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Abstract

The main goal of this manuscript is to prove the existence of insensitizing controls for the fourth-order 
dispersive nonlinear Schrödinger equation with cubic nonlinearity. To obtain the main result we prove a 
null controllability property for a coupled fourth-order Schrödinger cascade type system with zero-order 
coupling which is equivalent to the insensitizing control problem. Precisely, employing a new Carleman 
estimates, we first obtain a null controllability result for the linearized system around zero, and then the null 
controllability for the nonlinear case is extended using an inverse mapping theorem.
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1. Introduction

1.1. Setting of the problem

Inspired by the difficulties in finding data in distributed system applications, Lions [28] intro-
duced the topic of insensitizing controls. Precisely, this kind of problem deals with the existence 
of controls making a functional (depending on the solution) insensible to small perturbations of 
the initial data. Considering some particular functional, it has been proven that this problem is 
equivalent to control properties of cascade systems [4,20].

The insensitivity can be defined in two different ways: An approximate problem or an exact 
problem. Approximate insensitivity is equivalent to the approximate controllability of the cas-
cade system, while exact insensitivity is equivalent to its null controllability. Before giving the 
reader more details about it and a state-of-the-art related to these problems, let us introduce the 
model we want to study.

In this article, we address the exact insensitizing problem for the cubic fourth-order 
Schrödinger equation with mixed dispersion, the so-called fourth-order nonlinear Schrödinger 
system (4NLS)

iut + uxx − uxxxx = λ|u|2u, (1.1)

where x, t ∈ R and u(x, t) is a complex-valued function. Equation (1.1) has been introduced by 
Karpman [24] and Karpman and Shagalov [25] to take into account the role of small fourth-
order dispersion terms in the propagation of intense laser beams in a bulk medium with Kerr 
nonlinearity. Equation (1.1) arises in many scientific fields such as quantum mechanics, nonlinear 
optics, and plasma physics, and has been intensively studied with fruitful references (see [3,24,
31] and references therein).

To introduce our problem, consider � := (0, L) ⊂ R be an interval and assume that T > 0. 
We will use the following notations QT = � × (0, T ), � = ∂� × (0, T ) and ωT = ω × (0, T ), 
where ω ⊂ � is the so-called control domain. Let us consider the system⎧⎨⎩ iut + uxx − uxxxx − ζ |u|2u = f + 1ωh, in QT ,

u(t,0) = u(t,L) = ux(t,0) = ux(t,L) = 0, on t ∈ (0, T ),

u(0, x) = u0(x) + τ û0(x), in �,

(1.2)

where ζ ∈ R, τ is an unknown (small) real number, h stands for the control, u is the state function 
and û0(x) is an unknown function.

Let J : R × L2(qT ) → R be a functional (called sentinel functional) defined by

J (τ,h) := 1

2

¨

OT

|u(x, t; τ,h)|2dxdt, (1.3)

where u = u(x, t; τ, h) is the corresponding solution of (1.2) associated to τ , h is the control 
function and OT = O× (0, T ), where O is the so-called observation domain. Thus, our objective 
can be expressed in the definition below.

Definition 1 (Insensitizing controls). Let u0 ∈ L2(�) and f ∈ L2(QT ). We say that a control h
insensitizes the functional J , associated with the solution u(x, t; τ, h) of (1.2), if
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∂

∂τ
J (τ,h)

∣∣∣∣
τ=0

= 0, ∀ û0 ∈ L2(�) with ‖û0‖L2(�) = 1. (1.4)

The definition (1.3) above can be seen as this: the sentinel does not detect (small) variations of 
the initial data u0 provoked by the unknown (small) perturbation τ û0 in the observation domain 
O when the system evolves from a time t = 0 to a time t = T .

It is important to point out that in [30] the authors discuss the motivation for insensitizing 
controls considering linear and semilinear heat equations with partially unknown domains and 
state that the existence of such controls is important for maintaining the stability of the solutions 
and robustness against external variations and uncertainties. They suggest that it can ensure the 
system evolution is unaffected by parameter perturbations, guaranteeing predictable and stable 
operation, particularly in industrial and environmental contexts where conditions may vary.

Based on this motivation, we can also consider the general application of insensitizing con-
trols to the fourth order Schrödinger equation similarly since the existence of such controls aims 
to ensure robustness against perturbations, precision in quantum experiments, and stability in 
open systems. They may ensure that quantum systems maintain their desired properties and op-
erate predictably and stably, even amidst uncertainties and noise. Small variations in potentials 
or boundary conditions can cause significant changes in system behavior in quantum systems 
like atoms or molecules. In open systems interacting with external environments, smoothing 
noises and decoherence effects preserve quantum state coherence. Quantum technologies, such 
as sensors and atomic clocks, are extremely sensitive to external variations; thus, maintaining 
the precision and reliability of these devices enhances their performance and applicability across 
various technological fields.

Since the fourth-order Schrödinger equation incorporates phenomena with dispersion effects 
and complex interactions, these controls can ensure precision and stability in materials with 
strong spin-orbit interactions, exotic quantum systems, or advanced dispersion phenomena. It 
may be applied in open systems to mitigate noise and decoherence effects, ensuring precision 
in sensitive quantum technologies. Therefore, they are crucial for the robustness and accuracy 
of complex quantum systems. Now, before presenting the results of our work, let us give some 
previous results concerning the insensitizing control problems.

1.2. Insensitizing control problems for PDEs

As we have mentioned, the first time that insensitizing problem was approached was in the 
early ’90s by Lions [28,29], where the author studied second and fourth-order parabolic equa-
tions in limited domains considering a functional with the local L2-norm of the solution of a 
system with null initial data and where the control domain (located internally) intersect the ob-
servation domain (the set where we want to analyze the functional).

Since then, variations of this problem have been considered, i.e., to find controls that turn 
a functional depending on the solution (or some derivative) insensitive to small perturbations 
depending on the initial data. We will give a brief state of the art to the reader, precisely, we will 
present a sample of the insensitizing problems for partial differential equations (PDEs) and some 
control results to the system (1.1).

The first mathematical results concerned the insensitivity of the L2-norm of the solution 
restricted to a subdomain, called the observatory. In [11], the author proves that insensitizing con-
trol problems cannot be solved for every initial data. Additionally, de Tereza [14] used a global 
Carleman estimate approach to get the existence of exact insensitizing controls for a semilinear 
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heat equation. Still, concerning to the semilinear heat equation, Bodart et al. [4,5] proved the 
existence of insensitizing controls for this system with nonlinear boundary Fourier conditions.

Concerning the variations of the sentinel functional, in [20], the author considers a func-
tional involving the gradient of the state for a linear heat system, in the same way, Guerrero [22]
treated the case of the sentinel with the curl of the solution of a Stokes system. About the wave 
equation, Alabau-Boussouira [1], showed the exact controllability, by a reduced number of con-
trols, of coupled cascade systems of PDE’s and the existence of exact insensitizing controls for 
the scalar wave equation. She gave a necessary and sufficient condition for the observability of 
abstract-coupled cascade hyperbolic systems by a single observation, the observation operator 
being either bounded or unbounded.

A variation of the (exact) control strategy was presented in [4], where the authors considered 
an approximated insensitizing problem (called ε-insensitizing control) for a nonhomogeneous 
heat equation. We observe that by smoothing the control strategy it was possible to prove in [13]
positive results where the control domain and observation region do not intersect each other. 
Also in [10] the author proved insensitizing control results on unbounded domains, in [30] the 
authors treated insensitizing controls for both linear and semilinear heat equation but with a 
partially unknown domain, finally see [33] for the semilinear parabolic equation with dynamic 
boundary conditions. It is important to point out that in [23] the second author also treated it with 
a gradient-type sentinel associated with the solutions of a nonlinear Ginzburg-Landau equation.

Concerning the structure/type of the equations/systems, many variations were considered. In 
[8] the author treated insensitizing controls for the Boussinesq systems and in [7] the authors 
proved a result for a phase field system. In [17] it is considered a Cahn-Hilliard equation of 
fourth order with superlinear nonlinearity and in [16] the authors proved insensitizing (exact and 
approximated) controls for a large-scale ocean circulation model.

To finalize this small sample of the state of the art, we cite Bodart et al. [5,6] that studied 
systems with nonlinearities with certain superlinear growth and nonlinear terms depending on the 
state and its gradient. For a dispersive problem, we can cite Kumar and Chong [32] which worked 
with the KdV-Burgers equation. Finally, let us mention a recent work due to Lopez-Garcia et al. 
[12]. In this work, the authors presented a control problem for a cascade system of two linear 
N -dimensional Schrödinger equations. They address the problem of null controllability using a 
control supported in a region not satisfying the classical geometrical control condition. The proof 
is based on the application of a Carleman estimate with degenerate weights to each one of the 
equations and a careful analysis of the system to prove null controllability with only one control 
force.

We caution that the literature is vast and one can see the references cited previously for the 
existence of the insensitizing controls for other types of PDEs.

1.3. Main results

The main goal of this paper is to close the gap that was missing when discussing the insen-
sitizing control for the Schrödinger type equation. Here, we present the insensitizing control for 
the Schrödinger type equation with mixed dispersion. Precisely, we are interested in proving the 
existence of a control h which insensitizes the functional J defined by (1.3). The first result of 
this article can be read as follows.

Theorem 1.1. Assume that ω ∩O 	= ∅ and u0 ≡ 0. There exists a constant C > 0 and δ > 0 such 
that for any f satisfying
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‖eC/tf ‖L2(QT ) ≤ δ,

one can find a control h(x, t) =: h ∈ L2(qT ) which insensitizes the functional J defined by (1.3), 
in the sense of Definition 1.

As mentioned at the beginning of this work, the existence of insensitizing controls for (1.2)
can be defined equivalently by means of a null controllability problem for a cascade type system 
similar to the initial (1.2). Indeed, this process can be systematized when, in defining the func-
tional in (1.3), we study the condition given by (1.4). Precisely, by calculating the derivative in 
the sense of Gâteaux for the functional J restricted to τ = 0 and given that the functional is the 
localized L2 norm in O of the solution u, the insensitizing condition (1.4) implies that we can 
reformulate this by a null controllability problem for a coupled system which is (1.5). Through 
these calculations, it can be proved that the left-hand side of the second equation in (1.5) is the 
adjoint state of the derivative of (1.2) with respect to τ (at τ = 0). Thus, the right-hand side cou-
ples this last equation with the localized state 1Ou. We remark that different definitions for the 
functional also imply different coupling terms (see [20], we also commented this in Section 4.3). 
After this, to ensure that the insensitivity condition of the functional is satisfied, i.e., to ensure 
(1.4), it is sufficient to ensure that v|t=0 ≡ 0 in �.1

So, in this spirit, due to the choice of J , we will reformulate our goal as a partial null control-
lability problem to the nonlinear system of cascade type associated with (1.2). In other words:

Problem A: Can we find a control h(x, t) = h ∈ L2(qT ) such that the solutions (u, v) of the 
following optimality coupled system

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
iut + uxx − uxxxx − ζ |u|2u = f + 1ωh, in QT ,

ivt + vxx − vxxxx − ζu2v − 2ζ |u|2v = 1Ou, in QT ,

u(t,0) = u(t,L) = v(t,0) = v(t,L) = 0, on t ∈ (0, T ),

ux(t,0) = ux(t,L) = vx(t,0) = vx(t,L) = 0, on t ∈ (0, T ),

u(0, x) = u0(x), v(T , x) = 0, in �,

(1.5)

satisfies, in the time t = 0, v|t=0 = 0?

The answer to such a question motivates the next theorem, which is the main result of this 
paper.

Theorem 1.2. Assume that ω ∩ O 	= ∅ and the initial data u0 ≡ 0. Then, there exist positive
constants C and δ, depending on ω, �, O, ζ and T , such that for any f satisfying

‖eC/tf ‖L2(QT ) ≤ δ,

there exists a control h ∈ L2(qT ) such that the corresponding solution (u, v, h) of (1.5) satisfies 
v|t=0 = 0 in �.

1 See [4,28] for a rigorous deduction of this fact and [34] for an explicit computation to obtain the cascade system with 
a general nonlinearity for a Ginzburg-Landau equation.
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Thus, to find controls insensitizing the functional J , that is, to prove Theorem 1.1, it is suf-
ficient to prove the partial null controllability result given in Theorem 1.2. Therefore, from now 
on, we will concentrate on proving Theorem 1.2.

1.4. Heuristic and structure of the manuscript

Let us now explain the ideas to prove the results introduced in the last subsection. The main 
strategy adopted is based on duality arguments (see, e.g. [15,27]). Roughly speaking, we prove 
suitable observability inequalities for the solutions of an adjoint system, where the main tool is 
a new Carleman estimate. This Carleman estimate with the right-hand side in weight Sobolev 
spaces will be the key point to deal with the coupling terms of the linear system associated with 
(1.5).

