obtain the most basic energy identity, namely
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the L2–energy, satisfying

E(u1(T, x), u2(T, x), · · · , uN (T, x))

=−
N∑
j=1

∫ T

0

Im(∂3
xuj(t, 0)uj(t, 0))dt

+

N∑
j=1

∫ T

0

Im(∂2
xuj(t, 0)∂xuj(t, 0))dt

− E(u1(0, x), u2(0, x), · · · , uN (0, x)).

(7)

Analyzing (7), we are interested in boundary conditions to the Cauchy problem (3)
such that the right hand side of (7) ensures the conservation of the mass. In this
sense, the boundary conditions (4), (5) and (6) are appropriated. Assuming one of
the boundary conditions (4), (5) or (6) the mass is conserved, i.e.,

E(u1(t, x), u2(t, x), · · · , uN (t, x)) = E(u1(0, x), u2(0, x), · · · , uN (0, x)).

It is important to point out that the boundary conditions of types A, B or C are
coherent with the study of biharmonic operator on L2(G). More precisely, a simple
calculation proves that the biharmonic operator

B := i∂4
x : D(Bi) ⊂ L2(G)→ L2(G), i = 1, 2, 3,

with the following domains

D(B1) = {H4(G); ∂kxu1(0) = ∂kxu2(0) = · · · = ∂kxuN (0), k = 0, 1

N∑
j=1

∂kxuj(0) = 0, k = 2, 3 },

D(B2) = {H4(G); ∂kxu1(0) = ∂kxu2(0) = · · · = ∂kxuN (0), k = 2, 3

N∑
j=1

∂kxuj(0) = 0, k = 0, 1 }

or

D(B3) = {H4(G); ∂kxu1(0) = ∂kxu2(0) = · · · = ∂kxuN (0), k = 0, 3

N∑
j=1

∂kxuj(0) = 0, k = 1, 2 },

is self-adjoint. Then, by Stone’s Theorem (see e.g. [20]), B generates a linear group,

denoted by eit∂
4
x that solves the linear problem
∂tu(x, t) = i∂4

xu(x, t),

u(0, x) = u0 ∈ D(Bi),

u ∈ C(R;D(Bi)) ∩ C1(R;L2(G)) i = 1, 2 or 3.

By using the Duhamel formula together with the fact thatH4(G) is a Banach algebra
it is possible to show that problem (3) is well posed in high regularity, precisely, in
D(Bi), i = 1, 2 or 3.
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Remark 1. The following remarks are now in order.

• Considering the Schrödinger equation on a star graph G, the vertex condition
Type A, when restrict on the cases k = 0 and k = 1, coincides with the
classical Kirchhoff vertex condition. For this system, these conditions are
rather natural in the context of water waves (and other fluids), corresponding
to continuity of the flow and flux balance.

• In this direction, we cite a very interesting work of Gregorio and Mugnolo [28]
that treated the bi-laplacian on star graphs and trees with bounded edges,
more precisely, they given a characterization of complete graphs in terms of
the Markovian property of the semigroup generated by L2(G), the square of
the discrete Laplacian acting on a connected discrete graph G. For a complete
picture about star graphs in unbounded edges, in the context of the Airy
equation, we cite the work of Mugnolo et al. [36].

Therefore, this work gives an answer for the Problem A, in a star graph structure,
when the boundary conditions (4), (5) or (6) are considered. This problem was left
as an open problem in [16]. Before to enunciate the principal result of this work,
we will denote the classical Sobolev space on the star graph G by

Hs(G) =

N⊕
i=1

Hs(0,+∞), for s ≥ 0.

With this notation, the main result of this work can be read as follows.

Theorem 1.1. Let s ∈ [0, 1
2 ). For given initial-boundary data (u10, u20, ..., uN0) ∈

Hs(G) satisfying type A, B or C vertex conditions, there exist a positive time T

depending on
∑N
j=1 ‖uj0‖Hs(R+) and a distributional solution u = (ui)

N
i=1(t, x) ∈

C((0, T );Hs(G)) to (3)–(4) (or (3)–(5) or (3)–(6)) satisfying

uj ∈ C
(
R+; H

2s+3
8 (0, T )

)
∩Xs,b(R+ × (0, T )),

∂xuj ∈ C
(
R+; H

2s+1
8 (0, T )

)
,

∂2
xuj ∈ C

(
R+; H

2s−1
8 (0, T )

)
and

∂3
xuj ∈ C

(
R+; H

2s−3
8 (0, T )

)
,

for some b(s) < 1
2 and j = 1, 2, ..., N . Moreover, the map (u10, u20, ..., uN0) 7−→ u

is locally Lipschitz continuous from Hs(G) to C
(
(0, T ); Hs(G)

)
.

1.5. Heuristic of the paper and further comments. In this work we prove the
existence of solution to the problem (3)–(4) (or (3)–(5) or (3)–(6)) on star graph
structure G composed by N unbounded edges. The proof of Theorem 1.1 will be
divided in several steps. Initially, we recast the partial differential equation in each
edge for a full line with a forcing term, more precisely{

i∂tuj − ∂4
xuj + λ|uj |2uj = T1j(x)h1j(t) + T2j(x)h2j(t), (t, x) ∈ (0, T )× R,

uj(0, x) = ũj0(x), j = 1, 2, ..., N
(8)

where T1j and T2j (j = 1, 2, ..., N) are distributions supported in the negative half-
line (−∞, 0); the boundary forcing functions h1j , h2j (j = 1, 2, ..., N) are selected
to ensure that the vertex conditions are satisfied and ũj0(x) are extensions of uj0
(j = 1, 2, ..., N) on full line satisfying

‖ũj0‖Hs(R) ≤ 2‖uj0‖Hs(R+).



4NLS ON GRAPHS 7

Upon constructing the solution ũ = (ũ1, ũ2, ..., ũN ) of (8), we obtain the solution
u = (u1, u2, ..., uN ) of the problem (3) with appropriate boundary condition, by
restriction, as

u = u(x, t) = (u1, u2, ..., uN )
∣∣
x∈G,t∈(0,T )

:= (u1|x∈R+,t∈(0,T ), u2|x∈R+,t∈(0,T ), ..., uN |x∈R+,t∈(0,T )).

Secondly, the solution of forced Cauchy problem (8) satisfying the vertex types A,
B or C, is constructed using the classical Fourier restriction method due Bourgain
[12, 13]. Finally, a fixed point argument ensures the proof of the Theorem 1.1.

We present some comments about the relevance of the method used in this man-
uscript.

i. It is important to point out that, in our knowledge, this work is the first one in
a star graphs structure G composed by N unbounded edges by using boundary
forcing operator approach introduced first by Colliander and Kenig [23] and
improved by Holmer [30].

ii. The graph structure of this article is more complex than proposed in [18] in
the following sense: To treat the extended vectorial integral equation that
solves system (3), considering N unbounded edges with appropriated vertex
conditions, is more delicate since the matrices associated with this problem
have 2N–order (see Section 4).

iii. A more delicate question concerns here is the local well-posedness for the
Cauchy problem (3) in low regularity. To do this we need to use a dispersive
approach instead of Semigroup theory, where the principal difficulty is to use
the restriction Fourier method in the context of star graphs. This motivates
us to solve the problem (3) by using this approach, since the Semigroup theory
does not guarantee the lower regularity to solutions of (3).

1.6. Organization of the article. To end our introduction, we present the outline
of the manuscript. Section 2 is devoted to present the notations, more precisely,
the Sobolev spaces, the Bourgain spaces, the Riemann-Liouville fractional integral
operator and the Duhamel boundary forcing operator associated of (4NLS), which
are paramount to prove the main result of the article. In the Section 3, we will give
an overview of the main estimates proved by the authors in [16]. With these two
sections in hand, we are able to prove Theorem 1.1, in several steps, in the Section
4. The Section 5 is devoted to prove an auxiliary lemma, which one is used in the
proof of the main result of the article, namely, Theorem 1.1. Finally, at the end of
the work, we present an Appendix A, which will we given a sketch of the proof of
Theorem 1.1 with vertex conditions types B and C.

2. Preliminaries. This section is devoted to presenting the notations, introducing
the functions spaces used in this work and the Duhamel boundary forcing operator
associated with the fourth order linear Schrödinger equation.

2.1. Notations. Let us fix a cut-off function ψ := ψ(t) such that ψ ∈ C∞0 (R),
0 ≤ ψ ≤ 1 and defined by

ψ ≡ 1 on [0, 1], ψ ≡ 0, for |t| ≥ 2, (9)

and, for T > 0, we denote ψT (t) = 1
T ψ( tT ).

Now, for s ≥ 0, define the homogeneous L2-based Sobolev spaces Ḣs = Ḣs(R)

by natural norm ‖φ‖Ḣs = ‖|ξ|sψ̂(ξ)‖L2
ξ

and the L2-based inhomogeneous Sobolev
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spaces Hs = Hs(R) by the norm ‖φ‖Ḣs = ‖(1 + |ξ|2)
s
2 ψ̂(ξ)‖L2

ξ
, where ψ̂ denotes

the Fourier transform of ψ. The function f belongs to Hs(R+), if there exists
F ∈ Hs(R) such that f(x) = F (x) for x > 0, in this case we set

‖f‖Hs(R+) = inf
F
‖F‖Hs(R).

On the other hand, for s ∈ R, f ∈ Hs
0(R+) provided that there exists F ∈ Hs(R)

such that F is the extension of f on R and F (x) = 0 for x < 0. In this case, we
set ‖f‖Hs0 (R+) = infF ‖F‖Hs(R). For s < 0, we define Hs(R+) as the dual space of

H−s0 (R+). It is well known that Hs
0(R+) = Hs(R+) for − 1

2 < s < 1
2 .

