Lista 1

A notação $\mathbb K$ será utilizada para designar $\mathbb R$ ou $\mathbb C$.

Exercício 1 (Desigualdade de Young) Seja p > 1 e defina $q \in \mathbb{R}$ por

$$\frac{1}{p} + \frac{1}{q} = 1.$$

 $Prove \ que$

$$ab \leq \frac{a^p}{p} + \frac{b^q}{q},$$

para quaisquer $a, b \geq 0$.

Exercício 2 (Desigualdade de Hölder em \mathbb{R}^n) Sejam $a=(a_1,\ldots,a_n)$ e $b=(b_1,\ldots,b_n)$ elementos de \mathbb{R}^n com $a_i,b_i\geq 0$ para cada $i=1,\ldots,n$ e p,q>1 tais que

$$\frac{1}{p} + \frac{1}{q} = 1.$$

Prove que

$$\sum_{i=1}^{n} a_i b_i \le \left(\sum_{i=1}^{n} a_i^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} b_i^q\right)^{\frac{1}{q}}.$$

Exercício 3 Seja $p \ge 1$, $x_i \in \mathbb{R}$ e $y_i \in \mathbb{R}$ para todo i = 1, ..., n. Prove que

$$\left(\sum_{i=1}^{n} |x_i + y_i|^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} |y_i|^q\right)^{\frac{1}{q}}.$$

Exercício 4 Seja $p \ge 1$. Prove que (\mathbb{R}^n, ρ_p) é um espaço métrico, onde

$$\rho_p(x,y) = \left(\sum_{i=1}^n |x_i - y_i|^p\right)^{\frac{1}{p}}.$$

Prove ainda que $\lim_{p\to\infty} \rho_p(x,y) = m(x,y)$ para cada $x,y\in\mathbb{R}^n$.

Exercício 5 Prove que a função $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ definida por

$$d(x,y) = \left| \frac{x}{1+|x|} - \frac{y}{1+|y|} \right|$$

 \acute{e} uma métrica em \mathbb{R} .

Exercício 6 Seja (X,d) um espaço métrico. Prove que

$$d_0(x,y) = \begin{cases} 0, & \text{se } x = y, \\ 1, & \text{se } x \neq y, \end{cases}$$
$$d_1(x,y) = \min\{1, d(x,y)\}$$
$$d_2(x,y) = \frac{d(x,y)}{1 + d(x,y)}$$

são métricas em X. Prove também que as topologias definidas por d e d_2 são equivalentes e que (\mathbb{R}, d_0) não é um espaço normado.

Exercício 7 Se $\phi: \mathbb{R} \to A \subset \mathbb{R}$ é um homeomorfismo então a função $\rho(x,y) = |\phi(x) - \phi(y)|$ é uma métrica em \mathbb{R}

Exercício 8 Prove que $(x_n)_{n\in\mathbb{N}}$ é uma sequência de Cauchy se, e somente se, para todo $\varepsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que para todo $n \ge n_0$ e $p \ge 1$ tem-se que $d(x_{n+p}, x_n) < \varepsilon$.

1

Exercício 9 Seja $(x_n)_{n\in\mathbb{N}}$ uma sequência de Cauchy e $(x_{n_j})_{j\in\mathbb{N}}$ uma subsequência de $(x_n)_{n\in\mathbb{N}}$ tal que $\lim_{j\to\infty}x_{n_j}=p$ onde $p\in X$. Então $\lim_{n\to\infty}x_n=p$.

Exercício 10 (\mathbb{R}, ρ) não é completo, onde $\rho(x,y) = \left| \frac{x}{1+|x|} - \frac{y}{1+|y|} \right|$

Exercício 11 Sejam (X, d_1) e (Z, d_2) espaços métricos e $\phi: (X, d_1) \to (Y, d_2)$ com $Y \subset Z$ um homeomorfismo. Considere ρ a métrica definida por $\rho(x, y) = d_2(\phi(x), \phi(y))$. Prove que as topologias definidas por d_1 e ρ são equivalentes. Além disso, suponha que exista uma sequência (x_n) não limitada na métrica d_1 , mas tal que a sequência $(\phi(x_n))$ converge em Z, prove que (X, ρ) não é completo.

Exercício 12 Prove que todo espaço de Banach $(X, \|\cdot\|)$ admite uma métrica ρ cuja topologia é equivalente a gerada pela métrica $d(x,y) = \|x-y\|$ que faz o espaço métrico (V,ρ) um espaço métrico não completo.

