ESCOLA SÉRGIO MASCARENHAS DE FÍSICA DA MATÉRIA CONDENSADA

Hands-On 2 - Computational

Band Structure and Density of States

Getting started

→ Basic Unix Commands:

Unix Command	Description
ls	List directory contents
ср	Copy files
rm	Remove directory entries
which	Locate a program file in the user's path
diff	Find differences between two files
vi	Text editor
mv	Move and rename files
pwd	Print working directory name
cd	Change working directory
ln	Make a file link
mkdir	Make directories
rmdir	Remove directories
alias	Create a command alias

Getting started

→ SLURM (Simple Linux Utility for Resource Management) commands:

SLURM comman d	Sample command syntax	Meaning
scancel	scancel <jobid></jobid>	Cancel a job. scancel can also be used to kill job arrays or job steps.
sacct	sacct -j <jobid></jobid>	Check job accounting data. Running sacct is most useful for completed jobs.
scontrol	scontrol show job <jobid></jobid>	Look at a running job in detail. For more information about the job, add the -dd parameter.
scontrol	scontrol hold <jobid></jobid>	Pause a job
scontrol	scontrol release <jobid></jobid>	Release a held job (allow it to run)
sinfo	sinfo	See node and partition information. Use the -N parameter to see information per node.
srun	srunpty -t 0-0:5:0 -p interactive /bin/bash	Start an interactive session for five minutes in the interactive queue.
sbatch	sbatch <jobscript></jobscript>	Submit a batch job.
squeue	squeue -u <userid></userid>	View status of your jobs in the queue. Only non-completed jobs will be shown.
https://wiki.r	c.hms.harvard.edu/displav/02/Usina+Slurm+Bas	ic

Getting started

\rightarrow	Log in to SDummont:
÷	>> ssh your_username@login.sdumont.lncc.br
→	Loading packages:
	>> module load python/3.9.12
\rightarrow	Go to your scratch area:
	>> cd /scratch/efmc24/your_username
→	Copy files to you user area:
	<pre>>> cp -r /scratch/efmc24/HandsOn_Material/day2 .</pre>
:	>> cd day2

Today's goals

- 1. Calculate electronic band structure of YIn₃:

 - General Symmetry points in the reciprocal space
- 2. Calculate Density of States (DOS) of YIn₃:
 - Self-consistent x non self-consistent calculations (scf x nscf).

Today's goals

- 1. Calculate electronic band structure of YIn₃:

 - Groosing high symmetry points in the reciprocal space
- 2. Calculate Density of States (DOS) of YIn₃:
 - Self-consistent x non self-consistent calculations (scf x nscf).

Band structure calculation: Workflow

Step 0:	Structural relaxation: pw.x vc-relax.in > vc-relax.out
Step 1:	Generate charge density (scf): pw.x scf.in > scf.out
Step 2:	Calculate eigenvalues: pw.x pw.bands.in > pw.bands.out
Step 3:	Post-processing and plot: python qe_pp_bands.py

Ciclo auto-consistente

Electronic band structure: YIn₃

CUB path: Γ-X-M-Γ-R-X|M-R

1.	Go to the	working	g dire	ctory	•			
>>	cd day2							
We	start from a	scf calc	ulatior	n to ge	enerc	ite t	he	ļ

charge density: charge-density.dat.

```
2. Run!
```

į	i.		i i	i i	i i		i.	i.		i.	i.	i.	ē.	e.	i.	e.	i.	e.	e,	e,	e,	ē.	1	ŝ,	ċ,	i.	ŝ,	ē.	i.	e.	i.	i.	i.	i.	i.	
÷	>	>		20	sk)a	ιt	C	:h	1	2	30	ık).	2	31	<u>cr</u>	n																		
Ē.		4	1					4		۰.	κ.	۰.		۰.			۰.			1		1	1	1		۰.	1	1	1	1	1	а.	۰.		а.	ł