Finally, the sets C∞0 (R+) = {f ∈ C∞(R); suppf ⊂ [0,∞)} and C∞0,c(R+) are

defined as the subset of C∞0 (R+), whose members have a compact support on (0,∞).
We remark that C∞0,c(R+) is dense in Hs

0(R+) for all s ∈ R.

2.2. Solution spaces. Consider f ∈ S(R2), let us denote by f̃ or F(f) the Fourier
transform of f with respect to both spatial and time variables

f̃(τ, ξ) =

∫
R2

e−ixξe−itτf(t, x) dxdt.

Moreover, we use Fx and Ft to denote the Fourier transform with respect to space
and time variables, respectively (also use ˆ for both cases).

In the 90’s Bourgain [12, 13] established a form to show the well-posedness of
some classes of dispersive systems. Precisely, on the Sobolev spaces Hs, for smaller
values of s, with these new spaces, Bourgain showed a smoothing property more
suitable for solutions of these classes of dispersive equations.

In our case, considering s, b ∈ R we present below the Bourgain spaces Xs,b

associated to the linear system of (3). The space will be a completion of S ′(R2)
under the norm

‖f‖2Xs,b =

∫
R2

〈ξ〉2s
〈
τ + ξ4

〉2b |f̃(τ, ξ)|2 dξdτ,

where 〈·〉 = (1 + | · |2)1/2.
It is important to note that Xs,b–space, with b > 1

2 , is well-adapted to study the
IVP of dispersive equations on Rn or T. However, in the study of IBVP, the standard
argument cannot be applied directly. This is due to the lack of hidden regularity,
more precisely, the control of (derivatives) time trace norms of the Duhamel parts
requires to work in Xs,b−type spaces for b < 1

2 , since the full regularity range
cannot be covered (see Lemma 3.6 inequality (28)).

Considering the space denoted by Z(s, b) with the following norm

‖f‖Z(s,b)(R2) = sup
t∈R
‖f(t, ·)‖Hs(R) +

3∑
j=0

sup
x∈R
‖∂jxf(·, x)‖

H
2s+3−2j

8 (R)
+ ‖f‖Xs,b ,

our goal is to find solutions of the Cauchy problem (3).
Here, in each edge of G, we will consider the spatial and time restricted space of

Zs,b(R2) defined in the standard way as follows

Z(s, b)((0, T )× R+) = Z(s, b)
∣∣∣
(0,T )×R+

equipped with the norm

‖f‖Z(s,b)((0,T )×R+) = inf
g∈Z(s,b)

{‖g‖Z(s,b) : g(t, x) = f(t, x) on (0, T )× R+}.
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2.3. Riemann-Liouville fractional integral. Before beginning our study of the
Cauchy problem (3), in this subsection, we just give a brief summary of the Riemann-
Liouville fractional integral operator to make the work complete. We suggest
[16, 23, 30] for the reader to see the proofs and more details.

Consider the function t+ defined in the following way

t+ = t if t > 0, t+ = 0 if t ≤ 0.

The tempered distribution
tα−1
+

Γ(α) is defined as a locally integrable function by〈
tα−1
+

Γ(α)
, f

〉
=

1

Γ(α)

∫ ∞
0

tα−1f(t)dt,

for Re α > 0. By integrating by parts, we have that

tα−1
+

Γ(α)
= ∂kt

(
tα+k−1
+

Γ(α+ k)

)
, (10)

for all k ∈ N. Expression (10) allows to extend the definition of
tα−1
+

Γ(α) , in the sense

of distributions, to all α ∈ C. For f ∈ C∞0 (R+), define Iαf as

Iαf =
tα−1
+

Γ(α)
∗ f.

Thus, for Re α > 0, follows that

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s) ds (11)

and the following properties easily holds

I0f = f, I1f(t) =

∫ t

0

f(s)ds, I−1f = f ′ and IαIβ = Iα+β .

2.4. Duhamel boundary forcing operator. We present the Duhamel boundary
forcing operator, which was introduced by Colliander and Kenig [23], in order to
construct the solution to

i∂tu− ∂4
xu = 0. (12)

For details about this subsection and for a well exposition about this topic, the
authors suggest the following references [16, 17, 19, 29] .

Following [16], let us consider the oscillatory integral by

B(x) =
1

2π

∫
R
eixξe−iξ

4

dξ, (13)

which one is the key to define the Duhamel boundary forcing operator. A change

of variable and contour proves that B(0) = − i
7/4

π Γ
(

5
4

)
. We will denote

M =
1

B(0)Γ(3/4)
. (14)

For f ∈ C∞0 (R+), define the boundary forcing operator L0 (of order 0) as

L0f(t, x) := M

∫ t

0

ei(t−t
′)∂4

xδ0(x)I− 3
4
f(t′)dt′, (15)
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where eit∂
4
x denotes the group associated to (12) given by

eit∂
4
xψ(x) =

1

2π

∫
R
eixξe−itξ

4

ψ̂(ξ)dξ.

By using the following properties of the convolution operator

∂kx(f ∗ g) = (∂kxf) ∗ g = f ∗ (∂kxg), k ∈ N, (16)

and the integration by parts in t′ of (15), we get that

iL0(∂tf)(t, x) = iMδ0(x)I− 3
4
f(t) + ∂4

xL0f(t, x). (17)

Using (13) and, again, by change of variable, we have

L0f(t, x) = M

∫ t

0

ei(t−t
′)∂4

xδ0(x)I− 3
4
f(t′)dt′

= M

∫ t

0

B

(
x

(t− t′)1/4

) I− 3
4
f(t′)

(t− t′)1/4
dt′.

(18)

We are now generalize the boundary forcing operator (15). For Re λ > −4 and
given g ∈ C∞0 (R+), we define

Lλg(t, x) =

[
xλ−1
−

Γ(λ)
∗ L0

(
I−λ4 g

)
(t, ·)

]
(x), (19)

where ∗ denotes the convolution operator and
xλ−1
−

Γ(λ) =
(−x)λ−1

+

Γ(λ) . In particular, for

Re λ > 0, we have

Lλg(t, x) =
1

Γ(λ)

∫ ∞
x

(y − x)λ−1L0
(
I−λ4 g

)
(t, y)dy. (20)

By using the property (16), for k = 4, and (17) give us

Lλg(t, x) =

[
x

(λ+4)−1
−

Γ(λ+ 4)
∗ ∂4

xL0
(
I−λ4 g

)
(t, ·)

]
(x)

= iM
x

(λ+4)−1
−

Γ(λ+ 4)
I− 3

4−
λ
4
g(t)

+ i

∫ ∞
x

(y − x)(λ+4)−1

Γ(λ+ 4)
L0
(
∂tI−λ4 g

)
(t, y)dy,

(21)

for Re λ > −4, where M is defined as (14). From (17) and (19), we have

(i∂t − ∂4
x)Lλg(t, x) = iM

xλ−1
−

Γ(λ)
I− 3

4−
λ
4
g(t),

in the distributional sense.

3. Overview of the main estimates. With all the notations and spaces defined
in the Section 2, we present now the main estimates of this work, which are para-
mount to prove the main result of the article.



4NLS ON GRAPHS 11

3.1. Estimates for the function spaces. Concerning of the Xs,b space, we have
two properties which are presented in the lemma below for the functions ψ(t) and
ψT , defined in (9). The first item can be found in [40, Lemma 2.11] and the second
one in Ginibre et al. [27]. The lemma can be read as follows:

Lemma 3.1. Let ψ(t) be a Schwartz function in time. Then, we have

‖ψ(t)f‖Xs,b .ψ,b ‖f‖Xs,b .
Moreover, if − 1

2 < b′ < b ≤ 0 or 0 ≤ b′ < b < 1
2 , w ∈ Xs,b and s ∈ R, thus

‖ψTw‖Xs,b′ . T b−b
′
‖w‖Xs,b .

An result that state important properties of the Riemann-Liouville fractional
integral operator is given below. The proof of this can be found in [30, Lemmas
2.1, 5.3 and 5.4].

Lemma 3.2. If f ∈ C∞0 (R+), then Iαf ∈ C∞0 (R+), for all α ∈ C. Moreover, we
have the following:

(a) If 0 ≤ Re α < ∞ and s ∈ R, then ‖I−αh‖Hs0 (R+) ≤ c‖h‖Hs+α0 (R+), where

c = c(α).
(b) If 0 ≤ Re α <∞, s ∈ R and µ ∈ C∞0 (R), then ‖µIαh‖Hs0 (R+) ≤ c‖h‖Hs−α0 (R+),

where c = c(µ, α).

3.2. Estimates for the boundary forcing operator. Now, we will obtain the
principal properties of the boundary forcing operator. Initially, we present the well-
know properties of the spatial continuity, the decay of the Lλg(t, x) and the explicit
values for Lλf(t, 0), respectively, these results with their respective proofs can be
seen in [16, Lemmas 3.2 and 3.3].

Lemma 3.3. Let g ∈ C∞0 (R+) and M be as in (14). Then, we have

L−kg = ∂kxL0I k
4
g, k = 0, 1, 2, 3. (22)

Moreover, for fixed 0 ≤ t ≤ 1, ∂kxL0f(t, x), k = 0, 1, 2, is continuous in x ∈ R and
L−3g(t, x) is continuous in x ∈ R \ {0} and has a step discontinuity at x = 0.

Lemma 3.4. For Re λ > −4 and f ∈ C∞0 (R+), we have the following value of
Lλf(t, 0):

Lλf(t, 0) =
M

8
f(t)

(
e−i

π
8 (1+3λ) + e−i

π
8 (1−5λ)

sin( 1−λ
4 π)

)
. (23)

3.3. Energy and trilinear estimates. In the last part, we present four lemmas
related to energy and trilinear estimates for the solutions of the 4NLS equation in
the Bourgain spaces Xs,b. These results and their proofs can also be found in [16,
Section 4].

