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Introduction tropical Atlantic circulation

&) Tropical and South Atlantic
SEOMAR—" Circulation
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Wind-driven circulation

&) Wind-driven Circulation:
GEOMAR — Sverdrup Balance

» Westerly and trade winds
force Ekman transport with
Ekman convergence in the
subtropics and divergence in

North
subpolar and tropical regions \ Q
~a S
a . East

» Ekman downwelling and g
upwelling results TEkaan

Westerlies

. upwelling
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Wind-driven circulation

GEOMAR\“D Sverdrup Stream Function [SV]
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For a subtropical gyre to expand poleward, a

poleward shift of the wind system is required.
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Olbers et al., Ocean Dynamics, 2012



Thermohaline circulation

&) Large Sc_ale Buoyancy Driven
SEOMAR =" Ocean Circulation

=== Surface flow ® Wind-driven upwelling L Labrador Sea
we==  Deep flow (©) Mixing-driven upwelling G Greenland Sea

=== Bottom flow Salinity > 36 %o W  Weddell Sea
<  Deep Water Formation Salinity < 34 %o R Ross Sea

Kuhlbrodt et al., 2007
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b)

N

GEOMAR

Thermohaline circulation

gj Atlantic Meridional Overturning

Circulation

AMOC streamfunction (shading)
and crest of the Mid-Atlantic Ridge
(black line)

\\/ l MOC is a 2D-simplification of a
/ l " "= complex 3D circulation derived by

zonal averaging

How does

the water flow through the
tropical Atlantic?

— .| | three layers: shallow (red, <2 km),
deep (blue, 2-4 km), and bottom
(green, >4 km)

after Lumpkin and Speer (2007) and
Ganachaud and Wunsch (2000)




Thermohaline circulation

GEOMAS) Tropical Atlantic Circulation

» Western boundary:
northward North Brazil
Current and southward
Deep Western Boundary
Current

» Interior: strong east- and
westward wind-driven and
eddy-driven zonal currents

» Northward AMOC return
flow (above 27.7 kgm-3)
has to pass through the
equatorial current system
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S
GEOMAR

» Pathways

» Upper ocean:

* Western
boundary

* EUC/NECC,
equatorial
upwelling and
northward
Ekman
transport

» Intermediate
Layer
* Western

boundary

* Return flow at
the eastern
boundary

Christian-Albrechts-Universitat zu Kiel

Thermohaline circulation

AMOC-related Tropical Atlantic
Circulation
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Subtropical Cells

&) Shallow Overturning:
GEOMAR — Subtropical Cells (STCs)

» STCs are shallow
meridional circulation
cells that connect the

What drives the STC thermocline flow?

30°N
~ HADLEY cell

.....

EequdrtorTtdr Or easterT] 30°
boundary upwelling
regions via the equatorial
eastward currents 200
» STCs are closed by g
poleward surface flow | 3
éubtropical 1 go

Cell (STC)
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Subtropical Cells

\ . .
GEOMAR\D Ventilated Thermocline

* constant layer thickness at the
eastern boundary:

* increase of layer thickness toward
west due to Ekman pumping

* flow follows contours contours

* eastern boundary no streamline -
shadow zone as

Luyten, Pedlosky, Stommel (1983)
* ocean interior & eastern boundary

* Ekman pumping w, due to wind curl

* geostrophy (potential vorticity
conservation)

* no diapycnal mixing
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Subtropical Cells

&) Connection between the tropical
GEOMAR — and subtropical thermocline

» Thermocline waters subducted in the subtropics flow equatorward and

westward
» The three different exchange windows in the subtropics and between the
subtropics and the tropics that are possible for subducted water
ny

—

. Recirculating window

2. Western boundary
exchange window |

3. Interior exchange window Y,

Shadow
Zone
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Malanotte-Rizzoli et al., 2000
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Subtropical Cells

oY) The Atlantic’s STC

30°N

» Subduction due to anticyclonic
wind stress curl in the subtropics

(blue) 20° ] -
» Equatorward and westward
thermocline transport (dotted) 10°4 i

dominantly from the South

» Eastward transport with Equatorial
Undercurrent (EUC) and
NEUC/SEUC

» Upwelling at the equator and
eastern boundary (green)

