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Topicos

. Redesem 3D e 2D.
2.  Simetrias.

3. Alguns materiais representativos e propriedades.



Alguns Cristais e Minerais
e http://www.bestcrystals.com/crystals2.html

e http://www.qgalleries.com/minerals
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Breve Historico

¢ Mineralogistas descobrem que as diregoes das faces
dos cristais tem relacao com numeros inteiros
o cristais sdo formados por arranjos periodicos de elementos

m £ssai d’'une théorie sur la structure des cristaux, R. J.
Hauy, Paris, 1784

m /raité de cristalographie, Paris, 1801

e Simetrias existentes nos cristais

o Redes de Bravais

m 14 tipos de redes tridimensionais para os sistemas cristalinos, A.
Bravais, 1845



Breve Historico

e Descoberta dos raios-x

o Rontgen, 1895

m Utilizados em radiografias humanas e de outros objetos, para estudo
do interior dos mesmos.

e Teoria elementar da difracao, e primeiros experimentos
com difracao em cristais

o Interference effects with Rontgen rays, apresentado a
Bavarian Academy of Sciences — Munique, 1912.
m Von Laue: formalizacao de uma teoria elementar de difracao,

baseada nas propriedades geomeétricas da rede real e da rede
reciproca.

m Friedrich e Knipping: primeiras experiéncias de difragao de raios-x
por cristais.



Breve Historico

e Formalizacao alternativa para a difracao:

oW. H. Bragg e W. L. Bragg, 1913.

m Teoria de difracdo considerando planos cristalinos e
“reflexao” especular pelos planos.

m Lei de Bragg.



Occurrence of packing types assumed by elements
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https://www.unf.edu/~michael.lufaso/chem4627/ch1_solid_state.pdf

Redes de Bravais

e Exemplos de redes de Bravais
Rede cubica simples (SC — simple cubic).
Ex.: a-Po.

A
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Basic crystallography

t=ua+vb+we
3

t= Zu,-a,-

=1

t = u;a;

The six numbers {a, b, c, «, B, y} are known as the lattice parameters
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aF#Fb#ciaFBFy
a#xb#c,p#7%

a=b=ca#%

a=b=+¢
a#b#c
4 =b=>F¢
a=b=¢

triclinic or anorthic (a);
monoclinic (m);
hexagonal (h);
rhombohedral (R);
orthorhombic (0);
tetragonal (t);

cubic (¢).

A = O,l,l,
2 2
B = 1,0,1;
2 2
1 1
C: —,—,0;
2 2
[— 1 11
N2 22y
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Fig. 1.2. The 14 Bravais lattices and their centering symbols.



Célula Primitiva de Wigner-Seitz

e Célula primitiva de Wigner-Seitz (W-S) - :
o Respeita a simetria da rede de Bravais.

o Contém um ponto de rede.
(ndo temos que fazer uma escolha especifica de vetores primitivos, entdo é tdo simétrica quanto a
rede de Bravais)

e Construcao da célula W-S:
1) Considere um dado ponto da rede.
2) Trace retas partindo desse ponto de rede até seus vizinhos.

3) Trace CPlapos_ perpendiculares a essas retas que passam a
meia distancia entre os pontos (bissectam as retas).

4) A célula € o menor volume fechado definido por esses planos.

14



Célula Primitiva de Wigner-Seitz

Celula W-S para BCC (octaedro truncado)
Faces hexagonais bissectam as diagonais

Faces quadradas bissectam as retas que unem os
pontos centrais de duas celulas adjacentes

Célula W-S para FCC (dodecaedro rombico)
Faces congruentes (12) bissectam as retas que
unem os pontos em mais de uma célula

15



The position of an atom inside the unit cell is described by the position vector r:

3
r=xa+yb+4+zc= E ria; = r;a;,
i=1
where we have again made use of the summation convention. The numbers (x, y, z)
are real numbers between 0 and 1, and are known as fractional coordinates.



D = \/(pl - q1)2 . 2 (172 - 6]2)2 + (P3 - 613)2

p-q = |pllq|cosO.

‘\»l
Ip|cos6 q

p-p=Ipl

Pl = /P P.



3

= Z Z pi(a; -a,)p;

i=1 j=I

Ipl = /piai - pja; = /pi(a; - a;)p;

gij =4a;-a; = |a,‘||aj|0089,'j

a-a a-b a-c a’ abcosy accosp
gii=|b-a b-b b-c|=|abcosy b* bc cos a
c-a ¢c-b c-c accos B bccosa c?