Lemma 3.5. Let s ∈ R and b ∈ R. If φ ∈ Hs(R), then the following estimates
holds

‖ψ(t)eit∂
4
xφ(x)‖

Ct

(
R;Hsx(R)

) .ψ ‖φ‖Hs(R), (24)

‖ψ(t)∂jxe
it∂4

xφ(x)‖
Cx

(
R;H

2s+3−2j
8

t (R)

) .ψ,s,j ‖φ‖Hs(R) j ∈ N (25)

and
‖ψ(t)eit∂

4
xφ(x)‖Xs,b .ψ,b ‖φ‖Hs(R). (26)
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Lemma 3.6. Let 0 < b < 1
2 and j = 0, 1, 2, 3, we have the following inequalities

‖ψ(t)Dw(t, x)‖
C
(
Rt;Hs(Rx)

) . ‖w‖Xs,−b , (27)

for s ∈ R;

‖ψ(t)∂jxDw(t, x)‖
C

(
Rx;H

2s+3−2j
8 (Rt)

) . ‖w‖Xs,−b , (28)

for − 3
2 + j < s < 1

2 + j;

‖ψ(t)∂jxDw(t, x)‖Xs,b . ‖w‖Xs,−b , (29)

for s ∈ R.

Lemma 3.7. Let s ∈ R. Then,

(a) For 2s−7
2 < λ < 1+2s

2 and λ < 1
2 the following inequality holds

‖ψ(t)Lλf(t, x)‖
C
(
Rt;Hs(Rx)

) . ‖f‖
H

2s+3
8

0 (R+)
; (30)

(b) For −4 + j < λ < 1 + j, j = 0, 1, 2, 3, we have

‖ψ(t)∂jxLλf(t, x)‖
C
(
Rx;H

2s+3−2j
8

0 (R+
t )
) . ‖f‖

H
2s+3

8
0 (R+)

; (31)

(c) If s < 4− 4b, b < 1
2 , −5 < λ < 1

2 and s+ 4b− 2 < λ < s+ 1
2 yields that

‖ψ(t)Lλf(t, x)‖Xs,b . ‖f‖
H

2s+3
8

0 (R+)
. (32)

Remark 2. Let us present two remarks.

i. The previous estimates are the so-called space traces, derivative time traces
and Bourgain spaces estimates, respectively.

ii. We observe that in [16] was obtained (25), (28) and (31), for j = 0 and j = 1,
but the result for all j can be obtained directly by using the fact that

∂jxLλ = Lλ−j(I− j4 ).

To close this section, let us enunciate the trilinear estimates associated to fourth
order nonlinear Schrödinger equation. The proof of this estimate can be found in
[42].

Lemma 3.8. For s ≥ 0, there exists b = b(s) < 1/2 such that

‖u1u2u3‖Xs,−b ≤ c‖u1‖Xs,b‖u2‖Xs,b‖u3‖Xs,b . (33)

4. Proof of the main result. The aim of this section is to prove the main result
announced in the introduction of this work, Theorem 1.1. Here, we only consider
the vertex condition (4) (type A) and to make the proof easy to understand, we
will split it in several steps which will be divided into subsections. Additionally, the
discussion of vertex conditions types B and C will be presented on Appendix A, at
the end of the article.
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4.1. Obtaining a integral equation. In this first step, we are interested in finding

an extended vectorial integral equation posed in
⊕N

i=1 R, such that the restrictions
of this equation on G will solve, in the sense of distributions, the following Cauchy
problem{

i∂tuj − ∂4
xuj + λ|uj |2uj = 0, (t, x) ∈ (0, T )× (0,∞), j = 1, 2, ..., N

uj(0, x) = uj0(x), x ∈ (0,∞),
(34)

with initial conditions (u10, u20, ..., uN0) ∈ Hs(G). Let us begin rewriting the Type
A vertex conditions (4) in terms of matrices. In this way, note that (4) is equivalent
to

∂kxu1(t, 0) = ∂kxu2(t, 0), ∂kxu2(t, 0) = ∂kxu3(t, 0), · · · , ∂kxuN−1(t, 0) = ∂kxuN (t, 0),

for k = 0, 1, t ∈ (0, T ) and

N∑
j=1

∂kxuj(t, 0) = 0,

for k = 2, 3, t ∈ (0, T ). Thus, we consider the following matrices

[C1]2N×N



u1(t, 0)
u2(t, 0)
u3(t, 0)

...
uN−1(t, 0)
uN (t, 0)


N×1

=


0
0
...
0


2N×1

;

[C2]2N×N



∂xu1(t, 0)
∂xu2(t, 0)
∂xu3(t, 0)

...
∂xuN−1(t, 0)
∂xuN (t, 0)


N×1

=


0
0
...
0


2N×1

(35)

and

[C3]2N×N



∂2
xu1(t, 0)
∂2
xu2(t, 0)
∂2
xu3(t, 0)

...
∂2
xuN−1(t, 0)
∂2
xuN (t, 0)


N×1

=


0
0
...
0


2N×1

;

[C4]2N×N



∂3
xu1(t, 0)
∂3
xu2(t, 0)
∂3
xu3(t, 0)

...
∂3
xuN−1(t, 0)
∂3
xuN (t, 0)


N×1

=


0
0
...
0


2N×1

,

(36)
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where

[C1]2N×N :=



1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 −1

0 0 0 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 0 0


︸ ︷︷ ︸

N columns

 N − 1 rows

N + 1 rows

[C2]2N×N :=



0 0 0 · · · 0 0
0 0 0 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 0 0

1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 −1

0 0 0 · · · 0 0
0 0 0 · · · 0 0


︸ ︷︷ ︸

N columns

N − 1 rows

N − 1 rows

}
2 rows

[C3]2N×N :=



0 0 0 · · · 0 0
0 0 0 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 0 0

1 1 1 · · · 1 1
0 0 0 · · · 0 0


︸ ︷︷ ︸

N columns

 2N − 2 rows

}
2 rows

and

[C4]2N×N :=



0 0 0 · · · 0 0
0 0 0 · · · 0 0
0 0 0 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 0 0

0 0 0 · · · 0 0
1 1 1 · · · 1 1


︸ ︷︷ ︸

N columns


2N − 2 rows

}
2 rows

.

On the other hand, let be ũj0 an extension for all line R of uj0, satisfying

‖ũj0‖Hs(R) . ‖uj0‖Hs(R+), j = 1, 2, ..., N,
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respectively. Initially, we look for solutions in the form

uj(t, x) = Lλj1γj1(t, x) + Lλj2γj2(t, x) + Fj(t, x), j = 1, 2, ..., N. (37)

Here, γji(·), j = 1, 2, ..., N , i = 1, 2, are unknown functions and

Fj(t, x) = eit∂
4
x ũj0 +D(ψT |uj |2uj)(t, x),

where D(w(t, x)) = −i
∫ t

0
ei(t−t

′)∂4
xw(t′, x)dt′. By using Lemma 3.4 we see that

uj(t, 0) =
M

8

(
e−i

π
8 (1+3λj1) + e−i

π
8 (1−5λj1)

sin(
1−λj1

4 π)

)
γj1(t)

+
M

8

(
e−i

π
8 (1+3λj2) + e−i

π
8 (1−5λj2)

sin(
1−λj2

4 π)

)
γj2(t) + Fj(t, 0)

:=aj1γj1(t) + aj2γj2(t) + Fj(t, 0), j = 1, 2, ..., N.

(38)

Now, let us calculate the traces of first derivative functions. Thanks to (10), (16),
(20) and Lemma 3.4, we get that

∂xuj(t, 0) =
M

8

(
e−i

π
8 (−2+3λj1) + e−i

π
8 (6−5λj1)

sin(
2−λj1

4 π)

)
I−1/4γj1(t)

+
M

8

(
e−i

π
8 (−2+3λj2) + e−i

π
8 (6−5λj2)

sin(
2−λj2

4 π)

)
I−1/4γj2(t)

+ ∂xFj(t, 0),

:=bj1I−1/4γj1(t) + bj2I−1/4γj2(t) + ∂xFj(t, 0), j = 1, 2, ..., N.

(39)

In the same way, we can have the traces of second and third derivatives functions,
giving us the following

∂2
xuj(t, 0) =

M

8

(
e−i

π
8 (−5+3λj1) + e−i

π
8 (11−5λj1)

sin(
3−λj1

4 π)

)
I−1/2γj1(t)

+
M

8

(
e−i

π
8 (−5+3λj2) + e−i

π
8 (11−5λj2)

sin(
3−λj2

4 π)

)
I−1/2γj2(t)

+ ∂2
xFj(t, 0),

:=cj1I−1/2γj1(t) + cj2I−1/2γj2(t) + ∂2
xFj(t, 0), j = 1, 2, ..., N

(40)

and

∂3
xuj(t, 0) =

M

8

(
e−i

π
8 (−8+3λj1) + e−i

π
8 (16−5λj1)

sin(
4−λj1

4 π)

)
I−3/4γj1(t)

+
M

8

(
e−i

π
8 (−8+3λj2) + e−i

π
8 (16−5λj2)

sin(
4−λj2

4 π)

)
I−3/4γj2(t)

+ ∂2
xFj(t, 0),

:=dj1I−3/4γj1(t) + dj2I−3/4γj2(t) + ∂3
xFj(t, 0), j = 1, 2, ..., N.