» Poleward Ekman transport in the 20
surface layer (red)
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Subtropical Cells

o) The Atlantic’s STC & AMOC

30°N

» Subduction due to anticyclonic
wind stress curl in the subtropics
(blue) 20° 1

» Equatorward and westward
thermocline transport (dotted) 100 A pmxa
dominantly from the South

» Eastward transport with Equatorial
Undercurrent (EUC) and
NEUC/SEUC

» lInwellina at the ealnator and

™ \ |

00_.

10°

]
Subduction
Upwelling
Subduction

AMOC superimposed on STC
results in asymmetric STC

'8l Tuchen et al., 2019, 2022
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Introduction to tropical Atlantic circulation

N . .
GEOMAR\() Main Points Part |

» Sverdrup balance and subtropical gyres
» Atlantic meridional overturning circulation

» Complex superposition of wind-driven and
buoyance-driven circulation in the tropical Atlantic

» Ventilated thermocline
» Asymmetric Atlantic Subtropical Cells

Now, more to the Equatorial Undercurrent




Dynamics of equatorial upwelling

&) Tropical Atlantic Circulation and
cEOMAR— Biological Productivity

» Enhanced productivity at the eastern boundaries, near the Amazon and
Congo river mouths and along the equator

» Equatorial Undercurrent (EUC) among strongest currents with velocities
larger than 1 m/s supplies equatorial upwelling

log(mg m~3)
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GEOMAR

» Mean zonal velocity
in the western,
central, and eastern
Atlantic from direct
velocity
measurements

» EUC decreases in
strength and
shallows toward
east
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Dynamics of equatorial upwelling

§) Equatorial Undercurrent (EUC)
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Johns et al., 2014




Dynamics of equatorial upwelling

oy ) EUC Equilibrium Response

» EUC is forced by the westward wind stress at the equator that results in

equatorial upwelling, tilted thermocline, westward surface flow, and
reversely-tilted sea level .

» At the surface, westward
wind stress is balanced
by eastward zonal
pressure gradient

» At thermocline depth
zonal pressure gradient
produces eastward flow
(EUC) that is
balanced by friction

Lazi
N

L~
sl sin bevel

Do represent seasonal EUC variations an

hristian-Albrechts -Universitit zu Kiel ]

< equilibrium response to the wind stress?



Dynamics of equatorial upwelling

&) Seasonal Cycle of Equatorial
GEOMAR — Upwelling

» Seasonal cycle of equatorial (a) zonal winds, (b) sea
surface height, (c) sea surface temperature, and (d)
chlorophyll-a

]
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Dynamics of equatorial upwelling

D Seasonal Cycle of Equatorial
CEOMAR = Upwelling

» Seasonal cycle of equatorial (a) zonal winds, (b) sea
surface height
» Nitrate from model simulation (right)

a) U [m/s,] b) SSH [cm|
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Dynamics of equatorial upwelling

GEOMAR\“D EUC Transport Profiles

» Moored observations
show weakest EUC
thermocline transport
during July/August and
December, i.e., when the
easterlies are strong

Depth (m)

Depth (rm)

Monthly-mean EUC

transport profiles (Sv/m)
at 23°W, 10°W, and 0°E E_~ .
with density contours v R o n oo

Johns et al., 2014

Depth (m)




Dynamics of equatorial upwelling

oS ) EUC Core Velocity and Depth

» Moored observations at 23W show semi-annual cycle of
EUC core velocity with maxima in boreal spring and autumn

» Annual cycle of EUC

core depth with minimum <~ 1 o |
A

a) )

T —@ T T T T T T

o

O U

In boreal spring an £ 10 0 ° g
masiman o | ﬂ’WM%ﬂW«MWMWMW

» Explained by resonant e . I
equatorial wave response No equ“'b"um response:

(Brandt et al. 2016): - V T T |
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Dynamics of equatorial upwelling

GEOMA$ Trans-Atlantic Equatorial Cruises |&l|

May 20224 30

Jan 2022 -

£ Sep 2021-;——7
» RV Meteor May 2021
Cruises: Jan 2021
" M158: Sep./Oct o0l
2019 at end of o
the Cold May 2020%
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|

* M181: Apr./May
2022 at end of ~ >°P 2017
warm season ., 2019

!