The matrix g;; is symmetric* since g; i = &ji

€ - €
8ij = | €€
€3 - €

€ -€
€ €
€3-€

€ €
€ - €3
€3 -€3

1
0
0

0
1
0

0
0
1



A quick inspection of the orientation of the vector n = ha + kb + [c

[Mlustration of the determination of the Miller indices of a plane (hkl)



The Miller indices of a plane in an arbitrary crystal system are obtained in the
following way.

(1) If the plane goes through the origin, then displace it so that it no longer contains the
origin.

(i1) Determine the intercepts of the plane with the three basis vectors. Call those intercepts
s1, 2, and s3. The intercepts must be measured in units of the basis vector length. For
the plane shown in Fig. 1.3, these values are s; = 1, s, = %, and s3 = % If a plane is
parallel to one or more of the basis vectors, then the corresponding intercept value(s)
must be taken as oo.

(ii1) Invert all three intercepts. For the plane in the figure we find % =1, é = 2,and é =J.
If one of the intercepts is 0o, then the corresponding number is zero.

(iv) Reduce the three numbers to the smallest possible integers (relative primes). (This is
not necessary for the example above.)

(v) Write the three numbers surrounded by round brackets, i.e. (123). This triplet of num-

bers forms the Miller indices of the plane.
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The reciprocal basis vectors can be derived from the following definition:

a* = K(b x ¢) & 1

~a-(bxe)

a-a*=Ka-(bxe)=1

Qf —



ZnO

4n/3a

Graphene




We define the reciprocal lattice 7* as the set of end-points of the vectors of the
type

3
g=ha* +kb* +1c" =) gal = ga},

i=1

where (h, k, [) are integer triplets. This new lattice is also known as the dual lattice,
but in the diffraction world we prefer the name reciprocal lattice. We will now
investigate the relation between the reciprocal lattice vectors g and the planes with
Miller indices (hkl).



We will look for all the direct space vectors r with components r; = (x, y, z) that
are perpendicular to the vector g. We already know that two vectors are perpendic-
ular to each other if their dot product vanishes. In this case we find:

0=r-g=(ra)-(g,a}) =r; (a -a})g;.

r-g=rd;j8 =rigi=ng +ng+rg=hx+ky+iz=0



The reciprocal lattice vector g, with components (4, k, 1), is perpen-
dicular to the plane with Miller indices (hkl).

For this reason, a reciprocal lattice vector is often denoted with the Miller indices
as subscripts, €.g2. gx;-

Since the vector g = g;a’ is perpendicular to the plane with Miller indices g; =
(hkl), the unit normal to this plane is given by

_ Bhki
| 8|




The length of a reciprocal lattice vector is equal to the inverse of
the spacing between the corresponding lattice planes.

Shkl

t-n=t. = dj
Ighkll
A
.
n
</'/./:
d

|ghii| = A
dnki

We can arbitrarily select t = 7, which leads to

a
- (ha* + kb* + Ic*) = - -ha* =1 = dpu ||

a
t-8 = P



= |g| = \/— \/gl gja = \/gi(a? °a;)gj

dth
A *
gu=al 'aj.

a*b*cosy* a*c*cos p*
= | b*a* cos y* 5 b*c* cos a*
| ctatcos B " cosa” i




P = pia; = pja;

* o ¥
pid; - ay = pjaj ",
ik g
Pi8im = pj8j1n - Pm,
or

p;q = Pi8im-
It 1s easily shown that the inverse relation is given by

I
Pi = pmgmi'



If we replace p; by p; g* ., then we have

mi?’
T, . . .
p - pmgmial - pmam’
from which we find

* £ .
am - gmia"
and the inverse relation

— *
a"l - gnllai .



P X q = sinf |p||q]z,

PXxXq=(p1g2— p2q1)axb+(p2g3 — p3g2)b x ¢+ (p3g1 — p1gz)c X a

= Q(p2q3 — p3g2) @™ + (p3q1 — pP1g3) D™ + (p1g2 — p2g1) €71,




P X q = (p293 — p3q2)e1 + (p3q1 — p1g3) €2 + (p1g2 — p2q1) €3

1 1
P X q = Qe;jxpiq;a;. +1 even permutations of 123,
eijk = § —1 odd permutations of 123, even odd

2 3 2

0 all other cases. 3
\./ \/

aj a; ajg e € €3
Pxq=|(p1 p» p3||=|p1 p2 p3| Cartesian |.
q 492 g3 q1 492 q3



g1 X 8 = Q%¢;jx81.i82,j8kmA, = 27€;jxL1,i, jaA.
Explicitly working out the summations over i, j, and k we find

g1 X & || (kila — kalv)ay + (Liha — Lhhy) az + (hika — haky) a3

W ki Lt hy ki &
o ko I hy ky p.