In detail, to prove Theorem 1.2 we will first prove a null controllability result for the linearized 
system associated with (1.5) around zero, which is given by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

iut + uxx − uxxxx = f 0 + 1ωh, in QT ,

ivt + vxx − vxxxx = f 1 + 1Ou, in QT ,

u(t,0) = u(t,L) = v(t,0) = v(t,L) = 0, on t ∈ (0, T ),

ux(t,0) = ux(t,L) = vx(t,0) = vx(t,L) = 0, on t ∈ (0, T ),

u(0, x) = u0(x), v(T , x) = 0, in �.

(1.6)

Here, f 0 and f 1 are (small) source terms in appropriated Lp-weighted spaces. In order to prove 
it, we consider the adjoint system of (1.6), namely,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

iϕt + ϕxx − ϕxxxx = 1Oψ + g0, in QT ,

iψt + ψxx − ψxxxx = g1, in QT ,

ϕ(t,0) = ϕ(t,L) = ϕx(t,0) = ϕx(t,L) = 0, on t ∈ (0, T ),

ψ(t,0) = ψ(t,L) = ψx(t,0) = ψx(t,L) = 0, on t ∈ (0, T ),

ϕ(T , x) = 0,ψ(0, x) = ψ0(x), in �.

(1.7)

With this in hand, we can prove an observability inequality, with aspects like the one below,

¨

QT

ρ1(|ϕ|2 + |ψ |2)dxdt ≤ C

¨

ωT

ρ2|ϕ|2dxdt +
¨

QT

ρ3(|g0|2 + |g1|2)dxdt, (1.8)

where ρi , i = 1, 2, 3, are appropriate weights functions. Then, by duality approach, the desired 
partial null controllability property is a direct consequence of the (1.8) and can be read as follows.

Theorem 1.3. Assuming that ω ∩O 	= ∅ and the initial data u0 ≡ 0, there exists a positive con-
stant C, depending on δ, ω, �, O and T , such that for f 0 and f 1, in suitable weighted spaces, 
one can find a control h such that the associated solution (u, v) of (1.6) satisfies v|t=0 ≡ 0 in �.

The last step is to use an inverse mapping theorem to extend the previous result to the nonlinear 
system.

Remarks 1. Finally, the following comments are now given in order:
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1. In the Definition 1, it is important to point out that the data u0 will be taken conveniently, 
precisely, will be taken such that the functional J , given by (1.3), is well-defined.

2. On the Theorem 1.2, the smallness of f is related to the fact that we will apply a local 
inversion argument, that is, we first study this problem when a linearized form of equation 
(1.5) is considered and then we apply a local inversion mapping theorem.

3. We claim that Theorem 1.1 is equivalent to Theorem 1.2. In fact, considering (u, v) solu-
tion of (1.5) and using the boundary conditions of (1.5), a direct calculation leads us to the 
following

∂

∂τ
J (τ,h))

∣∣∣∣
τ=0

= −Re
ˆ

�

iû0v(0)dx. (1.9)

Therefore, we can conclude that the left-hand side of (1.9) is zero, for all ̂u0 ∈ L2(�) with 
‖û0‖L2(�) = 1, if and only if, v(0) = 0 in �.

4. It is worth mentioning that, in our work, we need a Carleman estimate with internal obser-
vation, differently from what was proven by Zheng [35]. Another interesting point is that in 
Zheng’s work, he proved the regularity of the solution of the 4NLS in the class

C1([0, T ];L2(�)) ∩ C0([0, T ];H 3(�) ∩ H 2
0 (�)),

which is also different in our case, we need more regular solutions (see Appendix A) to help 
us to use the inverse mapping theorem.

5. Finally, observe that our sentinel functional J is defined in the sense of L2-norm. If we want 
to insensitize a functional with a norm greater than L2, for example, ∂n

x u, for n ≥ 1, then we 
need a system coupled in the second equation of (1.5) in the form ∂n

x (1O∂n
x u), this means, 

the coupling has twice as many derivatives. More details about this kind of problem will be 
given in Section 4.

Our work is outlined in the following way: Section 2 is devoted to presenting a new Carleman 
estimate which will be the key to proving the main result of this manuscript. In Section 3, we 
show the null controllability results, that is, the linear case (Theorem 1.3) and the nonlinear one 
(Theorem 1.2). Section 4, we present further comments and some open problems that seem to 
be of interest from the mathematical point of view. Finally, for completeness, at the end of this 
paper, we have an Appendix A about the existence of solutions for the systems considered here.

2. Carleman estimates

In this section, we prove a new Carleman estimate to the fourth order Schrödinger operator 
∂4
xu − ∂2

xu. For the sake of simplicity, we will consider the operator L = ∂4
xu, that is, only with 

the higher term. So, to derive this new Carleman, first, let us introduce the basic weight function 
η(x) = (x − x0) with x0 < 0. Now, for λ > 1 and μ > 1 we define the following

θ = el, ξ(t, x) = e3μη(x)

t (T − t)
and l(t, x) = λ

e3μη(x) − e5μ||η||∞
t (T − t)

. (2.1)

Our result will be derived from a previous result due to Zheng [35], which can be seen as follows.
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Proposition 2.1. There exists three constants μ0 > 1, C0 > 0 and C > 0 such that for all μ > μ0
and for all λ ≥ C0(T + T 2),

¨

QT

(
λ7μ8ξ7θ2|u|2 + λ5μ6ξ5θ2|ux |2 + λ3μ4ξ3θ2|uxx |2 + λμ2ξθ2|uxxx |2

)
dxdt

≤C

⎛⎜⎝¨
QT

|θPu|2dxdt + λ3μ3

T̂

0

(ξ3θ2|uxx |2)(t,L)dt + λμ

T̂

0

(ξθ2|uxxx |2)(t,L)dt

⎞⎟⎠ ,

(2.2)

where Pu = i∂tu + ∂4
xu.

With the previous theorem in hand, we are in a position to prove a new Carleman estimate 
associated with the operator Lu. The result is stated in the following way.

Theorem 2.2. Let ω, O ⊂ � be open subsets such that ω ∩ O 	= ∅. Then, there exists a positive 
constant μ1, such that for any μ > μ1, one can find two positive constants λ1 and C depending 
on λ, μ, �, ω such that for any λ > λ1(T +T 2) the following estimate for ϕ and ψ of (2.4) holds

¨

QT

(
λ7μ8ξ7θ2|ϕ|2 + λ5μ6ξ5θ2|ϕx |2 + λ3μ4ξ3θ2|ϕxx |2 + λμ2ξθ2|ϕxxx |2

)
dxdt

+
¨

QT

(
λ7μ8ξ7θ2|ψ |2 + λ5μ6ξ5θ2|ψx |2 + λ3μ4ξ3θ2|ψxx |2 + λμ2ξθ2|ψxxx |2

)
dxdt

≤C

⎛⎜⎝¨
QT

θ2(|g0|2 + |g1|2)dxdt + λμ

¨

ωT

ξθ2|ϕ|2dxdt

⎞⎟⎠ . (2.3)

Before proving to prove this result, let us give the idea to derive (2.3). To do it, we split 
the proof into several steps. The first one consists of applying the Carleman estimate given by 
Proposition 2.1 for (ϕ, ψ) solutions of⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

iϕt + ϕxx − ϕxxxx = 1Oψ + g0, in QT ,

iψt + ψxx − ψxxxx = g1, in QT ,

ϕ(t,0) = ϕ(t,L) = ϕx(t,0) = ϕx(t,L) = 0, on t ∈ (0, T ),

ψ(t,0) = ψ(t,L) = ψx(t,0) = ψx(t,L) = 0, on t ∈ (0, T ),

ϕ(T , x) = 0,ψ(0, x) = ψ0, in �.

(2.4)

The second step concerns the estimate for a local integral term of ψ in terms of a local integral 
of ϕ and global integral terms of g0, g1, ϕ, ψ and smaller order terms of ψ . Finally, we will 
estimate integral terms on the border in terms of the global integral of ϕ, ψ , and smaller order 
integral terms.

Proof of Theorem 2.2. In what follows, remember that � ⊂ R is a bounded domain whose 
boundary ∂� is regular enough. Consider T > 0, ω and O to be two nonempty subsets of �. 
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Additionally, as defined at the beginning of this work QT = � × (0, T ), ωT = ω × (0, T ), �T =
∂� × (0, T ), OT = O × (0, T ) and denote by C a generic constant which can be different from 
one computation to another. Thus, let us split the proof into three steps.

Step 1: Applying Carleman estimates (2.2).

Thanks to (2.2) we have, for ϕ and ψ , solution of (2.4), that

¨

QT

(
λ7μ8ξ7θ2|ϕ|2 + λ5μ6ξ5θ2|ϕx |2 + λ3μ4ξ3θ2|ϕxx |2 + λμ2ξθ2|ϕxxx |2

)
dxdt

≤ C

⎛⎜⎝¨
QT

θ2|ϕxx |dxdt +
¨

QT

θ2|g0|2dxdt +
¨

OT

θ2|ψ |2dxdt

+λ3μ3

T̂

0

(ξ3θ2|ϕxx |2)(t,L)dt + λμ

T̂

0

(ξθ2|ϕxxx |2)(t,L)dt

⎞⎠ .

(2.5)

For λ, μ large enough, we obtain

¨

QT

(
λ7μ8ξ7θ2|ϕ|2 + λ5μ6ξ5θ2|ϕx |2 + λ3μ4ξ3θ2|ϕxx |2 + λμ2ξθ2|ϕxxx |2

)
dxdt

≤ C

⎛⎜⎝¨
QT

θ2|g0|2dxdt +
¨

OT

θ2|ψ |2dxdt + λ3μ3

T̂

0

(ξ3θ2|ϕxx |2)(t,L)dt

+λμ

T̂

0

(ξθ2|ϕxxx |2)(t,L)dt

⎞⎠ .

(2.6)

Now, applying (2.2) for ψ , we get that

¨

QT

(
λ7μ8ξ7θ2|ψ |2 + λ5μ6ξ5θ2|ψx |2 + λ3μ4ξ3θ2|ψxx |2 + λμ2ξθ2|ψxxx |2

)
dxdt

≤ C

⎛⎜⎝¨
QT

θ2|ψxx |dxdt +
¨

QT

θ2|g1|2dxdt +
¨

OT

|ψ |2dxdt

+λ3μ3

T̂

0

(ξ3θ2|ϕxx |2)(t,L)dt + λμ

T̂

0

(ξθ2|ϕxxx |2)(t,L)dt

⎞⎠ .

(2.7)

Again, by using (2.7) for λ, μ large enough we have the following:
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¨

QT

(
λ7μ8ξ7θ2|ψ |2 + λ5μ6ξ5θ2|ψx |2 + λ3μ4ξ3θ2|ψxx |2 + λμ2ξθ2|ψxxx |2

)
dxdt

≤ C

⎛⎜⎝¨
QT

θ2|g1|2dxdt + λ3μ3

T̂

0

(ξ3θ2|ψxx |2)(t,L)dt + λμ

T̂

0

(ξθ2|ψxxx |2)(t,L)dt

⎞⎟⎠ .

(2.8)

Note that, putting together (2.6) and (2.8), we obtain the following estimate

¨

QT

(
λ7μ8ξ7θ2|ϕ|2 + λ5μ6ξ5θ2|ϕx |2 + λ3μ4ξ3θ2|ϕxx |2 + λμ2ξθ2|ϕxxx |2

)
dxdt

+
¨

QT

(
λ7μ8ξ7θ2|ψ |2 + λ5μ6ξ5θ2|ψx |2 + λ3μ4ξ3θ2|ψxx |2 + λμ2ξθ2|ψxxx |2

)
dxdt

≤ C

⎛⎜⎝¨
QT

θ2|g0|2dxdt +
¨

QT

θ2|g1|2dxdt +
¨

OT

θ2|ψ |2dxdt

+ λ3μ3

T̂

0

(ξ3θ2(|ϕxx |2 + |ψx |2))(t,L)dt + λμ

T̂

0

(ξθ2(|ϕxxx |2 + |ψxxx |2))(t,L)dt.

(2.9)

Step 2: Estimates for the local integral of ψ .

In this step, let us estimate the last term in the right-hand side of (2.9), that is, the local integral 
term of ψ in OT . Now, since ω ∩O 	= ∅, there exists ω̃T ⊂ ω ∩O. From now on, take a cut-off 
function η ∈ C∞

0 (ω) such that η ≡ 1 in ω̃T . Observe that

ψ = −iϕt + ϕxx − ϕxxxx − g0, in OT ,

so

¨

OT

θ2|ψ |2dxdt ≤
¨

ω̃T

ηθ2|ψ |2dxdt =
¨

ω̃T

ηθ2ψψdxdt

= Re

¨

ω̃T

ηθ2ψ
(
−iϕt + ϕxx − ϕxxxx − g0

)
dxdt

:=
4∑

i=1

�i,

(2.10)

where �i , for i = 1, 2, 3, 4, are the integrals of the right-hand side of (2.10). We now estimate 
these terms. For �1, integrating by parts in t we have that
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�1 = Re

¨

ω̃T

ηθ2ψ(−iϕt )dxdt = Re
⎜⎝(ηθ2ψ(−iϕ)

) ∣∣∣∣T
0

−
¨

QT

(
ηθ2ψ
)

t
(−iϕ)dxdt

⎟⎠

= Re

⎛⎜⎝−
¨

ω̃T

(
ηθ2
)

t
ψ(−iϕ)dxdt −

¨

ω̃T

ηθ2ψt(−iϕ)dxdt

⎞⎟⎠ .