(41)
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Observe that Lemmas 3.3 and 3.4 ensure these calculus are valid for Reλ > −4. By
substituting (38), (39), (40) and (41) into (35) and (36), yields that the functions
γji and indexes λji, for j = 1, 2, ..., N and i = 1, 2, satisfy the following equalities:

[C1]
2N×N


a11 a12 0 0 · · · 0 0
0 0 a21 a22 · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · aN1 aN2


N×2N



γ11(t)
γ12(t)
γ21(t)
γ22(t)

...
γN1(t)
γN2(t)


2N×1

= − [C1]
2N×N


F1(t, 0)
F2(t, 0)

...
FN (t, 0)


N×1

,

[C2]
2N×N


b11 b12 0 0 · · · 0 0
0 0 b21 b22 · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · bN1 bN2


N×2N



γ11(t)
γ12(t)
γ21(t)
γ22(t)

...
γN1(t)
γN2(t)


2N×1

= − [C2]
2N×N


∂xI 1

4
F1(t, 0)

∂xI 1
4
F2(t, 0)

...
∂xI 1

4
FN (t, 0)


N×1

,

[C3]
2N×N


c11 c12 0 0 · · · 0 0
0 0 c21 c22 · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · cN1 cN2


N×2N



γ11(t)
γ12(t)
γ21(t)
γ22(t)

...
γN1(t)
γN2(t)


2N×1

= − [C3]
2N×N


∂2
xI 1

2
F1(t, 0)

∂2
xI 1

2
F2(t, 0)

...
∂2
xI 1

2
FN (t, 0)


N×1
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and

[C4]
2N×N


d11 d12 0 0 · · · 0 0
0 0 d21 d22 · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · dN1 dN2


N×2N



γ11(t)
γ12(t)
γ21(t)
γ22(t)

...
γN1(t)
γN2(t)


2N×1

= − [C4]
2N×N


∂3
xI 3

4
F1(t, 0)

∂3
xI 3

4
F2(t, 0)
...

∂3
xI 3

4
FN (t, 0)


N×1

.

It follows that,

γ×



a11 a12 −a21 −a22 0 0 · · · 0 0 0 0
0 0 a11 a12 −a21 −a22 · · · 0 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 0 0 0 0 · · · a(N−1)1 a(N−1)2 −aN1 −aN2

b11 b12 −b21 −b22 0 0 · · · 0 0 0 0
0 0 b11 b12 −b21 −b22 · · · 0 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 0 0 0 0 · · · b(N−1)1 b(N−1)2 −bN1 −bN2

c11 c12 c21 c22 c31 c32 · · · · · · · · · cN1 cN2
d11 d12 d21 d22 d31 d32 · · · · · · · · · dN1 dN2


2N×2N

= −



F1(t, 0)− F2(t, 0)

.

.

.
FN−1(t, 0)− FN (t, 0)

∂xI 1
4
F1(t, 0)− ∂xI 1

4
F2(t, 0)

.

.

.
∂xI 1

4
FN−1(t, 0)− ∂xI 1

4
FN (t, 0)

∑N
j=1 ∂2

xI 1
2
Fj(t, 0)∑N

j=1 ∂3
xI 3

4
Fj(t, 0)


2N×1

, (42)

where

γ =



γ11(t)
γ12(t)
γ21(t)
γ22(t)

...
γN1(t)
γN2(t)


2N×1

To simplify the notation, let us denote the equality (42) by

M(λ11, λ12, · · · , λN1, λN2)γ = F, (43)
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where M(λ11, λ12, · · · , λN1, λN2) is the first matrix that appears in the left hand
side of (42), γ is the matrix column given by vector (γ11, γ12, · · · , γN1, γN2) and F
is the matrix in the right hand side of (42).

4.2. Choosing the appropriate parameters and functions. In this second
step, we need to choose the parameters λji and the functions γji, with j = 1, 2, ..., N ,
i = 1, 2, in such a way that we can be able to write the solution uj(t, x), in a integral
form.

To do this, let us start by using the hypothesis of Lemma 3.7. We need, firstly,
to fix parameters λji, such that

max

{
2s− 7

2
,−1

}
< λji(s) < min

{
s+

1

2
,

1

2

}
, j = 1, 2, ..., N, i = 1, 2. (44)

With this restriction in hand we choose the parameters λji as follows

λ11 = λ21 = · · · = λN1 = −1

2
and λ12 = λ22 = · · · = λN2 =

1

4
, (45)

then, we have the equation

M

(
−1

2
,

1

4
, · · · ,−1

2
,

1

4

)
γ = F. (46)

The following lemma gives us that M
(
− 1

2 ,
1
4 , · · · ,−

1
2 ,

1
4

)
is invertible.

Lemma 4.1. The determinant of matrix M
(
− 1

2 ,
1
4 , · · · ,−

1
2 ,

1
4

)
is nonzero.

We will prove Lemma 4.1 on the next section. Thus, these good choices of the
parameters satisfying (44) together with this lemma ensures that M is invertible
and, consequently, the following holds

γ = M−1

(
−1

2
,

1

4
, · · · ,−1

2
,

1

4

)
F. (47)

We empathize that γji depends on F1 and F2, which depend on the unknown
functions u1 and u2. Thus, by substituting (47) into (37), we get uj(t, x) in the
integral form

uj(t, x) = L− 1
2 γj1(t, x) + L 1

4 γj2(t, x) + Fj(t, x), j = 1, 2, ..., N. (48)

4.3. Defining the truncated integral operator and functional space. Using
the previous subsection, we have the solution of the Cauchy problem (34) with
Type A boundary condition (4) in the integral form (48). In order to use the
Fourier restriction method, the third step is to define a truncated version for the
integral form (48).

Pick s ∈ [0, 1/2), we fix the parameters λji as in (45) and define

γ = (γ11, γ12, γ21, γ22, · · · , γN1, γN2)

by (47). Consider b = b(s) < 1
2 and that the estimates given in Lemmas 3.5, 3.6,

3.7 and 3.8 are valid. Now, define the operator Λ by

Λ = (Λ1,Λ2, · · · ,ΛN )

where

Λju(t, x) = ψ(t)L− 1
2 γj1(t, x) + ψ(t)L 1

4 γj2(t, x) + Fj(t, x), j = 1, 2, ..., N.
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Here,

Fj(t, x) = ψ(t)(eit∂
4
x ũj0 + λD(ψT |uj |2uj)(t, x)), j = 1, 2, ..., N,

with

D(w(t, x)) = −i
∫ t

0

ei(t−t
′)∂4

xw(x, t′)dt′.

We consider Λ defined on the Banach space Z(s, b) =
⊕N

j=1 Zj(s, b) by

Zj(s, b) =
{
w ∈ C(Rt;Hs(Rx)) ∩ C(Rx;H

2s+3
8 (Rt)) ∩Xs,b;

wx ∈ C(Rx;H
2s+1

8 (Rt)), wxx ∈ C(Rx;H
2s−1

8 (Rt)), wxxx ∈ C(Rx;H
2s−3

8 (Rt))
}
,

for j = 1, 2, ..., N , with norm

‖(u1, u2, · · · , uN )‖Z(s,b) = ‖u1‖Z1(s,b) + ‖u2‖Z2(s,b) + · · ·+ ‖uN‖ZN (s,b). (49)

Each norm of ‖u‖Zj(s,b) on (49) is defined by

‖u‖Zj(s,b) = ‖u‖C(Rt;Hs(Rx)) + ‖u‖
C

(
Rx;H

2s+3
8 (Rt)

) + ‖u‖Xs,b

+ ‖ux‖
C

(
Rx;H

2s+1
8 (Rt)

) + ‖uxx‖
C

(
Rx;H

2s−1
8 (Rt)

) + ‖uxxx‖
C

(
Rx;H

2s−3
8 (Rt)

),
for j = 1, 2, ..., N .

4.4. Proving that the functions L− 1
2 γj1 and L 1

4 γj2, for j = 1, 2, ..., N , are
well-defined. Indeed, by using Lemma 3.7 it suffices to show that these functions
are in the closure of the spaces C∞0 (R+). By using expression (47), we see that γji
(j = 1, 2, ..., N and i = 1, 2) are linear combinations of the functions

F1(t, 0)− F2(t, 0), F2(t, 0)− F3(t, 0), · · · , FN−1(t, 0)− FN (t, 0),

∂xI 1
4
F1(t, 0)− ∂xI 1

4
F2(t, 0), ∂xI 1

4
F2(t, 0)− ∂xI 1

4
F3(t, 0),

· · · , ∂xI 1
4
FN−1(t, 0)− ∂xI 1

4
FN (t, 0),

∂2
xI 1

2
F1(t, 0) + ∂2

xI 1
2
F2(t, 0) + · · ·+ ∂2

xI 1
2
FN (t, 0),

∂3
xI 3

4
F1(t, 0) + ∂3

xI 3
4
F2(t, 0) + · · ·+ ∂3

xI 3
4
FN (t, 0).

Thus, we need to show that the functions Fj(t, 0), ∂xI 1
3
Fj(t, 0), ∂2

xI 2
3
Fj(t, 0) are

in appropriate spaces. By Lemmas 3.5, 3.7, 3.6 and 3.8 we obtain

‖Fj(t, 0)‖
H

2s+3
8 (R+)

≤ c(‖uj0‖Hs(R+) + ‖uj‖3Xs,b). (50)

If 0 ≤ s < 1
2 we have that 3

8 <
2s+3

8 < 1
2 , then H

2s+3
8 (R+) = H

2s+3
8

0 (R+). It follows

that Fj(t, 0) ∈ H
2s+3

8
0 (R+) for 0 ≤ s < 1

2 . Again by using Lemmas 3.5, 3.7, 3.6 and
3.8 we get

‖∂xFj(t, 0)‖
H

2s+1
8 (R+)

≤ c(‖uj0‖Hs(R+) + ‖uj‖3Xs,b).