Jan 2019 - - - . . . —
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Dynamics of equatorial upwelling

\gj Temperature and Zonal Velocity
GEOMAR — during TRATLEQ 1&1l

September/October 2019

» EUC core velocity during ) 0
both cruise partly > 1m/s =~ =%
< 100 |l 20§
> Deep EUC in Sep./Oct. g | RN

and shallow EUC in oo ma-UC cors 10

. 40 ° ° ° 15°W 10°W 5°W 0°E

Apr./May: resonant basin ° 1.50

0.75

mode response .

» EUC core (black line)
shallower than 20C

Depth [m]
=
(=]
o

150

=
=)
(=]
Zonal Velocity [m/s]

° 20°W  15°W  10°W 5°W 0°F

isotherm (blue line) during o ApriliMay 2022

01 30
Apr./May and appr. at ) W ’
. _ 501! 255,
same depth during E
£ 100 202
Sep'/OCt' ° 150 — ':\;(I]_’E)C isotherm 15%
—— EUC core 10'_

00w 3w 30w ° ° 10°W  5°W 0°E

0 1.50

Depth [m]

=
=)
(=)
Zonal Velocity [m/s]

Christian-Albrechts-Universitat zu Kiel

|
LZ
i
|




Dynamics of equatorial upwelling

GEOMARD EUC and Mixing at 10W

[m/s]

» Mixing derived from shipboard | .»
microstructure measurements: o ;
. . . . . £ L
Diapycnal diffusion coefficient s 0 ‘
o 60 r
= VJ 1

r .. mixing efficiency SOE 2

=— .. dissipation rate 106 ol

10°S

.. buoyancy frequency 0

» High mixing, in the shear zone above _~
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Owg%w_fwwwb |

the EUC ‘ A A N
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» Low mixing in the EUC core -

depth [m]

[Wikg]
10¢

(a) Zonal velocity, (b) squared shear, (c)
turbulence dissipation rate, , along 10°W
in June 2006.The black and white line
denotes the MLD.
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Dynamics of equatorial upwelling

GEOMAR() Zonal Shear and Mixing

» Shear zone above EUC with elevatad turbulence dissipation rate, ,
reach down to >90m during Sep./Oct.

> Stronger shear y September/October 2019
and dissipation 2 ; [ | !
rate during 50 0.06
Apr./May, but only 5 70 l M
above 50m g o0 ] | 0.04
» Sep./Oct. was “”F }W’Nf .
period with 0 i l ! -
strong TIWs - o | | | 'Apn,',Mayzozz' o | 000
more scattered h ’F - £
mixing events N n ,i 002
E 70 —0.04
%‘ 90
- 110 —0.06
130
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Dynamics of equatorial upwelling

$ . .
ccomn ) Nutrients and Mixing

» Nutrient levels are similar during both seasons, but more deep mixing
events during Sep./Oct. suggesting upward nutrient flux

4 |n Apr/May h|gh 0 September/October 2019
nutrients at 5| IS
shallow depths in ’
the far East - E 70 16
plankton bloom & "
» Nutrient flux: nof
130 12
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= 150 4 ‘109
aiiu 10 E
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BE iciency 50 [
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110 2
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Dynamics of equatorial upwelling

GEOMAS) Modelling Nitrate Seasonality

» Nitrate reach shallowest levels in July and December
» Vertical diffusion and meridional advection shaping bloom

» EUC does not follow the thermocline within the seasonal
cycle: equatorial wave dynamics are important

Seasonal cycle of vertical profiles of (a) chlorophyll, (b) nitrate, (g) vertical diffusion averaged in
1.5°S-0.5°N, 20-5°W.

