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Abstract Over the past 25 years, the critical length phenomenon for the Korteweg-
de Vries (KdV) equation has been challenging. After Rosier’s pioneering work
in 1997, some authors tried to find boundary conditions that would guarantee the
characterization of the critical set explicitly. In this chapter, we will give some results
in this sense and present new results that complement previous results in the literature
for the KdV equation considering Neuman boundary conditions.

1 Introduction

It is well known today that formulating the waves as a free boundary problem of the
incompressible, irrotational Euler equation in an appropriate non-dimensional form,
there exist two non-dimensional parameters 𝛿 := ℎ

𝜆
and 𝜀 := 𝑎

ℎ
, where the water

depth, the wavelength and the amplitude of the free surface are parameterized as
ℎ, 𝜆 and 𝑎, respectively. See, for instance, [1, 3, 4, 17] and references therein for a
rigorous justification. Moreover, another non-dimensional parameter 𝜇 appears, the
Bond number, to measure the importance of gravitational forces compared to surface
tension forces also appears.

Considering the physical condition 𝛿 ≪ 1 we can characterize the waves, called
long waves or shallow water waves. In particular, considering the relations between
𝜀 and 𝛿, we can have the KdV regime: 𝜀 = 𝛿2 ≪ 1 and 𝜇 ≠ 1

3 . Under this regime,
Korteweg and de Vries [16]1 derived the following well-known equation as a central
equation among other dispersive or shallow water wave models called the KdV
equation from the equations for capillary-gravity waves:
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1 This equation was first introduced by Boussinesq [5], and Korteweg and de Vries rediscovered it
twenty years later.
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±2𝜂𝑡 + 3𝜂𝜂𝑥 +
(

1
3
− 𝜇

)
𝜂𝑥𝑥𝑥 = 0.

Today, it is well known that this equation has an important phenomenon that
directly affects the control problem, the so-called critical length phenomenon. Let us
briefly present the control problem, which makes the phenomenon of critical lengths
emerge. The control problem was presented in a pioneering work of Rosier [19] that
studied the following system

𝑢𝑡 + 𝑢𝑥 + 𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0 in (0, 𝐿) × (0, 𝑇),
𝑢(0, 𝑡) = 0, 𝑢(𝐿, 𝑡) = 0, 𝑢𝑥 (𝐿, 𝑡) = 𝑔(𝑡) in (0, 𝑇),
𝑢(𝑥, 0) = 𝑢0 (𝑥) in (0, 𝐿),

(1)

where the boundary value function 𝑔(𝑡) is considered as a control input. Precisely,
the author answered the following problem for the system (1), giving the origin of
the critical length phenomenon for the KdV equation.

Exact controllability problem: Given 𝑇 > 0 and 𝑢0, 𝑢𝑇 ∈ 𝐿2 (0, 𝐿), can one find
an appropriate control input 𝑔(𝑡) ∈ 𝐿2 (0, 𝑇) such that the corresponding solution
𝑢(𝑥, 𝑡) of (1) satisfies

𝑢(𝑥, 0) = 𝑢0 (𝑥) and 𝑢(𝑥, 𝑇) = 𝑢𝑇 (𝑥)? (2)

In this chapter, our motivation is, first, to present a review of the main results
of the literature concerning the critical length phenomenon for the KdV equation.
Moreover, we will announce new results in the study of this phenomenon for this
kind of dispersive system under a suitable set of boundary conditions.

1.1 How does the critical length phenomenon appear?

To present the main results concerning the critical length phenomenon for the KdV
equation we need to understand how this phenomenon appears. As well known in the
literature [18] to prove exact controllability for the system (1) is equivalent to prove
an observability inequality for the linearized system associated with (1). To prove it
we use, in general, the multipliers method and compactness arguments which reduce
the problem to show a unique continuation property for the state operator.

To show a unique continuation property, in our context, we reduce our problem to
the study of the spectral problem associated with the linear operator under consider-
ation. Specifically, after taking the Fourier transform, the issue is to establish when
a certain quotient of entire functions still turns out to be an entire function. We then
pick a polynomial function 𝑞 : C→ C and a family of functions

𝑁𝛼 : C × (0,∞) → C,
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with 𝛼 ∈ C \ {0}, whose restriction 𝑁𝛼 (·, 𝐿) is entire for each 𝐿 > 0. Next, we
consider a family of functions 𝑓𝛼 (·, 𝐿), defined by

𝑓𝛼 (𝜇, 𝐿) =
𝑁𝛼 (𝜇, 𝐿)
𝑞(𝜇) ,

in its maximal domain. The problem is then reduced to determine 𝐿 > 0 for which
there exists 𝛼 ∈ C\{0} such that 𝑓𝛼 (·, 𝐿) is entire. In some works, see for example [8,
9, 19], and the reference therein, this approach provides an explicit characterization
of the set of critical lengths if it exists, however, in several cases, the set can not be
obtained explicitly [2, 7, 13]. With this in mind, let us present a summary of the
main results that have used this approach.

