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Lecture 2

Doppler cooling and magneto-optical trapping

We have seen in Lecture 1 that a laser beam propagating in a direction opposite to the
velocity of the atoms can slow down an atomic beam in a Zeeman slower. In this lecture,
the basics of using radiation pressure for reaching very low temperatures is presented.

Doppler cooling was suggested for neutral atoms in 1975 by Hänsch and Schawlow [1],
and a similar idea was proposed independently by Wineland and Dehmelt for ions [2].
The idea is to use the Doppler shift −kL.v of the laser frequency due to the atomic
velocity v to make the force velocity dependent. If the laser detuning δ is negative, the
radiation pressure is larger for atoms with a velocity opposite to the laser direction, that
is if kL.v < 0. In this case, the force is opposite to the velocity and the atomic motion is
damped.

1 Principle of Doppler cooling

Let use recall the expression of the radiation pressure for a plane wave with wave vector
kL and saturation parameter s0:

Fpr =
Γ

2

s0

1 + s0
~kL where s0 =

Ω2
1/2

δ′2 +
Γ2

4

. (1)

δ′ is an effective detuning taking into account the possible frequency shifts (Doppler shift,
Zeeman shift...).

1.1 Low velocity limit

If an atom has a non zero velocity v, the detuning δ′ entering in the expression of the
force is Doppler shifted:

δ′ = δ − kL.v where we recall that δ = ωL − ω0.

The radiation pressure thus depends on the atomic velocity:

Fpr(v) =
Γ

2

Ω2
1/2

Ω2
1/2 + Γ2/4 + (δ − kL.v)2

~kL (2)

In the low velocity limit, that is if |2δkL.v| � Ω2
1/2 + Γ2/4 + δ2, terms in v2 or higher can

be neglected and the expression of the force can be linearized. Note that the condition is
true if |kL.v| � Max (Γ/2, |δ|).

Fpr(v) ' Γ

2

Ω2
1/2

Ω2
1/2 + Γ2/4 + δ2

~kL +
Ω2

1/2

(Ω2
1/2 + Γ2/4 + δ)2

δΓ~(kL.v)kL.
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The first term is the force for zero velocity. The second term is proportional to the
component of the velocity in the direction of the laser. If we call ez the direction of the
wave vector, such that kL = kLez, then we simply have (kL.v)kL = k2

Lvzez, vz being the
z component of v. In the linear approximation, the radiation pressure is:

Fpr(v) ' Fpr(v = 0)− α

2
vzez.

The expression for α is

α = −2
s0

(1 + s0)2
~k2

L

δΓ

δ2 + Γ2/4
. (3)

The last term in the expression of the force is a friction force, opposite to the direction of
the velocity as long as α > 0, that is for δ < 0.

The friction coefficient α depends on two independent parameters, either (Ω1, δ) or
(s0, δ). With this latter choice, α is maximum when s0 = 1, which maximises s0/(1+s0)2,
and δ = −Γ/2, which maximises the term |δ|Γ/(δ2 + Γ2/4):

αmax =
~k2

L

2
= Mωrec

where the recoil frequency ωrec is defined as Erec = ~ωrec (see Lecture 1). Again, the recoil
appears as the typical unit for the external motion.

At low values of the saturation parameter s0 � 1, the friction coefficient reads

α = 2s0~k2
L

|δ|Γ
δ2 + Γ2/4

(4)

with a maximum value 2s0~k2
L = 4s0αmax for δ = −Γ/2.

1.2 Standing wave configuration

The friction force is able to cool down the velocity in the direction of the laser. However,
a single beam cannot cool the atoms as the main component of the force is given by the
zero order term Fpr(v = 0), which accelerates the atoms in the direction of the laser,
regardless of the (small) atomic velocity.

