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RESUMO

Essa tese reúne alguns resultados relacionados à equação de Schrödinger não linear 𝐻1-

crítica em R3, em especial, um resultado de controlabilidade nula onde, usando estimativas de

Strichartz, a controlabilidade do sistema linear (método HUM) e um argumento de perturba-

ção, obtemos a controlabilidade do sistema não linear. Além disso, para a equação supracitada

com um termo de perturbação, provamos decaimento exponencial para algumas soluções li-

mitadas no espaço de energia, mas pequenas em uma norma específica. Esse resultado é

consequência de uma decomposição de perfis obtida para soluções lineares e não lineares

combinada com um resultado de propagação que envolve argumentos de análise microlocal, a

saber, a teoria de medida de defeito. Após mostrar que uma sequência de soluções não lineares

pode ser linearizada sob algumas condições, provamos uma estimativa de observabilidade que

implica o resultado de estabilização.

Palavras-chaves: estabilização; expoente crítico; decomposição em perfis; observação; me-

dida microlocal; controle; estimativas de Strichartz; caso de desfocagem.



ABSTRACT

This thesis brings together some results related to the nonlinear 𝐻1-critical Schrödinger

equation in R3, in particular, a null controllability result where, using Strichartz estimates,

the controllability of the linear system (HUM method) and a perturbation argument, the con-

trollability for the nonlinear system is achieved. Furthermore, for the aforementioned equation

with a perturbation term, we prove exponential decay for some solutions that are bounded

in energy space but small at a lower norm. This result is a consequence of a profile decom-

position obtained for linear and nonlinear solutions combined with a propagation result that

involves arguments from microlocal analysis, namely the defect measure theory. After showing

that a sequence of nonlinear solutions can be linearized under some conditions, we prove an

observability estimate that implies the stabilization result.

Keywords: stabilization; critical exponent; profile decomposition; observability; microlocal

measures; control; Strichartz estimates; defocusing case.
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1 GENERAL INTRODUCTION

This thesis comprises the study of the nonlinear Schrödinger equation with a critical ex-

ponent in R3 defocusing case. Some mathematical aspects of the solutions to this equation

are systematically addressed, such as well-posedness, decomposition into profiles, stability and

control. Concerning the stabilization problem, we study the asymptotic behavior of solutions,

i.e., through an analysis of the energy associated with the system, the question is: Is it possible

to ensure that the solutions are asymptotically stable for arbitrarily large time 𝑡? To obtain an

exponential decay rate, we use a profile decomposition to describe how linear and nonlinear

solutions approach each other in some sense. To deal with the problem of exact controllability,

we verify under what circumstances it is possible to appropriately choose control functions in

order to direct the system to a desired state in a finite time.

To provide a minimum of the theory used in the course of the following chapters, we

present a small sample of the history of the nonlinear Schrödinger equation, as well as some

concepts which will be necessary for the development of this thesis.

1.1 ABOUT THE SCHRÖDINGER EQUATION

The Schrödinger equation was introduced by Erwin Schrödinger in 1925, an Austrian

physicist, as part of the fundamental developments in quantum theory that emerged in the

first half of the 20th century, for which he received the Nobel Prize in Physics in 1933. The

history behind Schrödinger’s equation is intrinsically linked to the period when physicists were

trying to understand the behavior of electrons in atoms. Schrödinger’s approach was based

on an effort to find a suitable mathematical description for the energy states of electrons in

atoms. At the time, Bohr’s model for the atom, which described electrons in discrete orbits

around the nucleus, was already known, but it had some limitations, especially when it came

to more complex atoms.

After studying De Broglie’s thesis in 1924, Schrödinger, inspired by De Broglie’s ideas,

began working on a new quantum theory that would combine wave and corpuscular charac-

teristics. Schrödinger’s central idea was to treat electrons as waves of matter. He proposed

that, instead of tracking the precise trajectories of electrons as particles, we should describe

their probabilistic distribution in terms of wave functions. The wave function, represented by
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Ψ, contains information about the probability of finding an electron in a given position.

From a variational problem, Schrödinger deduced the wave equation for the hydrogen atom.