This chapter contains three sections including the introduction. Section 2 is de-
voted to giving a state-of-the-art critical set phenomenon for the KdV equation
considering several sets of boundary conditions. Finally, in Section 3, we present
two new results that improve previous results in the literature.

2 Overview of critical set phenomenon: KdV equation

The study of control (and stabilization) for the KdV equation began with the Russel
and Zhang work’s [21, 22, 23, 25] in which they studied internal control of the KdV
equation posed on a finite domain (0, 𝐿) with periodic boundary conditions. Since
then, control and stabilization of the KdV equation have been intensively studied
(see [11, 14, 15, 19, 20, 24] and references therein). So, in the next subsection, let us
present the main results related to the control problem, and consequently, with the
critical set phenomenon for the KdV equation.

2.1 Dirichelet-Neumann boundary conditions

Concerning the control problem introduced at the beginning of this work, Rosier
[19] studied boundary control of the KdV equation posed on the finite domain (0, 𝐿)
with the Dirichlet boundary conditions (1). He considered first the associated linear
system 

𝑢𝑡 + 𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0 in (0, 𝐿) × (0, 𝑇),
𝑢(0, 𝑡) = 0, 𝑢(𝐿, 𝑡) = 0, 𝑢𝑥 (𝐿, 𝑡) = 𝑔(𝑡) in (0, 𝑇),
𝑢(𝑥, 0) = 𝑢0 (𝑥) in (0, 𝐿)

(3)

and discovered the so-called critical length phenomenon; whether the system (3) is
exactly controllable depends on the length 𝐿 of the spatial domain (0, 𝐿).
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Theorem 1 (Rosier [19]) The linear system (3) is exactly controllable in the space
𝐿2 (0, 𝐿) if and only if the length 𝐿 of the spatial domain (0, 𝐿) does not belong to
the set

N :=
{

2𝜋
√

3

√︁
𝑘2 + 𝑘𝑙 + 𝑙2 : 𝑘, 𝑙 ∈ N∗

}
. (4)

The controllability result of the linear system was then extended to the nonlinear
system when 𝐿 ∉ N .

Theorem 2 (Rosier [19]) Let 𝑇 > 0 be given and assume 𝐿 ∉ N . There exists 𝛿 > 0
such for any 𝑢0, 𝑢𝑇 ∈ 𝐿2 (0, 𝐿) with | |𝑢0 | |𝐿2 (0,𝐿) + ||𝑢𝑇 | |𝐿2 (0,𝐿) ≤ 𝛿, one can find
a control input 𝑔 ∈ 𝐿2 (0, 𝑇) such that the nonlinear system (1) admits a unique
solution 𝑢 ∈ 𝐶 ( [0, 𝑇]; 𝐿2 (0, 𝐿)) ∩ 𝐿2 (0, 𝑇 ; 𝐻1 (0, 𝐿)) satisfying (2).

In the case of 𝐿 ∈ N , Rosier proved in [19] that the associated linear system (3)
is not controllable; there exists a finite-dimensional subspace of 𝐿2 (0, 𝐿), denoted
by M = M(𝐿), which is unreachable from 0 for the linear system. More precisely,
for every nonzero state 𝜓 ∈ M, 𝑔 ∈ 𝐿2 (0, 𝑇) and 𝑢 ∈ 𝐶 ( [0, 𝑇]; 𝐿2 (0, 𝐿)) ∩
𝐿2 (0, 𝑇 ; 𝐻1 (0, 𝐿)) satisfying (3) and 𝑢(·, 0) = 0, one has 𝑢(·, 𝑇) ≠ 𝜓. A spatial
domain (0, 𝐿) is called critical for the system (3) if its domain length 𝐿 ∈ N .

When the spatial domain (0, 𝐿) is critical, one usually would not expect the
corresponding nonlinear system (1) to be exactly controllable as the linear system
(3) is not. It thus came as a surprise when Coron and Crépeau showed in [14] that
the nonlinear system (1) is still locally exactly controllable even though its spatial
domain is critical with its length 𝐿 = 2𝑘𝜋 and 𝑘 ∈ N∗ satisfying

�(𝑚, 𝑛) ∈ N∗ × N∗ with 𝑚2 + 𝑚𝑛 + 𝑛2 = 3𝑘2 and 𝑚 ≠ 𝑛.

For those values of 𝐿, the unreachable space M of the associated linear system is a
one-dimensional linear space generated by the function 1 − 𝑐𝑜𝑠(𝑥). As for the other
types of critical domains, the nonlinear system (1) was shown later by Cerpa [10],
and Cerpa and Crépeau in [12] to be local, large time exactly controllable.