To obtain a real friction force, a second laser is added in the opposite direction, with a
wave vector k′L = −kL. Then, for low saturation parameters s, the two radiation pressure
of the two lasers, F+ for kL and F− for −kL, add independently. The second force F−
can also be expanded at small velocities. The zero order term F−(v = 0), proportional to
k′L = −kL, is reversed with respect to the corresponding term F+(v = 0). On the other
hand, the first order term is proportional to (kL.v)kL and is identical for kL and −kL.
The total force then reads:

F(v) = F+(v = 0)− α

2
vzez − F+(v = 0)− α

2
vzez = −αvzez.

This is exactly the friction force needed for cooling. This configuration is called an optical
molasses and can be generalised to three dimensions by using a pair of beams in each
direction x, y, z of space. The total friction force in 3D is

F(v) = −αvxex − αvyey − αvzez = −αv.
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Recall that the friction coefficient is given by Eq.(4) where s0 is the saturation parameter
for one of the six beams.

Away from the low velocity region, the cooling force deviates from a linear dependence
on the velocity. However, there is still a cooling force opposite to the velocity for any
value of v, with an amplitude decreasing like 1/v2 at large v. Figure 1 gives the force
as a function of the atomic velocity, for different choices of the detuning. The friction
coefficient is the slope around zero velocity.

v in units of Γ/k

Figure 1: Doppler force in units of ~kLΓs0, as a function of atomic velocity in units of
Γ/kL, for detuning δ = −Γ/2,−Γ,−2Γ,−3Γ. Below Γ/2kL, the force is almost linear, it
is a friction force.

The first optical molasses was obtained experimentally in 1985 by Steven Chu et al. [3].
A sodium atomic beam was slowed down by a Zeeman slower and the slow sodium atoms
were cooled to a temperature of about 240 µK in the molasses, see Fig. 2.

Figure 2: Cold sodium in an optical molasses at the intersection of six laser beams [3].
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2 Limit temperature in Doppler cooling

The equation describing the evolution of the atomic velocity in time is Newton’s second
law, for a classical particle:

M
dv

dt
= −αv =⇒ v(t) = v0e

−γt

where γ = α/M . In principle, after a time long as compared to γ−1, the velocity should
vanish, and the final temperature should reach T = 0. However, this simple model neglects
random fluctuations of the force, which give rise to a diffusion in momentum space, and
thus to heating. The finite limit temperature is set by the competition between Doppler
cooling and this heating process. This is linked to the fluctuation-dissipation theorem,
and to Brownian motion. The aim of this section is to evaluate the diffusion coefficient in
momentum space and to link it with the limit temperature [4, 5, 6].

2.1 Brownian motion

The theory of Brownian motion gives the link between the fluctuations of the force and
the diffusion in momentum space. Let us consider the classical problem of a particle in
the presence of both a friction force and a fluctuating force F. The momentum p obeys
the following equation:

dp

dt
= −γp + F(t). (5)

Here, γ = α/M and the average value of the fluctuating force over the realisations is zero:
F(t) = 0. Taking the average of Eq.(5), we find that the average momentum p̄ decreases
exponentially to zero:

p(t) = p0 e
−γt.

The average of F is zero, but the time correlation function of the force is not: C(t, t′) =
F(t) · F(t′) 6= 0. The random force at time t + τ depends on the force at time t if τ
is sufficiently short. If the process is stationary in time, C(t, t + τ) is a function of τ
only, peaked at τ = 0 with a width τc, the correlation time. This time gives the scale
for the system to lose the memory of the previous value of the force. For light forces,
it is given by the typical time for the evolution of the internal degrees of freedom, tint.
As, again, tint � text if the broadband condition is valid, the correlation function may be
approximated by a delta function:

C(t, t′) = F(t) · F(t′) = 2Dδ(t− t′). (6)

The normalisation coefficient D has an important signification, as we will see. It is related
to F by

2D =

∫
dτF(t) · F(t− τ). (7)