In this deduction, presented in Schrödinger’s first paper of 1926, his only "justification"is

that the wave equation leads to the correct energy levels for the hydrogen atom. In 1926,

Schrödinger published his fundamental equation, which describes the temporal evolution of

the wave function of a quantum particle. The form of the Schrödinger equation depends on

the system in question, but the general equation for a non-relativistic particle (i.e., particles

that do not move at speeds close to the speed of light) is

𝑖ℏ
𝜕Ψ
𝜕𝑡

= − ℏ2

2𝑚ΔΨ + 𝑉Ψ.

In this equation, 𝑖 represents the imaginary unit (𝑖2 = −1), ℏ is the reduced Planck constant

(ℏ = ℎ
2𝜋

where ℎ is the Planck constant), Ψ is the wave function, 𝑡 is the time, 𝑚 is the mass

of the particle, Δ is the Laplacian operator, which describes the divergence of the gradient,

𝑉 is the potential. The solution of the Schrödinger equation is the wave function, which in

turn can be used to calculate various observable properties of the particle, such as position

and momentum. The Schrödinger equation is one of the cornerstones of quantum mechanics

and has profound implications for understanding the behavior of subatomic particles. It is

fundamental to describing the dual nature of particles, which can exhibit both particle and

wave properties, depending on the experimental context.

Simultaneously, other physicists, such as Werner Heisenberg with matrix mechanics, were

developing alternative mathematical formalisms to describe quantum systems. Schrödinger

and Heisenberg’s formalisms were shown to be equivalent, consolidating the quantum theory.

1.2 THE NONLINEAR SCHRÖDINGER EQUATION

The nonlinear Schrödinger equation is a generalization of the standard Schrödinger equa-

tion of quantum mechanics. Nonlinear versions arise in contexts where significant interactions

between quantum particles are taken into account. In standard quantum mechanics, the in-

teraction between particles is often described by a linear equation. However, in some cases,

such as in extreme conditions of particle density or energy, interactions between particles can

become more intense and nonlinear. Introducing nonlinear terms into the Schrödinger equation

can lead to a variety of interesting and complex phenomena, often outside the scope of standard

linear quantum mechanics. Some significant results associated with the nonlinear Schrödinger
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equation include, for instance, solitons and pulsons. Solitons are localized waves that maintain

their shape and amplitude during propagation, even in the presence of nonlinearities. Pulsons

are versions of solitons that are localized pulses of light.

Furthermore, nonlinearity in the Schrödinger equation can lead to self-focusing phenomena,

where light pulses contract spatially due to nonlinear interaction. On the other hand, dispersion,

which tends to spread the pulses, can counterbalance this effect in certain conditions. These

are only two examples among others.

1.2.1 Critical exponent

The nonlinear Schrödinger equation with critical exponent is usually a specific form of

nonlinear equation that appears in contexts such as nonlinear optics, soliton theory, and other

physical phenomena. This equation can be written in the form

𝑖
𝜕𝑢

𝜕𝑡
= −Δ𝑢± |𝑢|𝑝−1𝑢, (1.1)

here |𝑢|𝑝−1𝑢 is the nonlinear term, where the exponent 𝑝 is a real number. The term "critical

exponent"in a nonlinear equation refers to the crucial role that the value of the exponent

plays in the nature of the solutions and in the behavior of the associated system. The term

"critical"suggests that there is a specific value of this exponent that marks a transition or

critical point in the system’s behavior.

For example, variations in the value of the exponent 𝑝 can lead to different types of

nonlinear behavior, from integrable behavior to chaotic or turbulent behavior. Moreover, the

value of such exponent can also be related to the stability of the system’s solutions. For certain

critical values, solutions can become more or less stable, influencing the way the system evolves

over time.

The nonlinear Schrödinger equations with defocusing and focusing terms refer to different

types of nonlinearities present in the equation, which affect the behavior of the wave function.

When the sign at the nonlinear term of (1.1) is positive, the nonlinear term is "defocusing",

which means that the nonlinearity acts to disperse the wave function over time. This is often

associated with solitons and stable spatial patterns. On the other hand, when the sign at

the nonlinear term of (1.1) is negative, this indicates a "focusing"term, meaning that the

nonlinearity acts to focus the wave function over time. This can lead to the formation of

bright solitons.
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Throughout this thesis, we will study the behavior of the nonlinear Schrödinger equation

with critical exponent 𝑝 = 5 in the defocusing case.

1.3 BASIC THEORY

In this section, we will address some definitions, concepts, and methods used in this thesis.