(2.11)

Since,

|(θm)t | = |(eml)t | = |eml(ml)t | = |meml(l)t | ≤ mCλT ξ2θm,

then, for m = 2, we get that |(ηθ2)t | ≤ Cλξ2θ2, and by using Young inequality we obtain

Re

⎛⎜⎝−
¨

ω̃T

(
ηθ2
)

t
ψ(−iϕ)dxdt

⎞⎟⎠≤ CRe

⎛⎜⎝λ

¨

ω̃T

ξ2θ2ψϕdxdt

⎞⎟⎠

= Re

⎛⎜⎝¨
ω̃T

(
λ

7
2 μ4ξ

7
2 θψ
)(

Cλ− 5
2 μ−4ξ− 3

2 ϕ
)

dxdt

⎞⎟⎠
≤ δλ7μ8

¨

QT

ξ7θ2|ψ |2dxdt + Cλ−5μ−8
¨

ω̃T

ξ−3|ϕ|2dxdt.

(2.12)

Combining (2.11) with (2.12), we get

�1 = Re

⎛⎜⎝−
¨

ω̃T

ηθ2ψt(−iϕ)dxdt

⎞⎟⎠
+ δλ7μ8

¨

QT

ξ7θ2|ψ |2dxdt + Cλ−5μ−8
¨

ω̃T

ξ−3|ϕ|2dxdt.

(2.13)

So, for δ small enough we can absorb the global integral term of (2.13) with the left-hand side 
of (2.9). Due to the boundary conditions for ψ and ϕ and since η has compact support on ω̃ by 
integrating by parts for space variable, we obtain

�2 = Re

¨

ω̃T

ηθ2ψϕxxdxdt = Re

⎛⎜⎝¨
ω̃T

(
ηθ2ψ
)

xx
ϕdxdt

⎞⎟⎠

= Re

⎛⎜⎝¨ (ηθ2
)

xx
ψϕdxdt + 2

¨ (
ηθ2
)

x
ψxϕdxdt +

¨
ηθ2ψxxϕdxdt

⎞⎟⎠

ω̃T ω̃T ω̃T
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=
3∑

i=1

�2,i . (2.14)

To bound each term of the right-hand side of (2.14) first observe that the following estimates, for 
the derivative in space of the weight function θ , hold true∣∣∣(θ2

)
x

∣∣∣= ∣∣∣(e2l
)

x

∣∣∣= ∣∣∣e2l (2l)x

∣∣∣= 2
∣∣∣θ2lx

∣∣∣≤ Cλμξθ2

and ∣∣∣(θ2
)

xx

∣∣∣= ∣∣∣(e2l
)

xx

∣∣∣= ∣∣∣(e2l (2l)x

)
x

∣∣∣= 2
∣∣∣(θ2lx

)
x

∣∣∣
≤ 4
∣∣∣θ2l2

x

∣∣∣+ 2
∣∣∣θ2lxx

∣∣∣≤ 4θ2|lx |2 + 2θ2|lxx |
≤ Cλ2μ2ξ2θ2 + Cλμξ2θ2 ≤ Cλ2μ2ξ2θ2.

Therefore, it yields that

�2,1 = Re

⎛⎜⎝¨
ω̃T

(
ηθ2
)

xx
ψϕdxdt

⎞⎟⎠≤ Re

⎛⎜⎝Cλ2μ2
¨

ω̃T

ξ2θ2ψϕdxdt

⎞⎟⎠

= Re

⎛⎜⎝¨
ω̃T

(
λ

7
2 μ4ξ

7
2 θψ
)(

Cλ− 3
2 μ−2ξ− 3

2 θϕ
)

dxdt

⎞⎟⎠
≤ δλ7μ8

¨

QT

ξ7θ2|ψ |2dxdt + Cλ−3μ−4
¨

ω̃T

ξ−3θ2|ϕ|2dxdt

(2.15)

and

�2,2 = 2Re

⎛⎜⎝¨
ω̃T

(
ηθ2
)

x
ψxϕdxdt

⎞⎟⎠≤ Re

⎛⎜⎝Cλμ

¨

ω̃T

ξθ2ψϕdxdt

⎞⎟⎠

= 2Re

⎛⎜⎝¨
ω̃T

(
λ

5
2 μ3ξ

5
2 θψx

)(
Cλ− 3

2 μ−2ξ− 3
2 θϕ
)

dxdt

⎞⎟⎠
≤ δλ5μ6

¨

QT

ξ5θ2|ψx |2dxdt + Cλ−3μ−4
¨

ω̃T

ξ−3θ2|ϕ|2dxdt.

(2.16)

Finally, �2,3 does not need to be estimated since we use it to obtain the equation for ψ . Now, 
combining (2.14), (2.15) and (2.16) we get
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¨

�2 ≤ Cλ−3μ−4

ω̃T

ξ−3θ2|ϕ|2dxdt

+ δ

⎛⎜⎝λ7μ8
¨

QT

ξ7θ2|ψ |2dxdt + λ7μ8
¨

QT

ξ7θ2|ψ |2dxdt + λ7μ8
¨

QT

ξ7θ2|ψxx |2dxdt

⎞⎟⎠ .

(2.17)

For �3 we use the boundary conditions and integrate with respect to the space variable four 
times to obtain

�3 =Re

¨

ω̃T

ηθ2ψ(−ϕxxxx)dxdt = Re

⎛⎜⎝¨
ω̃T

(
ηθ2ψ
)

xxxx
(−ϕ)dxdt

⎞⎟⎠

=Re

⎛⎜⎝¨
ω̃T

(
ηθ2
)

xxxx
ψϕdxdt + 4

¨

ω̃T

(
ηθ2
)

xxx
ψxϕdxdt + 6

¨

ω̃T

(
ηθ2
)

xx
ψxxdxdt

⎞⎟⎠

+ Re

⎛⎜⎝4
¨

ω̃T

(
ηθ2
)

x
ψxxxϕdxdt +

¨

ω̃T

ηθ2 (−ψxxxx

)
ϕdxdt

⎞⎟⎠
=

5∑
i=1

�3,i .

(2.18)

Now our task is to estimate these terms. Observe that we have the following estimates in space 
variable for k-th order derivative in space variable for the weight function θ ,∣∣∣(θ2

)
kx

∣∣∣≤ 2kC
(
λkμkξk

)
θ2,

thus

�3,1 = Re

⎛⎜⎝¨
ω̃T

(
ηθ2
)

xxxx
ψϕdxdt

⎞⎟⎠

≤ Re

⎛⎜⎝Cλ4μ4
¨

ω̃T

ξ4θ2ψϕdxdt

⎞⎟⎠

= Re

⎛⎜⎝¨ (λ 7
2 μ4ξ

7
2 θψ
)(

Cλ
1
2 ξ

1
2 θϕ
)

dxdt

⎞⎟⎠

ω̃T
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≤ δλ7μ8
¨

QT

ξ7θ2|ψ |2dxdt + Cλ

¨

ω̃T

ξθ2|ϕ|2dxdt, (2.19)

�3,2 = Re

⎛⎜⎝4
¨

ω̃T

(
ηθ2
)

xxx
ψxϕdxdt

⎞⎟⎠

≤ Reλ3μ3

⎛⎜⎝¨
ω̃T

ξ3θ2ψxϕdxdt

⎞⎟⎠

= Re

⎛⎜⎝¨
ω̃T

(
λ

5
2 μ3ξ

5
2 θψx

)(
Cλ

1
2 ξ

1
2 θϕ
)

dxdt

⎞⎟⎠
≤ δλ5μ6

¨

QT

ξ5θ2|ψx |2dxdt + Cλ

¨

ω̃T

ξθ2|ϕ|2dxdt,

(2.20)

�3,3 = Re

⎛⎜⎝6
¨

ω̃T

(
ηθ2
)

xx
ψxxdxdt

⎞⎟⎠

≤ Re

⎛⎜⎝Cλ2μ2
¨

ω̃T

ξ2θ2ψxxdxdt

⎞⎟⎠

= Re

⎛⎜⎝¨
ω̃T

(
λ

3
2 μ2ξ

3
2 θψxx

)(
Cλ

1
2 ξ

1
2 θϕ
)

dxdt

⎞⎟⎠
≤ δλ3μ4

¨

QT

ξ3θ2|ψxx |2dxdt + Cλ

¨

ω̃T

ξθ2|ϕ|2dxdt

(2.21)

and

�3,4 = Re

⎛⎜⎝4
¨

ω̃T

(
ηθ2
)

x
ψxxxϕdxdt

⎞⎟⎠

≤ Re

⎛⎜⎝Cλμ

¨

ω̃T

ξθ2ψxxxϕdxdt

⎞⎟⎠

= Re

⎛⎜⎝¨ (λ 1
2 μξ

1
2 θψxxx

)(
Cλ

1
2 ξ

1
2 θϕ
)

dxdt

⎞⎟⎠

ω̃T
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≤ δλμ2
¨

QT

ξθ2|ψxxx |2dxdt + Cλ

¨

ω̃T

ξθ2|ϕ|2dxdt. (2.22)

We do not estimate �3,5 since we use this term to obtain the equation for ψ . By putting (2.19), 
(2.20), (2.21) and (2.22) in (2.18), we conclude

�3 ≤ Re

⎛⎜⎝¨
ω̃T

ηθ2ψxxxxϕdxdt

⎞⎟⎠+ Cλ

¨

ω̃T

ξθ2|ϕ|2dxdt

+ δ

⎛⎜⎝¨
QT

[
λ7μ8ξ7θ2|ψ |2 + λ5μ6ξ5θ2|ψx |2 + λ3μ4ξ3θ2|ψxx |2 + λμ2ξθ2|ψxxx |2

]
dxdt

⎞⎟⎠ .

(2.23)

Finally, for �4 we get

�4 = Re

¨

ω̃T

ηθ2ψ
(
−g0
)

dxdt

≤ δλ7μ8
¨

QT

ξ7θ2|ψ |2dxdt + Cλ−7μ−8
¨

QT

ξ−7θ2|g0|2dxdt.

(2.24)

Combining (2.10), (2.13), (2.17), (2.23) and (2.24) we get

¨

OT

θ2|ψ |2dxdt

≤ C

⎛⎜⎝λ

¨

ω̃T

ξθ2|ϕ|2dxdt + λ−3μ−4
¨

ω̃T

ξ−3θ2|ϕ|2dxdt + λ−5μ−8
¨

ω̃T

ξ−3|ϕ|2dxdt

⎞⎟⎠

+ Re

⎛⎜⎝¨
ω̃T

ηθ2ϕ
(
iψt + ψxx − ψxxxx

)
dxdt

⎞⎟⎠+ Cλ−7μ−8
¨

QT

ξ−7θ2|g0|2dxdt

+ δ

⎛⎜⎝¨
QT

[
λ7μ8ξ7θ2|ψ |2 + λ5μ6ξ5θ2|ψx |2 + λ3μ4ξ3θ2|ψxx |2 + λμ2ξθ2|ψxxx |2

]
dxdt

⎞⎟⎠ .

(2.25)

Since we get iψt + ψxx − ψxxxx = −iψt + ψxx − ψxxxx = g1 in QT and
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Re
⎜⎝¨

ω̃T

ηθ2ϕg1dxdt
⎟⎠≤ δλ7μ8

¨

QT

ξ7θ2|ϕ|2dxdt + Cλ−7μ−8
¨

QT

ξ−7θ2|g1|2dxdt, (2.26)

then, putting together (2.25) and (2.26), yields that

¨

OT

θ2|ψ |2dxdt ≤ Cλ−7μ−8
¨

QT

ξ−7θ2
(
|g0|2 + |g1|2

)
dxdt + δλ7μ8

¨

QT

ξ7θ2|ϕ|2dxdt

+ C

⎛⎜⎝λ

¨

ω̃T

ξθ2|ϕ|2dxdt + λ−3μ−4
¨

ω̃T

ξ−3θ2|ϕ|2dxdt + λ−5μ−8
¨

ω̃T

ξ−3|ϕ|2dxdt

⎞⎟⎠

+ δ

⎛⎜⎝¨
QT

[
λ7μ8ξ7θ2|ψ |2 + λ5μ6ξ5θ2|ψx |2 + λ3μ4ξ3θ2|ψxx |2 + λμ2ξθ2|ψxxx |2

]
dxdt

⎞⎟⎠ .