Depths of the mixed layer (upper solid line), of the euphotic layer (lower solid line), of the EUC
core (dashed line), and of the 20°C isotherm as proxy of the nutricline (dotted line).

(a) Chl (b) NO4 (g) Vertical diffusion
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Dynamics of equatorial upwelling

GEOMAR\G) Summary Part Il

» Equatorial productivity requires supply of nitrate into the
euphotic layer/surface mixed layer

» Upward nitrate supply is determined by
(1) upward nitrate advection associated with vertical
thermocline/nitracline movements
(2) upward mixing of nitrate in the shear zone above the
EUC core only during periods when EUC core is deeper
than nitracline

» Thermocline shoaling can be largely understood as an
equilibrium response to a strengthening of the easterly wind
stress along the equator

» Instead, EUC vertical migration and transport changes are
associated with equatorial wave response and cannot be
understood as an equilibrium response to local wind stress



Dynamics of equatorial upwelling

GEOMAR\&D Open Questions Part II

» Momentum balance of the EUC from observations
particularly in the eastern basin is not solved

» How important are near-surface processes? Diurnal cycle of
near-surface stratification, velocity and turbulence in the
upper few meters; wind power input into the equatorial
ocean

» What drives the mixing? Role of tropical instability waves,
deep cycle turbulence, other processes

» How important are nitrate changes in source waters?

» Dynamics of eddy-driven circulation and its long-term
changes

F EUC and eastward oxygen supply?
Chrstian-Albrechis Universiat z i | 30




GEOMAR\“() Mean Oxygen Distribution

» Tropical oxygen minimum zones

* Eastern Pacific and Atlantic (lower oxygen in the Pacific)
* Northern Indian Ocean

300
- 250
- 200
150

- 100
80

I40
60

Oxygen on isopycnal 26.9 kg/m3 (300-600 m
depth, outcropping in the subpolar regions)

dissolved oxygen content [umol/kg]




GEOMAR\S Ventilation versus Respiration

» Oxygen supply along isopycnal surfaces
» In general weak diapycnal mixing.
» Oxygen consumption via heterotrophic respiration

Oxygen supply Oxygen consumption

aOUR [zmol kg™ y™']
0 5 10 15

Karstensen et al., 2008




&) Ventilated Thermocline:
GEOMAR — Luyten, Pedlosky, Stommel model

D " N
Transport processes at )
the boundary between 1
ventilated and m 20°N

unventilated thermocline: |
advection (solid arrow) |

and diffusive flux (open 1090\ |
arrow) Luyten et al., 1983

Simulation of OMZs
= involve physical
 processes from large to
~ small scales: circulation,
= jets, eddies, filaments,
FLAME simulation, C. Eden ' | turbulent mixing.




GEOMARD Mean 23W Section

Equatorial Om ____________
OX
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Deep
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\“j Functioning of Oxygen Mininum Zone

GEOMAR

23°W 13°W
SN Shallow Oxygen Minimum

Deep Oxygen Minimum
Equatorial Oxygen Maximum
20°N
<= Advection !
¢ Lateral Mixiﬁg

»¢  \lertical Mixing
%  Consumption

130m ——————

200m b Qoo . \

300m bobove N N R

g00m [N N ) D S U o om
500m | ( £ V48 T -
com | S 400
o T % ‘ 0 6 12 7°s 1000

O, consumption & supply [umol kg™ yr']

Brandt et al., 2015



Climate Change and Deoxygenation

GEOMA,S() Marine Ecosystem Threats

Climate Change related threats
» Warming

» Deoxygenation

» Acidification

» Sea level rise

Other anthropogenic threats
» Pollution (run-off, NOx/SOx, plastics, oll, ...)
» Dredging, mining

36




Climate Change and Deoxygenation

GEOMAR\“D Ocean Warming

Global average ocean temperature anomaly
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Climate Change and Deoxygenation

j Oxygen Change in the Ocean (1960-
GEOMAR 2010

» Deoxygenation particularly in tropical oxygen minimum zones
DO change [ umol dt:::;ldua'1 in 100-700m ]

10




Climate Change and Deoxygenation

\gj Oxygen Change in the Ocean
GEOMAR — (1960-2010)