Let us solve formally the equation of motion. We can write:

p(t) = p0e
−γt +

∫ t

0
dt′F(t′)e−γ(t−t′) = p +

∫ t

0
dt′F(t′)e−γ(t−t′) (8)
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where p0 = p(0). It is straightforward to check that this expression is indeed solution of
Eq.(5). We want to know what is the width of the momentum distribution ∆p, to infer the
final temperature kBT = ∆p2/(3M), where the factor of 3 arises from the equipartition
theorem in three dimensions of space. By definition, ∆p2 = (p− p)2. We thus have

∆p2 =

(∫ t

0
dt′F(t′)e−γ(t−t′)

)2

=

∫ t

0
dt′
∫ t

0
dt′′F(t′) · F(t′′)e−γ(t−t′)e−γ(t−t′′)

' 2D

∫ t

0
dt′
∫ +∞

−∞
dt′′δ(t′ − t′′)e−γ(t−t′)e−γ(t−t′′)

= 2D

∫ t

0
dt′e−2γ(t−t′)

∆p2 =
D

γ
(1− e−2γt). (9)

The integration over [0, t] is replaced by an integration over all times, which is justified as
soon as t� τc. At short times, the expression for ∆p2 reduces to a linear increase in time:
∆p2 ' 2Dt. The meaning of D is now clear: it is the diffusion coefficient in momentum
space due to the fluctuations of the instantaneous force.

At long times, the variance of the momentum reaches a non zero value ∆p2 = D/γ,
corresponding to a limit temperature kBT = D/(3Mγ), or equivalently

kBTlim =
D

3α
. (10)

2.2 Application to light forces

Coming back to light forces, the diffusion coefficient is linked to the quantum force operator
— with quantum fluctuations — as follows [4]:

2D = 2 Re

{∫ ∞
0

dτ〈δF̂(t) · δF̂(t− τ)〉
}

where δF̂ = F̂ − F = δF̂L + δF̂R, with a part linked to the laser field and the other to
vacuum. The cross term in δF̂L · δF̂R in the correlation function gives zero, and D is the
sum of two independent terms, D = DL +DR. The calculation of the quantum correlator
is beyond the scope of this lecture, and can be found in [4]. We rather give the result and
its interpretation in simple cases.

Spontaneous emission: DR contribution
The contribution to the diffusion coefficient due to the vacuum fluctuation is, in the

low saturation limit,

DR =
Γ

4
s~2k2

L (11)

s being the total saturation parameter (s = 6s0 for six beams). This value can be inter-
preted in terms of randomness in the direction of the spontaneous emission. The change
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in P due to spontaneous emission after N absorption-emission cycles is

∆P =

N∑
n=1

~kn.

The random recoils kn have the same amplitude kL, but random directions. As a result,
kn · km = 0 for m 6= n and the average squared momentum change is

∆P2 = ~2
N∑

n,m=1

kn · km = ~2
N∑
n=1

k2
n = N~2k2

L.

N is related to the elapsed time t by N = Γ
2 st. The variance in momentum increases

linearly with time as

∆P2 =
Γ

2
s~2k2

Lt = 2DRt

where we can identify DR = Γ
4 s~

2k2
L.

Fluctuations in the absorption: DL contribution
This contribution to the diffusion coefficient is due to the fluctuations in the number of

absorbed photons in a given time, due to the randomness of the instant of absorption. Its
expression is more complex [4]. However, in the case of low saturation parameter s � 1,
it reduces to

DL =
Γ

4
s ~2

(
∇Ω1

Ω1

)2

+
Γ

4
s ~2 (∇φ)2 . (12)

Let us give an interpretation of this diffusion coefficient in the case of a plane wave, where
the first term is zero and the second term gives DL = Γ

4 s ~
2k2
L. During a time t, the

mean number of absorbed photons is N = Γ
2 st. The distribution of photons in the laser is

Poissonian for a classical laser source, such that the variance in N is equal to its average:
∆N2 = N . The change in P due to absorption is directly proportional to N , all the
photons coming from the same plane wave. As a result, ∆P2 = ∆N2~2k2

L = Γ
2 s~

2k2
Lt.