20 R. A. CAPISTRANO–FILHO, M. CAVALCANTE AND F. A. GALLEGO

Since 0 ≤ s < 1
2 we have 1

8 ≤
2s+1

8 < 1
4 , then the functions ∂xFj(t, 0) ∈ H

2s+1
8

0 (R+).
Then, thanks to Lemma 3.2, we have that

‖∂xI 1
4
Fj(t, 0)‖

H
2s+3

8
0 (R+)

≤ c(‖uj0‖Hs(R+) + ‖uj‖3Xs,b).

Therefore, this yields that

∂xI 1
4
Fj(t, 0)− ∂xI 1

4
Fj+1(t, 0) ∈ H

2s+3
8

0 (R+), j = 1, 2, ..., N. (51)

In a similar way, we can obtain

‖∂2
xI 1

2
Fj(t, 0)‖

H
2s+3

8
0 (R+)

. ‖uj0‖Hs(R+) + ‖uj‖3Xs,b ,

‖∂3
xI 3

4
Fi(t, 0)‖

H
2s+3

8
0 (R+)

. ‖uj0‖Hs(R+) + ‖uj‖3Xs,b .

It follows that

∂2
xI 1

2
F1(t, 0) + ∂2

xI 1
2
F2(t, 0) + · · ·+ ∂2

xI 1
2
FN (t, 0) ∈ H

2s+3
8

0 (R+),

∂3
xI 3

4
F1(t, 0) + ∂3

xI 3
4
F2(t, 0) + · · ·+ ∂3

xI 3
4
FN (t, 0) ∈ H

2s+3
8

0 (R+).
(52)

Thus, (50), (51) and (52) imply that the functions L− 1
2 γj1 and L 1

4 γj2, for j =
1, 2, ..., N , are well-defined.

4.5. Showing that Λ is a contraction in a ball of Z. Lemmas 3.2, 3.5, 3.7, 3.6
and 3.8 guarantee that

‖Λ(u1, · · · , uN )− Λ(v1, · · · , vN )‖Zs,b
≤ T εc

(
‖(u1, · · · , uN )‖2Z + ‖(v1, · · · , vN )‖2Z

)
‖(u1, · · · , uN )− (v1, · · · , vN )‖Z

and

‖Λ(u1, · · · , uN )‖Zs,b ≤ c
(
‖u01‖Hs(R+) + · · ·+ ‖u0N‖Hs(R+)

)
+ T ε(‖u1‖3Xs,b + · · ·+ ‖uN‖3Xs,b),

for ε adequately small.
Consider in Z the ball defined by

B = {(u1, · · · , uN ) ∈ Zs,b; ‖(u1, · · · , uN )‖Zs,b ≤M},

where

M = 2c
(
‖u01‖Hs(R+) + · · ·+ ‖u0N‖Hs(R+)

)
.

Lastly, choosing T = T (M) sufficiently small, such that

‖Λ(u1, · · · , uN )‖Zs,b ≤M

and

‖Λ(u1, · · · , uN )− Λ(v1, · · · , vN )‖Zs,b ≤
1

2
‖(u1, · · · , uN )− (v1, · · · , vN )‖Zs,b ,

it follows that Λ is a contraction map on B and has a fixed point (ũ1, · · · , ũN ).
Therefore, the restriction

(u1, · · · , uN ) = (ũ1

∣∣
R−×(0,T )

, · · · , ũN
∣∣
R+×(0,T )

)

solves the Cauchy problem (34) with Type A vertex boundary condition (4), in
the sense of distributions. Thus, Theorem 1.1 is a consequence of the above steps,
described in the previous subsections, finalizing so the proof.
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5. Proof of Lemma 4.1. First, we will prove the case N = 2. The vertex condi-
tions (4), for this case, is given by{

∂kxu1(t, 0) = ∂kxu2(t, 0), k = 0, 1 t ∈ (0, T )∑2
j=1 ∂

k
xuj(t, 0) = 0, k = 2, 3 t ∈ (0, T ).

In this way, we consider the vertex conditions as the following matrices
1 −1
0 0
0 0
0 0

[ u1(t, 0)
u2(t, 0)

]
= 0,


0 0
1 −1
0 0
0 0

[ ∂xu1(t, 0)
∂xu2(t, 0)

]
= 0 (53)

and 
0 0
0 0
1 1
0 0

[ ∂2
xu1(t, 0)
∂2
xu2(t, 0)

]
= 0,


0 0
0 0
0 0
1 1

[ ∂3
xu1(t, 0)
∂3
xu2(t, 0)

]
= 0. (54)

By substituting, for N = 2, (38), (39), (40) and (41) into (53) and (54), yields
that the functions γji and indexes λji, for j = 1, 2 and i = 1, 2, satisfy the equality
of matrices:

1 −1
0 0
0 0
0 0

[ a11 a12 0 0
0 0 a21 a22

]
γ11(t)
γ12(t)
γ21(t)
γ22(t)

 = −


1 −1
0 0
0 0
0 0

[ F1(t, 0)
F2(t, 0)

]
,


0 0
1 −1
0 0
0 0

[ b11 b12 0 0
0 0 b21 b22

]
γ11(t)
γ12(t)
γ21(t)
γ22(t)

 = −


0 0
1 −1
0 0
0 0


[
∂xI 1

4
F1(t, 0)

∂xI 1
4
F2(t, 0)

]
,


0 0
0 0
1 1
0 0

[ c11 c12 0 0
0 0 c21 c22

]
γ11(t)
γ12(t)
γ21(t)
γ22(t)

 = −


0 0
0 0
1 1
0 0


[
∂2
xI 1

2
F1(t, 0)

∂2
xI 1

2
F2(t, 0)

]

and
0 0
0 0
0 0
1 1

[ d11 d12 0 0
0 0 d21 d22

]
γ11(t)
γ12(t)
γ21(t)
γ22(t)

 = −


0 0
0 0
0 0
1 1

[ ∂3
xI 3

4
F1(t, 0)

∂3
xI 3

4
F2(t, 0)

]
.

Putting all matrices together, we have that,

a11 a12 −a21 −a22

b11 b12 −b21 −b22

c11 c12 c21 c22

d11 d12 d21 d22





γ11

γ12

γ21

γ22


= −



F1(t, 0)− F2(t, 0)

∂xI 1
4
F1(t, 0)− ∂xI 1

4
F2(t, 0)

∂2
xI 1

2
F1(t, 0) + ∂2

xI 1
2
F2(t, 0)

∂3
xI 3

4
F1(t, 0) + ∂3

xI 3
4
F2(t, 0)


.
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In the case N = 2, the matrix M , given by (42), can be read as follows

M =



a11 a12 −a21 −a22

b11 b12 −b21 −b22

c11 c12 c21 c22

d11 d12 d21 d22


, (55)

where aij , bij , cij and dij are given by (38), (39), (40) and (41), respectively.

Claim 1. M has determinant different of zero with appropriate choice of λji, j =
1, 2 and i = 1, 2.

In fact, firstly noting that

sin

(
2− a

4
π

)
= cos

(aπ
4

)
and it is easy to see that

aji = Me−
iπ
8

8

(
e−

3iπλji
8 +e

5iπλji
8

sin
(

(1−λji)π
4

)
)
, bji = Me

2iπ
8

8

(
e−

3iπλji
8 −e

5iπλji
8

cos
(
λjiπ

4

)
)
,

cji = Me
5iπ
8

8

(
e−

3iπλji
8 +e

5iπλji
8

sin
(

(3−λji)π
4

)
)
, dji = Me

8iπ
8

8

(
e−

3iπλji
8 −e

5iπλji
8

sin
(
λjiπ

4

)
)
,

(56)

for j = 1, 2 and i = 1, 2. Then, the determinant of M can be write as

|M | = M4e
14iπ

8

84
×M,

where M is denoted by∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e
− 3iπλ11

8 +e

5iπλ11
8

sin

(
(1−λ11)π

4

) e
− 3iπλ12

8 +e

5iπλ12
8

sin

(
(1−λ12)π

4

) − e
− 3iπλ21

8 +e

5iπλ21
8

sin

(
(1−λ21)π

4

) − e
− 3iπλ22

8 +e

5iπλ22
8

sin

(
(1−λ22)π

4

)

e
− 3iπλ11

8 −e
5iπλ11

8

cos

(
λ11π

4

) e
− 3iπλ12

8 −e
5iπλ12

8

cos

(
λ12π

4

) − e
− 3iπλ21

8 −e
5iπλ21

8

cos

(
λ21π

4

) − e
− 3iπλ22

8 −e
5iπλ22

8

cos

(
λ22π

4

)

e
− 3iπλ11

8 +e

5iπλ11
8

sin

(
(3−λ11)π

4

) e
− 3iπλ12

8 +e

5iπλ12
8

sin

(
(3−λ12)π

4

) e
− 3iπλ21

8 +e

5iπλ21
8

sin

(
(3−λ21)π

4

) e
− 3iπλ22

8 +e

5iπλ22
8

sin

(
(3−λ22)π

4

)

e
− 3iπλ11

8 −e
5iπλ11

8

sin

(
λ11π

4

) e
− 3iπλ12

8 −e
5iπλ12

8

sin

(
λ12π

4

) e
− 3iπλ21

8 −e
5iπλ21

8

sin

(
λ21π

4

) e
− 3iπλ22

8 −e
5iπλ22

8

sin

(
λ22π

4

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

By using the identity

eia − eib

eia + eib
= i tan

(
a− b

2

)
,

we have that

|M (λ11, λ12, λ21, λ22)| = M4e
14iπ

8

84
×
{

(e−
3λ11π

8 i + e
5λ11π

8 i)(e−
3λ12π

8 i + e
5λ12π

8 i)
}
×{

(e−
3λ21π

8 i + e
5λ21π

8 i)(e−
3λ22π

8 i + e
5λ22π

8 i)
}
|A| ,



4NLS ON GRAPHS 23

where A is the matrix

A =



1

sin( 1−λ11
4 π)

1

sin( 1−λ12
4 π)

− 1

sin( 1−λ21
4 π)

− 1

sin( 1−λ22
4 π)

− itan(
λ11
2 π)

cos(
λ11
4 π)

− itan(
λ12
2 π)

cos(
λ12
4 π)

itan(
λ21
2 π)

cos(
λ21
4 π)

itan(
λ22
2 π)

cos(
λ22
4 π)

1

sin( 3−λ11
4 π)

1

sin( 3−λ12
4 π)

1

sin(3−λ214 π)
1

sin( 3−λ22
4 π)

− itan(
λ11
2 π)

sin(
λ11
4 π)

− itan(
λ12
2 π)

sin(
λ12
4 π)

− itan(
λ21
2 π)

sin(
λ21
4 π)

− itan(
λ22
2 π)

sin(
λ22
4 π)


.