Exercício 13 Considere

$$\begin{split} c = & \{x = (x_1, x_2, \dots) : x_i \in \mathbb{C} \ e \ (x_i) \ \acute{e} \ convergente \} \\ c_0 = & \{x = (x_1, x_2, \dots) : x_i \in \mathbb{C} \ e \ \lim_{i \to \infty} x_i = 0 \} \\ c_{00} = & \{x = (x_1, x_2, \dots) : x_i \in \mathbb{C} \ e \ existe \ n \in \mathbb{N} \ tal \ que \ x_i = 0 \ para \ todo \ i \geq n \} \end{split}$$

Mostre que:

- i) $(c, \|\cdot\|_{\infty})$ $e(c_0, \|\cdot\|_{\infty})$ são espaços normados;
- ii) $(c, \|\cdot\|_{\infty})$ e $(c_0, \|\cdot\|_{\infty})$ são espaços de Banach;
- iii) $(c_{00}, \|\cdot\|)$ não é um subconjunto fechado de c_0 mas $\overline{c_{00}} = c_0$;
- iv) $(c_{00}, \|\cdot\|)$ não é um subconjunto fechado de c.

Exercício 14 Para $p \ge 1$, o espaço normado

$$\ell^p = \{(x_1, x_2, \dots) : x_j \in \mathbb{K}, j = 1, 2, \dots, e \sum_{j=1}^{\infty} |x_j|^p < \infty \}$$

com a norma dada por

$$||x||_{\ell^p} = \left(\sum_{j=1}^{\infty} |x_j|^p\right)^{\frac{1}{p}}$$

é um espaço de Banach.

Exercício 15 O espaço de funções $C([a.b]) = \{f : [a,b] \subset \mathbb{R} \to \mathbb{R} : f \text{ \'e contínua}\}\ com\ a\ norma$

$$||x||_{\infty} = \sup_{t \in [a,b]} |x(t)|$$

é um espaço de Banach. Prove ainde que se $f_n \to f$ em C([a,b]) então essa convergência é uniforme.

Exercício 16 Defina

$$||x||_1 = \int_0^1 |x(t)|dt, x \in C([0,1]). \tag{1}$$

Mostre que $E = (C([0,1]), \|\cdot\|_1)$ é um espaço normado mas não é completo. Generalize para $\|f\|_p = \left(\int_a^b |f(t)|^p dt\right)^{\frac{1}{p}}$ com p > 1. Considerando as funções d, ρ definidas por

$$d(f,g) = \max_{t \in [0,1]} |f(t) - g(t)| \ e \ \rho(f,g) = \int_0^1 |f(x) - g(x)| dx.$$

Prove que (C([0,1]),d) e $(C([0,1]),\rho)$ são espaços métricos, a topologica τ_d é mais fina do que a topologia τ_ρ , mas estas topologias não são equivalentes. Mostre ainda que o interior de qualquer bola aberta na métrica d é vazio na métrica ρ .

Exercício 17 (Teste da condensação de Cauchy) Prove que $\sum_{n=1}^{\infty} a_n$ converge se, e somente se, $\sum_{n=1}^{\infty} 2^n a_{2^n}$ converge.

Exercício 18 Mostre que $x_1 = 1$, $x_k = \frac{1}{\ln(k)}$ converge para 0 em \mathbb{R} $e(x_k) \notin l^p$ para cada $p \geq 1$. Conclua que $c_0 \notin l^p$ para cada $p \geq 1$.

Exercício 19 Prove que todo subespaço vetorial próprio de um espaço vetorial normado tem interior vazio

Exercício 20 Seja $(X, \|\cdot\|)$ um espaço vetorial normado e M um subespaço vetorial de V. Prove que \overline{M} é um subespaço vetorial de V.

Exercício 21 Sejam $x, y \in X$ dois elementos quaisquer em um espaço vetorial normado sobre um corpo \mathbb{K} . Prove que $||x|| - ||y|| \le ||x|| - ||y|| \le ||x - y||$.

Exercício 22 Prove que toda norma sobre um espaço vetorial X sobre um corpo $\mathbb K$ é uma função contínua.