Again, we can identify DL with Γ
4 s~

2k2
L.

The other term in ∇Ω1 appears naturally when looking at the fluctuation of the
total force seen by the atom in the dressed state basis. If there is a gradient in Ω1, two
forces F+ and F− appear, being the gradient of the position dependent energies E±. The
instantaneous force fluctuates between F+ and F− due to the finite lifetime of the states
|±〉. The corresponding diffusion coefficient scales as F 2, that is as (∇Ω1)2.

2.3 Limit temperature for two counter-propagating waves

In the case of two plane waves propagating in opposite directions with orthogonal polar-
isations, the saturation parameter of the two waves does not depend on position and is
twice the saturation parameter of a single wave: s = 2s0. We thus have DR = Γ

2 s0~2k2
L.

The intensity gradient is zero; the phase gradient is ±kL for each wave of saturation s0,
and we also have DL = Γ

2 s0~2k2
L. The total diffusion coefficient is finally D = Γs0~2k2

L.
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Figure 3: Principle of the magneto-optical trap (MOT). The MOT consists of three pairs
of counter-propagating beams with opposite σ+/σ− polarisation plus a pair of coils with
opposite current for the magnetic field gradient.

In 3D, this may be generalised to D3D = 3Γs0~2k2
L. Using the expression of α in the limit

of low saturation s0 � 1, the limit temperature reads:

kBTlim =
D3D

3α
=

Γs0~2k2
L

2s0~k2
L

δ2 + Γ2/4

|δ|Γ
=

~Γ

2

δ2 + Γ2/4

|δ|Γ
. (13)

The temperature is minimum for δ = −Γ/2, which corresponds to the largest value of the
friction coefficient α. The minimum temperature is called the Doppler temperature, and
reads:

kBTD =
~Γ

2
. (14)

This temperature is equal to 125µK for caesium, 140µK for rubidium, 240µK for sodium.
For self-consistency, we must check that the typical velocity at this temperature, v =√
kBT/M =

√
~Γ/2M satisfies the small velocity limit that enables to consider the total

light force as a friction force. The condition is

kLv � Γ =⇒
~k2

L

2M
� Γ⇐⇒ ωrec � Γ.

We again find the broadband condition!
N.B. In a standing wave configuration, with parallel polarisations of the two contra

propagating waves, the total saturation parameter reads s(z) = 4s0 cos2 kLz. Using Eqs.
(11) and (12) we get DR = Γs0~2k2

L cos2 kLz and DL = Γs0~2k2
L sin2 kLz. The sum is

D = Γs0~2k2
L, as in the case of orthogonal polarisations, and the result is the same.

3 The magneto-optical trap

Doppler cooling enables a quick cooling of the atoms, typically in a few milliseconds.
However, the atoms are not trapped and may leave the laser beams and be lost.
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The atomic spreading in a given direction ∆z follows a diffusive law in real space with
a diffusion constant Dsp:

∆z2 = 2Dsp t with Dsp =
D

α2
. (15)

For δ = −Γ/2, this yields Dsp = ~Γ
2αmax

= Γ/k2
L. In the case of rubidium, Dsp ' 1 mm2·s−1.

In 1 s, an atom has moved typically by 1 mm. This is quite slow, but it means that all the
atoms will eventually leave the cooling region in a few seconds. In order to maintain the
atoms in the small volume where they are cooled, a magnetic field gradient is applied in
addition to the lasers. To understand its effect, we need to take into account the internal
structure of the ground and excited states, and depart from the two-level model.

3.1 Magnetic interaction – Zeeman shift

The interaction between an atom with a non zero total spin J = L + S and a position
dependent magnetic field B(r) reads

V̂mag = −Ĵ ·B(r). (16)

The magnetic sublevels |J,mJ〉 are shifted by the Zeeman interaction by an amount
mJgJµBB. The quantization axis is chosen along the direction of the magnetic field.
gJ is the Landé factor in the state J and µB is the Bohr magneton.