By choosing λ11 = λ21 and λ12 = λ22 we have that the constant that appears
before of the matrix A takes the form:

2M4e
14
8 πi(e−iλ11π + 1)2(e−iλ12π + 1)2e

5
4π(λ11+λ12)i

84
.

Note that this number is zero only in the case λ11 = 2k + 1 and λ12 = 2l + 1 for
k, l ∈ Z.

Let us denote the entries of the matrix A as follows:

A =


a n −a −n
f g −f −g
c e c e
d m d m

 . (57)

Thus, its determinant is given by

detA = 4(de− cm)(nf − ag). (58)

In particular for λ11 = λ21 = − 1
2 and λ12 = λ22 = 1

4 matrix A can be seen as
follows,

A
′

=



√
2
√

2−
√

2
√

2

√
4− 2

√
2 +

√
2(10− 7

√
2) −

√
2
√

2−
√

2 −
√

2

√
4− 2

√
2 +

√
2(10− 7

√
2)

2i√
2+
√

2

itan(π/8)
cos(π/16)

− 2i√
2+
√

2
− itan(π/8)

cos(π/16)

√
2
√

2 +
√

2
√

2

√
4− 2

√
2−

√
2(10− 7

√
2)

√
2
√

2 +
√

2
√

2

√
4− 2

√
2−

√
2(10− 7

√
2)

−i
√

2(2 +
√

2) − itan(π/8)
sin( π

16
)

−i
√

2(2 +
√

2) − itan(π/8)
sin( π

16
)


.

By using determinant properties the determinant of A′ is equivalent of the de-
terminant of the following matrix:

−(4i)(
√

2i)



√
2−
√

2

√
4− 2

√
2 +

√
2(10− 7

√
2) −

√
2−
√

2 −
√

4− 2
√

2 +
√

2(10− 7
√

2)

1√
2+
√

2

tan(π/8)
2cos(π/16)

− 1√
2+
√

2
− tan(π/8)

2cos(π/16)√
2 +
√

2

√
4− 2

√
2−

√
2(10− 7

√
2)

√
2 +
√

2

√
4− 2

√
2−

√
2(10− 7

√
2)√

2 +
√

2
tan(π/8)√
2sin( π

16
)

√
2 +
√

2
tan(π/8)√
2sin( π

16
)


.

Therefore, we can rewrite matrix (57) as follows
a n −a −n
1
c g − 1

c −g
c e c e
c m c m


and its determinant is given by

4(e−m)(n− acg).



24 R. A. CAPISTRANO–FILHO, M. CAVALCANTE AND F. A. GALLEGO

We only need to check that e−m 6= 0 and n− acg 6= 0. An calculation proves that

e−m ∼ −0, 6508 and n− acg ∼ 0, 9741.

Thus, we have that

det(A′) = −4(2i)(
√

2i)(e−m)(n− acg) ∼ −7, 1722 (59)

that is, the determinant of matrix M
(
− 1

2 ,
1
4 ,−

1
2 ,

1
4

)
given by (55) is nonzero, prov-

ing the Claim 1 and Lemma 4.1, for the case N = 2.
For a better understanding of the reader, before to do the general case, we will

present briefly also the proof of Lemma 4.1 considering N = 3. For instance, vertex
conditions (4), in this case, are given in the matrices form as follows:


1 −1 0
0 1 −1
0 0 0
0 0 0
0 0 0
0 0 0


 u1(t, 0)
u2(t, 0)
u3(t, 0)

 = 0,


0 0 0
1 −1 0
0 1 −1
0 0 0
0 0 0
0 0 0


 ∂xu1(t, 0)
∂xu2(t, 0)
∂xu3(t, 0)

 = 0,

and


0 0 0
0 0 0
1 1 1
0 0 0
0 0 0
0 0 0


 ∂2

xu1(t, 0)
∂2
xu2(t, 0)
∂2
xu3(t, 0)

 = 0,


0 0 0
0 0 0
0 0 0
1 1 1
0 0 0
0 0 0


 ∂3

xu1(t, 0)
∂3
xu2(t, 0)
∂3
xu3(t, 0)

 = 0.

Thus, combining the above matrices and the integral form of solution (37), as in
the case N = 2, we obtain



a11 a12 −a21 −a22 0 0

0 0 a21 a22 −a31 −a32

b11 b12 −b21 −b22 0 0

0 0 b21 b22 −b31 −b32

c11 c12 c21 c22 c31 c32

d11 d12 d21 d22 d31 d32





γ11

γ12

γ21

γ22

γ31

γ32


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= −



F1(t, 0)− F2(t, 0)

F2(t, 0)− F3(t, 0)

∂xI 1
4
F1(t, 0)− ∂xI 1

4
F2(t, 0)

∂xI 1
4
F2(t, 0)− ∂xI 1

4
F3(t, 0)

∂2
xI 1

2
F1(t, 0) + ∂2

xI 1
2
F2(t, 0) + ∂2

xI 1
2
F3(t, 0)

∂3
xI 3

4
F1(t, 0) + ∂3

xI 3
4
F2(t, 0) + ∂3

xI 3
4
F3(t, 0)



.

Let us consider M the following matrix

M =



a11 a12 −a21 −a22 0 0

0 0 a21 a22 −a31 −a32

b11 b12 −b21 −b22 0 0

0 0 b21 b22 −b31 −b32

c11 c12 c21 c22 c31 c32

d11 d12 d21 d22 d31 d32


. (60)

Claim 2. M has determinant different of zero with appropriate choice of λji, j =
1, 2, 3 and i = 1, 2.

Indeed, similarly as in the case N = 2 and by using the identities (56), yields
that



aji = Me−
iπ
8

8

(
e−

3iπλji
8 +e

5iπλji
8

sin
(

(1−λji)π
4

)
)
, bji = Me

2iπ
8

8

(
e−

3iπλji
8 −e

5iπλji
8

cos
(
λjiπ

4

)
)
,

cji = Me
5iπ
8

8

(
e−

3iπλji
8 +e

5iπλji
8

sin
(

(3−λji)π
4

)
)
, dji = Me

8iπ
8

8

(
e−

3iπλji
8 −e

5iπλji
8

sin
(
λjiπ

4

)
)
,

for j = 1, 2, 3 and i = 1, 2. By determinant properties, we can get the determinant
of M as

|M | =
(
Me−

iπ
8

8

)2(
Me

2iπ
8

8

)2(
Me

5iπ
8

8

)(
Me

8iπ
8

8

) ∏
i=1,2,j=1,2,3

(
e−

3iπλji
8 + e

5iπλji
8

)
|A|

=
M6e

15iπ
8

86

∏
i=1,2,j=1,2,3

(
e−

3iπλji
8 + e

5iπλji
8

)
|A|,
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where A is the following matrix

A
′

=



1
sin(θ1)

1
sin(θ2)

− 1
sin(θ3)

− 1
sin(θ4)

0 0

0 0 1
sin(θ3)

1
sin(θ4)

− 1
sin(θ5)

− 1
sin(θ6)

−
itan(

λ11
2
π)

cos(
λ11
4
π)

−
itan(

λ12
2
π)

cos(
λ12
4
π)

itan(
λ21
2
π)

cos(
λ21
4
π)

itan(
λ22
2
π)

cos(
λ22
4
π)

0 0

0 0 −
itan(

λ21
2
π)

cos(
λ21
4
π)

−
itan(

λ22
2
π)

cos(
λ22
4
π)

itan(
λ31
2
π)

cos(
λ31
4
π)

itan(
λ32
2
π)

cos(
λ32
4
π)

1
sin(β1)

1
sin(β2)

1
sin(β3)

1
sin(β4)

1
sin(β5)

1
sin(β6)

−
itan(

λ11
2
π)

sin(
λ11
4
π)

−
itan(

λ12
2
π)

sin(
λ12
4
π)

−
itan(

λ21
2
π)

sin(
λ21
4
π)

−
itan(

λ22
2
π)

sin(
λ22
4
π)

−
itan(

λ31
2
π)

sin(
λ31
4
π)

−
itan(

λ32
2
π)

sin(
λ32
4
π)



,

where

θ1 =
1− λ11

4
π, θ2 =

1− λ12

4
π, θ3 =

1− λ21

4
π,

θ4 =
1− λ22

4
π, θ5 =

1− λ31

4
π, θ6 =

1− λ32

4
π,

β1 =
3− λ11

4
π, β2 =

3− λ12

4
π, β3 =

3− λ21

4
π,

and

β4 =
3− λ22

4
π, β5 =

3− λ31

4
π, β6 =

3− λ32

4
π.