Definição 1 Se $(x_k) \subset X$ é uma sequência em um espaço normado X, podemos associa com (x_k) a sequência $(S_n) \subset X$ de somas parciais definida por

$$S_n = x_1 + x_2 + \dots + x_n,$$

para $n \in \mathbb{N}$. Se existe $S \in X$ tal que

$$||S_n - S|| \to 0$$
, quando $n \to \infty$,

diremos que a série infinita

$$\sum_{k=1}^{\infty} x_k = S$$

é convergente e S é chamado de soma da série

Se

$$\sum_{k=1}^{\infty} \|x_k\| < \infty$$

dizemos que a série $\sum_{k=1}^{\infty} x_k$ converge absolutamente.

Exercício 23 Em um espaço normado X, convergência absoluta implica convergência se, e somente se, X é um espaço de Banach.

Exercício 24 Seja $(X, \|\cdot\|)$ um espaço vetorial normado de dimensão infinita sobre \mathbb{K} . Mostre que existe um funcional $f: X \to \mathbb{R}$ ilimitado.

Exercício 25 Mostre que os subespaços

$$U := \{ (a_n)_{n \in \mathbb{N}} \in \ell^1 : a_{2n} = 0, \forall n \in \mathbb{N} \}$$

$$V := \{ (a_n)_{n \in \mathbb{N}} \in \ell^1 : a_{2n-1} = na_{2n}, \forall n \in \mathbb{N} \setminus \{0\} \}$$

são ambos fechados em ℓ^1 mas $U \oplus V$ não é fechado em ℓ^1 .

Exercício 26 Seja

$$X = \{ f \in C([0, 2\pi]) : f(0) = f(2\pi) \}$$

munido da norma usual de $C([0, 2\pi])$.

- i) Mostre que X é Banach.
- ii) Para cada $k \in \mathbb{N}$ seja $s_k : X \to \mathbb{R}$ dada por

$$s_k(f) = \frac{1}{2\pi} \sum_{n=-k}^{k} \int_0^{2\pi} f(t)e^{-int}dt, \forall f \in X.$$

Prove que s_k é um funcional limitado em X para cada $k \in \mathbb{N}$.

iii) Mostre que

$$\sup_{k\in\mathbb{N}} \|s_k\|_{L(X,\mathbb{R})} = +\infty.$$

Dica: Note que

$$\sum_{n=-k}^{k} e^{int} = \frac{e^{i(k+1)t} - e^{ikt}}{e^{it} - 1} = \frac{\sin((k + \frac{1}{2})t)}{\sin(\frac{t}{2})}, \forall t \in (0, 2\pi), \forall l \in \mathbb{N}.$$

iv) Prove que para cada $t \in [0, 2\pi]$ existe uma função contínua 2π -periódica cuja série de Fourier $S_k f(t) = \sum_{n=-k}^k s_k(f) e^{int}$ não converge em t.

Exercício 27 Seja $(X, \|\cdot\|_X)$ um espaço de Banach e sejam $(Y_n, \|\cdot\|_{Y_n})$ espaços normados. Para cada $n \in \mathbb{N}$, seja $G_n \subset L(X, Y_n)$ um subconjunto ilimitado de $L(X, Y_n)$. Prove que existe $x \in X$ tal que

$$\sup_{T \in G_n} ||Tx||_{Y_n} = \infty, \forall n \in \mathbb{N}.$$

Exercício 28 Sejam $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ e $(Z, \|\cdot\|_Z)$ espaços normados. Considere $(X \times Y, \|\cdot\|_{X \times Y})$ onde $\|(x,y)\|_{X \times Y} = \|x\|_X + \|y\|_Y$ e uma aplicação bilinear $B: X \times Y \to Z$.

i) Mostre que B é contínua se existe C > 0 tal que

$$||B(x,y)||_Z \le C||x||_X||y||_Y, \forall (x,y) \in X \times Y.$$

ii) Assuma que $(X, \|\cdot\|_X)$ é Banach e que as aplicações $X \ni x \mapsto B(x, y')$ e $Y \ni y \mapsto B(x', y)$ são contínuas para cada $x' \in X$ e $y' \in Y$. Prove que B é contínua.

Definição 2 Se um espaço normado X contém uma sequência (e_n) com a propriedade de que para todo $x \in X$ existe uma sequência de escalares (α_n) tal que

$$||x - (\alpha_1 e_1 + \dots + \alpha_n e_n)|| \to 0$$
, quando $n \to \infty$,

então (e_n) é chamada de base de Schauder para X. A série

$$x = \sum_{k=1}^{\infty} \alpha_k e_k$$

a qual tem a soma $x \in a$ expansão de x com respeito a base (e_n) .

