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Abstract
The abcd-Boussinesq system is a model of two equations that can describe the
propagation of small-amplitude long waves in both directions in the water
of finite depth. Considering the Hamiltonian regimes, where the parameters
b and d in the system satisfy b= d> 0, small solutions in the energy space
are globally defined. Then, a variational approach is applied to establish the
existence and nonlinear stability of the set of solitary-wave solutions for the
generalized abcb-Boussinesq system. The main point of the analysis is to show
that the traveling-wave solutions of the generalized abcb-Boussinesq system
converge to nontrivial solitary-wave solutions of the generalized Korteweg–de
Vries equation. Moreover, if p is the exponent of the nonlinear terms for the
generalized abcb-Boussinesq system, then the nonlinear stability of the set of
solitary-waves is obtained for any p with 1⩽ p< p0 where p0 is strictly larger
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than 4, while it has been known that the critical exponent for the stability of
solitary waves of the generalized KdV equations is equal to 4.

Keywords: solitary waves, stability, generalized abcd-Boussinesq system,
GSS approach

Mathematics Subject Classification numbers: 35B35, 76B25, 35Q35

1. Introduction

1.1. abcd-Boussinesq model

Boussinesq [9] introduced several nonlinear partial differential equations to explain certain
physical observations concerning the water waves, where the surface tension has been neg-
lected, e.g. the emergence and stability of solitary waves. Unfortunately, several systems
derived by Boussinesq were shown to be ill-posed, and thus, there was a need to propose
other systems with better mathematical properties. In that direction, the four-parameter family
of the Boussinesq system{

ηt+ ∂xu+ ∂x (ηu)+ a∂xxxu− b∂xxηt = 0,
ut+ ∂xη+ u∂xu+ c∂xxxη− d∂xxut = 0,

(1.1)

was introduced by Bona et al [6] to describe the motion of small-amplitude long waves on
the surface of an ideal fluid of finite depth under gravity and in situations where the motion is
sensibly two-dimensional. In (1.1), η is the elevation of the fluid surface from the equilibrium
position, and u is the horizontal velocity at a certain height in the flow. Initially, the constants
a,b,c,d must satisfy only the following relation

a+ b+ c+ d=
1
3
−σ

where σ ⩾ 0 is the surface tension coefficient of the fluid. As reported in [6], when σ is zero,
parameters a,b,c,d must satisfy the relations

a+ b=
1
2

(
θ2 − 1

3

)
c+ d=

1
2

(
1− θ2

)
⩾ 0, a+ b+ c+ d=

1
3
, (1.2)

where θ ∈ [0,1]. In addition, a,b,c,d can be rewritten in the form

a=
1
2

(
θ2 − 1

3

)
ν, b=

1
2

(
θ2 − 1

3

)
(1− ν) ,

c=
1
2

(
1− θ2

)
µ, d=

1
2

(
1− θ2

)
(1−µ) ,

(1.3)

with ν,µ are suitable real parameters in the sense that (1.3) implies (1.2). Depending on
the choice of different real values for ν,µ and θ ∈ [0,1], it is possible to deduce some clas-
sical systems, such as the classical Boussinesq system, Kaup system, Bona-Smith system,
coupled Benjamin-Bona-Mahony system, coupled Korteweg–de Vries system, and coupled
mixed Korteweg–de Vries-Benjamin-Bona-Mahony systems.

The authors in [7] studied the initial value problem for the system (1.1). The well-posedness
on R was shown if and only if the parameters a,b,c,d are in the following regimes

(C1) b= d> 0, a⩽ 0, c< 0;

(C2) b,d⩾ 0, a= c> 0.
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Thus, observe that in the (C1) case, the system (1.1) takes the form as
(
I− b∂2

x

)
ηt+ ∂xu+ a∂3

xu+ ∂x (ηu) = 0, (x, t) ∈ R×R,(
I− b∂2

x

)
ut+ ηx+ c∂3

xη+ u∂xu= 0, (x, t) ∈ R×R,
η (x,0) = η0 (x) , u(x,0) = u0 (x) , x ∈ R.

(1.4)

It is known that system (1.4) admits (big) solitary-wave solutions in certain regimes of the
parameters involved in the system (for instance, see [4] and references therein for details).
Moreover, when b= d> 0, it was also shown in [7] that the system (1.4) is Hamiltonian and
globally well-posed in the energy space X= H1(R)×H1(R), at least for small data, thanks to
the conservation of the energy

H [η,u] (t) :=
1
2

ˆ (
−a(∂xu)2 − c(∂xη)

2
+ u2 + η2 + u2η

)
(t,x)dx.

1.2. Problem setting

Keeping the previous conservation law in mind, our goal is to investigate the existence and
stability of some traveling-wave solutions for a more general nonlinear dispersive system asso-
ciated with (1.4), namely

(
I− b∂2

x

)
ηt+ ∂xu+ a∂3

xu+ ∂x (ηup) = 0, (x, t) ∈ R×R,(
I− b∂2

x

)
ut+ ∂xη+ c∂3

xη+
1

p+1∂x
(
up+1

)
= 0, (x, t) ∈ R×R,

η (x,0) = η0 (x) , u(x,0) = u0 (x) , x ∈ R.
(1.5)

Here, η = η(x, t) and u= u(x, t) are real-valued functions, p> 0 is a rational constant of the
form

p=
p1
p2

with (p1, p2) = 1 and p1, p2 odd, (1.6)

and the parameters a,b,c,d satisfy (C1). In the following, the system (1.5) is called the gen-
eralized abcb-Boussinesq system since b= d in (1.1)4.

It is well understood that the general stability theory developed in [18] is a powerful tool to
prove the stability of solitary-wave solutions for abstract Hamiltonian systems. Taking it into
account, roughly speaking, we are interested in the study of the following problem:

Orbital Stability Problem: Let ω ∈ R+ and ε> 0 be given and (η̃ω, ũω) be a traveling-wave
solution of (1.5) with traveling speed ω. Is there δ(ε)> 0 such that for (η0,u0) ∈ H1(R)×
H1(R) with

∥(η0,u0)− (η̃ω, ũω)∥X < δ (ε) ,

there exists a unique global solution (η(·, t),u(·, t)) of the system (1.5) such that

inf
y∈R

∥(η (·, t) ,u(·, t))− (η̃ω (·+ y) , ũω (·+ y))∥X < ε for all t> 0? (1.7)

Here, we may let a set G̃ω = {(η̃ω(·+ y), ũω(·+ y)) |y ∈ R}. Then, the orbital stability can be
stated as the set stability: (1.7) is equivalent to dist((η(·, t),u(·, t)), G̃ω)< ε for all t> 0.

4 A robust analysis for the well-posedness problem of (1.5) was made in [7] for the case p= 1.
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To solve the previous problem, it is natural to use the existence of a Hamiltonian struc-
ture, as mentioned before. Thus, for our analysis of the stability, we consider the Hamiltonian
structure5 for the generalized abcb-Boussinesq system (1.5) given by

H

(
η
u

)
=

1
2

ˆ
R

(
η2 − c(∂xη)

2
+ u2 − a(∂xu)

2
+

2
p+ 1

ηup+1

)
dx. (1.8)

Note that in this Hamiltonian regime, our system can be written as(
ηt
ut

)
= JbbH

′
(
η
Φ

)
,

with

Jbb = ∂x

(
0

(
I− b∂2

x

)−1(
I− b∂2

x

)−1
0

)
.

It is important to mention that if (η(0),u(0)) has an average zero, so does (η(t),u(t)) as long
as the solution exists. Moreover, for a function w ∈ L2(R) having zero average on R, we see
that it is possible to define the operator ∂−1

x w as

∂−1
x w(x) =

ˆ x

−∞
w(y) dy,

in such a way that ∂x∂−1
x w= w. On the other hand, there is a functional Q defined in X, known

as the Charge, which is conserved in time for classical solutions. This functional is given
formally by6

Q

(
η
u

)
=−1

2

〈
J−1
bb

(
ηx
ux

)
,

(
η
u

)〉
=−
ˆ
R

((
I− b∂2

x

)
η
)
udx,

where ⟨·, ·⟩ denotes the standard L2-inner product.
From this Hamiltonian structure, we have that traveling waves of wave speed ω for the

generalized abcb-Boussinesq system (1.5) correspond to stationary solutions of the modulated
system (

ηt
Φt

)
= JbbFω

′
(
η
Φ

)
,

where

Fω (Y) =H (Y)+ωQ(Y) . (1.9)

In other words, they are the solutions to the system

H ′ (Y)+ωQ ′ (Y) = 0.

Now, let us provide some background on the stability issue.

5 The Hamiltonian structure comes from the fact that Jbb defined in the following is skew-symmetric as pointed out
in [7, section 4].
6 This holds by Noether’s theorem [32].
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1.3. Historical background

Regarding the stability issue, Grillakis et al [18] gave a general framework to establish the
stability of solitary waves for a class of abstract Hamiltonian systems, which will be called
Grillakis-Shatah-Strauss (GSS) approach. In this case, solitary-wave solutions Yω of the least
energy are the minimum of a functional Fω. In this approach, the analysis of the stability
depends on the positiveness of the symmetric operator F ′ ′

ω (Yω) in a neighborhood of the sol-
itary wave solution Yω, and also the strict convexity of the scalar function

d1 (ω) = inf {Fω (Y) : Y ∈Mω} ,
where Mω is a suitable set.

In this theory, one of the main tasks is to establish the positivity of F ′ ′
ω (Yω). In one-

dimensional spatial problems, the spectral analysis for the operator F ′ ′
ω (Yω) is reduced to

studying the eigenvalues of an ordinary differential equation, which becomes an ordinary dif-
ferential equation with constant coefficients at ±∞ (for instance, see [8] for more details).
Based on the GGS approach, several works in the literature treat the stability of systems gov-
erned by partial differential equations.

For example, we can cite a series of works that show the stability of periodic waves for
a dispersive system, such as a fifth-order KdV type equation, a nonlinear Klein–Gordon
equation, a general class of nonlinear dispersive wave, a fourth-order Schrödinger system,
among others (see [1–3, 30, 31] and the references therein for these cases). Additionally,
there are recent results of stability/instability in models that arise in quantum field theory
(for example, [14, 33])7.

Related to the abcd-Boussinesq model, several authors have studied this system. We men-
tion first that, concerning explicit traveling-wave solutions, Chen [11] has considered various
cases for the abcd-Boussinesq system (1.1). She was able to write many traveling-wave solu-
tions in the form (η,u) = (ψ(x−ωt),v(x−ωt)), depending on the constants a,b,c and d. After
that, adapting the positive operator theory of Krasnosell’skii [20, 21], Bona and Chen [5] estab-
lished the existence of traveling-wave solutions for the abcd Boussinesq system (1.1), in the
regime

b,d> 0, a,c⩽ 0, |a|, |c|⩽
√
bd

and for ω> 1 such that

ω2 >max

{
ac
bd
,1+

σ− 1
3

b+ d

}
.

More recently, stability issues have been treated in two works by Chen et al. In [12], the
authors have shown that traveling-wave solutions of (1.1) exist in the regime a+ b+ c+ d<
0, which corresponds to a large surface tension σ > 1/3. In addition, they have also proven
stability using techniques introduced earlier by Buffoni [10] and Lions [25, 26]. Additionally,
in [13], the authors considered the general case b= d> 0 and a,c< 0, which, in particular,
allows small surface tension cases. To be precise, they gave the existence of traveling-wave

7 We mention that there is also interest in studying scattering and decay issues for the system (1.1). We suggest the
nice articles [22, 23] and the reference therein.
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solutions in the presence of small propagation speeds, taking into account the coefficients
satisfying

a,c< 0, b= d, |ω|< ω0, ω0 :=

{
min{1,

√
ac
b }, b ̸= 0,

1, b= 0.

We also mention that considering a variation of (1.1), Hakkaev et al [19], showed the spec-
tral stability of certain traveling-wave solutions for the Boussinesq ‘abc’ system, taking into
advantage the explicit sech2(x) like solutions of the form (η,u) = (ψ(x−ωt),v(x−ωt)) =
(ψ,const.ψ), exhibited by Chen [11]. In the article, they provided a complete rigorous char-
acterization of the spectral stability in all cases for which a= c< 0,b> 0.

Finally, Moraes et al [29] treated the stability of traveling-wave solutions for the abcd-
Boussinesq model (1.1), considering the Hamiltonian regimes; however, in the periodic frame-
work, which is completely different from our case.

Let us now briefly discuss the use of the GSS approach. To use this approach, in our work,
the verification of the hypotheses of [18, theorem 3] is difficult, since we do not have a close
formula for traveling-wave solutions, making it almost impossible to compute F ′ ′

ω (Yω) and
d ′ ′
1 (ω). However, we are still able to use the method by performing a direct approach to

prove the stability of solitary-wave solutions of the system (1.5), using the characterization of
d1(ω) in terms of conservative quantities. This strategy was satisfactory in several cases, for
example, as the pioneeringwork done by Shatah [36] in the case of the nonlinear Klein–Gordon
equations, de Bouard and Saut [15] for the KP equation, Liu andWang [27] for the generalized
KP equation, Levandosky [24] concerning the fourth-order wave equation, Fukuizumi [17] for
the nonlinear Schrödinger equation with harmonic potential, and Quintero [34, 35] for the 2D
Benney-Luke equation and the 2D Boussinesq type system, among others.

We mention that, since the literature in this area is vast, the cited references are a small
sample—not exhaustive—about the stability results and the use of the GSS approach, thus, we
suggest readers see more details in the previous works and the above-listed references, as well
as the references therein.

1.4. Main result

Given the state of the art, our work is motivated due to the results of [12, 13, 19] that deal with
one-dimensional abcd-Boussinesq system. We are now presenting our main result; however,
first, let us introduce some notations.