Theorem 3 (Crépeau and Cerpa [10, 12]) Let 𝐿 ∈ N be given. There exists a
𝑇𝐿 > 0 such that for any 𝑇 > 𝑇𝐿 there exists 𝛿 > 0 such for any 𝑢0, 𝑢𝑇 ∈ 𝐿2 (0, 𝐿)
with | |𝑢0 | |𝐿2 (0,𝐿) + ||𝑢𝑇 | |𝐿2 (0,𝐿) ≤ 𝛿, there exists 𝑔 ∈ 𝐿2 (0, 𝑇) such that the system
(1) admits a unique solution 𝑢 ∈ 𝐶 ( [0, 𝑇]; 𝐿2 (0, 𝐿)) ∩ 𝐿2 (0, 𝑇 ; 𝐻1 (0, 𝐿)) satisfying
(2).

It is important to point out, that if we change the control of position in the
boundary condition of (3), for example

𝑢(0, 𝑡) = ℎ(𝑡), 𝑢(𝐿, 𝑡) = 0, 𝑢𝑥 (𝐿, 𝑡) = 0 in (0, 𝑇) (5)

or
𝑢(0, 𝑡) = 0, 𝑢(𝐿, 𝑡) = 𝑓 (𝑡), 𝑢𝑥 (𝐿, 𝑡) = 0 in (0, 𝑇), (6)

we can not characterize explicitly the critical sets for the KdV equation with the
boundary conditions (5) and (6). For details, we infer [11, 15].
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2.2 Neumann boundary conditions

After 97′, some authors tried to prove the critical set phenomenon for the KdV
equation with some boundary condition, we can cite, for example, [15, 13], and the
references therein. However, for this set considered in these works, the authors were
not allowed to characterize explicitly the set.

Twenty years later, in [8], another boundary condition was considered. The au-
thors introduced the KdV equation with Neumann conditions. Capistran-Filho et al.
investigated the following boundary control system

𝑢𝑡 + 𝑢𝑥 + 𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0 in (0, 𝐿) × (0, 𝑇),
𝑢𝑥𝑥 (0, 𝑡) = 0, 𝑢𝑥 (𝐿, 𝑡) = ℎ(𝑡), 𝑢𝑥𝑥 (𝐿, 𝑡) = 0 in (0, 𝑇),
𝑢(𝑥, 0) = 𝑢0 (𝑥) in (0, 𝐿).

(7)

First, the authors studied the following linearized system associated with (7),
𝑢𝑡 + (1 + 𝛽)𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0 in (0, 𝐿) × (0, 𝑇),
𝑢𝑥𝑥 (0, 𝑡) = 0, 𝑢𝑥 (𝐿, 𝑡) = ℎ(𝑡), 𝑢𝑥𝑥 (𝐿, 𝑡) = 0 in (0, 𝑇),
𝑢(𝑥, 0) = 𝑢0 (𝑥) in (0, 𝐿),

(8)

where 𝛽 is a given real constant. For any 𝛽 ≠ −1, considering the following set

R𝛽 :=

{
2𝜋√︁

3(1 + 𝛽)

√︁
𝑘2 + 𝑘𝑙 + 𝑙2 : 𝑘, 𝑙 ∈ N∗

}
∪
{

𝑘𝜋√︁
𝛽 + 1

: 𝑘 ∈ N∗

}
. (9)

The authors showed the following results:

Theorem 4 (Capistrano-Filho et al. [8])

(i) If 𝛽 ≠ −1, the linear system (8) is exactly controllable in the space 𝐿2 (0, 𝐿) if
and only if the length L of the spatial domain (0, 𝐿) does not belong to the set R𝛽 .

(ii)If 𝛽 = −1, then the system (8) is not exact controllable in the space 𝐿2 (0, 𝐿) for
any 𝐿 > 0.

The next theorem addressing the controllability of the nonlinear system (7) is
another result of the paper:

Theorem 5 (Capistrano-Filho et al. [8]) Let 𝑇 > 0, 𝛽 ≠ −1 and 𝐿 ∉ R𝛽 be given.
There exists a 𝛿 > 0 such that for any 𝑢0, 𝑢𝑇 ∈ 𝐿2 (0, 𝐿) with | |𝑢0 − 𝛽 | |𝐿2 (0,𝐿) +
||𝑢𝑇 − 𝛽 | |𝐿2 (0,𝐿) ≤ 𝛿, one can find a control input ℎ ∈ 𝐿2 (0, 𝑇) such that the system
(7) admits unique solution 𝑢 ∈ 𝐶 ( [0, 𝑇]; 𝐿2 (0, 𝐿)) ∩ 𝐿2 (0, 𝑇 ; 𝐻1 (0, 𝐿)) satisfying
(2).