For more details, check (ADAMS; FOURNIER, 2003), (BREZIS, 2011), (MEDEIROS; MIRANDA,

1989) and (SCHWARTZ, 1966).

1.3.1 Theory of distributions and Sobolev spaces

Let Ω ⊂ R𝑛 be an open set and 𝑓 : Ω → R be a continuous function. The support of 𝑓 is

denoted by 𝑠𝑢𝑝𝑝(𝑓) = {𝑥 ∈ Ω; 𝑓(𝑥) ̸= 0}. Thus, 𝑠𝑢𝑝𝑝(𝑓) is a closed subset of Ω. A 𝑛-tuple

of non-negative integers 𝛼 = (𝛼1, . . . , 𝛼𝑛) is called a multi-index and its order is defined by

|𝛼| = 𝛼1 + · · · + 𝛼𝑛.

We denote by 𝐷𝛼 the derivation operator of order 𝛼 defined by

𝐷𝛼 = 𝜕|𝛼|

𝜕𝑥𝛼1
1 . . . 𝑥𝛼𝑛

𝑛

.

For 𝛼 = (0, 0, · · · , 0), we define

𝐷0𝑢 := 𝑢.

Let 𝐶∞
0 (Ω) be the vector space of all the functions defined in Ω which are infinitely differen-

tiable and have compact support contained in Ω. A classic example of a function in 𝐶∞
0 (Ω) is

given below.

Example 1.3.1. Let Ω ⊂ R𝑛 be an open set such that 𝐵1(0) = {𝑥 ∈ R𝑛; ‖𝑥‖ < 1} is
compactly contained in Ω. Let 𝑓 : Ω → R be a function such that

𝑓(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
𝑒

1
‖𝑥‖2−1 , if ‖𝑥‖ < 1,

0, if ‖𝑥‖ ≥ 1,

where 𝑥 = (𝑥1, . . . , 𝑥𝑛) and ‖𝑥‖ = (∑︀𝑛
𝑖=1 𝑥

2
𝑖 )

1
2 is the Euclidean norm of 𝑥. We have 𝑓 ∈

𝐶∞(Ω) and 𝑠𝑢𝑝𝑝(𝑓) = 𝐵1(0) is compact, so 𝑓 ∈ 𝐶∞
0 (Ω).

Definition 1.3.1. A sequence (𝜙𝑛)𝑛∈N ∈ 𝐶∞
0 (Ω) is said to be convergent to 𝜙 ∈ 𝐶∞

0 (Ω) if
the following conditions are satisfied:
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(i) There exists a compact 𝐾 ⊂ Ω such that 𝑠𝑢𝑝𝑝(𝜙) ⊂ 𝐾 and 𝑠𝑢𝑝𝑝(𝜙𝑛) ⊂ 𝐾, ∀𝑛 ∈ N;

(ii) 𝐷𝛼𝜙𝑛 → 𝐷𝛼𝜙 uniformly in 𝐾, for all multi-indexes 𝛼.

The space 𝐶∞
0 (Ω) with this notion of convergence will be denoted by 𝒟(Ω). It is called the

space of test functions on Ω.

A distribution over Ω is a continuous linear functional over 𝒟(Ω). More precisely, a

distribution over Ω is a functional 𝑇 : 𝒟(Ω) → R satisfying the following conditions:

(i) 𝑇 (𝛼𝜙+ 𝛽𝜓) = 𝛼𝑇 (𝜙) + 𝛽𝑇 (𝜓), ∀𝛼, 𝛽 ∈ R and ∀𝜙, 𝜓 ∈ 𝒟(Ω);

(ii) 𝑇 is continuous in the sense of the convergence defined on 𝒟(Ω), that is, if (𝜙𝑛)𝑛∈N

converges to 𝜙 in 𝒟(Ω), then (𝑇 (𝜙𝑛))𝑛∈N converges to 𝑇 (𝜙) in R.

It is common to denote the value of the distribution 𝑇 in 𝜙 by ⟨𝑇, 𝜙⟩. Moreover, the set of

all distributions over Ω with the usual operations is a vector space denoted by 𝐷′(Ω). The

following examples of scalar distributions play a key role in the theory.