By a solitary-wave solution, we shall mean a solution (η,u) of (1.5) taking the form

η (x, t) = ψ (x−ωt) , u(x, t) = v(x−ωt) , (1.10)

whereω denotes the wave’s speed of propagation andψ,v approach to zero as x goes to infinity.
In what follows, we require that (η(x, t),u(x, t)) ∈ X := H1(R)×H1(R) and restrict ourselves
to the case (C1). Considering ξ = x−ωt and substituting the form of the solution (1.10)
into (1.5), integrating once and evaluating the constants of the integration using the fact that
(ψ,v) ∈ X, one sees that (ψ,v) must satisfy the following system{

−ω (ψ− bψ ′ ′)+ v+ av ′ ′ +ψvp = 0,
ω (−v+ bv ′ ′)+ψ + cψ ′ ′ + 1

p+1v
p+1 = 0. (1.11)

We note that traveling-wave solutions can be considered as the critical points (i.e. minim-
izers) of a minimization problem, that is, the existence of solitary-wave solutions for the sys-
tem (1.5) is a consequence of a variational approach that applies a minimax type result since

6
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solutions (ψ,v) of the system (1.11) are the critical points of following functional Jω = 2Fω
defined by

Jω (ψ,v) = Iω (ψ,v)+G(ψ,v) , (1.12)

where Fω is given by (1.9). Here, the functional Iω and G are defined in the space X by

Iω (ψ,v) = I1 (ψ,v)+ I2,ω (ψ,v) , (1.13)

with

I1 (ψ,v) =
ˆ
R

[
ψ2 − c(ψ ′)

2
+ v2 − a(v ′)

2
]
dx,

I2,ω (ψ,v) =−2ω
ˆ
R
(ψ− bψ ′ ′)vdx=−2ω

ˆ
R
(ψ v+ bψ ′v ′) dx (1.14)

and

G(ψ,v) =
2

p+ 1

ˆ
R
ψ vp+1 dx.

Remark 1.1. Some remarks are worthy of mentioning.

a. A ground state solution is a solitary-wave solution that minimizes the action functional Jω
among all the nonzero solutions of (1.11).

b. If (ψ,v) is a solution of (1.11), the following quantities hold,

Jω (ψ,v) =
p

p+ 2
Iω (ψ,v) , (1.15)

Jω (ψ,v) =−p
2
G(ψ,v) , (1.16)

Iω (ψ,v) =−p+ 2
2

G(ψ,v) . (1.17)

c. So, as proposed in [18, theorems 2 and 3], the analysis of the orbital stability of ground
state solutions depends upon some properties of the scalar function d := d(ω) given by

d(ω) = inf{Jω (ψ,v) : (ψ,v) ∈Mω} , (1.18)

where Mω is defined by the following set
Mω = {(ψ,v) ∈ X : Kω (ψ,v) = 0, (ψ,v) ̸= 0} , (1.19)

with
Kω (ψ,v) = ⟨J ′ω (ψ,v) ,(ψ,v)⟩ .

With all these notations and definitions in hand, the main result of the article gives a positive
answer to the orbital stability problem (or actually the set stability) presented at the begin-
ning of the introduction for certain p⩾ 1. In other words, the generalized abcb-Boussinesq
system (1.5) has a set of traveling-wave solutions that is stable when the wave speed ω0 of the
traveling waves is near 1−.

Theorem 1.2 (set stability). For the generalized abcb-Boussinesq system (1.5), with b> 0,
a< 0 and c< 0, and p satisfying (1.6), there is a non-empty set of traveling-wave solutions
with speed ω, denoted by G̃ω, if

2b<−a− c and 0< |ω|<min
{
1,
√
ac/b

}
, (1.20)

7
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are satisfied. Furthermore, if b⩽√
ac 8, 2b<−a− c and 1⩽ p< p0 with a unique crit-

ical number p0 > 4, the set G̃ω for the generalized abcb-Boussinesq system (1.5) with ω> 0,
but near 1−, is stable in the sense of (1.7) with the set being G̃ω. In other words, given
(η̃ω, ũω) ∈ G̃ω for ω> 0, but near 1−, if (η(0),u(0)) is near (η̃ω, ũω) in the space X, the solu-
tion (η(t),u(t)) remains near the set G̃ω in the space X.

Remark 1.3. Here, it is very interesting to see that the stability of the set G̃ω is obtained for
any p with 1⩽ p< p0 where p0 is strictly large than 4, while the critical exponent for the
stability of solitary waves for the generalized KdV equations is p0 = 4. Moreover, it can be
shown numerically that p0 is approximately equal to 4.2280673976. The instability problem
for p> p0 will be studied in the near future.

1.5. Heuristic and structure of the article

Let us highlight the present work’s contribution and provide a summary of how theorem 1.2
can be obtained.

Observe that the natural space (energy space) in which we consider the well-posedness of
the Cauchy problem is X. This comes from the fact that the Hamiltonian structure defined
in (1.8) and Fω given by (1.9) require (η(x, t),u(x, t)) ∈ X to be well defined. Additionally,
these conditions already characterize the natural space (energy space) for traveling-wave solu-
tions of the generalized abcb-Boussinesq system (1.5).

The difficulty in using [18, theorem 3] appears when computing F ′ ′
ω around the travel-

ing wave (ηω,uω) since we do not know explicitly the characterization of this pair for the
generalized abcb-Boussinesq model. In other words, it is almost impossible to establish the
spectral hypotheses on the second variation of the action functional on the traveling wave. We
appeal to the variational characterization of traveling-wave solutions to overcome this diffi-
culty. Precisely, by the quantities (1.15) and (1.17), we can define a scalar function d(ω), see
equation (4.3), establishing the convexity of d, since we can prove that d ′ ′(ω)> 0.

Two tools will be useful to prove the minimization problem and show that d(ω) is strictly
convex. The first one is related to the existence of traveling-wave solutions for (1.11) as a min-
imizer problem. In our context, we will invoke the classical Lions’ concentration-compactness
theorem [25, 26]. Together with this result, the second tool is to see that the generalized
Korteweg–de Vries (KdV) equation

ut+ ux+

(
1
3
−σ

)
uxxx+

(
up+1

)
x
= 0, (1.21)

emerges from the generalized abcb-Boussinesq system (up to some order). For this fact, it
is natural to expect that the family of solitary-wave solutions of the generalized abcb-system
(1.5) converges to nontrivial solitary-wave solutions of the generalized KdV equation (1.21).
Putting these two important tools together, we can reach the convexity of the scalar function
d(ω), taking into account an important fact of a transformed system related to (1.11) (see
appendix A). Summarizing what concerns our main result, theorem 1.2, the following points
are worthy of mentioning.

a. In [19], the authors suggest that the GSS approach fails when applied to the system (1.4).
However, our work showed that the stability (theorem 1.2) is a direct consequence of the

8 This implies 2b<−a− c if a ̸= c.

8



Nonlinearity 38 (2025) 075034 R D A Capistrano–Filho et al

GSS approach. The main ingredients in this analysis are: KdV scaling for the generalized
abcb-Boussinesq system and its properties and GSS approach.

b. To the authors’ best knowledge, no attempt has been made to apply this strategy for the
system (1.5). Thus, in the context presented in this article, we give a necessary first step
in understanding the stability using the previous ingredients for the generalized abcd-
Boussinesq system in the Hamiltonian case.

c. It is important to point out that our main result, theorem 1.2, suggests that the set G̃ω for
the generalized abcb-Boussinesq system (1.5) with speed ω> 0, but near 1−, could be is
unstable when p> p0, i.e, relation (1.7) fails. In this way, we will soon present a detailed
study of the instability of the generalized abcb-Boussinesq system in a forthcoming paper.

d. Note that the solutions of the system (1.5), for p> 1 with the initial conditions close to trav-
elling waves with small amplitudes, are global (for the case p= 1, the global well-posedness
problem of (1.5) was addressed in [7]). The global existence follows from the presence of
invariant sets preserved by the flow. A brief proof of the global existence is provided in
appendix C.

We finish this introduction with an outline of this work, which consists of six parts, includ-
ing the introduction. Section 2 gives a brief discussion of the existence of minimizers, that is,
we present the existence of solitary-wave solutions for the system (1.5). Section 3 is devoted
to proving carefully the inter-relation between the generalized KdV equation (1.21) and the
generalized abcb-Boussinesq system (1.5). Section 4 gives the properties of the scalar func-
tion d(ω), in particular, the strict convexity of d(ω) for ω ∈ (0,1), near 1−. In section 5, we
will give the proof of theorem 1.2 using the GSS approach, showing that the solution set of
the generalized abcb-Boussinesq system (1.5) is stable. Finally, appendix A is devoted to
giving properties of a transformed system associated with (1.11), which is the key point to
prove the convexity for the scalar function d(ω). Moreover, in appendix B we presented the
concentration-compactness argument which is used in section 3. Appendix C provides brief
proofs of the global existence of solutions for small initial data and the existence of a branch
of minimizers passing through a global minimizer.

2. Brief discussion on the existence of minimizers

It is well known that the existence of traveling-wave solutions for (1.11) as a minimizer of the
following problem

Iω = inf {Iω (ψ,v) ∈ X : G(ψ,v) =−1} (2.1)

is based on the existence of a compact embedding (local) result and also on an important result
by P.-L. Lions, which completely characterizes the convergence of measures, is known as the
Concentration-Compactness principle.

Theorem 2.1 (Lions [25, 26]). Suppose {νn} is a sequence of nonnegative measures on Rk

such that

lim
n→∞

ˆ
Rk

dνn = I .

Then, there is a subsequence of {νn} (which is denoted the same) that satisfies only one of the
following properties.

9
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i. Vanishing: For any R> 0,

lim
n→∞

(
sup
x∈Rk

ˆ
BR(x)

dνn

)
= 0,

where BR(x) is the ball of radius R centered at x.
ii. Dichotomy: There exist θ ∈ (0,I) such that for any γ > 0, there are R> 0 and a sequence

{xn} in Rk with the following property: Given R ′ > R there are nonnegative measures
ν1
n ,ν

2
n such that

a) 0⩽ ν1
n + ν2

n ⩽ νn;
b) supp

(
ν1
n

)
⊂ BR (xn) , supp

(
ν2
n

)
⊂ Rk\BR′ (xn);

c) lim sup
n→∞

(∣∣∣∣θ−ˆ
Rk

dν1
n

∣∣∣∣+ ∣∣∣∣(I− θ)−
ˆ
Rk

dν2
n

∣∣∣∣)⩽ γ.

iii. Compactness: There exists a sequence {xn} in Rk such that for any γ > 0, there is R> 0
with the property thatˆ

BR(xn)
dνn ⩾ I− γ, for all n.

To apply this result to our case, we note that for a minimizing sequence {(ψn,vn)}, we may
define the concentration function induced by the integrand of Iω(ψ,v) as

ρn = (ψ ′
n)

2
+ψ2

n +(v ′n)
2
+ v2n,

and the measure

νn (A) =
ˆ
A
ρn (x) dx⩽ ∥(ψn,vn)∥X ⩽ C, for all n ∈ N ,

where Iω(ψn,vn) is equivalent to
´
R ρndx if 0< |ω|<min(1,

√
ca/b), with A⊂ R. As

∥(ψn,vn)∥X ⩽ C for all n, we can extract a convergent subsequence which we again denote
as {(ψn,vn)}, so that

λ= lim
n→∞

ˆ ∞

−∞
ρn (x)dx

exists. Define a sequence of non-decreasing functions Mn : [0,∞)→ [0,λ] as follows:

Mn (r) = sup
y∈R

ˆ y+r

y−r
ρn (x)dx.

SinceMn(r) is a uniformly bounded sequence of non-decreasing functions in r, one can show
that it has a subsequence, which we still denote as Mn, that converges pointwise to a non-
decreasing limit function M(r) : [0,∞)→ [0,λ]. Let

λ0 = lim
r→∞

M(r) :≡ lim
r→∞

lim
n→∞

sup
y∈R

ˆ y+r

y−r
ρn (x)dx.

Then 0⩽ λ0 ⩽ λ.
As is well known for dispersive type systems (see, for instance, [12, 28], for one and

two-dimensional cases, respectively), ruling out vanishing and dichotomy for a minimizing
sequence of Iω, the Lion’s Concentration Compactness theorem 2.1 ensures the existence of
a subsequence of {νn} satisfying the compactness conditions. Therefore, as a consequence of
local compact embedding, the minimizing sequence {(ψn,vn)} (or a subsequence) is compact
in X, up to translation. The proof is very standard and will be omitted. Thus, the following
theorem holds for the generalized abcb-Boussinesq system (1.5).

10
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Theorem 2.2. Let 0< |ω|<min(1,
√
ca/b). If {(ψn,vn)} is a minimizing sequence for (2.1),

then there is a subsequence, still denoted by the same index, a sequence of points yn ∈ R, and
a minimizer (ψ0,v0) ∈ X of (2.1), such that the translated functions(

ψ̃n, ṽn
)
= (ψn (·+ yn) ,vn (·+ yn))→ (ψ0,v0) strongly in X.

2.1. Minimization problem

With the previous result in hand, let us prove that (1.11) has a nontrivial solution. Considering
the minimization problem (2.1), observe that the constraint G(ψ,v) =−1 is necessary since
the quantity given by (1.17) needs to be positive. Moreover, noting that H1(R) ↪→ Lq(R) for
all q⩾ 2 and the Young’s inequality, we have

|G(ψ,v) |⩽M
(
∥ψ∥p+2

Lp+2(R) + ∥v∥p+2
Lp+2(R)

)
⩽M∥(ψ,v)∥p+2

X . (2.2)

Our first lemma ensures some boundedness for the quantity (1.17).

Lemma 2.3. For (1.20) being satisfied, the functional Iω defined by (1.13) is nonnegative.
Moreover, there are positive constants M1(a,b,c,ω) and M2(a,b,c,ω) such that

M1∥(ψ,v)∥2X ⩽ Iω (ψ,v)⩽M2∥(ψ,v)∥2X, (2.3)

and Iω, given by (2.1), is finite and positive.