(2.27)

Combining (2.9) with (2.27) we obtain the following

¨

QT

(
λ7μ8ξ7θ2|ϕ|2 + λ5μ6ξ5θ2|ϕx |2 + λ3μ4ξ3θ2|ϕxx |2 + λμ2ξθ2|ϕxxx |2

)
dxdt

+
¨

QT

(
λ7μ8ξ7θ2|ψ |2 + λ5μ6ξ5θ2|ψx |2 + λ3μ4ξ3θ2|ψxx |2 + λμ2ξθ2|ψxxx |2

)
dxdt

≤ C

⎛⎜⎝¨
QT

θ2
(
|g0|2 + |g1|2

)
dxdt + λ−7μ−8

¨

QT

ξ−7θ2
(
|g0|2 + |g1|2

)
dxdt

⎞⎟⎠

+ C

⎛⎜⎝λ

¨

ω̃T

ξθ2|ϕ|2dxdt + λ−3μ−4
¨

ω̃T

ξ−3θ2|ϕ|2dxdt + λ−5μ−8
¨

ω̃T

ξ−3|ϕ|2dxdt

⎞⎟⎠

+ δ

⎛⎜⎝¨
QT

[
λ7μ8ξ7θ2(|ϕ|2 + |ψ |2) + λ5μ6ξ5θ2|ψx |2 + λ3μ4ξ3θ2|ψxx |2

+ λμ2ξθ2|ψxxx |2
]
dxdt

⎞⎟⎠
+ C

⎛⎝λ3μ3

T̂ (
ξ3θ2
(
|ϕxx |2 + |ψxx |2

))
(t,L)dt
0
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+λμ

T̂

0

(
ξθ2
(
|ϕxxx |2 + |ψxxx |2

))
(t,L)dt

⎞⎠ .

Then, for λ, μ large enough and δ small enough we get

¨

QT

(
λ7μ8ξ7θ2|ϕ|2 + λ5μ6ξ5θ2|ϕx |2 + λ3μ4ξ3θ2|ϕxx |2 + λμ2ξθ2|ϕxxx |2

)
dxdt

+
¨

QT

(
λ7μ8ξ7θ2|ψ |2 + λ5μ6ξ5θ2|ψx |2 + λ3μ4ξ3θ2|ψxx |2 + λμ2ξθ2|ψxxx |2

)
dxdt

≤ C

⎛⎜⎝¨
QT

θ2
(
|g0|2 + |g1|2

)
dxdt + λ

¨

ω̃T

ξθ2|ϕ|2dxdt

⎞⎟⎠
+ Cλ3μ3

T̂

0

(ξ3θ2(|ϕxx |2 + |ψxx |2))(t,L)dt + Cλμ

T̂

0

(
ξθ2
(
|ϕxxx |2 + |ψxxx |2

))
(t,L)dt

=: I +B1 +B2.

(2.28)

Step 3: Estimates of the boundary terms.

Now, we will find an estimate for the boundary term on the right-hand side of (2.28), precisely, 
B1 and B2. Using trace Theorem (note that 5/2 < 7/2) we have

B1 = Cλ3μ3

T̂

0

(
ξ3θ2
(
|ϕxx |2 + |ψxx |2

))
(t,L)dt

≤ Cλ3μ3

T̂

0

(
ξ3θ2
)

(t,L)

(
‖ϕ‖2

H
5
2 (ω̃T )

+ ‖ψ‖2

H
5
2 (ω̃T )

)
dt

≤ Cλ3μ3

T̂

0

(
ξ3θ2
)

(t,L)

(
‖ϕ‖2

H
7
2 (ω̃T )

+ ‖ψ‖2

H
7
2 (ω̃T )

)
dt

(2.29)

and

B2 = Cλμ

T̂

0

(
ξθ2
(
|ϕxxx |2 + |ψxxx |2

))
(t,L)dt

≤ Cλ3μ3

T̂ (
ξ3θ2
)

(t,L)

(
‖ϕ‖2

H
7
2 (ω̃T )

+ ‖ψ‖2

H
7
2 (ω̃T )

)
dt.

(2.30)
0
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So, putting together (2.29) and (2.30), yields that

B1 +B2 ≤ Cλ3μ3

T̂

0

(ξ3θ2)(t,L)

(
‖ϕ‖2

H
7
2 (ω̃T )

+ ‖ψ‖2

H
7
2 (ω̃T )

)
dt. (2.31)

Using interpolation in the Sobolev spaces Hs(�), for s ≥ 0, yields that

B1 +B2 ≤ C1λ
3μ3

T̂

0

(
ξ3θ2
)

(t,L)‖ϕ‖
21
11

H
11
3 (ω̃T )

‖ϕ‖
1
11
L2(ω̃T )

dt

+ C1λ
3μ3

T̂

0

(
ξ3θ2
)

(t,L)‖ψ‖
21
11

H
11
3 (ω̃T )

‖ψ‖
1
11
L2(ω̃T )

dt

= C1λ
3μ3

T̂

0

(
ξ

255
22 ξ− 189

22 θ
86
22 θ− 42

22

)
(t,L)‖ϕ‖

21
11

H
11
3 (ω̃T )

‖ϕ‖
1
11
L2(ω̃T )

dt

+ C1λ
3μ3

T̂

0

(
ξ

255
22 ξ− 189

22 θ
86
22 θ− 42

22

)
(t,L)‖ψ‖

21
11

H
11
3 (ω̃T )

‖ψ‖
1
11
L2(ω̃T )

dt

≤ Cελ
6μ6

T̂

0

(ξ255θ86)(t,L)‖ϕ‖2
L2(ω̃T )

dt

+ ελ−2μ−2

T̂

0

(
ξ− 189

21 θ−2
)

(t,L)‖ϕ‖2

H
11
3 (ω̃T )

dt

+ Cελ
6μ6

T̂

0

(
ξ255θ86

)
(t,L)‖ψ‖2

L2(ω̃T )
dt

+ ελ−2μ−2

T̂

0

(
ξ− 189

21 θ−2
)

(t,L)‖ψ‖2

H
11
3 (ω̃T )

dt,

or equivalently,

B1 +B2 ≤ Cελ
6μ6

T̂

0

(
ξ255θ86

)
(t,L)‖ϕ‖2

L2(ω̃T )
dt

+ ελ−2μ−2

T̂ (
ξ−9θ−2

)
(t,L)‖ϕ‖2

H
11
3 (ω̃T )

dt
0
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+ Cελ
6μ6

T̂

0

(
ξ255θ86

)
(t,L)‖ψ‖2

L2(ω̃T )
dt

+ ελ−2μ−2

T̂

0

(
ξ−9θ−2

)
(t,L)‖ψ‖2

H
11
3 (ω̃T )

dt

=: I1 + I2 + I3 + I4, (2.32)

for some positive constant Cε .
At this moment, our goal is to prove integrals Ii , for i = 1, 2, 3, can be absolved by the left-

hand side of (2.28). Let us start with the analysis of I2, precisely the quantity

T̂

0

(
ξ−9θ−2

)
(t,L)‖ϕ‖2

H
11
3 (ω̃T )

dt.

Consider ϕ1(t, x) := ξ1(t)ϕ(t, x) with

ξ1(t) = θ−1ξ− 1
2 .

Then ϕ1 satisfies the system⎧⎨⎩
−iϕ1t + ϕ1xx − ϕ1xxxx = f1 := ξ1t ϕ, in QT ,
ϕ1(t,0) = ϕ1(t,L) = ϕ1x(t,0) = ϕ1x(t,L) = 0, on (0, T ),
ϕ1(T , x) = 0, in �.

(2.33)

Now, observe that, since ϕx(t, 0) = 0 and |ξ1t | ≤ Cλξ
3
2 θ−1, we have

‖f1‖2
L2(QT )

≤ C

¨

QT

θ−2λ2ξ3|ϕ|2dxdt

≤ C

¨

QT

{
λ2ξ3|ϕ|2 + λ3|ϕx |2 + λ|ϕxx |2 + λ−1|ϕxxx |2

}
θ−2dxdt,

(2.34)

for some constant C > 0 and all s ≥ s0. Moreover, thanks to Appendix A, ϕ1 ∈ L2(0, T ; H 2(�)) ∩
C([0, T ]; L2(�)). Then, interpolating between L2(0, T ; H 2(�)) and L∞(0, T ; L2(�)), we infer 
that ϕ1 ∈ L2(0, T ; H 5/3(�)) and

‖ϕ1‖L2(0,T ;H 5/3(�)) ≤ C ‖f1‖L2(QT ) . (2.35)

Let ϕ2(t, x) := ξ2(t)ϕ(t, x) with

ξ2 = θ−1ξ− 5
2 .

Then v2 satisfies system (2.33) with f1 replaced by
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f2 := ξ2t ξ
−1
1 ϕ1.

Observe that 
∣∣∣θ2t θ

−1
1

∣∣∣≤ Cλ. Thus, we obtain

‖f2‖L2(0,T ;H 5/3(�)) ≤ Cλ‖ϕ1‖L2(0,T ;H 5/2(�)) . (2.36)

Now, by using that ϕ2 belongs to L2
(
0, T ;H 4(�)

)
and L∞ (0, T ;H 2(�)

)
, thanks to (A.4), and 

interpolating these two spaces, we have that

ϕ2 ∈ L2(0, T ;H 11/3(�)) ∩ L∞(0, T ;H 8/3(�))

with

‖ϕ2‖L2(0,T ;H 11/3(�))∩L∞(0,T ;H 8/3(�)) ≤ C ‖f2‖L2(0,T ;H 5/3(�)) . (2.37)

Thus we infer from (2.35)–(2.37), the following

‖ϕ2‖2
L2(0,T ;H 11/3(�))

≤ C1λ||f1||2L2(QT )

≤ C2

ˆ

QT

(
λ3ξ3|ϕ|2 + λ4|ϕx |2 + λ2|ϕxx |2 + |ϕxxx |2

)
θ−2dxdt.

(2.38)

Hence, replacing ϕ2 = θ−1ϕ− 9
2 in (2.38), for some constant C3 > 0, yields that

T̂

0

(ξ−9θ−2)(t,L)‖ϕ(t, ·)‖2
H 11/3(ω̃T )

dt

≤ C3

ˆ

QT

(
λ3ξ3|ϕ|2 + λ4|ϕx |2 + λ2|ϕxx |2 + |ϕxxx |2

)
θ−2dxdt.

(2.39)

Note that analogously we can infer the same relation for ψ , that is,

T̂

0

(ξ−9θ−2)(t,L)‖ψ(t, ·)‖2
H 11/3(ω̃T )

dt

≤ C3

ˆ

QT

(
λ3ξ3|ψ |2 + λ4|ψx |2 + λ2|ψxx |2 + |ψxxx |2

)
θ−2dxdt.

(2.40)

Therefore, adding (2.39) and (2.40), putting in (2.32) and, finally, comparing with (2.28), for λ
and μ large enough, yields that,
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¨

QT

(
λ7μ8ξ7θ2|ϕ|2 + λ5μ6ξ5θ2|ϕx |2 + λ3μ4ξ3θ2|ϕxx |2 + λμ2ξθ2|ϕxxx |2

)
dxdt

+
¨

QT

(
λ7μ8ξ7θ2|ψ |2 + λ5μ6ξ5θ2|ψx |2 + λ3μ4ξ3θ2|ψxx |2 + λμ2ξθ2|ψxxx |2

)
dxdt

≤ C

⎛⎜⎝¨
QT

θ2(|g0|2 + |g1|2)dxdt + λ

¨

ω̃T

ξθ2|ϕ|2dxdt

⎞⎟⎠ ,

(2.41)

since |(ξ255θ86)(t, L)| is bounded in terms of t ∈ [0, T ] due to the choices in (2.1), what guaran-
tees (2.3), and so the Carleman is shown. �
3. Null controllability results

In this section, we prove the existence of insensitizing controls for the linearized system (1.6). 
First, we need to obtain an estimate as in Theorem 2.2, with weights that remain bounded as 
t → T , i.e., have blow-up only in t = 0. For this purpose we introduce the new weights

σ = em, ν(t, x) = e3μη(x)

γ (t)
and m(t, x) = λ

e3μη(x) − e5μ||η||∞
γ (t)

,

σ ∗ = em∗
, ν∗(t) = min

x∈�

ν(x, t) and m∗(t) = min
x∈�

ν(x, t),

σ̂ = em̂, ν̂(t) = max
x∈�

ν(x, t) and m̂(t) = max
x∈�

ν(x, t),

(3.1)

where γ is given by

γ (t) =
{

t (T − t), 0 ≤ t ≤ T/2,

T 2/4, T /2 < t ≤ T .
(3.2)

Combining Carleman estimate (2.3) with classical energy estimates for the fourth order 
Schrödinger system, satisfied by ϕ and ψ , we can prove the following result.

Proposition 3.1. With the hypothesis of Proposition 2.2 the solution (ϕ, ψ) of (2.4) satisfies the 
following

||ϕ||L2(T /2,T ;L2(�)) + ||ϕx ||L2(T /2,T ;L2(�)) + ||ϕxx ||L2(T /2,T ;L2(�))

≤ ||(ϕ,ψ)||(L2(T /4,T /2;L2(�)))2 + ||(g0, g1)||(L2(T /2,T ;L2(�)))2

and

||ψ ||L2(T /2,T ;L2(�)) + ||ψx ||L2(T /2,T ;L2(�)) + ||ψxx ||L2(T /2,T ;L2(�))

≤ ||ψ || 2 2 + ||g1|| 2 2 .
L (T/4,T /2;L (�)) L (T /2,T ;L (�))
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Proof. Let us consider κ ∈ C1([0, T ]) such that

κ =
{

0, if t ∈ [0, T /4],
1, if t ∈ [T/2, T ].