Then compute the three 2 x 2 determinants formed by the eight remaining numbers
above, as in

ki [ h ki

ko > h» k>



[uvw]

gkl + tuvw) = gitja; - a; = gitjd;i; = giti =0,

or in explicit component notation:

hu + kv +Ilw = 0. (1.30)

This equation is known as the zone equation and it 1s valid for all crystal systems.



a3 = —(a; +ay)

a3

4

t=u'a;+v'ay+w'c=ua; +va, +raz; +we .
Al =
W =u—t=2u+v;) A =
N Vi=v—t=2v+u;}
) -
w =w. ‘ A3 =
F=

ghkl = ha’f + ka§ -+ lC* = hAT + kA; + lA_: -+ lC* = Zhkil
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Fig. 1.11. Illustration of the manual use of a Wulff net for stereographic projections.

Fig. 1.9. Stereographic projection of the normals on crystal faces.
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1.6.1 Symmetry operators

We distinguish between two basic kinds of symmetry operations: those that can
be physically realized (rotations and translations), also known as operations of the
first kind, or proper operations, and those that change the handedness of an object
(reflection and inversion), operations of the second kind. All symmetry operations
are represented by unique graphical symbols.



Operations of the first kind

(1) A purerotation is characterized by a rotation axis [uvw ] and a rotation angle « = 27 /n.
The integer n 1s the order of the rotation and we say that a rotation 1s n-fold if its angle
is given by 27 /n. A pure rotation of order n is denoted by the symbol n. This is the
so-called International or Hermann—Mauguin notation.” In drawings an n-fold rotation
axis is represented by a filled regular polygon with n sides. A six-fold rotation axis
perpendicular to the drawing plane is then indicated by the @ symbol, a four-fold axis
by €, a three-fold axis by A, and a two-fold axis by |.

(i1) A pure translation is characterized by a translation vector t. We have already discussed
translations earlier in this chapter. In drawings, translation vectors are indicated by
arrowed lines.



Operations of the second kind

(1) A pure reflection is characterized by a plane (hkl), and the International symbol for a
mirror plane is m. The Scheenflies symbol is the Greek letter 0. In a drawing a mirror
plane is always indicated by a thick solid line, ;

(11) An inversion is a point symmetry operation that takes all the points r of an object and
projects them onto —r. The operation is usually denoted by 1 or sometimes by i. In
drawings the inversion center is denoted by the symbol o (i.e. a small open circle).




3 m>_?|9 i

Fig. 1.13. Stereographic representation of a three-fold rotation, a mirror plane perpendicular
to the projection plane, and an inversion.

Fig. 1.14. Stereographic representation of the crystallographic rotoinversions.



The basic symmetry operations of the first and second kind can be combined
with each other to create new symmetry operations. There are three combinations
of interest to crystallography:

e combination of rotations with the inversion center;
e combination of rotations with translations;
¢ combination of mirrors with translations.



The combination of a rotation axis with an inversion center located somewhere
on that axis is called a rotoinversion operation. The rotoinversion rotates a point
over an angle 27 /n and inverts the resulting point through the inversion center. A
rotoinversion of order one is equivalent to the inversion operation i. Rotoinversions
are represented by the symbol n and the crystallographic rotoinversions are shown in

the stereographic projections of Fig. 1.14. They are represented by special symbols:
d for 2, A for 3, > for 4, and @ for 6.



A screw axis ny, consists of a counterclockwise rotation through 27 /n followed
by a translation T = %t[ww] in the positive direction [uvw ] along the screw axis.
The vector T is known as the pitch of the screw axis. Screw axes of the type ny,
and n,_,, are mirror images of each other. A screw axis is called right-handed if
m < n/2, left-handed if m > n/2, and without hand if m = 0 or m = n/2. Screw
axes related to each other by a mirror operation are called enantiomorphous.

The crystallographic screw axes are (with their official graphical symbols): 2, ‘,
3 /L, 3, _A, 44 ‘, 4, ‘, 4 “*, 61 ‘, 6, ‘, 63 ®. 64 .‘, and 65 ‘
All screw axes are shown in Fig. 1.15: the number next to each circle refers to the
height of the circle above the plane of the drawing. The axes are all perpendicular
to the drawing.