Proof. In fact, using the quantity (1.13) and Young’s inequality, we obtain that

Iω (ψ,v)⩽
ˆ
R

[
(1+ |ω|)ψ2 +(|c|+ b|ω|)(ψ ′)

2

+(1+ |ω|)v2 +(|a|+ b|ω|)(v ′)2
]
dx

⩽max(1+ |ω|, |c|+ b|ω|, |a|+ b|ω|)∥(ψ,v)∥2X (2.4)

and

Iω (ψ,v) =
ˆ
R

[
(ψ −ωv)2 +

(√
|c|ψ ′ −

(
bω/

√
|c|
)
v ′
)2

+
(
1− |ω|2

)
ψ2

+
(
|a| −

(
b2ω2/|c|

))
(v ′)

2
]
dx

⩾ C0∥(ψ,v)∥2X , (2.5)

if 0< |ω|<min(1,
√
ca/b). Inequalities (2.4) and (2.5) give (2.3). On the other hand, using

that G(ψ,v) =−1, we have from (2.2) that

M1 (Iω (ψ,v))
p+2
2 ⩾M||(ψ,v) ||p+2

X ⩾ |G(ψ,v) |= 1 ,

which implies

Iω (ψ,v)⩾M
− 2

p+2

1 ,

meaning that the infimum Iω is finite and positive.

Thanks to theorem 2.2, the problem (2.1) has a minimizer. Therefore, the main result in this
section ensures that (1.11) has a nontrivial solution.

11
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Remark 2.4. The problem (2.1) gives global minimizers since (ψ,v) does not have other
restrictions except for the one stated. By using the same procedure, we may restrict (ψ,v)
in some open set Ω in H1 ×H1 and consider

Îω = inf {Iω (ψ ,v) : (ψ ,v) ∈ Ω , G(ψ ,v) =−1} . (2.6)

If there is a (ψ0,v0) ∈ Ω such that G(ψ0,v0) =−1 and Iω(ψ 0,v0)< inf{Iω(ψ ,v) : (ψ ,v) ∈
∂Ω , G(ψ ,v) =−1}, then the problem (2.6) has a minimizer in Ω. Such minimizers may be
called local minimizers.

Theorem 2.5. Let (ψ0,v0) be a minimizer (or a local minimizer) for the problem (2.1).

Then, the function (ψ,v) = β(ψ0,v0) is a nontrivial solution of (1.11) for β = (−λ)
1
p with

λ=− 2
p+2Iω.

Proof. From the Lagrange multiplier theorem, there exists λ such that

I ′ω (ψ0,v0) = λG ′ (ψ0,v0) .

On the other hand,

2Iω = 2Iω (ψ0,v0)

=⟨I ′ω (ψ0,v0) ,(ψ0,v0)⟩
= λ⟨G ′ (ψ0,v0) ,(ψ0,v0)⟩
= λ(p+ 2)G(ψ0,v0) .

In this case, we have that the Lagrangemultiplierλ is given byλ=− 2
p+2Iω. If we take (ψ,v) =

β(ψ0,v0) with β = (−λ)
1
p , we see that

I ′ω (ψ,v)+G ′ (ψ,v) = 0 ⇐⇒ λ+βp = 0,

showing the result.

Definition 2.6. We will now call the solution given in the previous theorem as solitary-wave
solution. This solution is indeed a classical solution of (1.11). We will also denote the set of
those traveling-wave solutions with speed ω obtained from the minimizers of (2.1) by G̃ω.

We remark that (1.11) is invariant under the reflection x→−x, which may imply that the
solutions may be even in x. On the other hand, under certain conditions, Bona and Chen [5]
established the existence of even traveling wave solutions of (1.1) by employing the method
in [20, 21] and assuming the solutions are inherently even by construction.

3. The KdV scaling for the generalized abcb-Boussinesq system

In this section, we present some auxiliary lemmas that are paramount to proving the main
result of this article. We will see that a renormalized family of solitary-wave solutions of the
generalized abcb-Boussinesq system converges to nontrivial solitary-wave solutions for the
generalized KdV equation, assuming the speed velocity ω close to 1− as ε→ 0+ with b⩽√

ac
and balancing the effects of nonlinearity and dispersion9.

9 This phenomenonwas characterized also for solitary-wave solutions of 2DBoussinesq-Benney-Luke system in [28],
where the authors used the characterization of solitary-wave solutions for the (KP-I) model given in [16].

12
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Set ε> 0, ω2 = 1− ε
2

p+1 and, for a given couple (ψ,v) ∈ X, consider the following scaling

ψ (x) = ε
1

(p+1)(p+2) z(y) , v(x) = ε
1

(p+1)(p+2)w(y) with y= ε
1

p+1 x. (3.1)

Now, define the following quantities,

Iϵ (z,w) = I1,ϵ (z,w)+ I2,ϵ (z,w) , (3.2)

and

G(z,w) =
2

p+ 1

ˆ
R
zwp+1 dy. (3.3)

Here

I1,ϵ (z,w) =
ˆ
R

(
ε−

2
p+1 z2 − c(z ′)

2
+ ε−

2
p+1w2 − a(w ′)

2
)
dy (3.4)

and

I2,ϵ (z,w) =−2ω
ˆ
R

(
ε−

2
p+1 zw+ bz ′w ′

)
dy. (3.5)

Straightforward calculations give us the following relations:

I1 (ψ,v) = ε
p+4

(p+1)(p+2) I1,ϵ (z,w) ,
I2,ω (ψ,v) = ε

p+4
(p+1)(p+2) I2,ϵ (z,w) ,

Iω (ψ,v) = ε
p+4

(p+1)(p+2) Iϵ (z,w) ,

and

G(ψ ,v) = Gϵ (z,w) = G(z,w) ,

where I1,ϵ, I2,ϵ, Iϵ and G are given by (3.4), (3.5), (3.2) and (3.3), respectively.
Under relations (1.20), there exists a family {(ψω,vω)}ω such that

Iω (ψω,vω) = Iω, G(ψω,vω) =−1.

Then, if we denote

Iϵ := inf{Iϵ (z,w) : (z,w) ∈ X with G(z,w) =−1} ,

there is a corresponding family {(zϵ,wϵ)}ϵ such that

Iϵ = Iϵ (zϵ,wϵ) , G(zϵ,wϵ) =−1, Iω = ε
p+4

(p+1)(p+2) Iϵ .

We also have that (zϵ,wϵ) is a solution of the system
ε−

2
p+1 (w−ωz)+ωbz ′ ′ + aw ′ ′ +

(
2

p+2

)
Iϵzwp = 0,

ε−
2

p+1 (z−ωw)+ωbw ′ ′ + cz ′ ′ +
(

2
(p+1)(p+2)

)
Iϵwp+1 = 0.

(3.6)

Now, let us define in X the following two functionals

Jϵ (w) = Iϵ (ωw,w) :=
ˆ
R
ε−

2
p+1
(
1−ω2

)
w2dy+

ˆ
R
−
(
(2b+ c)ω2 + a

)
(w ′)

2 dy (3.7)

and

Kϵ (w) = Gϵ (ωw,w) . (3.8)

Define the following number Jϵ

Jϵ = inf
{
Jϵ (w) : w ∈ H1 (R) , Kϵ (w) =−1

}
, (3.9)

13
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where Iϵ ⩽ Jϵ, and need to keep in mind the following quantity defined by (3.2):

Iϵ (z,w) =
ˆ
R

(
ε−

2
p+1 (z−ω (ε)w)2 +

(
1−ω2 (ε)

)
ε−

2
p+1w2

)
dy

+

ˆ
R

(
|c|
(
z ′ − bω (ε)

|c|
w ′
)2

+

(
ac− b2ω2 (ε)

|c|

)
(w ′)

2

)
dy.

(3.10)

Let us give some behaviour, as ε→ 0, for the functional (3.8) and the number (3.9).

Lemma 3.1. Considering the functionals (3.7) and (3.8), it follows that

lim
ϵ→0+

Kϵ (wϵ) = lim
ϵ→0+

Gϵ (ω (ε)wϵ,wϵ) =−1 (3.11)

and

lim
ϵ→0+

Iϵ = lim
ϵ→0+

Jϵ (wϵ) = J0 > 0 , (3.12)

where

J0 = inf
{
J0 (w) : w ∈ H1 (R) , K0 (w) =−1

}
,

J0 (w) =
ˆ
R

(
w2 +

(
σ− 1

3

)
w2
x

)
dy,

K0 (w) =
2

p+ 1

ˆ
R
wp+2dy.

Proof. Let v ∈ H1(R) satisfy K0(v) =−1 and define

α= (ω (ε))
− 1

p+2 .

Then, for such a v, we have that Kϵ(αv) =−1 and thus,

Jϵ (αv) = α2Jϵ (v)⩾ Jϵ. (3.13)

Now, we note that limϵ→0+ |α|= 1. On the other hand, using ω2 = 1− ε
2

p+1 and that c+ a+
2b= 1

3 −σ, we conclude the following

lim
ϵ→0+

Jϵ (v) = lim
ϵ→0+

ˆ
R
ε−

2
p+1
(
1−ω2

)
v2dy+ lim

ϵ→0+

ˆ
R

(
(−c− 2b)ω (ε)2 − a

)
(v ′)

2 dy

=

ˆ
R

(
v2 +

(
σ− 1

3

)
(v ′)

2
)

dy= J0 (v) .

Consequently, (3.13) implies that

J0 ⩾ limsup
ϵ→0

Jϵ and J0 ⩾ limsup
ϵ→0+

Iϵ. (3.14)

Now, observe that

lim
ϵ→0+

K0 (wϵ) = lim
ϵ→0+

2
p+ 1

ω

ˆ
R
(wϵ)p+2 dy= lim

ϵ→0+
Gϵ (ωwϵ,wϵ) .

We claim that

lim
ϵ→0+

K0 (wϵ) =−1.

To prove it, we need to show that

lim
ϵ→0+

Gϵ (zϵ,wϵ) = lim
ϵ→0+

Gϵ (ωwϵ,wϵ) , (3.15)

14
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since

lim
ϵ→0+

Gϵ (zϵ,wϵ) =−1.

Note that (3.15) is equivalent to prove that

lim
ϵ→0+

∣∣∣∣ˆ
R
(zϵ−ω (ε)wϵ)(wϵ)p+1 dy

∣∣∣∣= 0. (3.16)

To show (3.16), we note that∣∣∣∣ˆ
R
(zϵ−ω (ε)wϵ)(wϵ)p+1 dy

∣∣∣∣⩽C∥zϵ−ω (ε)wϵ∥L2(R) ∥w
ϵ∥p+1

H1(R) ,

since (3.10) together with b2 < ac implies that{
∥zϵ−ω (ε)wϵ∥L2(R) = O

(
ε

1
p+1

)
, and

∥wϵ∥H1(R) ,∥zϵ∥H1(R) are uniformly bounded ,
(3.17)

which ensures that (3.16) holds when ε→ 0+. Thus, we conclude that

lim
ϵ→0+

K0 (wϵ) = lim
ϵ→0+

Kϵ (wϵ) = lim
ϵ→0+

Gϵ (zϵ,wϵ) =−1,

showing (3.11). If ε is small enough, it is obtained that K0 (wϵ) ̸= 0, and

J0 ⩽ J0
(

wϵ

−K0 (wϵ)
1

p+2

)
=

J0 (wϵ)

|K0 (wϵ) |−
2

p+2

,

together with

Jϵ (wϵ)− J0 (wϵ) = o(1) .

Next, we note that (3.10) is

Iϵ =Iϵ (zϵ,wϵ)

=

ˆ
R

(
ε−

2
p+1 (zϵ−ω (ε)wϵ)2 +(wϵ)2

)
dy

+

ˆ
R

(
|c|
(
(zϵ) ′ − bω (ε)

|c|
(wϵ) ′

)2

+

(
ac− b2ω2 (ε)

|c|

)(
(wϵ) ′

)2)
dy

⩽Jϵ (wϵ) ,

where limsupϵ→0+ Iϵ ⩽ J0 and G(zϵ,wϵ) =−1.
Now, we consider liminfϵ→0+ Iϵ, which gives that there is a sequence {εj}→ 0+ such that

lim
j→∞

Iϵj = lim
j→∞

Iϵj (zϵj ,wϵj) = liminf
ϵ→0+

Iϵ ⩽ J0 with G(zϵj ,wϵj) =−1.

For this sequence (zϵj ,wϵj), the following claim holds.
Claim I. The sequence of minimizers (zϵj ,wϵj) for Iϵj(z,w) with G(z,w) =−1 has a sub-
sequence of (zϵj ,wϵj) up to some translation in x (still using the same notation for the translated
subsequence) that converges to

(
z0,w0

)
in H1(R)×H1(R).

The proof of claim I is given in appendix B. Thus, from this claim, (3.17) implies that
z0 = w0 and

(zϵj ,wϵj)→
(
w0,w0

)
in H1 (R)×H1 (R) .
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Moreover,

K0
(
w0
)
= lim

j→∞
G(zϵj ,wϵj) =−1

and

J0 ⩽J0
(
w0
)

= lim
j→∞

ˆ
R

(
(wϵj)2 + |c|

(
(zϵj) ′ −

bω (εj)
|c|

(wϵj) ′
)2

+

(
ac− b2ω2 (εj)

|c|

)(
(wϵj) ′

)2)
dy

⩽ lim
j→∞

Iϵj (zϵj ,wϵj) = liminf
ϵ→0+

Iϵ ⩽ limsup
ϵ→0+

Iϵ ⩽ J0 ,

where (3.14) has been used. Hence, we have that

lim
ϵ→0+

Iϵ = J0 .

Finally, for any w ∈ H1(R) satisfying Kϵ(w) =−1, it is known that Iϵ ⩽ Jϵ(w) due to the fact
that Iϵ ⩽ Jϵ and (3.9). Thus, we get that

J0 = lim
ϵ→0+

Iϵ ⩽ liminf
ϵ→0+

Jϵ.

Again, using (3.14), we conclude that

lim
ϵ→0+

Jϵ = J0,

showing (3.12), and the lemma is achieved.

Before we go further, we characterize the solitary-wave solutions for the generalized KdV
equation. In the one-dimensional case, the following result is a consequence of the results
shown in [16], where the authors characterize the solitary-wave solutions for the (KP-I) model
in the d-dimensional case.

Theorem 3.2. Let {wm}m⩾0 be a minimizing sequence for J0 given by lemma 3.1. Then, there
exists a sequence of points (yn)m ⊂ R and a subsequence, which will be denoted by the same
index, and a nonzero w0 ∈ H1(R) such that J0(w0) = J0, and

wm (·+ ym)→ w0 ∈ H1 (R) .