Example 1.3.2. Let 𝑢 ∈ 𝐿1
𝑙𝑜𝑐(Ω). The functional 𝑇𝑢 : 𝐷(Ω) → R, defined by

⟨𝑇𝑢, 𝜙⟩ =
∫︁

Ω
𝑢(𝑥)𝜙(𝑥)𝑑𝑥,

is a distribution over Ω uniquely determined by 𝑢. For this reason, 𝑢 is identified as the
distribution 𝑇𝑢 defined by it and 𝐿1

𝑙𝑜𝑐(Ω) is identified as a (proper) part of 𝒟′(Ω).

Definition 1.3.2. A sequence (𝑇𝑛)𝑛∈N in 𝒟′(Ω) is said to be convergent to 𝑇 in 𝒟′(Ω) when
the numeric sequence (⟨𝑇𝑛, 𝜙⟩)𝑛∈N converges to ⟨𝑇, 𝜙⟩ in R, for all 𝜙 ∈ 𝒟(Ω).

Lemma 1.3.1 (Du Bois Raymond). Let 𝑢 ∈ 𝐿1
𝑙𝑜𝑐(Ω). Then,

∫︁
Ω
𝑢(𝑥)𝜙(𝑥)𝑑𝑥 = 0, ∀𝜙 ∈ 𝒟(Ω),

if and only if, 𝑢 = 0 almost everywhere in Ω.

Example 1.3.3. Consider 0 ∈ Ω and the functional 𝛿0 : 𝒟(Ω) → R defined by

⟨𝛿0, 𝜙⟩ = 𝜙(0).

It can be shown that 𝛿0 is a distribution over Ω called the Dirac distribution. Furthermore,
the distribution 𝛿0 is not defined by a function in 𝐿1

𝑙𝑜𝑐(Ω).
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Definition 1.3.3. Let 𝑇 be a distribution over Ω and 𝛼 be a multi-index. The derivative 𝐷𝛼𝑇

(in the sense of distributions) of 𝑇 is the functional defined in 𝒟(Ω) by

⟨𝐷𝛼𝑇, 𝜙⟩ = (−1)|𝛼|⟨𝑇,𝐷𝛼𝜙⟩, ∀𝜙 ∈ 𝒟(Ω).

Remark 1.3.1. It follows from Definition 1.3.3 that each distribution 𝑇 over Ω has derivatives
of all orders.

Remark 1.3.2. Let 𝑇 ∈ 𝒟′(Ω). It is possible to show that 𝐷𝛼𝑇 is a distribution over Ω. In
fact, it is easy to check that 𝐷𝛼𝑇 is linear. For the continuity, consider (𝜙𝑛)𝑛∈N converging
to 𝜙 in 𝒟(Ω). One has

|⟨𝐷𝛼𝑇, 𝜙𝑛⟩ − ⟨𝐷𝛼𝑇, 𝜙⟩| ≤ |⟨𝑇,𝐷𝛼𝜙𝑛 −𝐷𝛼𝜙⟩| → 0

as 𝑛 → ∞.

Remark 1.3.3. The map 𝐷𝛼 : 𝒟′(Ω) → 𝒟′(Ω) such that 𝑇 ↦→ 𝐷𝛼𝑇 is linear and continuous
in the sense of convergence in 𝒟′(Ω).

Let 𝑚 > 0 be an integer. The Sobolev space of order 𝑚 over Ω is the set denoted by

𝑊𝑚,𝑝(Ω), 1 ≤ 𝑝 ≤ ∞, of (classes of) functions 𝑢 ∈ 𝐿𝑝(Ω) such that 𝐷𝛼𝑢 ∈ 𝐿𝑝(Ω), for every

multi-indexes 𝛼, with |𝛼| ≤ 𝑚. The space 𝑊𝑚,𝑝(Ω) is a vector space for all 1 ≤ 𝑝 < ∞. For

each 𝑢 ∈ 𝑊𝑚,𝑝(Ω), the norm of 𝑢 is defined by

‖𝑢‖𝑊 𝑚,𝑝(Ω) =
⎛⎝ ∑︁

|𝛼|≤𝑚

∫︁
Ω

|𝐷𝛼𝑢(𝑥)|𝑝𝑑𝑥
⎞⎠ 1

𝑝

if 1 ≤ 𝑝 < ∞ and

‖𝑢‖𝑊 𝑚,∞(Ω) =
∑︁

|𝛼|≤𝑚

𝑠𝑢𝑝𝑒𝑠𝑠𝑥∈Ω|𝐷𝛼𝑢(𝑥)|

if 𝑝 = ∞. The Sobolev space 𝑊𝑚,𝑝(Ω) endowed with the norm above is a Banach space.