Note that if (ϕ, ψ) is a solution for (2.4), so (κϕ, κψ) satisfies the following system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
i(κϕ)t + (κϕ)xx − (κϕ)xxxx = 1O(κψ) + κg0 + iκtϕ, in QT ,

i(κψ)t + (κψ)xx − (κψ)xxxx = κg1 + iκtψ, in QT ,

(κϕ)(t,0) = (κϕ)(t,L) = (κϕ)x(t,0) = (κϕ)x(t,L) = 0, on t ∈ (0, T ),

ψ(t,0) = (κψ)(t,L) = (κψ)x(t,0) = (κψ)x(t,L) = 0, on t ∈ (0, T ),

(κϕ)(T , x) = 0, (κψ)(T , x) = 0, in �.

(3.3)

Now, since κ, κt ∈ C([0, T ]) and C([0, T ]) ↪→ L∞(0, T ), moreover, κψ, κtψ ∈ L2(0, T ;
H 2

0 (�)). Then, for g1 ∈ L2(0, T ; H 2
0 (�)) we get that κψ to satisfy a fourth-order Schrödinger 

system equation with null data and right-hand side in L2(0, T ; H 2
0 (�)). Therefore, we get that

ˆ

�

|κ(t)ψ(t)|dx +
¨

QT

|κψx |dxdt +
¨

QT

|κψxx |dxdt

≤ C

⎛⎜⎝¨
QT

|κg1|dxdt +
¨

QT

|κtψ |dxdt

⎞⎟⎠ .

(3.4)

Multiplying the first equation of (3.3) by κϕ and integrating over � we obtain, after taking 
the real part and using Young inequality for the integral term of 1Oκψκϕ, that

−1

2

d

dt

ˆ

�

|κ(t)ϕ(t)|2 +
ˆ

�

|κϕx |2dx +
ˆ

�

|κϕxx |2dx

≤ C

⎛⎝ˆ
�

|κg0|2dx +
ˆ

�

|κtϕ|2dx +
ˆ

�

|κψ |2dx

⎞⎠+ δ

ˆ

O

|κϕ|2dx.

(3.5)

Finally, integrating (3.5) in [t, T ], combining with (3.4) and taking δ small enough, we get

ˆ

�

|κ(t)ϕ(t)|2dx+
¨

QT

|κϕx |2dxdt +
¨

QT

|κϕxx |2dxdt

≤ C

⎛⎜⎝¨
QT

|κ|2(g0|2 + |g1|)2dxdt +
¨

QT

|κt |2(ϕ|2 + |ψ |2)dxdt

⎞⎟⎠ .

(3.6)

Therefore, Proposition 3.1 is a consequence of equations (3.4) and (3.6). �
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As a consequence of the previous result, and due to the definition of (3.1), the following 
Carleman estimate, with new weight functions σ and ν, can be obtained.

Proposition 3.2. There exists a constant C(s, λ) := C > 0, such that every solution (ϕ, ψ) of 
(2.4) satisfies

¨

QT

(
λ7μ8ν7σ 2|ϕ|2 + λ5μ6ν5σ 2|ϕx |2 + λ3μ4ν3σ 2|ϕxx |2

)
dxdt

+
¨

QT

(
λ7μ8ν7σ 2|ψ |2 + λ5μ6ν5σ 2|ψx |2 + λ3μ4ν3σ 2|ψxx |2

)
dxdt

≤ C

⎛⎜⎝¨
QT

σ 2(|g0|2 + |g1|2)dxdt + λ

¨

ω̃T

νσ 2|ϕ|2dxdt

⎞⎟⎠ .

(3.7)

Proof. The result is consequence of Proposition 3.1. Indeed, noting that ξ = ν and l = m, for 
t ∈ [0, T/2], and since l is constant in [T/2, T ], yields that

T/2ˆ

0

ˆ

�

(
λ7μ8ν7σ 2|ϕ|2 + λ5μ6ν5σ 2|ϕx |2 + λ3μ4ν3σ 2|ϕxx |2

)
dxdt

+
T/2ˆ

0

ˆ

�

(
λ7μ8ν7σ 2|ψ |2 + λ5μ6ν5σ 2|ψx |2 + λ3μ4ν3σ 2|ψxx |2

)
dxdt

=
T/2ˆ

0

ˆ

�

(
λ7μ8ξ7θ2|ϕ|2 + λ5μ6ξ5θ2|ϕx |2 + λ3μ4ξ3θ2|ϕxx |2

)
dxdt

+
T/2ˆ

0

ˆ

�

(
λ7μ8ξ7θ2|ψ |2 + λ5μ6ξ5θ2|ψx |2 + λ3μ4ξ3θ2|ψxx |2

)
dxdt.

(3.8)

Additionally, for t ∈ [T/2, T ], we have that

T̂

T /2

ˆ

�

(
λ7μ8ξ7θ2|ϕ|2 + λ5μ6ξ5θ2|ϕx |2 + λ3μ4ξ3θ2|ϕxx |2

)
dxdt

+
T̂ ˆ (

λ7μ8ξ7θ2|ψ |2 + λ5μ6ξ5θ2|ψx |2 + λ3μ4ξ3θ2|ψxx |2
)

dxdt
T/2 �
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≤ C

⎛⎜⎝ T̂

T /2

ˆ

�

(|ϕ|2 + |ϕx |2 + |ϕxx |2 + |ψ |2 + |ψx |2 + |ψxx |2)dxdt

⎞⎟⎠

≤ C

⎛⎜⎝ T/2ˆ

T/4

ˆ

�

(|ϕ|2 + |ψ |2)dxdt +
T̂

T /2

ˆ

�

(|g0|2 + |g1|2)dxdt

⎞⎟⎠

≤ C

⎛⎜⎝ T/2ˆ

T/4

ˆ

�

ξ7θ2(|ϕ|2 + |ψ |2)dxdt +
T̂

T /2

ˆ

�

σ 2(|g0|2 + |g1|2)dxdt

⎞⎟⎠ , (3.9)

thanks to Proposition 3.1.
Finally, we note that

¨

QT

θ2(|g0|2 + |g1|2)dxdt + λ

¨

ω̃T

ξθ2|ϕ|2dxdt

≤ C

⎛⎜⎝¨
QT

σ 2(|g0|2 + |g1|2)dxdt + λ

¨

ω̃T

νσ 2|ϕ|2dxdt

⎞⎟⎠ .

(3.10)

Thus, the result follows from (2.3), (3.8), (3.9) and (3.10). �
Remark 3.1. We point out that Proposition 3.1 holds by taking the minimum of the weights on 
the left-hand side and maximum of the weights on the right-hand side of (3.4).

3.1. Null controllability: linear case

In what follows we use (3.7), from Proposition 3.2, to deduce the desired null controllability 
property. Denote L =L∗ = i∂t + ∂xx − ∂xxxx and introduce the following space

C =
{
(u, v,h); (σ̂ )−1u ∈ L2(QT ), (σ̂ )−1v ∈ L2(0, T ;H−2(�)), (ν̂)−

1
2 (σ̂ )−1h ∈ L2(qT ),

(ν∗)−
7
2 (σ ∗)−1(Lu − 1ωh) ∈ L2(QT ), (ν∗)−

7
2 (σ ∗)−1(L∗v − 1Ou) ∈ L2(0, T ;H−2(�)),

(ν̂)−2σ̂−1u ∈ L2(0, T ;H 4(�)) ∩ L∞(0, T ;H 2
0 (�)),

(ν̂)−2σ̂−1v ∈ L2(0, T ;H 2
0 (�)) ∩ L∞(0, T ;L2(�)), v|t=T = 0 in �

}
.

Remark 3.2. It is important to observe that C is a Banach space endowed with its natural norm. 
Additionally, as consequence from the definition of the set C, an element (u, v, h) ∈ C is such 
that v|t=0 = 0 in �. This holds since (ν̂)−2σ̂−1v belongs to L∞(0, T ; L2(�)) and (ν̂)−2σ̂−1

blow-up only at t = 0.

We are now in a position to prove the null controllability property for solutions of (1.6). The 
result can be read as follows.
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Theorem 3.3. Assume the same hypothesis of Proposition 3.2. Additionally, consider

(ν∗)−
7
2 (σ̂ )−1f 0 ∈ L2(QT ) and (ν∗)−

7
2 (σ̂ )−1f 1 ∈ L2(0, T ;H−2(�)). (3.11)

Therefore, we can find a control h(x, t) = h such that the associated solution (u, v) of⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
iut + uxx − uxxxx = f 0 + 1ωh, in QT ,

ivt + vxx − vxxxx = f 1 + 1Ou, in QT ,

u(t,0) = u(t,L) = v(t,0) = v(t,L) = 0, on t ∈ (0, T ),

ux(t,0) = ux(t,L) = vx(t,0) = vx(t,L) = 0, on t ∈ (0, T ),

u(0, x) = u0(x), v(T , x) = 0, in �,

(3.12)

satisfies (u, v, h) ∈ C. In particular, v|t=0 ≡ 0 in �.

Proof. We introduce the following spaces

R0 = {u ∈ H 2
0 (�); uxxxx ∈ H 2

0 (�)},
Y0 = C([0, T ];H 4(�)) ∩ C1([0, T ];H 2

0 (�))

and

Y1 = C([0, T ];H 2
0 (�)) ∩ C1([0, T ];H−2(�)).

Also, let us consider

P0 = {(ϕ,ψ)) ∈ Y1 × Y0 : L∗v − 1Ou ∈ L2(QT )}.

Thanks to Theorem A.2, P0 is nonempty. Moreover, from now on we will use L instead of L∗, 
since both are equal.

Now, define the bilinear form a : P0 × P0 → R by

a((ϕ̃, ψ̃), (ϕ,ψ)) := Re

⎛⎜⎝¨
QT

(σ̂ )2(Lϕ̂ − 1Oψ̂)(Lϕ − 1Oψ)dxdt +
¨

QT

(σ̂ )2(Lψ̂)(Lψ)dxdt

⎞⎟⎠

+ Re

⎛⎜⎝¨
ω̃T

ν̂(σ̂ )2ϕ̂ϕdxdt

⎞⎟⎠ ,

and the linear form G : P0 → R given by

〈G,(ϕ,ψ)〉 := Re

¨
f 0ϕdxdt +

T̂ 〈
f 1,ψ
〉
dt,
QT 0
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where 〈·, ·〉 denotes the duality between H−2(�) and H 2
0 (�). Thanks to Proposition 3.2, the 

bilinear form over P0 × P0, is sesquilinear, positive, and coercive. Let P be the completion 
of P0 with the norm induced by a(·, ·), in this case, P is a Hilbert space and a(·, ·) is well-
defined, continuous and coercive bilinear form on P × P . Now, by assumption (3.11) and also 
by Carleman estimate in Proposition 3.2, note that for all (ϕ, ψ) ∈ P0 we have

〈G,(ϕ,ψ)〉 = Re

¨

QT

f 0ϕdxdt +
T̂

0

〈
f 1,ψ
〉
dt

≤
⎛⎜⎝¨

QT

(ν∗)7(σ ∗)2(|ϕ|2 + |ψ |2)dxdt

⎞⎟⎠
1/2

×
⎛⎜⎝¨

QT

(ν∗)−7(σ ∗)−2|f 0|2dxdt +
T̂

0

(ν∗)−7(σ ∗)−2||f 1||2
H−2(�)

dt

⎞⎟⎠
1/2

≤ Ca((ϕ,ψ), (ϕ,ψ))1/2

⎛⎜⎝¨
QT

(ν∗)−7(σ ∗)−2|f 0|2dxdt

+
T̂

0

(ν∗)−7(σ ∗)−2||f 1||2
H−2(�)

dt

⎞⎠1/2

,

where we use Young inequality on the first inequality. Hence, G is a bounded functional on 
P0 and we can extend it continuously to a bounded functional on P due to the Hahn-Banach 
theorem. Therefore, from the fact that G is a bounded functional on P0 and a(·, ·) is a well-
defined, continuous, and coercive bilinear form on P ×P , we can use the Lax-Milgram’s lemma 
to conclude that the following variational problem

a((ϕ̂, ψ̂), (ϕ,ψ)) = 〈G,(ϕ,ψ)〉, ∀(ϕ,ψ) ∈ P, (3.13)

has a unique solution (ϕ̂, ψ̂) ∈ P × P .
Let us define (û, v̂, ĥ) by

⎧⎨⎩
û = (σ̂ )2(Lϕ̂ − 1Oψ̂), in QT ,
v̂ = (σ̂ )2Lψ̂, in QT ,
ĥ = −ν̂(σ̂ )2ϕ̂, in QT ,

(3.14)

remembering that L� = L. Thanks to (3.13) and (3.14), we have that

¨
(σ̂ )−2

(
|û|2 + |v̂|2 + (ν̂)−1|ĥ|2

)
dxdt = a

(
(ϕ̂, ψ̂), (ϕ̂, ψ̂)

)
< ∞.
QT
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Considering (ũ, ṽ) be a weak solution of

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
iũt + ũxx − ũxxxx = f 0 + 1ωh̃, in QT ,

iṽt + ṽxx − ṽxxxx = f 1 + 1Oũ, in QT ,

ũ(t,0) = ũ(t,L) = ṽ(t,0) = ṽ(t,L) = 0, on t ∈ (0, T ),

ũx(t,0) = ũx(t,L) = ṽx(t,0) = ṽx(t,L) = 0, on t ∈ (0, T ),

ũ(0, x) = 0, ṽ(T , x) = 0, in �,

(3.15)

with control h = ĥ and source terms f 0 and f 1, since h̃ ∈ L2(qT ), we have, from well-posed 
result given by Theorem A.2, that (ũ, ṽ) are well defined. In the following, we prove that the 
weak solution (û, û) is a solution by transposition. In fact, for every (ϕ, ψ) ∈ P0, it holds from 
(3.13) and (3.14) that

Re

¨

QT

f 0ϕdxdt +
T̂

0

〈
f 1,ψ
〉
H−2×H 2

0

dt + Re

¨

ω̃

ĥϕdxdt

= Re

¨

QT

û(Lϕ − 1Oψ)dxdt +
T̂

0

〈
v̂,Lψ
〉
H−2×H 2

0
dt.