» Global oceanic oxygen content decreased by more
than 2% since 1960

» About 50% of changes in the upper 1000m can be
explained due to warming induced solubility
changes

» Other 50% may have their origin in stratification
changes (reduced or shallower ventilation) and a
potential increase in biological consumption

» Other processe such as basin-scale multidecadal
variability or oceanic overturning slow-down might
play a role as well

Schmidtko et al., 2017




Climate Change and Deoxygenation

\gj Density change in the Atlantic
GEOMAR — (1960-2010)

» Surface density reduces due to global warming

» Density changes reduces with depth resulting in
Increased thermocline stratification
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Climate Change and Deoxygenation

\gj Mechanisms of Thermocline Oxygen

GEOMAR = Changes
Trade winds Westerlies
Qutcropping Base of the Ekman Ekman
density surfaces B--f mixed layer |[transport |pumping

he
s

NP
s

ARl A A
I N N R

Ventilated layer Diapycnal mixing
I

Oschlies et al., 2018




Climate Change and Deoxygenation

\gj Mechanisms of Thermocline Oxygen
GEOMAR Changes

Trade winds Westerlies
Outcropping Base of the Ekman Ekman
density surfaces A--£ mixed layer |[transport [pumping

with P.>p, 1=1..4

Ventilated layer Diapycnal mixing
blue: | |red: under deeper | | shallower enhanced | | reduced
historical | | ocean warming & thicker | | & thinner

Oschlies et al., 2018



Climate Change and Deoxygenation

\gj Mechanisms of Thermocline Oxygen
GEOMAR Changes

Trade winds Anomalous Westerlies
O2 flux
Outcropping Base of the Ekman Ekman
density surfaces A--£ mixed layer |[transport [pumping
with P.>p, 1=1..4 .

Ventilated layer Diapycnal mixing
blue: | |red: under deeper | | shallower enhanced | | reduced
historical | | ocean warming & thicker | | & thinner

Oschlies et al., 2018



Climate Change and Deoxygenation

\gj Mechanisms of Thermocline Oxygen
GEOMAR Changes

Trade winds Anomalous Westerlies
O2 flux
Outcropping Base of the Ekman Ekman
density surfaces A--£ mixed layer |[transport [pumping
with p>p,i1=1..4 4 : 4

BEN

4=

2n 2
.,i:

!
s/
/

Ventilated layer Diapycnal mixing
blue: | |red: under deeper | | shallower enhanced | | reduced
historical | | ocean warming & thicker | | & thinner
Oschlies et al., 2018




Decadal Climate and Oxygen Variability

\&j Oxygen Change in the Ocean
GEOMAR — (1960-2010)

» Deoxygenation particularly in tropical oxygen minimum zones
DO change [ umol decade™ in 100-700m ]

— f —

10

» Since 2006 focus on 23°W section




Decadal Climate and Oxygen Variability

&) Oxygen Change along 23W
cEOMAR— (2006-2018)

» Meridional mean shows oxygen increase at 200m and decrease at
300m : in agreement with shallowing of STCs. However

» Observed oxygen pattern often more complicated likely associated with
climate variability: oxygen increase/decrease south/north of SN

» Below likely changes of eddy-driven circulation
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distribution (black contours) and isopycnal surfaces (grey contours).
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Decadal Climate and Oxygen Variability

&) Oxygen Change associated with
GEOMAR
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Tropical oxygen minimum zones and marine ecosystem threats

GEOMAR\S Summary Part Il

» Oceanic oxygen distribution is a subtle balance between
mostly physical supply and heterotrophic respiration (state-
of-the-art models show large biases)

» Marine ecosystem threats include 1) warming and
increased stratification and 2) deoxygenation

» Stressors for marine life and/or reduction of habitat

» Observed time series are affected by interannual, decadal
und multidecadal variability superimposed on trends related
to climate-warming

» Requirement to sustain/improve the observing system
1) to better understand and quantify relevant processes and
2) to obtain the necessary long-term datasets for model
validation and improvement



&) Tropical Atlantic Observing
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