3. Check if the calculation finished properly:

>	>	ta	il	s	cf	E.	ou	ıt	•	•	 	•	-	-		 		-		•	-	•	•	
		J0	B 	DO	NE	3.											 -=							

```
&CONTROL
  calculation = 'scf'
  outdir = './'
  prefix = 'yin3'
  pseudo dir =
 /scratch/efmc2024/HandsOn Material/Pseudos/
-&SYSTEM
  ecutwfc =
               90
  ibrav = 0
  nat = 4
  ntyp = 2
&ELECTRONS
&IONS
-&CELL
ATOMIC SPECIES
       88.90 Y.pbe-spn-kjpaw psl.1.0.0.UPF
٠Y
              In.pbe-dn-kjpaw psl.1.0.0.UPF
-In
      114.82
```

4. Go to the directory 2_bands;

>> cd ../2_bands

5. Have a look at the input file **pw.bands.in**.. What is different from the previous scf calculation?

Real Space x Reciprocal Space

CUB path: Γ-X-M-Γ-R-X|M-R

Reciprocal Space data

How to choose high symmetry points? Many different ways! A few options:

http://www.xcrysden.org/ https://www.materialscloud.org/home

From POSCAR (VASP input file):

	CONSORTIUM	PUBLI
The fact Materials Discourses	GUNSONTIOM	FOBLIG

AF

Output

ATIONS SEARCH

ie ce	0.750000 // KPOINTS FCC (face-0	000000000 TO RUN **	0.75000 cubic) G->	000 	0000000 0.75000000000000 -K-G-L-U-W-L-K U-X
	16 ! 16 9	grids			
	Line-mode				
	reciprocal				
	0.0000	0.0000	0.0000	- 1	\Gamma
	0.5000	0.0000	0.5000	1	×
	0.5000	0.0000	0.5000	- 1	X
	0.5000	0.2500	0.7500	1	W
	0.5000	0.2500	0.7500	1	W
	0.3750	0.3750	0.7500	1	К
	0.3750	0.3750	0.7500	1	К
	0.0000	0.0000	0.0000	1	\Gamma
	0.0000	0.0000	0.0000		\Gamma
	0.5000	0.5000	0.5000	1	L
	0.5000	0.5000	0.5000	1	L
	0.6250	0.2500	0.6250	1	U

http://aflowlib.org/

- 4. Go to the directory 2-bands;
 - >> cd ../2_bands
- 5. Have a look at the input file **pw.bands.in**.. What is different from the previous scf calculation?
- 6. Create a link for the folder with the charge density file generated from the scf calculation:

÷.,																									
2	> :	>	1	n	-	S	•	•	/	1	 5	5 C	f	= /	/]	7	iı	n	3	•	S	a	V	е	

&CONTROL calculation = 'bands' etot conv thr = 6.000000000d-05 forc conv thr = 1.000000000d-04 outdir = './'έ. prefix = 'yin3' K POINTS crystal b 6 !\$\GAMMA\$ 0.00 0.00 0.00 20 0.00 0.50 0.00 20 ! X 0.50 0.00 20 ! M 0.50 0.00 !\$\GAMMA\$ 0.00 0.00 20 0.00 0.00 0.50 20 !R 0.50 0.00 2.0 0.00 ! X

4. Go to the directory 2-bands;

>> cd ../2_bands

- 5. Have a look at the input file **pw.bands.in**.. What is different from the previous scf calculation?
- 6. Create a link for the folder with the charge density file generated from the scf calculation:

1.1.1											-															
">>	,	1	n	- 5	3		/	1		S	С	f	/	y	i	n	3	S	а	v	e					
1 a. a.							ć.		-					1											 	

7. Run!

ζ.		-	1				1			2		•	2	•	•	1			-	•	•	•	2	•	-		2	•	•	2		1	١,
" >	> ;	>		S	b	a	t	C	h		S	u	b).	S	sr	m	l															
1	1																																1

8. Check if the calculation finished properly:

9. Use your preferred tool to plot the band structure!
... In our tutorial we will use the **DFTtoolbox** package

https://github.com/pipidog/DFTtoolbox

>> python qe_pp_bands.py
>> ls
>> band.png bands.in pw.bands.out

10. To visualize the figure, you need to copy the file to your local machine:

- Go to another terminal.
- י דype:

>> scp your_username@login.sdumont.lncc.br:/scratch/efmc24/your_username/...
...HandsOn/day2/2_bands/band.png .