A symmetry operator O operating on a material point r transforms its coordinates
into a new vector r’ with components (x|, x5, x3) as follows:

r = OIr]. (1.36)
xi' = D,-jxj + u;,

r =Dr+t=D|t)[r] = O[r]

The matrix D describes the point symmetry transformation and the vector t des-
cribes the translational component of the operator O. In the crystallographic lit-
erature, the point symmetry part is usually called the linear part and the whole
operator is called a motion. The compact notation (D|t) is called the Seitz symbol.



Table 1.4. Allowed angles between
rotation axes of orders A, B, and C,
compatible with the Bravais lattices.

~ ~ ~

BC AC AB

90° 90° 90°
90° 90° 60°
90° 90° 45°
90° 90° 30°
70°32"  54°44" 54°44/
54°44' 45° 35°16'

NN NN N |
WWwhNo N |
AL WLWND | O

Fig. 1.18. Stereographic projections of the six crystallographically allowed combinations
of rotational axes.




These 32 combinations are known as the 32 point groups.

Table 1.5. International—[Scheenflies] notation, group
order N and crystal system S (a, m, h, R, o, t or c) for
the 32 crystallographic point groups.

Point group N S Point group N §
1-[C|] I a 38, 6 R CuAu3 m3m
i-[C;) 2 a 32-[D;] 6 R
2-[C] 2 m 3m-[C,,] 6 R
m-[C,] 2 m 3m-[D,,] 12 R
2/m—[Cy,] 4 m 6-[C,] 6 h YIn3
222-[D,] 4 o 6-1Cy,1 6 h
mm2-[C,,] 4 o 6/m—[Cy, ] 12 h
mmm-[D,, ] 8 o 622-[ D] 12 h
4-[C,] 4t 6mm-[C,] 12 h GIn3
4-S,] 4 t 6m2-[D;, ] 12 h
4/m-[C,,] 8 t 6/mmm-[Dg,] 24 h
422-[D,] 8 t 23-[T) 12 ¢
4mm-[C, ] 8 t m3-[7, ] 24
2m-[D,,] 8 t 432-[0] 24 ¢
4/mmm-[D,] 16 t 43m-[7,] 24 ¢
3-[C,] 3 R m3m-[0, ] 48




Revisar em casa para material cristalino ZnO, YIn3, GdIn3

1-Parametros de rede
2-Caracteristicas da rede reciproca
3-Grupos de simetria

[101)

—Zn0O

[100]

Intensity (a.u)
[002]

—

v Ll Ll v Ll Ll
10 20 30 40 50 60 70 80
2 0 (degree)

ZnO apresenta estrutura cristalina hexagonal wurtzita, que possui uma célula unitaria
tetraédrica com parametros de rede, a = 3.250 A e ¢ = 5.207 A



A= P Ol 1 O,Q, The Bragg equation in direct space
= dhkl sinf + dhkl sin9,
— Zdth sinf.

d
Zﬂ sinf = A.
n

We recall from the discussion of Miller indices in the previous chapter that the
planes with Miller indices (nh nk nl) are parallel to the planes (hkl), but with an
interplanar spacing equal to

dpki

dnh nknl —



2dpi SInG = A. k' =k+ g.

(b) 0

Fig. 2.3. (a) Geometrical construction leading to the reciprocal space Bragg equation; (b)
the diffracted wave vector is translated to complete the vector sum k' = k + g.



................................. 200 keV
........... 1 MeV

Fig. 2.7. Ewald sphere drawn to scale for the reciprocal lattice of a square crystal with
lattice parameter 0.4 nm, and a 200 keV and 1 MeV incident electron beam.

Fig. 2.4. Ewald sphere construction.
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T(l') = Z (S(I’ = tuvw)-

u,y,w=—00

N
Ven(r) = Y Ve —r;).
3=1

V(r) — Vc'ell(r) X T(r)

V)= )  Vyerrsr
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Finite crystal size effects

N

Intensity

kD
~ Acost’

Lonax

FWHM

> 20

20

3.2.2 Williamson-Hall method

The Williamson-Hall method is a simple visualization of
order dependence peak broadening. In this method, it is
assumed that the size and strain contribution to the line
broadening are mutually independent of each other and
closely approximated by Cauchy’s function and cormre-
sponding integral breadths are linearly additive:

Bw: = Bp+ Bs (7)
Putting the value of 8, and fi¢ from Eq. (3) and (5), we get

+ 4etan () (8)

A
Pt = Dcos ()

By rearranging equation (8)

Ki
Pricos l):FA+4csin0 9)
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