Moreover, w0 is a solution to the equation

w0 +

(
1
3
−σ

)
w0xx+

2
(p+ 1)

J0wp+1
0 = 0 . (3.18)

Therefore, w̃=
(

2
p+1J

0
) 1

p
w0 is a nontrivial solitary wave solution for the generalized KdV

equation (1.21), i.e.

w̃+

(
1
3
−σ

)
w̃xx+ w̃p+1 = 0 .
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We are in a position to prove the main result of this section which is a consequence of the-
orem 3.2.Wewill see that the translated subsequence of the renormalized sequence {(zϵj ,wϵj)}j
converges to a function w0 that satisfies the system (1.11). Thus, w0 is a solution of the gener-
alized KdV equation.

Theorem 3.3. For any sequence εj → 0+ there is a translated subsequence {(zϵj ,wϵj)}j, and
a nontrivial (z0,w0) ∈ X such that

(zϵj ,wϵj)→ (z0,w0) in X, and zϵj −wϵj → 0, as j→∞. (3.19)

Moreover, (z0,w0) is a nontrivial solution of the system{
z0 = w0

w0 +
(
1
3 −σ

)
w ′ ′

0 + 2
(p+1)J

0wp+1
0 = 0.

In other words, z0 = w0 ∈ H1(R), with w0 being a traveling wave solution for the generalized
KdV equation (3.18).

Proof. Let {εj}j be a sequence of positive number such that εj → 0+, when j→∞. From

lemma 3.1, we note that
(
−K0 (wϵj)−

1
p+2 wϵj

)
j
is a minimizing sequence for J0 and also that

K0 (wϵj)→−1. Thanks to the previous convergence and theorem 3.2, there exist a translated
sequence of {wϵj}j and a nonzero function w0 ∈ H1(R) such that wϵj → w0 in H1(R) and w0

is a solution of (3.18). Additionally, from (3.10) and the uniform boundedness of {(zϵj ,wϵj)}j
in H1(R), it is obtained that

∥zϵj −ω (εj)w
ϵj∥L2(R) = O

(
ε

1
p+2

)
,

which implies that there exists a nontrivial z0 ∈ L2(R) such that zϵj → z0 in L2(R) and
z0 = w0. Moreover, since (zϵj ,wϵj) is a minimizer of Iϵj(z,w) with G(z,w) =−1 and
limj→∞ Iϵj(zϵj ,wϵj) = J0, a concentration-compactness argument shows that z0 ∈ H1(R) and
zϵj → z0 in H1(R), which gives (3.19).

Now, considering a test function ξ ∈ C∞(R) and using the system (3.6), we get〈
ε
− 2

p+2

j (wϵj −ω (εj)z
ϵj)+ω (εj)b(z

ϵj)
′ ′
+ a(wϵj) ′ ′ , ξ

〉
=−

〈
2

p+ 2
Iϵjzϵj (wϵj)p , ξ

〉
and〈
ϵ
− 2

p+2

j

(
zϵj −ω

(
ϵj
)
wϵj
)
+ω

(
ϵj
)
b
(
wϵj
) ′ ′

+ c
(
zϵj
) ′ ′

, ξ

〉
=−

〈
2

(p+ 1)(p+ 2)
Iϵj
(
zϵj
)p+1

, ξ

〉
.

Adding both equations in the previous system, we find that〈
ε
− 2

p+2

j (1−ω (εj))(w
ϵj + zϵj)+ (bω (εj)+ a)(wϵj) ′ ′ +(bω (εj)+ c)(zϵj) ′ ′ , ξ

〉
=−

〈
2

(p+ 1)(p+ 2)
Iϵj (zϵj)p+1

+
2

p+ 2
Iϵjzϵj (wϵj)p , ξ

〉
.

Note that using the first part of the proof yields z0 = w0, when εj → 0+. Moreover, since

1−ω2(εj) = ε
2

p+1

j gives that

lim
ϵj→0+

ε
− 2

p+2

j (1−ω (εj)) =
1
2
,

17
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thus,

lim
j→∞

〈
ε
− 2

p+2

j (1−ω (εj))(w
ϵj + zϵj)+ (bω (εj)+ a)(wϵj) ′ ′ +(bω (εj)+ c)(zϵj) ′ ′ , ξ

〉
= ⟨w0 +(2b+ a+ c)w ′ ′

0 , ξ⟩ .

Thanks to the fact that Jϵj → J0, we have

− lim
j→∞

〈
2

(p+ 1)(p+ 2)
Iϵj (zϵj)p+1

+
2

p+ 2
Iϵjzϵj (wϵj)p , ξ

〉
=−

〈
2

(p+ 1)
I0wp+1

0 , ξ

〉
.

Finally, putting previous equalities together gives the existence of the non-trivial solutionw0 =
z0 to the equation

w0 +

(
1
3
−σ

)
w ′ ′

0 +
2

(p+ 1)
I0wp+1

0 = 0, (3.20)

as desired once we have that a+ c+ 2b= 1
3 −σ, showing the result.

Remark 3.4. We note that (zε,wε) is a solution of (3.6), which can be rewritten as

ε−2/(p+1) (wϵ− zϵ)+ ε−2/(p+1) (1−ω)zϵ+ωbzϵyy+ awϵyy+
2

p+ 2
Iϵ (wϵ)p zϵ = 0 (3.21)

and

ε−2/(p+1) (zϵ−wϵ)+ ε−2/(p+1) (1−ω)wϵ+ωbwϵyy+ czϵyy+
2

(p+ 1)(p+ 2)
Iϵ (wϵ)p+1

= 0 .

(3.22)

By the fact that ω2 = 1− ε2/(p+1) with lemma 3.1 and theorem 3.3, we have

wϵ → w0 , zϵ → w0 , Iϵ → J0, as ε→ 0 .

However, since ε−2/(p+1) →+∞ as ε→ 0, the term ε−2/(p+1)(wϵ− zϵ) in (3.21) and (3.22)
may not approach to zero. To obtain the limit of ε−2/(p+1)(wϵ− zϵ), one needs to derive the
next orders of wϵ,zϵ, i.e.

wϵ = w0 +w1ε
2/(p+1) and zϵ = w0 + z1ε

2/(p+1) , (3.23)

where, in general,w1 − z1 may not tend to zero as ε→ 0. In fact, the limits ofw1 and z1 as ε→ 0
can be found from (3.21) and (3.22) as well. By adding (3.21) and (3.22) and using (3.23) and
the equation for w0, we can derive one equation for w1 and z1 in terms of w0. Another equation
is directly from (3.21) using (3.23). Therefore, those two equations yield the limits of w1 and
z1 as ε→ 0. In this way, we can derive the asymptotic forms of wϵ and zϵ up to any order of ε
as ε→ 0.

Remark 3.5. Another interesting fact is that the profiles (ψω,vω) can be small or ‘large’ for ω
admissible. However, the profile is small when ω is near 1−, which can be seen from the fact
that I2,ω(ψ,v)< 0 for ω close to 1− and

∥(ψω,vω)∥H1 ×H1 ∼ I1 (ψω,vω)⩽ Iω (ψω,vω) = Iω = ε
p+4

(p+1)(p+2) Iϵ → 0, as ω→ 1−.

Therefore, for ω sufficiently close to 1−, ∥(ψω,vω)∥H1×H1 is small.

18
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4. GSS approach

Recall that solitary waves are characterized as critical points of a function defined on a suitable
space. For our generalized abcb-Boussinesq system (1.5), remember that the functional Jω :
X∗ → X is given by (1.12), where X∗ is the dual space of X. Hereafter, a solitary-wave solution
(or a traveling-wave solution of finite energy) minimizes the action functional Jω under some
constraints.

It is noted here that we are only interested in the stability of solutions in the set G̃ω when
ω is near 1−, where G̃ω is the set of the solutions (ψ̃ω, ṽω) of (1.11) that correspond to the
minimizers (ψω,vω) of (2.1). Now, given any (ψ̃ω, ṽω) of (1.11) in G̃ω, define

d(ω) =
p

2(p+ 2)
Iω
(
ψ̃ω, ṽω

)
, (4.1)

which is well defined due to the fact that using section 2, if (ψω,vω) is a minimizer of the
problem given by (2.1) and Gω is the set of all such (ψω,vω), then theorem 2.5 implies(

ψ̃ω, ṽω
)
=

(
2

p+ 2
Iω

) 1
p

(ψω,vω) , (4.2)

is solution of (1.11) and remark 1.1 yields that

d(ω) =
p

2(p+ 2)
Iω

((
2

p+ 2
Iω

) 1
p

(ψω,vω)

)

=
p

2(p+ 2)

(
2

p+ 2
Iω

) 2
p

Iω (ψω,vω)

=
p

2(p+ 2)

(
2

p+ 2

) 2
p

(Iω (ψω,vω))
p+2
p ,

(4.3)

which is uniquely defined for any (ψω,vω) ∈ Gω, i.e. independent of (ψ̃ω, ṽω) ∈ G̃ω.
We remark that, as proposed by Shatah [36], for the study of the stability of the standing

waves of nonlinear Klein–Gordon equations, and Grillakis et al [18, theorems 2 and 3], con-
sidering an abstract Hamiltonian system, the analysis of the stability of solution sets depends
upon some properties of the scalar function given by

d(ω) =H (ψ,v)+ωQ(ψ,v) = Fω (ψ,v) =
1
2
Jω (ψ,v) , (4.4)

where (ψ,v) is in a set of solutions of (1.11) that makes such d(ω)well defined. For the solution
set G̃ω studied here, remark 1.1 implies that the definitions of d(ω) in (4.1) and (4.4) are same.

4.1. Properties of the scalar function

This subsection is devoted to presenting properties of the scalar function d(ω)10 when ω is near
1−. From now on, we will use the notation of the previous section, the characterization of d(ω)
given by (4.3), and we take into account the relation (1.20). Since (ψω,vω) ∈ Gω is uniformly
bounded for ω in a closed interval of (0, 1) using (2.1), by the definitions of Iω in (1.13) and
Iω in (2.1), it is straightforward to show that Iω in (2.1) is continuous, which implies that d(ω)

10 It is important to point out again that this strategy was originally introduced in [36], and after that, extended for an
abstract framework in [18].
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is continuous for ω ∈ (0,1). Now, the following result gives us a relation for 0< ω1 < ω2 < 1
in terms of d.

Lemma 4.1. For 0< ω1 < ω2 < 1 and (ψωi ,vωi) ∈ Gωi , i = 1,2, it follows that

d(ω1)⩽ d(ω2)−
1
2

(
2

p+ 2

) 2
p

(Iω2 (ψω2 ,vω2))
2
p

(
w2 −w1

w2

)
I2,ω2 (ψω2 ,vω2)

+O
(
(ω2 −ω1)

2
)

(4.5)

and

d(ω2)⩽ d(ω1)+
1
2

(
2

p+ 2

) 2
p

(Iω1 (ψω1 ,vω1))
2
p

(
w2 −w1

w1

)
I2,ω1 (ψω1 ,vω1)

+O
(
(ω2 −ω1)

2
)
. (4.6)

Proof. Due to the definition of d(ω), given by (4.3), we have that

d(ω1) =
p

2(p+ 2)

(
2

p+ 2

) 2
p

(Iω1 (ψω1 ,vω1))
p+2
p

⩽ p
2(p+ 2)

(
2

p+ 2

) 2
p

(Iω1 (ψω2 ,vω2))
p+2
p

=
p

2(p+ 2)

(
2

p+ 2

) 2
p

(I1 (ψω2 ,vω2)+ I2,ω2 (ψω2 ,vω2)

−I2,ω2 (ψω2 ,vω2)+ I2,ω1 (ψω2 ,vω2))
p+2
p

=
p

2(p+ 2)

(
2

p+ 2

) 2
p
(
Iω2 (ψω2 ,vω2)+

ω1 −ω2

ω2
I2,ω2 (ψω2 ,vω2)

) p+2
p

,

thanks to (1.13) and to the fact that I2,ω1(ψω2 ,vω2) =
ω1
ω2
I2,ω2(ψω2 ,vω2). Thus, using Taylor’s

series of a power function with power (p+ 2)/p around ω1 −ω2 near zero in the previous
inequality, we find

d(ω1)⩽
p

2(p+ 2)

(
2

p+ 2

) 2
p

(Iω2 (ψω2 ,vω2))
p+2
p

− p
2(p+ 2)

(
2

p+ 2

) 2
p p+ 2

p
(Iω2 (ψω2 ,vω2))

2
p

(
w2 −w1

w2

)
I2,ω2 (ψω2 ,vω2)

+O
(
(w2 −w1)

2
)

= d(ω2)−
1
2

(
2

p+ 2

) 2
p

(Iω2 (ψω2 ,vω2))
2
p

(
w2 −w1

w2

)
I2,ω2 (ψω2 ,vω2)

+O
(
(w2 −w1)

2
)

and the inequality (4.5) is verified. The proof of (4.6) is analogous and will be omitted.
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We are now in a position to characterize d ′(ω). However, from lemma 4.1, we need to
evaluate I2,ω(ψω,vω) as ω→ ω0. In general, such a limit may not be well-defined and may
depend on the choice of (ψω0 ,vω0) ∈ Gω0 . Moreover, in the worst case, this (ψω0 ,vω0) may be
a singleton in Gω0 and there is no (ψω,vω) ∈ Gω near (ψω0 ,vω0) when ω is sufficiently close to
ω0. Thus, we need to use the local minimizers defined in remark 2.4 and prove the following
lemma.

Lemma 4.2. For any givenω0 ∈ (0,1) close to 1 and a (ψω0 ,vω0) ∈ Gω0 , there is a δ0 > 0 small
enough such that ∆0 = (ω0 − δ0,ω0 + δ0) ∈ (0,1) and for every ω ∈∆0, there is a unique
{(ψω,vω)} ∈ Gω (or at least a local minimizer) and (ψω,vω)→ (ψω0 ,vω0) in H

1(R)×H1(R)
as ω→ ω0.

The proof of this lemma will be given in appendix C. In the following, whenever d ′(ω)
and d ′ ′(ω) are calculated, we always mean that the calculations are based upon a choice of
(ψω,vω) ∈ Gω where the limits in the derivatives may be taken using local or global minim-
izers. Therefore, in lemma 4.1, when ω1 is near ω2 and one of (ψωi ,vωi), i = 1,2, is a local
minimizer, we may use d̂(ω) for the minimizer without global minimizers nearby in stead of
d(ω), making the notations different. Hence, in the following, the definition of d(ω) may be
based on a fixed minimizer corresponding to ω.