Electronic band structure plot: YIn₃.

Voilà! You have calculated your first band structure.

Electronic band structure plot: YIn₃.

YIn₃ is a metal.

Voilà! You have calculated your first band structure.

DFT: Electronic band structure gap problem.

P. Rinke et al. New J. Phys. 7, 126 (2005), phys. stat. sol. (b) 245, 929 (2008) 2

Today's goals

- 1. Calculate electronic band structure of YIn₃:

 - Ghoosing high symmetry points in the reciprocal space
- 2. Calculate Density of States (DOS) of YIn₃:
 - Self-consistent x non self-consistent calculations (scf x nscf).

Today's goals

- 1. Calculate electronic band structure of YIn₃:
 - → Input file
 - G Choosing high symmetry points in the reciprocal space
- 2. Calculate Density of States (DOS) of YIn₃:
 - Self-consistent x non self-consistent calculations (scf x nscf).

	DOS calculation: Workflow	
Step 0:	Structural relaxation: /pw.x -in vc-relax.in > vc-relax.out	
Step 1:	Generate charge density (scf): /pw.x -in scf.in > scf.out	
Step 2:	Calculate eigenvalues (nscf): /pw.x -in pw.nscf.in > pw.nscf.out	
Step 3:	Post-processing: /dos.x -in dos.in > dos.out	
Step 4:	Plot!	

DOS(E) dE = number of levels between E and E + dE

Density of States (DOS) calculation.

1. Go to the working directory:

>> cd day2/3_dos

- 2. Have a look at the input file pw.nscf.in.
 - What is different from the previous input files for scf and electronic bands calculations?

&CONTROL	
calculation (Insef)	
atot corruthe 000000000 05	
$forc_conv_thr = 1.0000000000-04$	
∎ outdir = './'	
<pre>verbosity = 'high'</pre>	
 - /	
&SYSTEM	
∎ degauss = 0.02	
ecutwfc = 100	
ibrav = 0	
celldm(1)= 17.4836462409963	
" nat = 4	
ntra - 2	
occupations = 'tetranedra'	
smoaring = 'gauss'	
·	
POINTS automatic	
*	=

5.

Density of States (DOS) calculation.

3. Create a link for the folder with the charge density file generated from the scf calculation:

>> ln -s ../1_scf/yin3.save .

4. Post-processing: Have a look at the file dos.in.:

```
&dos
   ! prefix must be the same as in the band calculation
   prefix = 'yin3'
   ! outdir must be the same as in the band calculation
   outdir='./'
   fildos = 'yin3.dat'
   DeltaE = 0.005
   /
Submit:
> sbatch sub.srm
```

User guides

https://www.quantum-espresso.org/Doc/INPUT_PW.html

Executables:

Input File Description	
Program: pw.x / PWscf / Quantum Espresso (version: 6	5.4)
TABLE OF CONTENTS	
INTRODUCTION	
&CONTROL	

https://www.quantum-espresso.org/Doc/INPUT_BANDS.html

Input File Description

Program: bands.x / PWscf / Quantum Espresso (version: 6.4)

TABLE OF CONTENTS

https://www.quantum-espresso.org/Doc/INPUT_DOS.html

Input File Description Program: dos.x / PWscf / Quantum Espresso (version: 6.4)									
TABLE O	F CONTENTS								
INTE	RODUCTION								
&DC	<u>8</u>								
	prefix outdir bz_sum ngauss degauss Emin Emax DeltaE fildos								
Note									

Density of States (DOS) calculation.

6. Have a look at the files:

		••••	
- > >			
:>>	os.out yin3_dos.dat		

yin3_dos.dat contains the DOS data.

7. Use your preferred tool to plot the band structure!

Example: python script	plot_dos.py:
>> python3 ge_plotd	os.py

Density of States (DOS) calculation.