Remark 1.3.4. When 𝑝 = 2, the space 𝑊𝑚,2(Ω) is denoted by 𝐻𝑚(Ω), which endowed with
the inner product

(𝑢, 𝑣)𝐻𝑚(Ω) =
∑︁

|𝛼|≤𝑚

∫︁
Ω
𝐷𝛼𝑢(𝑥)𝐷𝛼𝑣(𝑥)𝑑𝑥

is a Hilbert space.

Denote by 𝐻𝑚
0 (Ω) the closure of 𝒟(Ω) in 𝐻𝑚(Ω) with respect to the norm of the space

𝐻𝑚(Ω). The set 𝐻𝑚
0 (Ω) endowed with the induced inner product of 𝐻𝑚(Ω) is a vector
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subspace. Furthermore, it is possible to prove that the induced inner product of 𝐻𝑚(Ω) and

the induced norm of 𝐻𝑚(Ω) are equivalent, respectively, to

((𝑢, 𝑣))𝐻𝑚(Ω) =
∑︁

|𝛼|=𝑚

∫︁
Ω
𝐷𝛼𝑢(𝑥)𝐷𝛼𝑣(𝑥)𝑑𝑥

and

‖𝑢‖2
𝐻𝑚(Ω) =

∑︁
|𝛼|=𝑚

∫︁
Ω

|𝐷𝛼𝑢(𝑥)|2𝑑𝑥.

We have the following results:

Lemma 1.3.2 (Poincaré-Friedrichs inequality). Let Ω be a bounded open subset of R𝑛. If
𝑢 ∈ 𝐻1

0 (Ω), there exists a constant 𝐶 > 0, depending only on Ω, such that

‖𝑢‖2
𝐿2(Ω) ≤ 𝐶‖∇𝑢‖2

𝐿2(Ω).

Lemma 1.3.3 (Gagliardo–Nirenberg inequality). Let 𝐼 = (0, 1), 1 ≤ 𝑞 < ∞ and 1 < 𝑟 ≤ ∞.

Then,
‖𝑢‖𝐿∞(𝐼) ≤ 𝐶‖𝑢‖𝑎

𝑊 1,𝑟(𝐼)‖𝑢‖1−𝑎
𝐿𝑞(𝐼), ∀𝑢 ∈ 𝑊 1,𝑟(𝐼)

for some constant 𝐶 = 𝐶(𝑞, 𝑟), where 0 < 𝑎 < 1 is defined by 𝑎
(︃

1
𝑞

+ 1 − 1
𝑟

)︃
= 1
𝑞
.

Lemma 1.3.4 (Sobolev embedding). Suppose 1 ≤ 𝑝 < 𝑛 and consider

1
𝑞

= 1
𝑝

− 1
𝑛
.

For each 𝜙 ∈ 𝒟(R𝑛), there exists 𝐶 = 𝐶(𝑝, 𝑛) > 0 such that

‖𝜙‖𝐿𝑞(R𝑛) ≤ 𝐶
𝑛∑︁

𝑖=1
‖𝐷𝑖𝜙‖𝐿𝑝(R𝑛).

Lemma 1.3.5 (Sobolev embedding in a bounded open set). Let Ω be a bounded open set of
R𝑛, Ω of class 𝐶𝑚 and 1 ≤ 𝑝 < ∞.

(i) If 𝑛 > 2𝑚, then 𝐻𝑚(Ω) →˓ 𝐿𝑝(Ω), where 𝑝 ∈
[︂
1, 2𝑛
𝑛− 2𝑚

]︂
;

(ii) If 𝑛 = 2𝑚, then 𝐻𝑚(Ω) →˓ 𝐿𝑝(Ω), where 𝑝 ∈ [1,+∞[ ;

(iii) If 𝑛 = 1 and 𝑚 ≥ 1, then 𝐻𝑚(Ω) →˓ 𝐿∞(Ω).

Here the symbol →˓ denotes a continuous embedding.