Lemma 4.3. For (ψω,vω) ∈ Gω, with 0< ω̃0 < ω < 1, and (1.20) being satisfied, it follows
that

d ′ (ω) =
1
2

(
2

p+ 2

) 2
p I2,ω (ψω,vω)

ω
(Iω (ψω,vω))

2
p = Q

(
ψ̃ω, ṽω

)
, (4.7)

or d̂ ′(ω). Additionally, we have that d ′(ω)< 0 (or d̂ ′(ω)< 0), when ω is near to 1−.

Proof. From the previous lemma, we have that

d(ω1)− d(ω2)

ω1 −ω2
⩾ 1

2

(
2

p+ 2

) 2
p

(Iω2 (ψω2 ,vω2))
2
p

(
1
ω2

)
I2,ω2 (ψω2 ,vω2)+O((ω2 −ω1))

and

d(ω2)− d(ω1)

ω2 −ω1
⩽ 1

2

(
2

p+ 2

) 2
p

(Iω1 (ψω1 ,vω1))
2
p

(
1
ω1

)
I2,ω1 (ψω1 ,vω1)+O((ω2 −ω1)) .

Taking limit as ω1 → ω2 in the first inequality and ω2 → ω1 in the second inequality, we get
that

(d ′)
−
(ω2)⩾

1
2

(
2

p+ 2

) 2
p

(Iω2 (ψω2 ,vω2))
2
p

(
1
ω2

)
I2,ω2 (ψω2 ,vω2) ,

and

(d ′)
+
(ω1)⩽

1
2

(
2

p+ 2

) 2
p

(Iω1 (ψω1 ,vω1))
2
p

(
1
ω1

)
I2,ω1 (ψω1 ,vω1) ,

which implies that for any ω ̸= 0,

d ′ (ω) =
1
2

(
2

p+ 2

) 2
p

(Iω (ψω,vω))
2
p

(
1
ω

)
I2,ω (ψω,vω) .
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Next equality is derived from

d(ω) =H
(
ψ̃ω, ṽω

)
+ωQ

(
ψ̃ω, ṽω

)
=

p
2(p+ 2)

Iω
(
ψ̃ω, ṽω

)
=

1
2

(
Iω
(
ψ̃ω, ṽω

)
− I2,ω

(
ψ̃ω, ṽω

)
+G

(
ψ̃ω, ṽω

))
+ωQ

(
ψ̃ω, ṽω

)
,

which, by (1.17), implies Q(ψ̃ω, ṽω) = 1
2ω I2,ω(ψ̃ω, ṽω) and the equality using (4.2).

Finally, by the quantity I2,ϵ(z,w) defined in (3.5), that is, from the scaling (3.1) and I2,ω
(see (1.14)), we ensure that

I2,ϵ (zϵ,wϵ) =− 2

√
1− ε

2
p+1

ˆ
R

(
ε−

2
p+1 zϵwϵ+ b(∂yz

ϵ)(∂yw
ϵ)
)
dy, (4.8)

since ω2(ε) = 1− ε
2

p+1 . Passing the limit when ε→ 0+ in (4.8) and thanks to the theorem 3.3,
we obtain

lim
ϵ→0+

ε
2

p+1 I2,ϵ (zϵ,wϵ) =−2
ˆ
R
w2

0dy< 0.

This means that I2,ϵ(zϵ,wϵ)< 0 for ε near 0+, which implies I2,ω(ψω,vω)< 0, and, due to the
expression (4.7), we find d ′(ω)< 0.

Remark 4.4. From the proof of lemma 4.3, we see that d ′(ω) may depend on the minim-
izer (ψω,vω) of (2.1). In fact, due to the nature of global minimizers in (2.1), d ′(ω) must be
equal for all (ψω,vω) ∈ Gω (here, even for d̂ ′(ω) obtained from local minimizers if no global
minimizers are nearby), since, if otherwise, the curves for d(ω) near two different minimizers
(ψω,vω) will cross each other which contradicts to the global minimizer of (2.1). Moreover,
due to the same reason, d̂ ′ ′(ω)⩾ d ′ ′(ω) (see lemma 4.5), where d ′ ′(ω) is obtained from the
minimizer that has a global minimizer branch at ω.

With the previous lemma and remark in hand, let us give a relation for d ′ ′(ω) when ω is
near 1−, which will ensure the convexity of d.

Lemma 4.5. Suppose that (1.20) holds. Then, for 0< ω < 1 near 1−, it follows that

d ′ ′ (ω) =
1
p

(
2

p+ 2

) 2
p
(
I2,ω (ψω,vω)

ω

)2

(Iω (ψω,vω))
2−p
p

+
1
2

(
2

p+ 2

) 2
p

(Iω (ψω,vω))
2
p
d
dω

(
I2,ω (ψω,vω)

ω

)
. (4.9)

Moreover, when 0< ω < 1 is near 1−, d ′ ′(ω)> 0 if 1⩽ p< p0 and d ′ ′(ω)< 0 if p> p0,
where p0 > 4 is the unique positive root of(

p+ 2
p+ 1

) 2
p

− p2

2(p+ 4)
= 0 .

A similar conclusion holds for d̂ ′ ′(ω).

Proof. Differentiating the equation (4.7) in terms of ω and taking into account that d(ω) is
given by (4.3), straightforward calculations show that the relation (4.9) holds. Now, since
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the first term of the right-hand side of (4.9) is explicit and positive, thanks to the fact that
Iω(ψω,vω)> 0, we only need to find that

d
dω

(
I2,ω (ψω,vω)

ω

)
=

dε
dω

d
dε

(
ε

p+4
(p+1)(p+2)

I2,ϵ (z(y) ,w(y))
ω (ε)

)
=−ω (p+ 1)ε

p−1
p+1

d
dε

(
ε

p+4
(p+1)(p+2)

I2,ϵ (z(y) ,w(y))
ω (ε)

)
,

due to the relation (3.5) and ω2 = 1− ε
2

p+1 .
Observe that using the notation (z(y),w(y)) = (z(y, ε),w(y, ε)), we obtain that

d
dε

(
ε

p+4
(p+1)(p+2)

I2,ϵ (z(y) ,w(y))
ω (ε)

)
=

d
dε

(
ε

p+4
(p+1)(p+2) (−2)

ˆ
R

(
ε−

2
p+1 z(y, ε)w(y, ε)+ bzy (y, ε)wy (y, ε)

)
dy

)
=−2

d
dε

(
ε−

p
(p+1)(p+2)

ˆ
R

(
z(y, ε)w(y, ε)+ ε

2
p+1 bzy (y, ε)wy (y, ε)

)
dy

)
=

2p
(p+ 1)(p+ 2)

(
ε−

p
(p+1)(p+2)−1

ˆ
R

(
z(y, ε)w(y, ε)+ ε

2
p+1 bzy(y, ε)wy(y, ε)

)
dy

)
− 2

(
ε−

p
(p+1)(p+2)

d
dε

ˆ
R

(
z(y, ε)w(y, ε)+ ε

2
p+1 bzy(y, ε)wy(y, ε)

)
dy

)
=

2p
(p+ 1)(p+ 2)

(
ε−

p
(p+1)(p+2)−1

ˆ
R

(
z(y, ε)w(y, ε)+ ε

2
p+1 bzy(y, ε)wy(y, ε)

)
dy

)
+ ε−

p
(p+1)(p+2)R(z,w,zϵ,wϵ),

where the subscripts ε and ymean the derivatives with respect these variables andR(z,w,zϵ,wϵ)
is linear in terms of either zϵ or wϵ. Taking the limit when ε goes to 0+ in the previous identity,
from theorem 3.3 and lemma A.1, we can see that

lim
ϵ→0+

d
dε

(
ε

p+4
(p+1)(p+2)

I2,ϵ (z(y) ,w(y))
ω (ε)

)
=

2p
(p+ 1)(p+ 2)

lim
ϵ→0+

(
ε−

p
(p+1)(p+2)−1

(ˆ
R
z(y, ε)w(y, ε)dy+ o(1)

))
.

Thus, by (4.9), after a straightforward calculation, it is obtained that

d ′ ′ (ω) = lim
ϵ→0+


4

(ˆ
R
z(y, ε)w(y, ε)dy+ o(1)

)
pIϵ (z(y, ε) ,w(y, ε))

− ωp
p+ 2

+ o(1)

( 2
p+ 2

) 2
p

×(Iϵ (z(y, ε) ,w(y, ε)))
2
p

(ˆ
R
z(y, ε)w(y, ε)dy+ o(1)

)
ε

−3p2−2p+8
p(p+1)(p+2) (1+ o(1))


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Therefore, as ε→ 0+, the sign of d ′ ′(ω) is determined by

4

(ˆ
R
w2

0 (y)dy

)
pJ0

− p
p+ 2

, (4.10)

where w0(x) satisfies (3.18) and

J0 =

ˆ
R

(
w2

0 +

(
σ− 1

3

)
w2

0y

)
dy. (4.11)

To calculate w0(x), we note that by a classical theory of ordinary differential equations,
(3.18) has a unique homoclinic solution of the form

w0 (x) =−
(
J0
)− 1

p

(
4

(p+ 1)(p+ 2)

)− 1
p

sech
2
p

(
px

2
√
σ− 1/3

)
,

with an arbitrary translation in x. Plug this w0 into (4.11) to obtain

J0 =

(
2(p+ 2)

2
p+1

(p+ 1)
2
p
√
σ− 1/3B(2/p,2/p)

p(p+ 4)

) p
p+2

, (4.12)

where B(x,y) is the Beta function of variables x,y, and the formula
ˆ
R
sech2ν (ay)dy=

2 · 4ν−1

a
B(ν,ν)

has been used. Moreover, it can be derived similarly that

ˆ
R
w2

0dy=

(
p+ 4
2

) 2
p+2

(p+ 2)
2
p (p+ 1)−

4
p(p+2)

(√
σ− 1/3B(2/p,2/p)

p

) p
p+2

.(4.13)

Hence, putting (4.12) and (4.13) into (4.10) gives that the sign of d ′ ′(ω) is determined by the
following relation

2
p
(p+ 2)

2
p−1

(p+ 1)−
2
p (p+ 4)− p

p+ 2
=

((
p+ 2
p+ 1

) 2
p

− p2

2(p+ 4)

)
2(p+ 4)
p(p+ 2)

which has a unique positive root p0 for(
p+ 2
p+ 1

) 2
p

− p2

2(p+ 4)
= 0 ,

since a straightforward computation shows that for p⩾ 1,

d
dp

((
p+ 2
p+ 1

) 2
p

− p2

2(p+ 4)

)
< 0

and (
p+ 2
p+ 1

) 2
p

− p2

2(p+ 4)
is from +∞ to −∞
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as p goes from 0 to ∞. Moreover, if 1⩽ p⩽ 4,(
p+ 2
p+ 1

) 2
p

− p2

2(p+ 4)
> 1− p2

2(p+ 4)
=

(4− p)(p+ 2)
2(p+ 4)

⩾ 0,

which implies that p0 > 4. Numerically, p0 is approximately equal to 4.2280673976. Hence,
when ε is near 0+, we get{

d ′ ′ > 0, for 1⩽ p< p0,

d ′ ′ < 0, for p> p0,

showing the lemma.

5. Stability result

In this section, we always assume that 1⩽ p< p0 satisfies (1.6) so that d ′ ′(ω)> 0, for small
ε> 0, with ω close enough to 1−. Here, we emphasize that (3.1) implies that when ω→ 1−,
(ψω,vω) is small inH1(R)×H1(R). Therefore, if the initial condition of (1.5) is near (ψω,vω)
for ω near 1, then the global existence and uniqueness result implies that the solution of (1.5)
exists for all t ∈ [0,∞). Now, let us introduce some notations.

We denote any pair of function (ψ,v) as an element in X, the pair (ψω,vω) as a minimizer
of the problem (2.1) with Gω as the set of such minimizers (local and global), and (ψ̃ω, ṽω) as
the solution of (1.11) that corresponds to (ψω,vω) in Gω. Thus, from theorem 2.5, it is deduced
that

G̃ω =

{(
ψ̃ω, ṽω

)
=

(
2

p+ 2
Iω

) 1
p

(ψω,vω) : (ψω,vω) ∈ Gω

}
. (5.1)

Also, define

Uω,ϵ =

{
(ψ,v) ∈ X : inf

(ψ̃ω,ṽω)∈G̃ω

∥(ψ,v)−
(
ψ̃ω, ṽω

)
∥X < ε

}
.

Since d(ω) is differentiable (d̂(ω) if necessary) and decreasing for ω> 0 near to 1− (relative
to a special (ψ̃ω, ṽω) ∈ G̃ω, see lemma 4.3), it follows that for (ψ,v) near of (ψ̃ω, ṽω) ∈ G̃ω, we
have a C1 map

ω (·, ·) : Uω,ϵ → (0,1) , for small ε > 0,

thanks to relations (1.16) and (4.4), given by

ω (ψ,v) = d−1

(
−4
p
G(ψ,v)

)
, (5.2)

and ω(ψ̃ω, ṽω) = ω, for any (ψ̃ω, ṽω) ∈ G̃ω and with ω> 0 near 1−. The next result uses a
variational characterization of such a solution to establish the key inequality to prove the main
result.

Lemma 5.1. Under the hypothesis of theorem 1.2, there exists ε> 0 such that for (ψ̃ω, ṽω) ∈
G̃ω and (ψ,v) ∈ Uω,ϵ relative to this (ψ̃ω, ṽω), it follows that

H (ψ,v)−H
(
ψ̃ω, ṽω

)
+ω (ψ,v)

(
Q(ψ,v)−Q

(
ψ̃ω, ṽω

))
⩾ 1

4
d ′ ′ (ω) |ω (ψ,v)−ω|2,

where ω(ψ,v) is defined by (5.2) for (ψ,v) ∈ Uω,ϵ.
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Proof. We begin by observing, from equations (1.12) and (4.4), that

H (ψ,v)+ω (ψ,v)Q(ψ,v) =
1
2

(
Iω(ψ,v) (ψ,v)+G(ψ,v)

)
. (5.3)

Note that

−4
p
d(ω (ψ,v)) = G(ψ,v) ,

and also

−4
p
d(ω (ψ,v)) = G

(
ψ̃ω(ψ,v), ṽω(ψ,v)

)
,
(
ψ̃ω(ψ,v), ṽω(ψ,v)

)
∈ G̃ω(ψ,v),

which implies

G(ψ,v) = G
(
ψ̃ω(ψ,v), ṽω(ψ,v)

)
.