Let us consider a transition between a ground state with J = 0 and an excited state
with J ′ = 1. The excited states |J ′,m′〉 are shifted by m′gJµBB, where gJ is the Landé
factor in the excited state J ′. Each transition between |J = 0,m = 0〉 and |J ′,m′〉 has
a modified frequency ω0 +m′gJµBB. For a magnetic field which depends linearly on the
coordinate x as B = b′x, where b′ is the magnetic gradient, the detuning δ′ which enters
in the expression of the radiation pressure force Eq.(1) is

δ′ = δ − m′gJµBb
′x

~
(17)

where we recall that δ = ωL−ω0. The force now depends on position, and on the internal
sublevel.

N.B. Here, the Zeeman interaction will be used to manipulate the detuning between
the laser and the atomic transition, which leads to a position dependent light force. The
magnetic gradients required to achieve an efficient trapping are much lower than those
needed to directly trap the atoms with the magnetic force in a low-field seeking state.
In this last case, the atomic spin remains anti-aligned with the direction of the magnetic
field, resulting in a trapping potential Vtrap = µB(r) around the minimum of the magnetic
field. These conservative magnetic traps don’t require light. They are generally loaded
with atoms pre-cooled in a magneto-optical trap or an optical molasses. Bose-Einstein
condensation can be achieved in magnetic traps after a phase of evaporative cooling.

3.2 Trapping forces

The idea of the magneto-optical trap (MOT) [7], due to Jean Dalibard, is to add a
quadrupole magnetic field to the 3D standing wave configuration of the molasses. The
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Figure 4: Left: coupling strength for the J = 0 → J ′ = 1 transition. Right: Position-
dependent coupling to the excited states, shifted by the magnetic field gradient (1D
scheme).

magnetic field produced by two pairs of coils with the same current in opposite directions,
see Fig. 3, can be written

B(r) = b′(xex + yey − 2zez).

In addition, the polarization of two counter-propagating beams is chosen circular with
opposite polarization: σ+ along +ex (or ey) and σ− along −ex (or −ey), the direction of
quantization being +ex (or +ey).

1

Let us consider the simplest case of a J = 0→ J ′ = 1 transition, and consider an atom
along the x axis for simplicity. Using the gyromagnetic ratio γJ = gJµB/~, we can write
the transition frequency between |J = 0,m = 0〉 and |J ′ = 1,m′〉 as ω(m′) = ω0 +m′γJb

′x.
As shown in Fig. 4, the selection rules of angular momentum conservation imply that

the σ+ polarized laser induces ∆m = +1, transitions only between J = 0,m = 0 and
J ′ = 1,m′ = 1, with a detuning δ′ = δ − γJb

′x, whereas the σ−-polarized laser beam
induces transitions only between J = 0,m = 0 and J ′ = 1,m′ = 1, with a detuning
δ′ = δ + γJb

′x.
Moreover, with the choice of the quadrupole magnetic field, the Zeeman interaction

shifts the excited levels in such a way that a red-detuned laser is closer to the σ− J =
0,m = 0 → J ′ = 1,m′ = −1 transition on the right side x > 0, and closer to the σ+

J = 0,m = 0 → J ′ = 1,m′ = 1 transition on the x < 0 side where the magnetic field
direction is reversed. The strongest force thus comes from the beam which pushes the
atoms to the center.

More precisely, the expression of the radiation pressure force exerted by the σ± polar-
ized beam propagating along ±x is, for an atom with zero velocity:

F±(x) = ±Γ

2

Ω2
1/2

Ω2
1/2 + Γ2/4 + (δ ∓ γJb′x)2

~kL. (18)

This expression is the analogue of Eq. (2), with the substitution kLvx ↔ γJb
′x.