By choosing λ11 = λ21 = λ31 and λ12 = λ22 = λ32, we have that the constant
that appears before of the matrix A takes the form:

M6e
15iπ

8

86
(e−iπλ11 + 1)3(e−iπλ12 + 1)3e

15
4 π(λ11+λ12)i.

Note that this number is zero only in the case λ11 = 2n + 1 and λ12 = 2m + 1 for
n,m ∈ Z. Let us rewrite the entries of matrix A as follows:

A =


a n −a −n 0 0
0 0 a n −a −n
f g −f −g 0 0
0 0 f g −f −g
c e c e c e
d m d m d m

 .

Thus, its determinant is given by

|A′| = 9(de− cm)(ag − nf)2.

Finally, considering λ11 = λ21 = λ31 = − 1
2 and λ12 = λ22 = λ32 = 1

4 , thanks to
the case N = 2, we have that (ag−fn) 6= 0 and (de− cm) 6= 0, thus |A| 6= 0. Claim
2 is thus proved and Lemma 4.1 is achieved, when N = 3.

Let us now deal with the general situation, that is, when N > 3. Consider

M = M(λ11, λ12, · · · , λN1, λN2)
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defined by (42), namely,
M2N×2N =

a11 a12 −a21 −a22 0 0 · · · 0 0 0 0
0 0 a11 a12 −a21 −a22 · · · 0 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 0 0 0 0 · · · a(N−1)1 a(N−1)2 −aN1 −aN2

b11 b12 −b21 −b22 0 0 · · · 0 0 0 0
0 0 b11 b12 −b21 −b22 · · · 0 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 0 0 0 0 · · · b(N−1)1 b(N−1)2 −bN1 −bN2

c11 c12 c21 c22 c31 c32 · · · · · · · · · cN1 cN2
d11 d12 d21 d22 d31 d32 · · · · · · · · · dN1 dN2

 ,

where aij , bij , cij and dij are given by (38), (39), (40) and (41), respectively. As we
noted in the cases N = 2, 3, this function of λji can be take the form

aji = Me−
iπ
8

8

(
e−

3iπλji
8 +e

5iπλji
8

sin
(

(1−λji)π
4

)
)
, bji = Me

2iπ
8

8

(
e−

3iπλji
8 −e

5iπλji
8

cos
(
λjiπ

4

)
)
,

cji = Me
5iπ
8

8

(
e−

3iπλji
8 +e

5iπλji
8

sin
(

(3−λji)π
4

)
)
, dji = Me

8iπ
8

8

(
e−

3iπλji
8 −e

5iπλji
8

sin
(
λjiπ

4

)
)
,

for j = 1, 2, ..., N and i = 1, 2. Thus, by using the determinant properties, we have
that the determinant |M| isMe

− iπ
8

8

N−1Me
2iπ
8

8

N−1Me
5iπ
8

8

Me
8iπ
8

8

 ∏
i=1,2,j=1,··· ,N

(
e
−

3iπλji
8 + e

5iπλji
8

)
|M′|

=
M2Ne

(12+N)iπ
8

82N

∏
i=1,2,j=1,··· ,N

(
e
−

3iπλji
8 + e

5iπλji
8

)
|M′|,

where M ′ is a matrix, depending only of λji, given by

ā11 ā12 −ā21 −ā22 0 0 · · · 0 0 0 0
0 0 ā11 ā12 −ā21 −ā22 · · · 0 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 0 0 0 0 · · · ā(N−1)1 ā(N−1)2 −āN1 −āN2

b̄11 b̄12 −b̄21 −b̄22 0 0 · · · 0 0 0 0
0 0 b̄11 b̄12 −b̄21 −b̄22 · · · 0 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 0 0 0 0 · · · b̄(N−1)1 b̄(N−1)2 −b̄N1 −b̄N2

c̄11 c̄12 c̄21 c̄22 c̄31 c̄32 · · · · · · · · · c̄N1 c̄N2
d̄11 d̄12 d̄21 d̄22 d̄31 d̄32 · · · · · · · · · d̄N1 d̄N2


2N×2N

.

Here, the coefficients of matrix M′ are given by

āji =
1

sin
(

(1−λji)π
4

) , b̄ji = −
i tan

(
λjiπ

2

)
cos
(
λjiπ

4

) ,

c̄ji =
1

sin
(

(3−λji)π
4

) , d̄ji = −
i tan

(
λjiπ

2

)
sin
(
λjiπ

4

) ,

(61)

for j = 1, 2, ..., N and i = 1, 2. By choosing λ11 = λ21 = · · · = λN1 and λ12 = λ22 =
· · · = λN2, we have that the constant that appears before of the matrix M′ takes
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the form:

M2Ne
(12+N)iπ

8

82N
(e−iπλ11 + 1)N (e−iπλ12 + 1)Ne

5N
4 π(λ11+λ12)i.

Note that this number is zero only in the case λ11 = 2n + 1 and λ12 = 2m + 1 for
n,m ∈ Z. Let us denote the entries of matrix M′ as follows:

M′ =



a n −a −n 0 0 · · · 0 0 0 0
0 0 a n −a −n · · · 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 · · · a n −a −n

f g −f −g 0 0 · · · 0 0 0 0
0 0 f g −f −g · · · 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 · · · f g −f −g

c e c e c e . . . · · · · · · c e
d m d m d m . . . · · · · · · d m


2N×2N

.

Moreover, by using the determinant properties, it yields that

|M′| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a n −a −n 0 0 · · · 0 0 0 0
f g −f −g 0 0 · · · 0 0 0 0
0 0 a n −a −n · · · 0 0 0 0
0 0 f g −f −g · · · 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 · · · a n −a −n
0 0 0 0 0 0 · · · f g −f −g

c e c e c e . . . · · · · · · c e
d m d m d m . . . · · · · · · d m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2N×2N

.

Considering the matrix

A =

[
a n
f g

]
and B =

[
c e
d m

]
,

the determinant of M′ can be write as a block matrices, namely,

|M′| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

A2×2 −A2×2 02×2 · · · 02×2 02×2

02×2 A2×2 −A2×2 · · · 02×2 02×2

...
...

...
...

...
...

02×2 02×2 02×2 · · · A2×2 −A2×2

B2×2 B2×2 B2×2 · · · B2×2 B2×2

∣∣∣∣∣∣∣∣∣∣∣∣∣
2N×2N

. (62)

From now on, we denote 0n×n and In×n the null and identity matrices, respectively.
Let us introduce the properties of determinants that helped us to prove Lemma

4.1 in general form. Consider a block matrix N of size (n + m) × (n + m) of the
form

N =

[
C D
F G

]
,
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where C,D, F and G are of size n × n, n ×m, m × n and m ×m, respectively. If
G is invertible, then

detN = det(C −DG−1F ) det(G). (63)

In fact, this property follows immediately from the following identity[
C D
F G

] [
I 0

−G−1F I

]
=

[
C −DG−1F D

0 G

]
.

Finally, recall that the determinant of a block triangular matrix is the product of
the determinants of its diagonal blocks.

With these two properties in hand, define C,D, F and G, respectively, by

C =


A2×2 −A2×2 02×2 · · · 02×2

02×2 A2×2 −A2×2 · · · 02×2

...
...

...
...

...
02×2 02×2 02×2 · · · A2×2


2(N−2)×2(N−2)

, D =


02×2

02×2

...
−A2×2


2(N−2)×2

and

F =
[
B2×2 B2×2 B2×2 · · · B2×2

]
2×2(N−2)

, G = B2×2.

Thanks to the case N = 2, we already know that

detG = detB2×2 = cm− de 6= 0, (64)

which implies that G is invertible. Thus, the determinant (62) takes the form

|M′| =
∣∣∣∣ C2(N−2)×2(N−2) D2×2(N−2)

F2×2(N−2) B2×2

∣∣∣∣
2N×2N

and by using the property (63), it yields that

det M′ = det
(
C2(N−2)×2(N−2) −D2×2(N−2) (B2×2)

−1
F2×2(N−2)

)
detB2×2. (65)

Claim 3. M′ has determinant different of zero with appropriate choice of λji,
j = 1, 2, ..., N and i = 1, 2.

From (64) is enough to prove that

det
(
C2(N−2)×2(N−2) −D2×2(N−2) (B2×2)

−1
F2×2(N−2)

)
is nonzero. In order to analyze the above determinant, note that

(B2×2)
−1
F2×2(N−2) = (B2×2)

−1 [ B2×2 B2×2 B2×2 · · · B2×2

]
2×2(N−2)

=
[
I2×2 I2×2 I2×2 · · · I2×2

]
2×2(N−2)
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and

D2×2(N−2) (B2×2)
−1
F2×2(N−2)

=


02×2

02×2

...
−A2×2


2(N−2)×2

[
I2×2 I2×2 I2×2 · · · I2×2

]
2×2(N−2)

=


02×2 02×2 · · · 02×2

02×2 02×2 · · · 02×2

...
... · · ·

...
02×2 02×2 · · · 02×2

−A2×2 −A2×2 · · · −A2×2


2(N−2)×2(N−2)

.

Therefore, we get

C2(N−2)×2(N−2) −D2×2(N−2) (B2×2)
−1
F2×2(N−2)

=


A2×2 −A2×2 02×2 · · · 02×2

02×2 A2×2 −A2×2 · · · 02×2

...
...

...
...

...
A2×2 A2×2 A2×2 · · · 2A2×2


2(N−2)×2(N−2)

.