In particular, if we let

c0 =

(
4
p
d(ω (ψ,v))

) 1
p+2

then G(ψ/c0,v/c0) =−1, which implies that

Iω(ψ,v) (ψ/c0,v/c0)⩾ Iω(ψ,v)
(
ψω(ψ,v),vω(ψ,v)

)
,

since (ψω(ψ,v),vω(ψ,v)) is a minimizer of Iω(ψ,v) under the constraintG(ψω(ψ,v),vω(ψ,v)) =−1.
Hence, it is obtained from the form of Iω and the definition of d(ω) in (4.1) with (4.3) that
c0 = ((2/(p+ 2))Iω)1/p and

Iω(ψ,v) (ψ,v)⩾ Iω(ψ,v)
(
c0ψω(ψ,v),c0vω(ψ,v)

)
= Iω(ψ,v)

(
ψ̃ω(ψ,v), ṽω(ψ,v)

)
, (5.4)

where (4.2) has been used.
On the other hand, the function d satisfies

d(ω) =H
(
ψ̃ω, ṽω

)
+ωQ

(
ψ̃ω, ṽω

)
,

which implies, using the identity in (4.7), that

H
(
ψ̃ω, ṽω

)
= d(ω)−ωd ′ (ω) .

Now, using that ω(ψ,v) ∈ C1, lemmas 4.3 and 4.5, the inequality (5.4), and the identity

G(ψ,v) = G
(
ψ̃ω(ψ,v), ṽω(ψ,v)

)
,
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we deduce from (5.3) that

H (ψ,v)+ω (ψ,v)Q(ψ,v) =
1
2

(
Iω(ψ,v) (ψ,v)+G(ψ,v)

)
⩾ 1

2

(
Iω(ψ,v)

(
ψ̃ω(ψ,v), ṽω(ψ,v)

)
+G

(
ψ̃ω(ψ,v), ṽω(ψ,v)

))
= d

(
ω
(
ψ̃ω(ψ,v), ṽω(ψ,v)

))
= d(ω (ψ,v))

⩾ d(ω)+ d ′ (ω)(ω(ψ,v)−ω)+
1
4
d ′ ′(ω)|ω(ψ,v)−ω|2

=H(ψ̃ω, ṽω)+ω(ψ,v)Q(ψ̃ω, ṽω)+
1
4
d ′ ′(ω)|ω(ψ,v)−ω|2,

where the fifth line follows from Taylor’s expansion at ω, and in the last line we used again
the identity (4.7), that is, d ′(ω) = Q(ψ̃ω, ṽω). This concludes the proof.

With this in hand, let us now prove the main result of the article.

Proof of theorem 1.2. First, consider the following: let U(t) be a global solution of the gen-
eralized abcb-Boussinesq system (1.5) in the form{

U(t) = (η (t) ,u(t)) , t> 0,

U(0) = U0 = (η (0) ,u(0)) in X.
(5.5)

Now, suppose that the solution set G̃ω is unstable. Then, for a Ũω = (ψ̃ω, ṽω) ∈ G̃ω, there exists
a sequence of initial data {Uk

0}k∈N ⊂ X and δ > 0, such that

lim
k→∞

∥Uk
0 − Ũω∥X = 0 and inf

Ṽ∈G̃ω

∥Uk (t)− Ṽ∥X ⩾ δ for some t> 0 ,

where Uk denotes the sequence of solutions to the system (5.5) with initial condition Uk(0) =
Uk

0. By continuity in t, we can pick the first time tk such that,

inf
Ṽ∈G̃ω

∥Uk (tk)− Ṽ∥X = δ > 0, (5.6)

where at least in the interval [0, tk] the solution Uk exists. Moreover, we have that H(U) and
Q(U) are conserved at t and continuous for U(t) = (η(t),u(t)), which implies that∣∣H(Uk (tk)

)
−H

(
Ũω
)∣∣= ∣∣H(Uk (0)

)
−H

(
Ũω
)∣∣→ 0,

and ∣∣Q(Uk (tk)
)
−Q

(
Ũω
)∣∣= ∣∣Q(Uk (0)

)
−Q

(
Ũω
)∣∣→ 0,

as k→∞. In the following, if necessary, d̂ ′ ′(ω) has to be used instead of d ′ ′(ω). Now, pick δ
small enough so that lemma 5.1 can be applied, which ensures that

H
(
Uk (tk)

)
−H

(
Ũω
)
+ω

(
Uk (tk)

)(
Q
(
Uk (tk)

)
−Q

(
Ũω
))

⩾ 1
4
d ′ ′ (ω)

∣∣ω (Uk (tk)
)
−ω

∣∣2 . (5.7)

By the fact that ω
(
Uk (tk)

)
is uniformly bounded for k, using (5.7) and letting k→∞, it is

obtained that

ω
(
Uk (tk)

)
→ ω,
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and therefore,

lim
k→∞

G
(
Uk (tk)

)
=−4

p
lim
k→∞

d
(
ω
(
Uk (tk)

))
=−4

p
d(ω) . (5.8)

On the other hand,

Iω
(
Uk (tk)

)
+G

(
Uk (tk)

)
= 2

(
H
(
Uk (tk)

)
+ωQ

(
Uk (tk)

))
= 2

(
H
(
Uk (0)

)
+ωQ

(
Uk (0)

))
,

(5.9)

since the quantities of the right-hand side are conserved in t. Taking k→∞ in (5.9) and
using (5.8), as Uk(0) is the initial data of (5.5), yield that

Iω
(
Uk (tk)

)
→ 2d(ω)+

4
p
d(ω) =

2(p+ 2)
p

d(ω) = Iω
(
Ũω
)
.

Let

Zk (tk) =
(
G
(
Uk (tk)

))− 1
p+2 Uk (tk) .

Noting that G(Zk (tk)) =−1 and making k→∞, we have that

Iω (Zk (tk)) =
(
G
(
Uk (tk)

))− 2
p+2 Iω

(
Uk (tk)

)
→ ((4/p)d(ω))−

2
p+2 Iω

(
Ũω
)
= Iω (ψω,vω) = Iω .

Hence, Zk (tk) is a minimizing sequence for (2.1). Therefore, there exists Uω1 ∈ Gω such that,
after possible translations and subsequences,

lim
k→∞

∥Zk (tk)−Uω1 ∥X = 0,

with G(Uω1 ) =−1. Finally, since Ũω1 ∈ G̃ω, the previous limit together with to the fact that∥∥Uk (tk)− Ũω1
∥∥
X
=
(
G
(
Uk (tk)

)) 1
p+2

∥∥∥∥(G(Uk (tk)
))− 1

p+2
(
Uk (tk)− Ũω1

)∥∥∥∥
X

gives us

lim
k→∞

∥∥Uk (tk)− Ũω1
∥∥
X
⩽M(Iω (U

ω))
1

p+2 lim
k→∞

∥∥∥∥Zk (tk)− (G(Uk
)
(tk)
)− 1

p+2 Ũω1

∥∥∥∥
X

=M(Iω (U
ω))

1
p+2 lim

k→∞

∥∥∥Zk (tk)− ((4/p)d(ω))−
1

p+2 Ũω1

∥∥∥
X

=M(Iω (U
ω))

1
p+2 lim

k→∞
∥Zk (tk)−Uω1 ∥X = 0,

which contradicts (5.6), and the result is shown.
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Appendix A. Properties of the transformed system

The goal of this appendix is to prove the properties of the solutions of the system (3.6). The
main result ensures that its derivative with respect to ε is bounded.

Lemma A.1. The pair ε
p−1
p+1 (zϵ,wϵ), where (z, w) is a solution of (3.6), is bounded in Sobolev

space H1(R). Here, the subscript ε means the derivative concerning this variable.

For the sake of simplicity, we will omit ε in the solution forms. Thus, to show this
lemma, let us first consider the change of variable z= ωw+ ε

2
p+1 ξ and replace the equations in

(3.6) by
w−ωξ+ω2bw ′ ′ + ε

2
p+1ωbξ ′ ′ + aw ′ ′ + Iϵ

(
2

p+2

)(
ωw+ ε

2
p+1 ξ

)
wp = 0,

ξ+ bωw ′ ′ + cωw ′ ′ + cε
2

p+1 ξ ′ ′ + Iϵ
(

2
(p+1)(p+2)

)
wp+1 = 0.

(A.1)

Multiplying the first equation of (A.1) by c and the second one by bω yields that
cw− cωξ+ cω2bw ′ ′ + cε

2
p+1ωbξ ′ ′ + acw ′ ′ + cIϵ

(
2

p+2

)(
ωw+ ε

2
p+1 zξ

)
wp = 0,

bωξ+ω2b2w ′ ′ + cω2bw ′ ′ + cε
2

p+1 bωξ ′ ′ + bωIϵ
(

2
(p+1)(p+2)

)
wp+1 = 0.

Subtracting in the previous system the first equation with the second one, we have that

cw− cωξ+ acw ′ ′ + cIϵ
(

2
p+ 2

)
ωwp+1 + cIϵ

(
2

p+ 2

)
ε

2
p+1 ξwp

− bwξ−ω2b2w ′ ′ − bωIϵ
(

2
(p+ 1)(p+ 2)

)
wp+1 = 0 ,

that is,

ξ

(
−ω (b+ c)+ cε

2
p+1 Iϵ

(
2

p+ 2

)
wp
)
=−w ′ ′ (ac−ω2b2

)
− cw

+ω

(
bIϵ
(

2
(p+ 1)(p+ 2)

)
− cIϵ

(
2

p+ 2

))
wp+1.

Therefore,

ξ =
−w ′ ′ (ac−ω2b2

)
− cw+ω

(
bIϵ
(

2
(p+1)(p+2)

)
− cIϵ

(
2

p+2

))
wp+1

−ω (b+ c)+ cε
2

p+1 Iϵ
(

2
p+2

)
wp

.
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From now on, to make the computation clear, consider the function ξ as

ξ =−Aw ′ ′ +Bw+Cwp+1, (A.2)

where

A := A(w) =
ac−ω2b2

−ω (b+ c)+ cε
2

p+1 Iϵ
(

2
p+2

)
wp
,

B := B(w) =
−c

−ω (b+ c)+ cε
2

p+1 Iϵ
(

2
p+2

)
wp
,

and

C := C(w) =
ω
(
bIϵ
(

2
(p+1)(p+2)

)
− cIϵ

(
2

p+2

))
−ω (b+ c)+ cε

2
p+1 Iϵ

(
2

p+2

)
wp

.

Then, differentiating the relation (A.2) twice with respect to x yields that

ξ ′ ′ =− (A ′ ′w ′ ′ + 2A ′w ′ ′ ′ +Aw ′ ′ ′ ′)+ (B ′ ′w+ 2B ′w ′ +Bw ′ ′)

+C ′ ′wp+1 + 2C ′ (p+ 1)wp+C(p+ 1)pwp−1,

where the superscript ′ in A,B and C indicates the derivative(s) with respect to x and A′ will
introduce a factor ε

2
p+2 . Hence, replacing (A.2) and ξ ′ ′ in the second equation of (A.1) gives

us

−Aw ′ ′ +Bw+Cwp+1 +ω (b+ c)w ′ ′ + cε
2

p+1 (−(A ′ ′w ′ ′ + 2A ′w ′ ′ ′ +Aw ′ ′ ′ ′)

+ (B ′ ′w+ 2B ′w ′ +Bw ′ ′)+C ′ ′wp+1 + 2C ′ (p+ 1)wp+C(p+ 1)pwp−1
)

+ Iϵ
(

2
(p+ 1)(p+ 2)

)
wp+1 = 0,

and arranging similar terms finds that

− cε
2

p+1Aw ′ ′ ′ ′ − 2ε
2

p+1 cA ′w ′ ′ ′ +
(
−A+ω (b+ c)+ cε

2
p+1 (−A ′ ′ +B)

)
w ′ ′

+ 2cε
2

p+1B ′w ′ +
(
B+ cε

2
p+1B ′ ′

)
w+C(p+ 1)pcε

2
p+1wp−1 + 2C ′ (p+ 1)cε

2
p+1wp

+

(
C+ cε

2
p+1C ′ ′ + Iϵ

(
2

(p+ 1)(p+ 2)

))
wp+1 = 0,

or equivalently,

−cε
2

p+1Aw ′ ′ ′ ′ +(−A+ω (b+ c))w ′ ′ +Bw+

(
C+ Iϵ

(
2

p+ 2

))
wp+1

= ε
2

(p+1)(p+2)P,

(A.3)

where

P [w] =2cA ′w ′ ′ ′ − (c(−A ′ ′ +B))w ′ ′ − 2cB ′w ′ − cB ′ ′w

−C(p+ 1)pcwp−1 − 2C ′ (p+ 1)cwp− cC ′ ′wp+1.

Here, we note that by the assumptions on a,b,c and the fact that w is uniformly bounded in
H1(R) for ε> 0 small, the linear part of (A.3) is uniformly invertible, which implies from
the classical theory of ordinary differential equation that w is uniformly bounded in H2(R),
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ε
2

p+1w ′ ′ ′ ′ ∈ L2(R) and its norm is uniformly bounded together with ε
1

p+1w ′ ′ ′ ∈ L2(R) and its
norm being uniformly bounded.

We are now in a position to prove that, for ε> 0 small enough, ε
p−1
p+1wϵ and ε

p−1
p+1 zϵ are

bounded.