Definição 3 Sejam (X, d_X) e (Y, d_Y) espaços métricos. Uma transformação $T: X \to Y$ é dita uma isometria se para todo $x, y \in X$ temos que

$$d_Y(Tx, Ty) = d_X(x, y).$$

Neste caso, dizemos que (X, d_X) estpa imerso em (Y, d_Y) .

Exercício 29 (Completamento de Espaços Métricos) $Seja(X, d_X)$ um espaço métrico. Existe um espaço métrico completo $(\widehat{X}, \widehat{d})$ e uma isometria $T: X \to \widehat{X}$ tal que T(X) é denso em \widehat{X} . Além disso, o espaço \widehat{X} é único a menos de isometria.

Solução 1 Roteiro:

- i) Seja S o conjunto de todas as sequência de Cauchy em X. Defina $(x_n) \sim (y_n) \Leftrightarrow d(x_n, y_n) \to 0$ quando $n \to \infty$. Prove que \sim é uma relação de equivalência em X.
- ii) Seja (X, d) um espaço métrico $(x_n), (y_n) \subset X$ sequências de Cauchy em X e $d_n = d(x_n, y_n)$ para cada $n \in \mathbb{N}$. Então (d_n) é ma sequência de Cauchy em \mathbb{R} .
- iii) Seja (X,d) um espaço métrico $(x_n),(y_n),(z_n)\subset X$ sequências de Cauchy em X. Suponhamos que $\lim_{n\to\infty}d(x_n,y_n)=0$ e $\lim_{n\to\infty}d(y_n,z_n)=0$. Prove que $\lim_{n\to\infty}d(x_n,z_n)=0$.

- iv) Seja (X,d) um espaço métrico $(x_n),(x'_n),(y_n),(y'_n)\subset X$ sequências de Cauchy em X. Suponhamos que $\lim_{n\to\infty}d(x_n,x'_n)=0$ e $\lim_{n\to\infty}d(y_n,y'_n)=0$. Prove que $\lim_{n\to\infty}d(x_n,y_n)=\lim_{n\to\infty}d(x'_n,y'_n)$.
- v) Seja $\widehat{X} = X/\sim$ o conjunto de todas as classes de equivalência de sequências de Cauchy em X via a relação \sim . Prove que $\widehat{d}(\widehat{x},\widehat{y}) = \lim_{n\to\infty} d(x_n,y_n)$ está bem definida (não depende do representante) e que $(\widehat{X},\widehat{d})$ é um espaço métrico.
- vi) Para cada $x \in X$ seja $T: X \to \widehat{X}$ dada por $Tx = \widehat{x}$, onde \widehat{x} é a classe de equivalência da sequência $x_n = x$ para cada $n \in \mathbb{N}$. Prove que T está bem definida e é uma isometria.
- vii) Mostre que T(X) é denso em \widehat{X} .
- viii) Prove que $(\widehat{X}, \widehat{d})$ é completo.
- íx) Seja (Y, \widetilde{d}) um espaço métrico completo e suponha que exista $\widetilde{T}: X \to Y$ uma isometria tal que $\widetilde{T}(X)$ é denso em Y. Mostre que Y e \widehat{X} são isométricos.

Exercício 30 Sejam X e Y espaços vetorias normados, $T: X \to Y$ uma transformação linear contínua. Mostre que

$$\begin{split} \|T\| &= \inf\{c > 0: \|Tx\|_Y \le c \|x\|_X \ para \ todo \ x \in X\} \\ &= \sup_{\substack{x \in X \\ x \ne 0}} \frac{\|Tx\|_Y}{\|x\|_X} \\ &= \sup_{\substack{x \in X \\ \|x\|_X = 1}} \|Tx\|_Y \\ &= \sup_{\substack{x \in X \\ \|x\|_X \le 1}} \|Tx\|_Y \\ &= \sup_{\substack{x \in X \\ \|x\|_X < 1}} \|Tx\|_Y \end{split}$$

Exercício 31 Prove que c_0' é isometricamente isomorfo ao espaço ℓ^1 .

Exercício 32 Considere $\ell^1 \times \mathbb{R}$ com a norma $\|(x,s)\|_1 = \|x\|_1 + |s|$. Prove que existe um homeomorfismo linear entre c' e $\ell^1 \times \mathbb{R}$.