(3.16)

From (3.16), we get that

Re

¨

QT

ûg0dxdt +
T̂

0

〈
v̂, g1
〉
H−2×H 2

0

dt = Re

¨

ω̃

ĥϕdxdt

+ Re

¨

QT

f 0ϕdxdt +
T̂

0

〈
f 1,ψ
〉
H−2×H 2

0

dt,

for all (g0, g1) ∈ L2(0, T ; H 1
0 (�)), that is, (û, v̂) = (ũ, ṽ).

Now on, we prove that solutions û and v̂ of (3.15) are, in fact, more regular. Let us start 
defining the functions

u∗ := (ν̂)−2(σ̂ )−1û, v∗ := (ν̂)−2(σ̂ )−1v̂,

f 0∗ := (ν̂)−2(σ̂ )−1(f 0 + ĥ1ω) and f 1∗ := (ν̂)−2(σ̂ )−1f 1.

It follows, from (3.12), that u∗, v∗, f 1∗ and f 2∗ satisfies the following system

⎧⎪⎪⎨⎪⎪⎩
i(u∗)t + (u∗)xx − (u∗)xxxx = f 0∗ + i

(
(ν̂)−2(σ̂ )−1

)
t
û, in QT ,

i(v∗)t + (v∗)xx − (v∗)xxxx = f 1∗ + 1Ou∗ + i
(
(ν̂)−2(σ̂ )−1

)
t
v̂, in QT ,

u∗ = v∗ = 0, in �,
(u ) = 0, (v )| = 0, in �.

(3.17)
∗ t=0 ∗ t=T

383



R.d.A. Capistrano–Filho and T.Y. Tanaka Journal of Differential Equations 416 (2025) 357–395
Now, since 
(
ν̂)−2(σ̂ )−1

)
t
≤ CT 2s(σ̂ )−1 we get that f 0∗ + i

(
(ν̂)−2(σ̂ )−1

)
t
û ∈ L2(Q) and also 

f 1∗ + i
(
(ν̂)−2(σ̂ )−1

)
t
v̂ ∈ L2(0, T ; H−2(�)). Now, using the results of Appendix A, for (3.17), 

we obtain

u∗ ∈ L2(0, T ;H 4(�)) ∩ L∞(0, T ;H 2
0 (�))

and

v∗ ∈ L2(0, T ;H 2(�)) ∩ L∞(0, T ;L2(�)).

This finishes the proof of Theorem 3.3. �
3.2. Null controllability: nonlinear case

In this section, we use an inverse mapping theorem to obtain the existence of insensitizing 
controls for the fourth-order nonlinear Schrödinger equation (1.5). We invite the reader to see the 
result below as well as additional comments on [2].

Theorem 3.4 (Inverse mapping theorem). Let B1 and B2 be two Banach spaces and let

Y : B1 → B2

satisfying Y ∈ C1(B1, B2). Assume that b1 ∈ B1, Y(b1) = b2 and

Y ′(b1) : B1 → B2

is surjective. Then, there exists δ > 0 such that, for every b′ ∈ B2 satisfying

||b′ − b2||B2 < δ,

there exists a solution of the equation

Y(b) = b′, b ∈ B1.

Finally, we will give the proof of the main result of this manuscript.

Proof of Theorem 1.2. Consider, in Theorem 3.4, the following

B1 = C and B2 = L2((ν̂)−6(σ̂ )−3(0, T );L2(�)) × L2((ν̂)−6(σ̂ )−3(0, T );H−2(�)).

Define the operator

Y : B1 → B2

such that

Y(u, v,h) := (Lu − ζ |u|2u − 1ωh , Lv − ζu2v − ζ |u|2v − 1Ou).
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Claim 1. Operator Y belongs to C1(B1, B2).

Indeed, first note that all terms of Y are linear except: |u|2u, u2v and |u|2v. So, the Claim 1
is equivalent to prove that the trilinear operator given by

((u1, v1, h1), (u2, v2, h2), (u3, v3, h3)) �→ u1u2v3 (3.18)

and

((u1, v1, h1), (u2, v2, h2), (u3, v3, h3)) �→ u1u2v3 (3.19)

are continuous maps from C3 to L2((ν̂)−6(σ̂ )−1(0, T ); L2(�)). However, (ui, vi, hi) ∈ C, thus 
we get that

(ν̂)−2(σ̂ )−1ui ∈ L2(0, T ;H 4((�)) ∩ L∞(0, T ;H 2
0 (�)) ↪→ L6(QT )

and

(ν̂)−2(σ̂ )−1vi ∈ L2(0, T ;H 2((�)) ∩ L∞(0, T ;L2(�)) ↪→ L6(QT )

since we are working on an unidimensional case. At this point, we have fixed λ and μ such that2

B2 ⊂ L2((ν∗)−
7
2 (σ ∗)−1(0, T );L2(�)) × L2((ν∗)−

7
2 (σ ∗)−1(0, T );H−2(�))

holds. Therefore, note first that∣∣∣∣∣∣(ν̂)−6(σ̂ )−3u1u2u3

∣∣∣∣∣∣
L2(QT )

=
∣∣∣∣∣∣(ν̂)−2(σ̂ )−1(ν̂)−2(σ̂ )−1(ν̂)−2(σ̂ )−1u1u2u3

∣∣∣∣∣∣
L2(QT )

.

Thus, putting together each (ν̂)−2(σ̂ )−1 with each ui , for i = 1, 2, 3, thanks to the previous 
equality and the Hölder inequality, we get that

∣∣∣∣∣∣(ν̂)−6(σ̂ )−3u1u2u3

∣∣∣∣∣∣
L2(QT )

≤ C

3∏
k=1

∣∣∣∣∣∣(ν̂)−2(σ̂ )−1ui

∣∣∣∣∣∣
L6(QT )

≤ C

3∏
k=1

||(ui, vi, zi)||C , (3.20)

and analogously, we have

∣∣∣∣∣∣(ν̂)−6(σ̂ )−3u1u2v3

∣∣∣∣∣∣
L2(QT )

≤ C

3∏
k=1

||(ui, vi, zi)||C ,

this proves that both (3.18) and (3.19) trilinear maps are continuous maps from C3 to 
L2((ν̂)−6(σ̂ )−1(0, T ); L2(�)), which is equivalent to Y be a differentiable map from B1 to 
B2, showing the Claim 1.

2 Note that if necessary we could have taken λ and μ large enough in such a way that this inclusion is still satisfied.
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Claim 2. Y ′(0, 0, 0) is surjective.

First, note that Y(0, 0, 0) = (0, 0). By the other hand, observe that Y ′(0, 0, 0) : B1 → B2 is 
given by

Y ′(0,0,0)(u, v,h) = (iut + uxx − uxxxx − 1ωh, ivt + vxx − vxxxx − 1Ou),

for (u, v, h) ∈ B1. Invoking the null controllability result for linear system (1.6), that is, thanks 
to Theorem 3.3, Y ′(0, 0, 0) is surjective, proving the Claim 2.

Finally, by taking b1 = (0, 0, 0), b2 = (0, 0) and using Theorem 3.4, there exists δ > 0 such 
that if ||(f 0, f 1)||B2 < δ, then we can find a control h such that the triple (u, v, h) ∈ B1 satisfies 
Y(u, v, h) = (f 0, f 1). By a particular choice of f 0 = f ∈ L2((ν̂)−6(σ̂ )−1(0, T ); L2(�)) and 
f 1 ≡ 0, Theorem 1.2 is showed since a triple (u, v, h) ∈ B1 satisfies v(0) = 0 in � and solves 
(1.5). �
4. Further comments and open issues

To our knowledge, these results in this article are the first concerning the existence of in-
sensitizing controls for the fourth-order Schrödinger equation, in this way, we believe that this 
manuscript can open a series of questions, which are discussed now.

4.1. Null condition of the initial data

In this point, we discuss the necessity to assume the null condition of the initial data in 
Theorem 1.2. In [11], the author proves that under some suitable conditions, the existence of 
insensitizing controls may or may not hold, which indicates that this kind of problem cannot be 
solved for every initial data. In this way, we also have the same drawback in our result. To over-
come this difficulty, we believe that the techniques used for the Heat equation, due to De Tereza 
[11], can be adapted for our case. Precisely, the idea consists of using the fundamental solution 
to construct an explicit solution where the observability inequality does not hold.

4.2. About the nonlinear terms

Note that if we change the cubic term |u|2u by a more general term |u|p−2u, with p ≥ 3, then 
one must prove a partial null controllability for the following system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

iut + uxx − uxxxx − ζ |u|p−2u = f + 1ωh, in Q,

ivt + vxx − vxxxx − ζp|u|pu2v − (p + 1)ζ |u|p−2v = 1Ou, in Q,

u(t,0) = u(t,L) = v(t,0) = v(t,L) = 0, on t ∈ (0, T ),

ux(t,0) = ux(t,L) = vx(t,0) = vx(t,L) = 0, on t ∈ (0, T ),

u(0, x) = u0(x), v(T , x) = 0, in �.

If the structure of the problem is still the same and we only change the nonlinearity, the main 
difficulty here is to obtain well-posedness results which gives enough regularity for the solutions 
to obtain the analogous Hölder estimate as in (3.20). In fact, to solve it one must have valid 
embedding from the state spaces into L2p−2(Q), for p ≥ 3, which is possible since the following 
estimate holds
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∣∣∣∣∣∣|u|p−2u

∣∣∣∣∣∣
Hs(�)

≤ C||u||p−1
Hs(�),

when s ≥ 1
2 and p ≥ 3, see [26] for well-posedness of the general nonlinear problem.

Additionally, if we change to a general type nonlinearity g, we obtain the following optimal 
system ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

iut + uxx − uxxxx + g(u) = f + 1ωh, in Q,

ivt + vxx − vxxxx + g′(u)v = 1Ou, in Q,

u(t,0) = u(t,L) = v(t,0) = v(t,L) = 0, on t ∈ (0, T ),

ux(t,0) = ux(t,L) = vx(t,0) = vx(t,L) = 0, on t ∈ (0, T ),

u(0, x) = u0(x), v(T , x) = 0, in �.

It is expected that most of these problems have no solution, i.e., it is not possible to insensitize 
the functional unless we impose some conditions on g. To exemplify the comments above, some 
of these issues were already considered for the case of nonlinearities with superlinear growth at 
infinity. In [5], the authors dealing with a semilinear heat equation proved positive result of exis-
tence of insensitizing controls considering g ∈ C1 a nonlinear function verifying g′′ ∈ L∞

loc(R), 
g(0) = 0 and

lim|s|→∞
g′(s)

ln(1 + |s|) = 0,

furthermore, the result is also valid for nonlinearities g of the form

|g(s)| = |p1(s)| lnα(1 + |p2(s)|),

for all |s| ≥ s0 > 0, with α ∈ [0, 1) and pi , i = 1, 2, are affine functions. Moreover, they proved 
negative results of existence considering a nonlinearity g verifying the conditions above, that is, 
taking g as

g(s) =
|s|ˆ

0

lnα(1 + |σ |2)dσ, for all s ∈R,

but choosing α > 2. Similar results are proved in [34] for a class of nonlinear Ginzburg-Landau 
equation.

Thus, in the case of the fourth-order nonlinear Schrödinger equation, this kind of situation, 
that is, introducing a function g with certain properties and proving the existence of insensitizing 
controls is still an open issue.