Proof of lemma A.1. Rewrite (A.3) in the following form

ε
2

p+1αw ′ ′ ′ ′ +λw ′ ′ +w+βwk = ε
2

p+1 P̃ [w] , (A.4)

with k= p+ 1> 1 and P̃(ω,w,w ′,w ′ ′,w ′ ′ ′,A ′,A ′ ′ ′,B,B ′,B ′ ′,C ′,C ′ ′,p,c) := P̃, where

α=ac− b2 > 0, λ= a+ b+ 2b=
1
3
−σ < 0, β =

2
p+ 1

Iϵ ,

and P̃ is the remaining term and has a similar form with = P[w].
We note that (z,w) is the solution of (3.6) and w is a solution of (A.4). By the theory of

ordinary differential equations, due to the symmetry of the equation (A.4) with respect to x, it
can be deduced that any solution of (A.4) is even in x after a suitable translation in x-variable.
Moreover, if ε> 0, the equation (3.6) or (A.4) is differentiable with respect to ε, which implies
that the solution w is also differentiable with respect to ε. Now, taking the derivative in terms

of ε on both sides of (A.4) and, after that, multiplying the result by ε
p−1
p+1 , we have

εαw ′ ′ ′ ′
ϵ + ε

p−1
p+1 λw ′ ′

ϵ + ε
p−1
p+1wϵ+βε

p−1
p+1 kwk−1wϵ =

˜̃
P1 [w, ε]L [εwϵ] +

˜̃
P2 [w, ε]

=
˜̃
P [w,wϵ, ε] ,

(A.5)

where ˜̃
P1[w, ε] and

˜̃
P2[w, ε] are functions that only depend on w and ε and are uniformly

bounded in any Sobolev norms as ε small and ε→ 0, and L[εwϵ] is linear in terms of εwϵ
or its x-derivatives . Let ŵ= ε

p−1
p+1wϵ, which changes (A.5) to

ε
2

p+1αŵ ′ ′ ′ ′ +λŵ ′ ′ + ŵ+βkwk−1ŵ=
˜̃
P1 [w, ε]ε

2
p+1 L [ŵ] + ˜̃

P2 [w, ε]

=
˜̃
P [w, ŵ, ε] .

(A.6)

Consider the linear equation associated with (A.6),

ε
2

p+1αŵ ′ ′ ′ ′ − |λ|ŵ ′ ′ + ŵ= 0 .

The characteristic equation associated with the linear equation is

αε
2

p+1 r4 − |λ|r2 + 1= 0,

with roots ±r1 and ±r2 and

r1 =

√√√√ |λ| −
√
|λ|2 − 4αε

2
p+1

2αε
2

p+1

and r2 =

√√√√ |λ|+
√
|λ|2 − 4αε

2
p+1

2αε
2

p+1

,

satisfying

r21 + r22 =
1

αε
2

p+1

.
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Using a variation of parameters, the bounded even solutions of (A.6) can be written as follows

ŵ(x) =− 1

2αr1ε
2

p+1
(
r21 + r22

) ˆ +∞

−∞
e−r1|x−ξ|

(
−βkwk−1 (ξ) ŵ(ξ)+

˜̃
P [w, ŵ, ε] (ξ)

)
dξ

− 1

2αr2ε
2

p+1
(
r21 + r22

) ˆ +∞

−∞
e−r2|x−ξ|

(
−βkwk−1 (ξ) ŵ(ξ)+

˜̃
P [w, ŵ, ε] (ξ)

)
dξ.

By differentiating the previous equality twice with respect to x, we obtain

−|λ|
(
ŵxx− r21ŵ

)
=
−βkwk−1 (x) ŵ(x)

αε
2

p+1
(
r21 + r22

) +
˜̃
P(x)

αε
2

p+1
(
r21 + r22

)
+

1

2αr2ε
2

p+1
(
r21 + r22

) ˆ +∞

−∞
e−r2|x−ξ|

(
β
((
kwk−1 (ξ) ŵ(ξ)

)
ξ ξ

−r21kwk−1 (ξ) ŵ(ξ)
))

dξ +
1

2αr2ε
2

p+1
(
r21 + r22

) ˆ +∞

−∞
e−r2|x−ξ| ˜̃P(ξ)dξ

− r22 − r21
2r2ε

2
p+1
(
r21 + r22

) ˆ +∞

−∞
e−r2|x−ξ| ˜̃P(ξ)dξ

=−

(
βk

αε
2

p+1
(
r21 + r22

))wk−1 (x) ŵ(x)+ f1 (x)

=−βkwk−1 (x) ŵ(x)+ f1(x) .

Here, we remark that the solution of (A.4), which goes to zero at infinity, can also be rewritten
in the above form of a second-order integro-differential equation. Then, such a solution must
be even in terms of x after a translation, which is another proof of evenness of (z,w) for (3.6).
Now, we rewrite the above ŵ equation as

ŵxx− |λ|−1ŵ− |λ|−1β0kw
k−1
0 (x) ŵ(x) =

(
r21 − |λ|−1

)
ŵ

− |λ|−1k
(
β0w

k−1
0 (x)−βwk−1 (x)

)
ŵ(x)− |λ|−1f1 (x) = f2 (x) ,

(A.7)

where β0 =
2

p+1J
0, w0(x) is a solution of the generalized KdV equation (see theorem 3.3), and∣∣r21 − |λ|−1

∣∣+ ∣∣β0w
k−1
0 (x)−βwk−1 (x)

∣∣→ 0

as ε→ 0. We mention that the terms involving ŵ or its derivatives in f2(x) are linear in terms
of ŵ or its derivatives and the coefficients, which may have ε or w or w0, will go to zero as
ε→ 0. Since w is even in x, the following claim is verified:

Claim 1. (A.7) can be transformed into an integro-differential equation as:

ŵ(x) = Ξ1 (x)
ˆ x

0
Ξ2 (s) f2 (s)ds+Ξ2 (x)

ˆ ∞

x
Ξ1 (s) f2 (s)ds

=

ˆ +∞

0
K(x,s) f2 (s)ds= Lϵ [f2] (x) ,

(A.8)

for x⩾ 0, which can be evenly extended to x< 0, for appropriated functions Ξ1 and Ξ2.

Indeed, note that

Ξ1 (x) =
d
dx
w0
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is an odd solution of the homogenous equation for (A.7) with w0(x) as a solution of the gen-
eralized KdV equation such that Ξ1 →−exp

(
−|λ|−1/2|x|

)
as |x| →∞. Using the Liouville

formula, we have the existence of an even function Ξ2(x) such that {Ξ1(x),Ξ2(x)} form a fun-
damental set of solutions to (A.7) withWronskianW [Ξ1,Ξ2] = Ξ1(x)Ξ ′

2(x)−Ξ ′
1(x)Ξ2(x) = 1.

Therefore, by constructing Green’s function K(x,s) using Ξ1 and Ξ2, (A.7) can be transformed
into the integral equation (A.8), giving claim 1.

With this claim, we can apply the contraction mapping theorem to the integro-differential
equation (A.8). To do this, we let the Banach space be the Sobolev space H1(R) with the
corresponding Sobolev norm and define

B1 =
{
f(x) ∈ H1 (R) | f(−x) = f(x) , ∥f∥H1(R) = ∥f∥B1 <∞

}
.

Then, applying a similar proof as done in [37, section 3], the following estimate holds for (A.8).

Lemma A.2. If f(x) ∈ B1, then

L [ f ] (x) ∈ B1 and ∥L [ f ] (x)∥B1 ⩽ C̃∥f∥B1 ,

where C̃ is independent of ε.

Now, apply lemma A.2 to (A.8) together with the uniform boundedness of w in H2(R) and
ε

1
p+1w ′ ′ ′ in L2(R), and the properties of f 2 to obtain that if ŵ ∈ B1,

L [f2] (x) ∈ B1 and ∥L [f2] (x)∥B1
⩽ C0 (ε)∥ŵ∥B1

+C1 ,

where for small ε> 0, C1 > 0 is a constant and C0(ε)→ 0 as ε→ 0. Finally, for s⩾ 2C1 > 0
large, consider a closed convex subset of B1 given by

Ss = {ŵ ∈ B1 : ∥ŵ∥B1 ⩽ s} .

Then if ŵ ∈ Ss, we can let ε small enough such that C0(ε)s< C1, which implies that L[f2](x)
maps Ss to Ss. If we let f( j)2 (x) be the corresponding f2(x) for ŵ( j)(x) ∈ B1, since ŵ is linear in
f2(x), it is straightforward to see that from lemma A.2 again, we have∥∥∥L[f(1)2

]
(x)−L

[
f(2)2

]
(x)
∥∥∥
B1

⩽ C0 (ε)
∥∥∥ŵ(1) (x)− ŵ(2) (x)

∥∥∥
B1

.

Hence, for small ε> 0, it is deduced thatL[f2](x) is a contraction for ŵ ∈ Ss and the contraction
mapping principle implies that ŵ is the only fixed point of L[f2](x) in Ss. Therefore, ŵ in (A.6)

satisfies that for small ε> 0, ∥ŵ∥H1(R) ⩽ s where s is independent ε. Since ŵ= ε
p−1
p+1wϵ and

the relation between ξ,z and w is given in (A.1) and (A.2), it is obtained that ε
p−1
p+1 (zϵ,wϵ) is

uniformly bounded in H1(R) with respect to small ε> 0, showing lemma A.1.

Appendix B. The proof of claim I in the proof of lemma 3.1

This appendix gives the proof of claim I, which is stated in the middle of the proof for lemma
3.1. Here, the concentration-compactness argument from theorem 2.1 can be applied to gen-
erate a convergence subsequence in H1(R)×H1(R) and we mainly use the argument for a
system in [28, section 3.1].

First, let us state the properties of (zϵj ,wϵj). It is known that there is a sequence {εj}→ 0+

such that

lim
j→∞

Iϵj = lim
j→∞

Iϵj (zϵj ,wϵj) = Ic = liminf
ϵ→0+

Iϵ ⩽ J0 with G(zϵj ,wϵj) =−1,
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where Iϵ (z,w) is defined in (3.10), Iϵ is the infimum of Iϵ (z,w) under the condition
G(z,w) =−1, and J0 is finite. Hence, (zϵj ,wϵj) , j = 1,2, . . . are minimizers of Iϵj(z,w) with
G(z,w) =−1. Now, we apply the concentration-compactness argument (see theorem 2.1) to
this sequence (zϵj ,wϵj). Since Iϵ (z,w) is non-negative and the limit of Iϵj (zϵj ,wϵj) as j→∞
exists, theorem 2.1 can be applied. Here, the positive measure {νj} is defined by dνj = ρjdx,
where ρj is given by

ρj = εj
− 2

p+1 (zϵj −ω (εj)w
ϵj)

2
+(wϵj)2

+ |c|
(
(zϵj) ′ −

bω (εj)
|c|

(wϵj) ′
)2

+

(
ac− b2ω2 (εj)

|c|

)(
(wϵj) ′

)2
,

which is the integrand of Iϵj (zϵj ,wϵj).

i. Vanishing:
This case can be easily ruled out. If ‘vanishing’ happened, then G(zϵj ,wϵj) would approach

to zero as j →∞, which contradicts to G(zϵj ,wϵj) =−1. A detailed proof was given in [28,
lemma 3.2] for an almost identical argument.
ii. Dichotomy:

To rule out ‘dichotomy’, we follow the usual steps if ‘dichotomy’ happens. Following
the ideas in the proof of [28, lemma 3.4], we let a fixed function φ(x) ∈ C∞

0 (R) such that
supp(φ)⊂ [−2,2] and φ ≡ 1 in [−1,1]. From the assumptions of ‘dichotomy’ with 0< θ < Ic,
we can choose sequences γj → 0,Rj →∞ such that

supp
(
ν1
j

)
⊂ BRj (xj) , supp

(
ν2
j

)
⊂ R \B2Rj (xj) ,

and

limsup
j→∞

(∣∣∣∣θ−ˆ
R
dν1

j

∣∣∣∣+ ∣∣∣∣(Ic− θ)−
ˆ
R
dν2

j

∣∣∣∣)= 0 ,

which implies that

limsup
j→∞

(ˆ
B2Rj (xj)\BRj (xj)

dνj

)
= 0 .

Based on those properties, if we let φj(x) = φ((x− xj)/Rj), then we can establish a splitting
for the sequence (zϵj ,wϵj) by

(zϵj ,wϵj) =
(
zϵj1 ,w

ϵj
1

)
+
(
zϵj2 ,w

ϵj
2

)
with (

zϵj1 ,w
ϵj
1

)
= (zϵj ,wϵj)φj, ,

(
zϵj2 ,w

ϵj
2

)
= (zϵj ,wϵj)(1−φj) ,

and show that as j →∞,

Iϵj (zϵj ,wϵj) = Iϵj
(
zϵj1 ,w

ϵj
1

)
+ Iϵj

(
zϵj2 ,w

ϵj
2

)
+ o(1) ,

G(zϵj ,wϵj) = G
(
zϵj1 ,w

ϵj
1

)
+G

(
zϵj2 ,w

ϵj
2

)
+ o(1) .