1In the z direction where the sign of magnetic field’s gradient is opposite, the polarizations have to be
reversed.
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At low saturation s0 � 1, the two forces add, and the expression of the total force, in
the vicinity of the center where |x| � |δ|/(γJb′),Γ/(γJb′), is simply

F = −κxex with κ =
γJb
′

kL
α = −2s0

δΓ

δ2 + Γ2/4
~kLγJb′. (19)

For a negative detuning δ < 0, this is the expression of a restoring force, which pushes
the atoms back to the center of the quadrupole field. The restoring coefficient scales with
detuning and intensity as the friction coefficient α does, and is maximum with κmax =
2s0~kLγJb′ for δ = −Γ/2. Its typical value, for rubidium with s0 = 0.1 and a magnetic
gradient 0.1 T·m−1 (or 10 G·cm−1), is κmax ' 1.5× 10−18 N·m−1.

Taking into account the gradient of the magnetic field, twice as large in the axis z of
the coils, the total restoring force in 3D reads:

F(r) = −κxex − κyey − 2κzez (20)

with a correct choice σ− − σ+ of the polarizations for the beams propagating along z.
N.B. For an atom close to the center and with a small velocity v, and ignoring the

asymmetry of the restoring force for simplicity, the total force is

F = −αv − κr.

The system is equivalent to a damped oscillator.
N.B. Of course, for values of x larger than |δ|/(γJb′), the force scales with γJb

′x exactly
as the friction force scaled with kLv. Fig. 1 still holds with “x in units of Γ/(γJb

′)” as the
label of the horizontal axis.

3.3 Low density regime

The restoring force, arising from the position dependence of the radiation pressure, derives
from a harmonic potential κx2/2. When the number of particles in the MOT is very small,
a single particle approach gives a good picture of the physics. In particular, the MOT size
can be deduced from the equilibrium temperature T :

1

2
κ〈x2〉 =

1

2
kBT. (21)

If the temperature reaches the Doppler limit, and κ = κmax, the typical variance of the
atomic cloud is thus

〈x2〉 ∼ ~Γ

2κ
=

Γ

4s0kLγJb′
.

With the numbers taken above, this would give ∆x =
√
〈x2〉 = 36 µm.

This size is limited by the temperature, and independent from the atom number. The
cloud has a Gaussian shape, with a size ∆z along z smaller by a factor

√
2 due to the

larger magnetic gradient. Magneto-optical traps have indeed been observed in this regime
of low atom numbers [8]. The atomic density in these traps scale as N/T 3/2.
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3.4 Large density regime

The typical size of a magneto-optical trap of alkali atoms is by far larger than a few tens
of micrometers. A size of a few millimeters is very common, and large MOTs are more
than one centimeter large. When the atomic density is large, light induced interactions
come into play and limit the atomic density, which leads to an increased MOT size.

As the atomic sample becomes optically thick, photons scattered by an atom can be
reabsorbed by another atom before leaving the cloud. Because of momentum conservation
in each elementary process, the two atoms get a kick of one recoil in opposite directions,
see Fig. 5. This results in an interatomic repulsion mediated by light.

  

-hk hk

Figure 5: Photon reabsorption in an optically thick cloud. The photon emitted by the left
atom can be reabsorbed by the right atom before leaving the atomic cloud. The recoil of
the emitting atom is opposite to the recoil of the absorbing atom.

We can infer from this picture the force corresponding to the reabsorption process.
Consider the two atoms of Fig. 5, that we will label by the numbers 1 and 2. First, recall
that the photon scattering rate from atom 1, due to the six laser beams of saturation
parameter s0, is

Γsc = 6× Γ

2
s0 = 3 Γs0

in the low saturation limit. Among these scattered photons, the fraction absorbed by
atom 2 is σ/(4πr2), where r is the inter-particle distance and σ is the absorption cross
section. Its expression is

σ = σres
Γ2

4δ2 + Γ2
=

3λ2

2π

Γ2

4δ2 + Γ2

where σres = 3λ2/(2π) is the resonant cross section and the other term accounts for a
non-zero detuning.