4.3. About the sentinel functional

One way to solve the problems of nonlinearity is to change the structure of the functional. Due 
to the lack of regularity of the characteristic function, if we change it to a more regular function 
then one can still prove the result for more general nonlinearity |u|p−2u, with p ≥ 3, considering 
a functional of the form
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J (τ,h) = 1

2

¨

QT

R(x)|u(x, t)|2dxdt,

where R ∈ C∞(�) is a smooth function with supp(R) ⊂O.
We note that there exist uncountable insensitizing control problems as we change the sentinel 

functional. In fact, by the equivalent formulation in a cascade system with double the equations 
of the original system, controllability problems with fewer control forces than equations are not 
fully understood in PDEs, so they can also be interesting from the control theory point of view. 
Some of the motivations for these problems arise from physical phenomena, thus typically we 
focus our attention on functionals that have “physical” meanings: If the functional is the local 
L2-norm of the solution then we are looking for controls that locally preserve the energy (kinetic 
or potential, depending on the modeling) of the system, and if we change to a first derivative 
(or gradient in the N -dimensional case) the problem consists in finding controls that locally 
preserves the mean value of the energy.

In this perspective, let D be a derivative operator such as Du = ux or Du = uxx . An inter-
esting − and difficult − problem is to analyze the existence of insensitizing controls when the 
sentinel functional takes the form

J (τ,h) := 1

2

¨

QT

|Du(x, t)|2dxdt.

In such, the optimal system becomes⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
iut + uxx − uxxxx − ζ |u|2u = f + 1ωh, in QT ,

ivt + vxx − vxxxx − ζu2v − 2ζ |u|2v = D(1ODu), in QT ,

u(t,0) = u(t,L) = v(t,0) = v(t,L) = 0, on t ∈ (0, T ),

ux(t,0) = ux(t,L) = vx(t,0) = vx(t,L) = 0, on t ∈ (0, T ),

u(0, x) = u0(x), v(T , x) = 0, in �.

Again, it is not expected to obtain positive results of the existence of insensitizing controls 
for every differential operator D in virtue of the lack of regularity provoked by coupling term 
D(1ODu), since (again) the characteristic function is not regular. Despite that, Guerrero [20]
dealt with a parabolic equation. The author proved a positive result of existence considering a 
functional depending on the gradient of the solution. Since the equation was linear, with constant 
coefficients, the argument consisted of considering a global Carleman estimate with different ex-
ponents, not for the equation, but for the equation satisfied by the Laplacian of the solutions to 
then recover information using the equation with the coupling. This is not the case when dealing 
with a nonlinear problem since deriving the equation would give us many other terms. In [22], 
the same author proved a similar result considering a linear Stokes equation with constant co-
efficients but with for the curl of the solution. Finally, we cite the work of the second author 
[23], where the authors proved positive results of insensitizing controls considering a functional 
depending on the gradient of the solution for the cubic nonlinear Ginzburg-Landau equation. The 
result arose by proving a new suitable Carleman estimate for the Ginzburg-Landau equation.

In this spirit, there are many alternatives to define the sentinel functional related to the in-
sensitizing control problems for 4NLS. Thus, we expect that these three works together with 
the results in this paper, open prospects to prove similar results considering a sentinel functional 
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with the gradient of the solution. Moreover, since the Carleman estimate (2.3) has third-order 
terms, maybe it is possible, at some point, to adapt the arguments to consider a functional with 
the Laplacian of the solution of the 4NLS, but clearly, to prove it is necessary new arguments 
of those that were applied here, at least proving a new Carleman estimate for the fourth-order 
Schrödinger equation, as was done in [18, Theorem 1.1] for the Cahn-Hilliard type equation 
and as in [19] where a Carleman estimate for stochastic fourth order Schrödinger equation is 
showed. The readers are invited to read the recent and interesting work by Imanuvilov and Ya-
mamoto [21], which proves a Carleman estimate for a fourth-order parabolic equation in general 
dimensions.

4.4. N–dimensional case

Zheng and Zhou [35] studied the boundary controllability of the 4NLS in a bounded domain 
� ⊂ Rn. Using a L2-Neumann boundary control, the authors proved that the solution of 4NLS is 
exactly controllable in H−2(�) using the Hilbert Uniqueness Method and multiplier techniques. 
In the sense of the existence of insensitizing controls, we conjecture that the Carleman inequal-
ity shown here can be extended to the N -dimensional case. Thus, if we consider the sentinel 
functional as defined in (1.3), our result remains valid, for this case. However, the main issue 
here is when we consider a functional like the one mentioned in Subsection 4.3 or other types 
of functional associated with the nonlinear problem. This type of problem looks interesting and 
still is open for the fourth-order nonlinear Schrödinger equation.
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Appendix A. Well-posedness

In this section, we will show some results about the existence of a solution for the system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
iut + uxx − uxxxx = F 0, in QT ,

ivt + vxx − vxxxx = F 1 + 1Ou, in QT ,

u(t,0) = u(t,L) = ux(t,0) = ux(t,L) = 0, on t ∈ (0, T ),

v(t,0) = v(t,L) = vx(t,0) = vx(t,L) = 0, on t ∈ (0, T ),

u(0, x) = u0(x), v(T , x) = 0, in �,

(A.1)

for given u0 and (F 0, F 1). The proofs here can be adapted to prove the existence of solutions for 
systems (1.6) and (2.4).

A.1. The linearized system

We first consider the simplest linear equation with null boundary conditions which is a lin-
earized version of (1.2) around zero. More precisely, we consider the following
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⎧⎨⎩
iut + uxx − uxxxx = f, in QT ,
u(t,0) = u(t,L) = ux(t,0) = ux(t,L) = 0, on (0, T ),
u(0, x) = u0(x), in �.

(A.2)

The first result is a consequence of the semigroup theory. Before presenting it, let us consider the 
differential operator A : D(A) ⊂ L2(�) → L2(�) given by

Au := iuxx − iuxxxx,

with domain D(A) = H 4(�) ∩H 2
0 (�). Thus, the nonhomogeneous linear system (A.2) takes the 

form {
ut (t) = Au(t) + if (t), t ∈ [0, T ],
u(0) = u0.

(A.3)

The following proposition guarantees some properties for the operator A. Precisely, the result 
ensures the existence of regular solutions for the system (A.2).

Proposition A.1. Let f ∈ C1([0, T ]; L2(�)) and u0 ∈ D(A), then (A.2) has a unique solution

u ∈ C([0, T ];H 4(�) ∩ H 2
0 (�)) ∩ C1([0, T ];L2(�)). (A.4)

Proof. Consider the linear operator defined by A. This allows us to rewrite (A.2) in the abstract 
form (A.3). We have that A is skew-adjoint operator and A is m-dissipative. Indeed, first, is not 
difficult to see that

(Au,v)L2(�) = −(u,Av)L2(�),

for all u, v ∈ D(A). That is, A is symmetric. Additionally, D(A�) = D(A), so A is skew-adjoint. 
Finally, we have

(Au,u)L2(�) = Re

⎛⎝i

ˆ

�

(uxx − uxxxx)udx

⎞⎠= Re

⎛⎝i

ˆ

�

−(|ux |2 + |uxx |2)dx

⎞⎠= 0,

for any u ∈ D(A), and then A is dissipative. Therefore, A is an m-dissipative operator (e.g. 
[9, Corollary 2.4.8]) and by the Hille–Yosida–Phillips theorem (e.g. [9, Theorem 3.4.4]) we 
obtain that A is a generator of a contraction semigroup in L2(�). Thus, if u0 ∈ D(A) and 
f ∈ C1([0, T ]; L2(�)), then equation (A.2) has solutions u with the regularity (A.4) (e.g. [9, 
Proposition 4.1.6]). �
A.2. The coupled linearized system

We are now concerned with the existence of solutions for the coupled linearized system. More 
precisely, we will prove the well-posedness results to the system (A.1). First, consider the linear 
unbounded operator A defined in the previous subsection and
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{
A1u = −iuxx + iuxxxx ∈ H−2(�),

D(A1) = H 2
0 (�).

Both operators are m-dissipative with dense domains; therefore, they generate the C0 semigroups 
of contractions S0 and S1, respectively. Now, consider the following spaces:

Y0 = C([0, T ];D(A)) ∩ C1([0, T ];L2(�))

and

Y1 = C([0, T ];D(A1)) ∩ C1([0, T ];H−2(�)).

The next result is dedicated to proving the existence of regular solutions for (A.1)

Theorem A.2 (Regular solutions). Assume that u0 ∈ D (A),

F 0 ∈ C
(
[0, T ],H 4(�) ∩ H 2

0 (�)
)

∩ W 1,1
(

0, T ;H 4(�) ∩ H 2
0 (�)
)

and

F 1 ∈ C
(
[0, T ],H−2(�)

)
∩ W 1,1

(
0, T ;H−2(�)

)
.

Then, problem (A.1) has a unique regular solution in the sense that⎧⎪⎪⎨⎪⎪⎩
(u, v) ∈ Y0 × Y1,

iut + uxx − uxxxx = F 0,

ivt + vxx − vxxxx = F 1 + 1Ou,

u|t=0 = u0, v|t=T = 0.

Proof. Note that, thanks to [9, Proposition 4.1.6], we get that the mild solution

u(t) = S0(t)u0 +
tˆ

0

S0(t − s)F 0(s)ds ∈ Y0

verifies {
iut + uxx − uxxxx = F 0,

u|t=0 = u0.
(A.5)

Now, it is not difficult to see that

T̂

‖(u1O) (s)‖2
H−2(�)

ds ≤ sup
ζ∈H 2

0 (�),‖ζ‖
H2(�)

=1

T̂ ˆ
|u| · ςdxdt ≤

¨
|u|2 dxdt,
0 0 0 O QT
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and hence u1O ∈ C
([0, T ],H−2(�)

) ∩ W 1,1
(
0, T ;H−2(�)

)
. Then, applying again [9, Propo-

sition 4.1.6], and we get that the mild solution

v(t) =
T̂

t

S1(s − t)
(
F 1 + 1Ou

)
(s)ds ∈ Y1

satisfies {
ivt + vxx − vxxxx = F 1 + 1Ou,

v|t=T = 0.
(A.6)

Thus, Theorem A.2 is achieved putting together (u, v) satisfying (A.5) and (A.6). �
A.3. Transposition solutions

In what follows, we will talk about transposition solutions that are of particular interest for 
the purposes of this paper.

Definition 2. Let u0 ∈ L2(�) and (F 0, F 1) ∈ [L2(0, T ; H−2(�))]2. We say that a pair

(u, v) ∈ L2(0, T ;H 2
0 (�)) × L2(QT )

is a solution in the transposition sense of (A.1), if it satisfies

T̂

0

〈
g0, u
〉
H−2H 2

0

dt = Re
ˆ

�

ϕ(0)u0dx +
T̂

0

〈
F 0, ϕ
〉
H−2H 2

0

dt

Re
¨

QT

g1v̄dxdt = Re

T̂

0

ˆ

O

u · ψdxdt +
T̂

0

〈
F 1,ψ
〉
H−2H 2

0

dt

(A.7)

for every 
(
g0, g1
) ∈ L2

(
0, T ;H−2(�)

) × L2 (QT ), where 〈·, ·〉 denotes the duality between 
H−2(� and H 2

0 (�), and (ϕ, ψ) is the solution of

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
iϕt + ϕxx − ϕxxxx = g0, in QT ,

iψt + ψxx − ψxxxx = g1, in QT ,

ϕ(t,0) = ϕ(t,L) = ϕx(t,0) = ϕx(t,L) = 0, on t ∈ (0, T ),

ψ(t,0) = ψ(t,L) = ψx(t,0) = ψx(t,L) = 0, on t ∈ (0, T ),

ϕ(T , x) = 0,ψ(0, x) = 0, in �.

(A.8)

We have the following result about the existence and uniqueness of transposition solu-
tions.
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Theorem A.3. For u0 ∈ L2(�) and 
(
F 0,F 1

) ∈ [L2(0, T ;H−2(�))
]2

, there exists a unique 

(u, v) ∈ [L2
(
0, T ;H 2

0 (�)
)]2

satisfying (A.7) for every 
(
g0, g1
) ∈ L2

(
0, T ;H−2(�)

)×L2 (QT ), 
where (ϕ, ψ) is solution of (A.8).

Proof. Let �1 : L2(0, T ; H 2
0 (�)) → R the operator defined by

�1(h
0) = Re

ˆ

�

ϕ(0)u0dx +
T̂

0

〈
F 0, ϕ
〉
H−2H 2

0

dt,

where ϕ satisfies the first equation of (A.8) for g0 := h0
xxxx ∈ L2(0, T ; H−2(�)). From the en-

ergy estimates, it is easy to see the continuity of �1. Then, thanks to the Lax-Milgram theorem, 
there exists u ∈ L2(0, T ; H 2

0 (�)) such that

T̂

0

〈
g0, u
〉
H−2H 2

0

dt = Re
¨

QT

h0
xxuxxdxdt = �1(h

0),

for every g0 ∈ H−2(�), with g0 = h0
xxxx . Analogously, we have the existence of v ∈ L2(QT )

satisfying the second equation of (A.7), since the linear form

�1(g
1) = Re

T̂

0

ˆ

O

u · ψdxdt +
T̂

0

〈
F 1,ψ
〉
H−2H 2

0

dt

is continuous in L2(QT ).