Note that, as in [19], the set R𝛽 is completely characterized. Moreover, when
𝛽 = 0, N (see (4)) is a proper subset of R0. The linear system (8) has more critical
length domains than that of the linear system (3). In the case of 𝛽 = −1, every 𝐿 > 0
is critical for the system (8). By contrast, removing the term 𝑢𝑥 from the equation in
(3), every 𝐿 > 0 is not critical for the system (3).
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As usual, Theorems 4 and 5 were shown using the same approach that Rosier [19]
used to establish Theorems 1 and 2. However, in the case proved in [8], difficulties
appear that demand special attention. The adjoint system of the linear system (8) is
given by 

𝜓𝑡 + (1 + 𝛽)𝜓𝑥 + 𝜓𝑥𝑥𝑥 = 0 in (0, 𝐿) × (0, 𝑇),
(1 + 𝛽)𝜓(0, 𝑡) + 𝜓𝑥𝑥 (0, 𝑡) = 0 in (0, 𝑇),
(1 + 𝛽)𝜓(𝐿, 𝑡) + 𝜓𝑥𝑥 (𝐿, 𝑡) = 0 in (0, 𝑇),
𝜓𝑥 (0, 𝑡) = 0 in (0, 𝑇),
𝜓(𝑥, 𝑇) = 𝜓𝑇 (𝑥) in (0, 𝐿).

(10)

It is well known that the exact controllability of system (8) is equivalent to the
following observability inequality for the adjoint system (10):

| |𝜓𝑇 | |𝐿2 (0,𝐿) ≤ 𝐶 | |𝜓𝑥 (𝐿, ·) | |𝐿2 (0,𝑇 ) .

However, the usual multiplier method and compactness arguments as those used in
dealing with the system (10) only lead to

| |𝜓𝑇 | |2𝐿2 (0,𝐿) ≤ 𝐶1 | |𝜓𝑥 (𝐿, ·) | |2𝐿2 (0,𝑇 ) + 𝐶2 | |𝜓(𝐿, ·) | |2𝐿2 (0,𝑇 ) . (11)

One has to find a way to remove the extra term present in (11). For this, a technical
lemma is necessary which gives the hidden regularities (or sharp trace regularities)
for solutions of the adjoint system (10), for details see [8].

3 Neumann boundary conditions: New results

To end this chapter, we want to announce two results. First, observe that considering
the results proposed in [8], that is, Theorems 4 and 5, for the linearized system (8),
the natural question appears:

Question A: Given 𝑇 > 0, 𝐿 = 2𝑘𝜋, and 𝑢0, 𝑢𝑇 ∈ 𝐿2 (0, 𝐿), can one find an
appropriate control input ℎ(𝑡) ∈ 𝐿2 (0, 𝑇) such that the corresponding solution
𝑢(𝑥, 𝑡) of the system (7) satisfies (2)?

In this spirit, the following two results, presented in [6] give answers for Question
A. The first result ensures that for 𝛽 near enough to 0 (small perturbations of 0), the
system (7) is exactly controllable in a neighborhood of 𝛽 in 𝐿2 (0, 2𝑘𝜋), the result is
presented as follows:

Theorem 6 Let 𝐿 = 2𝑘𝜋. Then, there exists 𝜖 > 0 such that for every 𝛽 ∈ (0, 𝜖] the
system (8) is exactly controllable in 𝐿2 (0, 𝐿) and, consequently, system (7) is exactly
controllable in a neighborhood of 𝛽 in 𝐿2 (0, 𝐿).

The second result is a generalization of the previous one. Precisely, given 𝐿 ∈ R𝛽

(see (9)), for 𝑑 close enough to 𝛽, but not equal, 𝐿 does not belong to the set R𝑑 .
This generalization can be read below.
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Theorem 7 Let 𝑇 > 0, 𝛽 ≠ −1 and 𝐿 ∈ R𝛽 . There exists 𝜖𝛽 > 0 such that, for
every 𝑑 ∈ (𝛽 − 𝜖𝛽 , 𝛽) ∪ (𝛽, 𝛽 + 𝜖𝛽), 𝑑 ≠ −1, we have 𝐿 ∉ R𝑑 . Consequently, system
(8) (with 𝛽 = 𝑑) is exactly controllable in 𝐿2 (0, 𝐿) and the system (1) is exactly
controllable around of the steady state 𝑢 = 𝑑 in 𝐿2 (0, 𝐿).

The proof of these theorems is given in a very simple way and is based on
the topological properties of real numbers together with the Theorems 4 and 5,
completing in some sense the previous results given in [8].
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