Finally, the momentum change is ~k in the direction of the second atom, that it
~kLr/r = ~kLur. The resulting force exerted by atom 1 onto atom 2 is thus

Freabs = 3Γs0
σ

4πr2
~kLur. (22)

The expression of this force is formally analogous to a Coulomb force, with the mapping

q2

ε0
= 3Γs0σ~kL.

The atomic system is thus analogue to a positively charged plasma in an harmonic trap.
In this situation, we expect a uniform density in a spherical atomic cloud. Let us assume
that the density of charges is indeed uniform in a sphere and equal to n0. We can show
that this corresponds to an equilibrium situation. The forces exerted on a atom at a
distance r from the center are central forces:
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• The restoring force −κr pointing towards the center.

• The electrostatic force due to the distribution of all the charges. It is equal to qE(r),
where the electric field E(r) results from the spherical charge distribution. Only the
charges at a distance r′ < r contribute to the electric field E(r) at position r. E(r)
is equal to the field produced by a single big charge Q(r) placed at the center and
corresponding to all the particles within the sphere of radius r:

E(r) =
Q(r)

4πε0r2
with Q(r) = q

4π

3
r3n0.

The electrostatic force is thus

F = qE(r) =
q2

3ε0
rn0.

Both forces scale as r, with opposite directions. The plasma is in equilibrium provided
that the density satisfies

q2

3ε0
n0 = κ.

Turning back to neutral atoms in the MOT and replacing the effective charge by its
expression, we get the equilibrium density in a large MOT:

n0 =
κ

Γs0σ~kL
=

4

3π

|δ|
Γ

γJb
′

Γ
k2
L. (23)

The density is uniform in a large MOT. It increases linearly with the detuning and
the magnetic field gradient, but is independent of the laser intensity in the low saturation
limit.

Neglecting for simplicity the anisotropy of the magnetic field gradient, the cloud radius
R is directly deduced from the atom number and the density through

R =

(
3

4π

N

n0

)1/3

.

For typical numbers: δ = −Γ/2 and again b′ = 0.1 T·m−1, with rubidium atoms, we get
a density n0 = 3 × 109 cm−3. With the naive low density limit of the last section, this
density would be reached for N = 1500 atoms already! This means that in typical MOTs,
the large density limit applies.

We can calculate the cloud size for a typical atom number, say N = 109, and find
R = 4 mm, a much better estimation of what is observed in the experiments.

N.B. Other effects can also come into play. For example, the shadow effect is responsible
for an increase in the atomic density: the laser intensity seen by the atoms deep inside the
cloud is reduced due to absorption by atoms on the periphery, so that the force is reduced.
If the atom is not at the center but, say, on the right side, the force is smaller from the
left side where the beam goes through more atoms, which pushes the atom back towards
the center and increases the density.

N.B. If the density is large, the interatomic distance is small and molecule formation
can occur, enhanced by the presence of red detuned light. This process is called photo-
association and leads to atom losses in a MOT.
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N.B. The density being limited by reabsorption processes, it does not reach values
which could lead to three-body recombination in a MOT, and three-body losses can in
general be ignored in this trap.

3.5 Fighting reabsorption

For many applications, like the loading of a conservative trap with a large atomic density
to initiate evaporative cooling to Bose-Einstein condensation with good initial conditions,
it is relevant to limit the reabsorption processes. This can be done in the following ways.

1. Dynamical compression. One could think to simply increase the detuning, as the
density scales linearly with |δ|. However, this will also lower the capture efficiency
if δ exceeds 3 or 4Γ. The idea is then to do it dynamically, with a time sequence
where the atoms are first loaded in a MOT with low density and small detuning,
and then compressed to higher density by ramping the detuning to larger absolute
value. The same trick can be done also with the magnetic field gradient.