The proof of the splitting properties is referenced to the same proof in [28, lemma 3.3]. Then,
by a same proof as that in [28, lemma 3.4], it is obtained that

lim
j→∞

(
Iϵj (zϵj ,wϵj)− Iϵj

(
zϵj1 ,w

ϵj
1

)
− Iϵj

(
zϵj2 ,w

ϵj
2

))
= 0 ,

lim
j→∞

(
G(zϵj ,wϵj)−G

(
zϵj1 ,w

ϵj
1

)
−G

(
zϵj2 ,w

ϵj
2

))
= 0 .
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Letλϵj,i =
∣∣G(zϵji ,wϵji )∣∣ for i = 1,2.We show thatλi = limj→∞λϵj,i ̸= 0. If one of those limits

is zero, without loss of generality, let λ1 = 0, which implies that λ2 = 1. Then, consider

(
z̃ϵj2 , w̃

ϵj
2

)
= λ

− 1
p+2

ϵj,2

(
zϵj2 ,w

ϵj
2

)
,

so that G(
(
z̃ϵj2 , w̃

ϵj
2

)
=−1. By the construction of

(
zϵj1 ,w

ϵj
1

)
, it is deduced that

Ic = lim
j→∞

(
Iϵj
(
zϵj1 ,w

ϵj
1

)
+ Iϵj

(
zϵj2 ,w

ϵj
2

))
⩾ lim

j→∞

(ˆ
BRj (xj)

dνj+λ
2

p+2

ϵj,2 I
ϵj
(
z̃ϵj2 , w̃

ϵj
2

))

⩾ lim
j→∞

(ˆ
R
dν1

j +λ
2

p+2

ϵj,2 I
ϵj (zϵj ,wϵj)

)
= θ+ Ic,

where the fact that Iϵj (zϵj ,wϵj) is the minimum of Iϵj (z,w) with G(z,w) =−1 has been used.
Since θ > 0, the above inequality gives a contradiction. Thus, λi ̸= 0 for i = 1,2. Hence, we
can define

(
z̃ϵji , w̃

ϵj
i

)
= λ

− 1
p+2

ϵj,i

(
zϵji ,w

ϵj
i

)
for i = 1,2 .

which gives G(
(
z̃ϵji , w̃

ϵj
i

)
=−1 (here we note that G

(
z̃ϵji , w̃

ϵj
i

)
=±1. Since G(zϵj ,wϵj) =−1,

then for j large, G
(
zϵji ,w

ϵj
i

)
must be nonzero and negative). Moreover,

Ic = lim
j→∞

(
Iϵj
(
zϵj1 ,w

ϵj
1

)
+ Iϵj

(
zϵj2 ,w

ϵj
2

))
= lim

j→∞

(
λ

2
p+2

ϵj,1 I
ϵj
(
zϵj1 ,w

ϵj
1

)
+λ

2
p+2

ϵj,2 I
ϵj
(
z̃ϵj2 , w̃

ϵj
2

))
⩾ lim

j→∞

(
λ

2
p+2

ϵj,1 I
ϵj (zϵj ,wϵj)+λ

2
p+2

ϵj,2 I
ϵj (zϵj ,wϵj)

)
⩾
(
λ

2
p+2

1 +λ
2

p+2

2

)
Ic

where, again, the fact that Iϵj (zϵj ,wϵj) is the minimum of Iϵj (z,w) with G(z,w) =−1 has been

used. Hence, 1⩾
(
λ

2
p+2

1 +λ
2

p+2

2

)
with λi > 0, j = 1,2, and λ1 +λ2 = 1, which contradicts to

the strictly concave property of the function λ
2

p+2 for p⩾ 1. Therefore, ‘dichotomy’ is ruled
out.
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iii. Compactness:
Finally, by theorem 2.1, only ‘compactness’ holds. Then, in the following, we show that

there is a subsequence of (zϵj ,wϵj) (which we still denote the same), a sequence of points
{xj} ∈ R, and (z0,w0) ∈ H1(R)×H1(R), such that the translated functions

(z̃ϵj , w̃ϵj) = (zϵj (·+ xj) ,w
ϵj (·+ xj))

converge to (z0,w0) strongly in H1(R)×H1(R). The proof is similar to the proof of [28, the-
orem 3.3] with some modifications.

It is known that

lim
j→∞

Iϵj (zϵj ,wϵj) = Ic and G(zϵj ,wϵj) =−1 .

‘Compactness’ implies that there is a sequence {xj} ∈ R such that for a given γ > 0, there
exists an R> 0 satisfyingˆ

BR(xj)
dνj ⩾ Ic− γ for all j = 1,2, . . . .

Define

ρ̃j (x) = ρj (x+ xj) , (z̃ϵj (x) , w̃ϵj (x)) = (zϵj (x+ xj) ,w
ϵj (x+ xj)) ,

which have the same properties as (zϵj ,wϵj) withˆ
BR(0)

ρ̃j (x)dx=
ˆ
BR(xj)

dνj ⩾ Ic− γ for all j = 1,2, . . . ,

or
ˆ
R\BR(0)

ρ̃j (x)dx=
ˆ
R\BR(xj)

dνj ⩽ 2γ for all j = 1,2, . . . . (B.1)

Since (z̃ϵj(x), w̃ϵj(x)) is uniformly bounded in H1(R)×H1(R), Sobolev imbedding theorem
shows that there is a subsequence of (z̃ϵj(x), w̃ϵj(x)) (denoted by the same notations) and
(z0,w0) ∈ H1(R)×H1(R) such that as j →∞,

(z̃ϵj , w̃ϵj)⇀ (z0,w0) in H1 (R)×H1 (R) and L2 (R)×L2 (R) ,
(z̃ϵj , w̃ϵj)→ (z0,w0) in L2

loc (R)×L2
loc (R) ,

(z̃ϵj , w̃ϵj)→ (z0,w0) a.e. in R2 .

Then, it is deduced from (B.1) that
ˆ
R
|z0 (x) |2dx⩽ liminf j→∞

ˆ
R
|̃zϵj (x) |2dx

⩽ liminf j→∞

ˆ
BR(0)

|̃zϵj (x) |2dx+Cγ

=

ˆ
BR(0)

|z0 (x) |2dx+Cγ ⩽
ˆ
R
|z0 (x) |2dx+Cγ ,

whereC> 0 is a fixed constant whichmay depend on the constants in Iϵj (z,w), but independent
of γ. Hence,

liminf j→∞

ˆ
R
|̃zϵj (x) |2dx=

ˆ
R
|z0 (x) |2dx
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By the weak convergence of z̃ϵj to z0 in L2(R), there is a subsequence of z̃ϵj (still denoted same)
such that z̃ϵj → z0 strongly in L2(R). Similar argument works for w̃ϵj → w0 strongly in L2(R).
Hence, the uniform boundedness of Iϵj (zϵj ,wϵj) yields that z̃ϵj − w̃ϵj → 0 in L2(R) and w0 = z0.
Then, the Sobolev embedding theorem implies that

G(z0,w0) = lim
j→∞

G(z̃ϵj , w̃ϵj) =−1 ,

which gives

lim
j→∞

Iϵj (z0,w0)⩾ lim
j→∞

Iϵj (zϵj ,wϵj) = Ic .

Moreover, for ε> 0 small, the weak convergence of (z̃ϵj , w̃ϵj) to (z0,w0) in H1(R)×H1(R)
yields that if we denote

IIϵ (z,w) =
ˆ
R

(
(z−ω (ε)w)2 +

(
1−ω2 (ε)

)
ε−

2
p+1w2

)
dy

+

ˆ
R

(
|c|
(
z ′ − bω (ε)

|c|
w ′
)2

+

(
ac− b2ω2 (ε)

|c|

)
(w ′)

2

)
dy ,

then

0⩽ lim
j→∞

IIϵj (z̃ϵj − z0, w̃
ϵj −w0) = lim

j→∞
(IIϵj (z̃ϵj , w̃ϵj)− IIϵj (z0,w0))

⩽ lim
j→∞

(Iϵj (z̃ϵj , w̃ϵj)− IIϵj (z0,w0)) = Ic− lim
j→∞

Iϵj (z0,w0)⩽ 0

where the facts that z0 = w0 in L2(R) and 1−ω(ε) = O(ε
2

p+2 ) have been used. Therefore,

lim
j→∞

IIϵj (z̃ϵj − z0, w̃
ϵj −w0) = 0 ,

which, together with L2-convergence of (z̃ϵj , w̃ϵj) to (z0,w0), yields that (z̃ϵj , w̃ϵj)→ (z0,w0) in
H1(R)×H1(R). The claim is proved. □

Appendix C. Global existence of (1.5) and proof of lemma 4.2

In this appendix, we will briefly give the proofs of global existence and uniqueness of (1.5)
and lemma 4.2.

C.1. Global well-posedness of (1.5)

We note that for p= 1, the local well-posedness of (1.5) are given in [7, theorem 2.5] and the
global existence is provided in [7, theorem 4.2] using the Hamiltonian structure of (1.5). For
general p⩾ 1, we will give a very brief account on the proof of the local and global results.

For local well-posedness of (1.5), the same procedure of the proof in [7, theorem 4.2] will
be followed. Using the same notations as those in [7], (1.5) is equivalent to(

v
w

)
= S(t)

(
v0
w0

)ˆ t

0
S(t− s)F

(
v
w

)
ds ,
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where only difference between the terms in the system of [7] and (1.5) is the function F,
which is

F

(
v
w

)
=−P−1

( (
I− b∂2

x

)−1
∂x
[
(v−w)pH (v+w)

](
I− b∂2

x

)−1
(
∂x (v−w)p+1

/(p+ 1)
)) .

Here, P−1,H are bounded operators in Hs(R)×Hs(R) or Hs(R) with s⩾ 0. Moreover, it is
straightforward to check that

F

(
0
0

)
=

(
0
0

)
and ∥∥∥∥F( f1g1

)
−F

(
f2
g2

)∥∥∥∥
Hs(R)×Hs(R)

⩽ CRp∥( f1,g1)− (f2,g2)∥Hs(R)×Hs(R)

where p⩾ 1, s> 1/2 and ( f1,g1),( f2,g2) are selected from a closed ball of radius R centered at
0 in the corresponding space. Then, the rest of the local well-posedness proof of (1.5) follows
exactly the same way as the proof of [7, theorem 2.5] using the contraction mapping theorem.
Hence, we can conclude that for any constant δ0 > 0, there is a real constant T0 > 0 depending
on δ0 such that if ∥(η0,u0)∥H1(R)×H1(R) ⩽ δ0, then the solution of (1.5) exists for t ∈ [0,T0]
satisfying that

∥(η (t, ·) ,u(t, ·))∥H1(R)×H1(R) ⩽ 2δ0

for all t ∈ [0,T0].
For the global existence result of (1.5), we can use the Hamiltonian structure of the system

together with the extension of the existence interval when initial conditions are small. In par-
ticular, by the Sobolev imbedding theorem, given any solution of (1.5) with t ∈ [0, t1], there
are two fixed positive constants c0,c1 independent of the solution such that for any t ∈ [0, t1],

c0∥(η,u)∥2H1(R)×H1(R)

(
1− c1∥(η,u)∥pH1(R)×H1(R)

)
⩽H

(
η
u

)
=H

(
η0
u0

)
.

Therefore, if 1− c1∥(η,u)∥pH1(R)×H1(R) ⩾ 1/2 or ∥(η,u)∥H1(R)×H1(R) ⩽ (1/(2c1))1/p, then

∥(η,u)∥H1(R)×H1(R) ⩽
(

2
c0
H

(
η0
u0

))1/2

with H

(
η0
u0

)
⩾ 0 .

From the local well-posedness result stated above, we select δ0 > 0 with 2δ0 ⩽ (1/(2c1))1/p

and let the initial condition satisfying

∥(η0,u0)∥H1(R)×H1(R) ⩽ δ0 and

(
2
c0
H

(
η0
u0

))1/2

⩽ δ0 .

Then, the solution of (1.5) exists for t ∈ [0,T0] and satisfies ∥(η,u)∥H1(R)×H1(R) ⩽ δ0 for all
t ∈ [0,T0]. Hence, from the local well-posedness result again, we can extend the solution to
[0,2T0]. Continuing this procedure yields a global solution for t ∈ [0,∞), which is unique and
satisfies ∥(η,u)∥H1(R)×H1(R) ⩽ δ0 for all t ∈ [0,∞).
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C.2. The proof of lemma 4.2

In this subsection, we will provide a brief idea of the proof of lemma 4.2.
Let (ψω0 ,vω0) ∈ Gω0 and ω be close to ω0. We need to show that there is a minimizer

(ψω,vω) near (ψω0 ,vω0) satisfying the required conditions. First write

(ψω,vω) = (ψω0 ,vω0)+ (ψ,v) and consider (ψω0 +ψ ,vω0 + v)+ t
(
ψ̃ , ṽ

)
where t is small and (ψ̃ , ṽ) is arbitrary. Then,

G
(
ψω0 +ψ + tψ̃ ,vω0 + v+ tṽ

)
=

2
p+ 1

(ˆ
R
ψω0v

p+1
ω0

dx

+

ˆ
R
ψω0

(
(vω0 + v+ tṽ)p+1 − vp+1

ω0

)
dx+

ˆ
R

(
ψ + tψ̃

)
(vω0 + v+ tṽ)p+1 dx

)
=−1+

2
p+ 1

(ˆ
R
ψω0

(
(vω0 + v+ tṽ)p+1 − vp+1

ω0

)
dx+

ˆ
R

(
ψ + tψ̃

)
(vω0 + v+ tṽ)p+1 dx

)
=−(1− g) .

Hence, to find a minimizer near (ψω0 ,vω0) for (2.1) locally, we need to consider the function

1

(1− g)
1

p+2

(
ψω0 +ψ + tψ̃ ,vω0 + v+ tṽ

)
and make the minimum of

Iω (t) =
1

(1− g)
2

p+2

[ˆ
R

((
ψω0 +ψ + tψ̃

)2
− c

(
ψ ′

ω0
+ψ ′ + tψ̃ ′

)2

+(vω0 + v+ tṽ)2 − a
(
v ′ω0

+ v ′ + tṽ ′
)2)

dx

−2ω
ˆ
R

((
ψω0 +ψ + tψ̃

)
(vω0 + v+ tṽ)+ b

(
ψ ′

ω0
+ψ ′ + tψ̃ ′

)(
v ′ω0

+ v ′ + tṽ ′
))

dx

]
.

Thus, we can take the t-derivative of Iω(t) and let t= 0 to get variational equations for (ψ ,v).
Since (ψ̃, ṽ) is arbitrary in X, we can obtain a system of (ψω0 +ψ ,vω0 + v), which is an
unscaled version of (3.6), i.e.

(ψω0 +ψ )+ c(ψω0 +ψ )
′ ′ −ω (vω0 + v)+ωb(vω0 + v) ′ ′

+ 2
(p+2)(p+1)(1−g)|t=0

(vω0 + v)p+1
= 0 ,

(vω0 + v)+ (vω0 + v) ′ ′ −ω (ψω0 +ψ )+ a(ψω0 +ψ )
′ ′

+ 2
(p+2)(1−g)|t=0

(ψω0 +ψ )(vω0 + v)p = 0 .

(C.1)

It is known that when ω−ω0 = 0, (C.1) has a solution (ψ ,v) = (0,0). Then, we use a similar
idea in appendix A and linearize (C.1) around (ψω0 ,vω0) to obtain a unique solution (ψ ,v)
when ω−ω0 is small. The detailed argument can be found in appendix A. Since the solution
of (C.1) near zero is unique and Iω has a minimum when ω is near ω0, such a solution of (C.1)
must be a minimizer of (2.1), at least locally. Moreover, since the system (C.1) depends on
ω analytically, the solution (ψ,v) is continuously differentiable with respect to ω for small
enough ω−ω0.
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