Claim. We have that v belongs to L2(0, T ; H 2
0 (�)).

Indeed, first, we take sequences of regular data such that un
0 → u0 in L2(�) and 

(
F 0

n ,F 1
n

)→(
F 0,F 1

)
in L2
(
0, T ;H−2(�)

) × L2 (QT ). We show that the regular solutions (un, vn) for 
(A.1) (whose existence is given in Theorem A.2) with initial data un

0 and 
(
F 0

n ,F 1
n

)
on the 

right-hand side, are also a solution in the transposition sense; moreover, it is bounded in [
L2
(
0, T ;H 2

0 (�)
)]2

. Hence, in the limit, we obtain that (u, v) ∈ [L2
(
0, T ;H 2

0 (�)
)]2

.

Finally, for uniqueness, suppose that (û, v̂) is another solution of (A.1). Thus,

Re

T̂

0

〈
g0, u − û

〉
H−2H 2

0

dt = 0 and Re
¨

QT

g1(v − v̂)dxdt = Re

T̂

0

ˆ

O

(u − û) · ψdxdt,

for all g0 ∈ L2(0, T ; H−2(�)) and g1 ∈ L2 (QT ). Hence, y = ŷ and z = ẑ. �

393



R.d.A. Capistrano–Filho and T.Y. Tanaka Journal of Differential Equations 416 (2025) 357–395
References

[1] F. Alabau-Boussouira, Insensitizing exact controls for the scalar wave equation and exact controllability of coupled 
cascade systems of PDE’s by a single control, Math. Control Signals Syst. 26 (2014) 1–46.

[2] V.M. Alekseev, V.M. Tikhomirov, S.V. Fomin, Optimal Control, Translated from the Russian by V.M. Volosov 
Contemporary Soviet Mathematics, Consultants Bureau, New York, 1987.

[3] M. Ben-Artzi, H. Koch, J.-C. Saut, Dispersion estimates for fourth order Schrödinger equations, C. R. Acad. Sci., 
Sér. 1 Math. 330 (2000) 87–92.

[4] O. Bodart, C. Fabre, Controls insensitizing the norm of the solution of a semilinear heat-equation, J. Math. Anal. 
Appl. 195 (3) (1995) 658–683.

[5] O. Bodart, M. González-Burgos, R. Pérez-García, Rosario, Existence of insensitizing controls for a semilinear heat 
equation with a superlinear nonlinearity, Commun. Partial Differ. Equ. 29 (7–9) (2004) 1017–1050.

[6] O. Bodart, M. González-Burgos, R. Pérez-García, Rosario, Insensitizing controls for a heat equation with a nonlin-
ear term involving the state and the gradient, Nonlinear Anal., Theory Methods Appl. 5–6 (2004) 687–711.

[7] B. Calsavara, N. Carreño, E. Cerpa, Insensitizing controls for a phase field system, Nonlinear Anal., Theory Methods 
Appl. 143 (2016) 120–137.

[8] N. Carreño, Insensitizing controls for the Boussinesq system with no control on the temperature equation, Adv. 
Differ. Equ. 22 (3/4) (2017) 235–258.

[9] T. Cazenave, A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford Science Publications, Oxford 
University Press, 1998.

[10] L. de Teresa, Controls insensitizing the norm of the solution of a semilinear heat equation in unbounded domains, 
ESAIM Control Optim. Calc. Var. 2 (1997) 125–149.

[11] L. de Teresa, Insensitizing controls for a semilinear heat equation: semilinear heat equation, Commun. Partial Differ. 
Equ. 25 (1–2) (2000) 39–72.

[12] L. de Teresa, M. Lopez-Garcia, A. Mercado, Null controllability of a cascade system of Schrödinger equations, 
Electron. J. Differ. Equ. 74 (2016) 1.

[13] L. de Tereza, S. Micu, J. Ortega, An example of ε-insensitizing controls for the heat equation with no intersecting 
observation and control regions, Appl. Math. Lett. 17 (2004) 927–932.

[14] L. de Teresa, E. Zuazua, Identification of the class of initial data for the insensitizing control of the heat equation, 
Commun. Pure Appl. Anal. 8 (1) (2009) 457–471.

[15] S. Dolecki, D.L. Russell, A general theory of observation and control, SIAM J. Control Optim. 15 (1977) 185–220.
[16] E. Fernandez-Cara, G. Garcia, A. Osses, Insensitizing controls for a large-scale ocean circulation model, C. R. 

Math. 337 (2003) 265–270.
[17] P. Gao, Insensitizing controls for the Cahn-Hilliard type equation, Electron. J. Qual. Theory Differ. Equ. 35 (2018) 

1–22.
[18] P. Gao, A new global Carleman estimate for the Cahn-Hilliard type equation and its applications, J. Differ. Equ. 

260 (1) (2016) 427–444.
[19] P. Gao, Carleman estimates for forward and backward stochastic fourth order Schrödinger equations and their 

applications, Evol. Equ. Control Theory 7 (3) (2018) 465–499.
[20] S. Guerrero, Null controllability of some systems of two parabolic equations with one control force, SIAM J. Control 

Optim. 46 (2) (2007) 379–394.
[21] O.Yu. Imanuvilov, M. Yamamoto, Inverse source problem and the continuation for a fourth-order parabolic equation 

in general dimensions, arXiv :2009 .11592v1 [math .AP].
[22] S. Guerrero, Controllability of systems of Stokes equations with one control force: existence of insensitizing con-

trols, Ann. Inst. Henri Poincaré (C), Non-Linéaraire Anal. 24 (6) (2007) 1029–1054.
[23] M.C. Santos, T.Y. Tanaka, An insensitizing control problem for the Ginzburg–Landau equation, J. Optim. Theory 

Appl. 183 (2019) 440–470.
[24] V.I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: fourth order nonlinear Schrödinger-

type equations, Phys. Rev. E 53 (1996) 1336–1339.
[25] V.I. Karpman, A.G. Shagalov, Stability of soliton described by nonlinear Schrödinger type equations with higher-

order dispersion, Physica D 144 (2000) 194–210.
[26] J. Li, C. Zheng, Non-homogeneous initial boundary value problems for the biharmonic Schrödinger equation on an 

interval, arXiv :2003 .09337v3 [math .FA].
[27] J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Rev. 30 (1988) 1–68.
[28] J.-L. Lions, Quelques notions dans l’analyse et le contrôle de systemesa données incomplètes, in: Proceedings of 

the XIth Congress on Differential Equations and Applications/First Congress on Applied Mathematics (Spanish), 
Málaga, 1989, 1989, pp. 43–54.
394

http://refhub.elsevier.com/S0022-0396(24)00640-5/bibA102F88F581C3DD90E85B08076B9BC02s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bibA102F88F581C3DD90E85B08076B9BC02s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bib60235D3F375445588867C1446F28F602s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bib60235D3F375445588867C1446F28F602s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bib092F2BA9F39FBC2876E64D12CD662F72s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bib092F2BA9F39FBC2876E64D12CD662F72s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bibB99CC2A1C1A3ADB7D7CC3981535CD0C3s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bibB99CC2A1C1A3ADB7D7CC3981535CD0C3s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bib5210B9D76A72C933824481741149E7F0s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bib5210B9D76A72C933824481741149E7F0s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bibB6DB87368B245C69125D28B9966F9C43s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bibB6DB87368B245C69125D28B9966F9C43s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bib8B69B594A82CC424207088BABC0147F0s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bib8B69B594A82CC424207088BABC0147F0s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bib791E982C4FA0BBCCE18A15EB5298262Fs1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bib791E982C4FA0BBCCE18A15EB5298262Fs1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bib346DD877A908FF6C7132ACB0910A33D8s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bib346DD877A908FF6C7132ACB0910A33D8s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bib538BA400E638B7BD1626202E52373A3Cs1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bib538BA400E638B7BD1626202E52373A3Cs1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bibABD1F6CA338182D7FC37A7C7DD11B622s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bibABD1F6CA338182D7FC37A7C7DD11B622s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bib59E14C95D57DFB5E4C7462DB3727896Es1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bib59E14C95D57DFB5E4C7462DB3727896Es1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bib69BC4E6FD137A586D203E9444DDB2939s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bib69BC4E6FD137A586D203E9444DDB2939s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bibCAC99B6F91747D967A522E43DDAC5265s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bibCAC99B6F91747D967A522E43DDAC5265s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bib8B1E2A2BCE1D49F3ADE8B3D1A1646227s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bibA1982DA1CBDD39BB0574303AB8767FFFs1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bibA1982DA1CBDD39BB0574303AB8767FFFs1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bib86F5B85CE262BFBEB0FD9DC02A49197Fs1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bib86F5B85CE262BFBEB0FD9DC02A49197Fs1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bibCA8060FA61E5D5532A7D517E4E9F43DCs1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bibCA8060FA61E5D5532A7D517E4E9F43DCs1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bibBC5DDE43C281BBE9D04237A801678C19s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bibBC5DDE43C281BBE9D04237A801678C19s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bibDBFA1B4A6550B51EEAAF957EBCCC3C75s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bibDBFA1B4A6550B51EEAAF957EBCCC3C75s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bibC49A12CB681624F7A66941CB2B882D21s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bibC49A12CB681624F7A66941CB2B882D21s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bib502544CCBD9CA1246BBA0F96A0A38DFCs1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bib502544CCBD9CA1246BBA0F96A0A38DFCs1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bib0AF7E1E9D88E827C1990B29B12DE6D53s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bib0AF7E1E9D88E827C1990B29B12DE6D53s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bib87DC726E54F39FF07111FE60FC56D55Es1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bib87DC726E54F39FF07111FE60FC56D55Es1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bib68C9E5D5C6DFBF10CD86F491034472CEs1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bib68C9E5D5C6DFBF10CD86F491034472CEs1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bib9C5D5D09D4789A34CC9C581F47487471s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bib9C5D5D09D4789A34CC9C581F47487471s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bib1C20F1B2257DD2BAC39B54E1D9147A75s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bib85DC47A95A95F9D48C7FB61E271A4D65s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bib85DC47A95A95F9D48C7FB61E271A4D65s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bib85DC47A95A95F9D48C7FB61E271A4D65s1


R.d.A. Capistrano–Filho and T.Y. Tanaka Journal of Differential Equations 416 (2025) 357–395
[29] J.-L. Lions, Sentinelles Pour les Systèmes Distribués à Données Incomplètes, vol. 21, Masson, Paris, 1992.
[30] P. Lissy, Y. Privat, Y. Simpore, Insensitizing control for linear and semi-linear heat equations with partially unknown 

domain, ESAIM Control Optim. Calc. Var. 25 (2019) 50.
[31] B. Pausader, The cubic fourth-order Schrödinger equation, J. Funct. Anal. 256 (2009) 2473–2517.
[32] R.K. Rajagounder, C.K. To, Insensitizing control of KDV-Burgers equations, J. Electr. Syst. Inf. Technol. 5 (2) 

(2018) 192–207.
[33] M. Zhang, J. Yin, H. Gao, Insensitizing controls for the parabolic equations with dynamic boundary conditions, 

J. Math. Anal. Appl. 475 (1) (2019) 861–873.
[34] M. Zhang, X. Liu, Insensitizing controls for a class of nonlinear Ginzburg-Landau equation, Sci. China Math. 

57 (12) (2014) 2635–2648.
[35] C. Zheng, Inverse problems for the fourth order Schrödinger equation on a finite domain, Math. Control Relat. 

Fields 5 (1) (2015) 177–189.
395

http://refhub.elsevier.com/S0022-0396(24)00640-5/bib8DD1C5B0DDD4AA89F6CCD544C53DB24Ds1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bibACE43B2B9359C681A98E62C555F211C7s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bibACE43B2B9359C681A98E62C555F211C7s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bib1BA8BE397DBED7AF07D9C52AA32E22F8s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bib2C43D41EF20AE00A98E5843D841292B8s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bib2C43D41EF20AE00A98E5843D841292B8s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bibEBC33E05810ECD1B064E9F534ADD9378s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bibEBC33E05810ECD1B064E9F534ADD9378s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bibC28CBD398A61E9022FD6A6835A57DC50s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bibC28CBD398A61E9022FD6A6835A57DC50s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bib98A8F1A22FFC460364A8A34499118103s1
http://refhub.elsevier.com/S0022-0396(24)00640-5/bib98A8F1A22FFC460364A8A34499118103s1

	Controls insensitizing the norm of solution of a Schrödinger type system with mixed dispersion
	1 Introduction
	1.1 Setting of the problem
	1.2 Insensitizing control problems for PDEs
	1.3 Main results
	1.4 Heuristic and structure of the manuscript

	2 Carleman estimates
	3 Null controllability results
	3.1 Null controllability: linear case
	3.2 Null controllability: nonlinear case

	4 Further comments and open issues
	4.1 Null condition of the initial data
	4.2 About the nonlinear terms
	4.3 About the sentinel functional
	4.4 N--dimensional case

	Data availability
	Acknowledgments
	Appendix A Well-posedness
	A.1 The linearized system
	A.2 The coupled linearized system
	A.3 Transposition solutions

	References