2. Dark spot. Reabsorption is naturally suppressed is light is absent... On can thus use
laser beam which have a transverse profile with a hole in the center. At the crossing
of the six beams, there is no light in a small region where the atoms can accumulate
at high densities. As they are not trapped either, they escape from this region after
a while and are cooled and trapped again in the laser beams, until they are recycled
to the center. This was used for the first time in the group of Wolfgang Ketterle [9].

3. Dark MOT. If the atom has a hyperfine structure in the ground state, one typically
uses two lasers to obtain a MOT: the cooling laser on the main transition starting
from the ground state F1, and a repumping laser which recycles the atoms lost in
the other hyperfine state F2 back to F1 through the excited state. Without this
repumping beam, the atoms in the state F2 do not scatter light. We can then use
the idea of the dark spot, but only for the repumping beam. The atoms in the
central region are depumped in the F2 state and do not scatter light anymore, which
allows to increase the local density. Note that this trick can also be implemented in
a dynamical way, by lowering the repumping intensity just before loading the atoms
from the MOT to a conservative trap.

4. Light shift In a recent experiment led by Florian Schreck, Bose-Einstein condensation
of strontium has been reach purely by laser cooling [10]. This is a very important
breakthrough. Strontium has both a broad (30 MHz) blue line at 461 nm, the
1S0 →1 P1 transition, on which usual Doppler cooling is first performed with short
time scales in a blue MOT, and a narrow red line 1S0 →3 P1 (7.4 kHz) at 689 nm,
which is used afterwards to cool the atoms even further in a red MOT[11]. In this
experiment, the researchers use an auxiliary ‘transparency’ beam to detune the red
light out of resonance near the centre of the red MOT, in order to accumulate the
atoms to a high density, see Fig. 6. This transparency laser is tuned between the
excited state of the red line and a more excited state, on 3P1 →3 S1, such that is
essentially shifts the 3P1 state. As the red line is so narrow, a moderate light shift
of the excited state, of about 10 MHz, is enough to put the cooling light completely
out of resonance. The atoms in the transparency beam do not feel the repulsive
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Figure 6: Transparency beam used in the strontium laser cooling to BEC experiment. The
light shift in the trap center prevents photon reabsorption and allows very high densities.
Figure from Ref. [10], copyright American Physical Society.

force arising from reabsorption, and can accumulate to very large densities in a
overlapping dipole trap, where they condense. The advantage of this technique with
respect to a dark spot is that the atoms inside the transparency beam can even not
absorb light scattered by atoms which are out of the transparency beam, because it
is not resonant for their transition.

3.6 Instabilities in large MOTs

In section 3.4, we have shown that the density in the magneto-optical trap is constant as
soon as the atom number exceeds a few thousands, and that the cloud size increases with
the atom number like N1/3. We could wonder to what extend this behaviour holds when
N is increased to very large values.

We can first remark that for practical applications, the size of the laser beam is finite
in the transverse direction, with a typical size w. It is clear that the MOT size is limited
by w, which in turn limits the atom number below about n0w

3.
On the other hand, the reasoning about the equilibrium in the plasma-like MOT holds

only for a restoring force linear in r. However, the trapping force in the MOT is linear
only close to the trap center, for distances smaller than |δ|/(γJb′), see Fig. 1 with the
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scale x in units of Γ/(γJb
′). In particular, the trapping force decreases with r instead

of increasing with r at distances larger than about |δ|/(γJb′). The repulsive interaction
is not compensated anymore and the MOT becomes unstable. This behavior has been
observed in several experiments [12, 13]. This sets the maximum trap radius to about
Rmax = |δ|/(γJb′), and the maximum atom number to

Nmax '
4π

3
n0R

3
max =

16

9

|δ|
Γ

γJb
′

Γ
k2
L

(
|δ|
γJb′

)3

=
16

9

(
|δ|
Γ

)4(ΓkL
γJb′

)2

.

For a gradient of 10 G·cm−1 and a detuning δ = −2Γ, we find Nmax = 3 × 1010

rubidium atoms. 1010 is indeed a realistic order of magnitude for the atom number in
large MOTs [13].
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