Then,

C2(N−2)×2(N−2) −D2×2(N−2) (B2×2)
−1
F2×2(N−2)

only depends of A2×2 and, consequently, if

det
(
C2(N−2)×2(N−2) −D2×2(N−2) (B2×2)

−1
F2×2(N−2)

)
= 0,

we have that

dim Ker
(
C2(N−2)×2(N−2) −D2×2(N−2) (B2×2)

−1
F2×2(N−2)

)
> 0. (66)

Thus, (66) implies that there exists a vector

X2(N−2)×1 ∈ Ker
(
C2(N−2)×2(N−2) −D2×2(N−2) (B2×2)

−1
F2×2(N−2)

)
such that

X2(N−2)×1 = (x1, x2, x3, x4 · · · , x2(N−3), x2(N−2))
T 6= 02(N−2)×1 (67)

and (
C2(N−2)×2(N−2) −D2×2(N−2) (B2×2)

−1
F2×2(N−2)

)
·X2(N−2)×1 = 02(N−2)×1,

or equivalent,


A2×2 −A2×2 02×2 · · · 02×2

02×2 A2×2 −A2×2 · · · 02×2

...
...

...
...

...

A2×2 A2×2 A2×2 · · · 2A2×2


2(N−2)×2(N−2)



x1

x2

x3

x4

...

x2(N−3)

x2(N−2)


2(N−2)×1

= 02(N−2)×1.

(68)
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To finalize the proof of the Claim 3, denote

H1

2×1 =

[
x1

x2

]
, H2

2×1 =

[
x3

x4

]
, ..., H (N−2)

2×1 =

[
x(2(N−3))

x(2(N−2))

]
.

Therefore, the product (68) can be write in the form A2×2 −A2×2 02×2 · · · 02×2
02×2 A2×2 −A2×2 · · · 02×2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
A2×2 A2×2 A2×2 · · · 2A2×2


2(N−2)×2(N−2)


H1

2×1

H2
2×1

.

.

.

H
(N−2)
2×1


2(N−2)×1

= 02(N−2)×1.

Thus, we have that

A2×2

(
H1

2×1 −H2
2×1

)
A2×2

(
H2

2×1 −H3
2×1

)
...

A2×2

(
H(N−1)

2×1 −H(N−2)
2×1

)
A2×2

(
H1

2×1 +H2
2×1 + · · ·+ 2H(N−2)

2×1

)


2(N−2)×1

= 02(N−2)×1.

Now, let us now argue by contradiction. If there exists k ∈ {1, 2, · · ·N − 1} such
that

Hk

2×1 −H(k+1)

2×1 6= 02×1,

we obtain

A2×2

(
Hk

2×1 −H(k+1)

2×1

)
= 02×1,

which implies that dim kerA2×2 > 0, it means that detA2×2 = 0. However, from
the case N = 2, we known that

detA2×2 = ag − fn 6= 0,

and hence we obtain a contradiction. On the other hand, suppose that

Hj

2×1 −H(j+1)

2×1 = 02×1, ∀j = 1, 2, ..., N − 2. (69)

Thus, from (67) and (69), we deduce that Hj
2×1 6= 02×1 for some j ∈ {1, 2, ..., N −2}

and

A2×2

(
H1

2×1 +H2

2×1 + · · ·+ 2H(N−2)

2×1

)
= (N − 1)A2×2H

j

2×1 = 02(N−2)×1.

Which is again a contradiction, by using the case N = 2. Hence, in the two cases,
we only have that

det
(
C2(N−2)×2(N−2) −D2×2(N−2) (B2×2)

−1
F2×2(N−2)

)
6= 0,

it implies that det M′ 6= 0. Consequently, the determinant of M is nonzero, implying
that the matrix M is invertible and the Claim 3 follows. Thus, Lemma 4.1 is
proved.
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Appendix A. Vertex conditions types B and C. In this appendix, we will
outline how to prove that matrices associated with vertex conditions (5) (type B)
and (6) (type C) are invertible. We will consider the vertex conditions

Type B:

{
∂kxu1(t, 0) = ∂kxu2(t, 0) = · · · = ∂kxuN (t, 0), k = 2, 3 t ∈ (0, T ),∑N
j=1 ∂

k
xuj(t, 0) = 0, k = 0, 1 t ∈ (0, T ),

and

Type C:

{
∂kxu1(t, 0) = ∂kxu2(t, 0) = · · · = ∂kxuN (t, 0), k = 0, 3 t ∈ (0, T ),∑N
j=1 ∂

k
xuj(t, 0) = 0, k = 1, 2 t ∈ (0, T ),

which may be expressed in matrices form as follows

MB γB = FB, and MC γC = FC ,

respectively. Here FB and FC are the function vectors defined by

FB := −



∑N
j=1 Fj(t, 0)∑N

j=1 ∂xI 1
4
Fj(t, 0)

∂2
xI 1

2
F1(t, 0)− ∂2

xI 1
2
F2(t, 0)

...
∂2
xI 1

2
FN−1(t, 0)− ∂2

xI 1
2
FN (t, 0)

∂3
xI 3

4
F1(t, 0)− ∂3

xI 3
4
F2(t, 0)

...
∂3
xI 3

4
FN−1(t, 0)− ∂3

xI 3
4
FN (t, 0)


2N×1

and

FC := −



F1(t, 0)− F2(t, 0)
...

FN−1(t, 0)− FN (t, 0)∑N
j=1 ∂xI 1

4
Fj(t, 0)∑N

j=1 ∂
2
xI 1

2
Fj(t, 0)

∂3
xI 3

4
F1(t, 0)− ∂3

xI 3
4
F2(t, 0)

...
∂3
xI 3

4
FN−1(t, 0)− ∂3

xI 3
4
FN (t, 0)


2N×1

,

γB and γC are the matrices column given by vectors (γB11, γ
B
12, · · · , γBN1, γ

B
N2) and

(γC11, γ
C
12, · · · , γCN1, γ

C
N2), respectively.

Note that choosing λ11 = λ21 = · · · = λN1 and λ12 = λ22 = · · · = λN2 and
arguing as in the Section 5, the determinants of the matrices

MB = MB(−1/2, 1/4, · · · ,−1/2, 1/4) and MC = MC(−1/2, 1/4, · · · ,−1/2, 1/4)
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are given by

|MB| =
M2Ne

(12+N)iπ
8

82N

∏
i=1,2,j=1,··· ,N

(
e−

3iπλji
8 + e

5iπλji
8

)
|M′
B|,

and

|MC | =
M2Ne

(12+N)iπ
8

82N

∏
i=1,2,j=1,··· ,N

(
e−

3iπλji
8 + e

5iπλji
8

)
|M′
C |,

where

|M′
B| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a n a n a n · · · a n a n
f g f g f g · · · f g f g

c e −c −e 0 0 · · · 0 0 0 0
0 0 c e −c −e · · · 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 · · · c e −c −e

d m −d −m 0 0 · · · 0 0 0 0
0 0 d m −d −m · · · 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 · · · d m −d −m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2N×2N

,

and

|M′
C | =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a n −a −n 0 0 · · · 0 0 0 0
0 0 a n −a −n · · · 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 · · · a n −a −n

f g f g f g · · · f g f g
c e c e c e · · · c e c e

d m −d −m 0 0 · · · 0 0 0 0
0 0 d m −d −m · · · 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 · · · d m −d −m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2N×2N

.

As in the case vertex type A, we need to study the determinants of the matrices
M′
B and M′

C . In order to see the determinant of M′
B and M′

C are nonzero, we use
the determinant properties together with (63) to observe that

det M′
B = det M′′

B det

[
a n
f g

]
and det M′

C = det M′′
C det

[
c e
f g

]
.

So, these two matrices, namely, M′
B and M′

C , have the following two following
properties:

(i) If det

[
c e
d m

]
= cm− de 6= 0, then det M′′

B 6= 0.
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(ii) If det

[
a n
d m

]
= am− dn 6= 0, then det M′′

C 6= 0.

Claim 4. The relations

ag − fn 6=, cg − fe 6= 0

and
cm− de 6= 0, am− dn 6= 0

are valid.

In fact, choosing

λ11 = λ21 = · · · = λN1 = −1

2
and λ11 = λ21 = · · · = λN1 = −1

4
,

together with (58), (59) and (61), we already now that ag − fn and cm − de are
nonzero. Finally, easy calculations yield that

cg − fe =

(
1

sin
(

7
8π
))(− tan

(
π
8

)
cos
(
π
16

))−( 1

sin
(

11
16π
))(− tan

(
−π4
)

cos
(
−π8
))

∼ −2.4053 6= 0,

am− dn =

(
1

sin
(

3
8π
))(− tan

(
π
8

)
sin
(
π
16

))−( 1

sin
(

5
16π
))(− tan

(
−π4
)

sin
(
−π8
) )

∼ 0.8446 6= 0,

showing the Claim 4, and thus the matrices MB and MC are invertible.

A.1. Proof of Theorem 1.1: Vertex conditions type B and C. The analysis
developed above give us the following representations for γB and γC

γB = MB
−1 FB and γC = MC

−1 FC ,

respectively. Therefore, the solution uj(t, x) of the Cauchy problem (34) with vertex
conditions type B and C can be express in a integral forms

uBj (t, x) = L− 1
2 γBj1(t, x) + L 1

4 γBj2(t, x) + Fj(t, x), j = 1, 2, ..., N (70)

and
uCj (t, x) = L− 1

2 γCj1(t, x) + L 1
4 γCj2(t, x) + Fj(t, x), j = 1, 2, ..., N. (71)

Finally, in order to establish Theorem 1.1 with boundary conditions type B and
C, we closely follow the same steps of subsection 4.3, 4.4 and 4.5, for use the Fourier
restriction method to define a truncated version for (70) and (71), proving thus that

L− 1
2 γBj1, L− 1

2 γCj1, L 1
4 γBj2 and L− 1

2 γCj1 for j = 1, 2, ..., N , are well-defined. With this
in hand, a contraction mapping argument gives us the result desired.
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