Lemma 1.3.6 (Rellich-Kondrachov). Let Ω be a bounded open set of R𝑛, Ω of class 𝐶𝑚.
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(i) If 𝑛 > 2𝑚, then 𝐻𝑚(Ω) is compactly embedding in 𝐿𝑝(Ω), where 𝑝 ∈
[︂
1, 2𝑛
𝑛− 2𝑚

[︂
.

(ii) If 𝑛 = 2𝑚, then 𝐻𝑚(Ω) is compactly embedding in 𝐿𝑝(Ω), where 𝑝 ∈ [1,+∞[ .

(iii) If 2𝑚 > 𝑛 and 𝑚 ≥ 1, then 𝐻𝑚(Ω) is compactly embedding in 𝐶𝑘(Ω), where 𝑘 is a
non-negative integer such that 𝑘 < 𝑚− 𝑛

2 ≤ 𝑘 + 1.

We denote by 𝐿𝑝(0, 𝑇 ;𝑋), with 1 ≤ 𝑝 < ∞, the Banach space of (classes of) functions

𝑢 defined in ]0, 𝑇 [ with values in 𝑋 that are strongly measurable and ‖𝑢(𝑡)‖𝑝
𝑋 is Lebesgue

integrable on ]0, 𝑇 [. The norm of 𝐿𝑝(0, 𝑇 ;𝑋) is defined by

‖𝑢(𝑡)‖𝐿𝑝(0,𝑇 ;𝑋) =
(︃∫︁ 𝑇

0
‖𝑢(𝑡)‖𝑝

𝑋𝑑𝑡

)︃ 1
𝑝

.

Additionally, 𝐿∞(0, 𝑇 ;𝑋) represents the Banach space of (classes of) functions 𝑢 defined in

]0, 𝑇 [ with values in 𝑋 that are strongly measurable and ‖𝑢(𝑡)‖𝑋 has essential supremum

finite on ]0, 𝑇 [. The norm of 𝐿∞(0, 𝑇 ;𝑋) is defined by

‖𝑢(𝑡)‖𝐿∞(0,𝑇 ;𝑋) = 𝑠𝑢𝑝𝑒𝑠𝑠𝑡∈]0,𝑇 [‖𝑢(𝑡)‖𝑋 .

Remark 1.3.5. If 𝑝 = 2 and 𝑋 is a Hilbert space, the space 𝐿2(0, 𝑇 ;𝑋) is a Hilbert space
with respect to the ineer product

(𝑢, 𝑣)𝐿2(0,𝑇 ;𝑋) =
∫︁ 𝑇

0
(𝑢(𝑡), 𝑣(𝑡))𝑋𝑑𝑡.

Consider the space 𝐿𝑝(0, 𝑇 ;𝑋), 1 < 𝑝 < ∞, where 𝑋 is a separable Hilbert space. We

identify

[𝐿𝑝(0, 𝑇 ;𝑋)]′ ≈ 𝐿𝑞(0, 𝑇 ;𝑋 ′),

where 1
𝑝

+ 1
𝑞

= 1. When 𝑝 = 1, we identify

[𝐿1(0, 𝑇 ;𝑋)]′ ≈ 𝐿∞(0, 𝑇 ;𝑋 ′).

Let 𝑋 be a Banach space. The vector space of linear and continuous maps of 𝒟(0, 𝑇 ) on 𝑋 is

called the space of vector distributions on ]0, 𝑇 [ with values in 𝑋. It is denoted by 𝒟′(0, 𝑇 ;𝑋).

Example 1.3.4. Given 𝑢 ∈ 𝐿𝑝(0, 𝑇 ;𝑋), 1 ≤ 𝑝 < ∞, and 𝜙 ∈ 𝒟(0, 𝑇 ), the application
𝑇𝑢 : 𝒟(0, 𝑇 ) → 𝑋, defined by

𝑇𝑢(𝜙) =
∫︁ 𝑇

0
𝑢(𝑡)𝜙(𝑡)𝑑𝑡
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and usually called Bochner’s integral on 𝑋, is linear and continuous in the sense of the con-
vergence in 𝒟(0, 𝑇 ). Thus, T is a distribution. The map 𝑢 ↦→ 𝑇𝑢 is injective, so we identify
𝑢 with 𝑇𝑢 and, in this sense,

𝐿𝑝(0, 𝑇 ;𝑋) ⊂ 𝒟′(0, 𝑇 ;𝑋).

Definition 1.3.4. Given 𝑆 ∈ 𝒟′(0, 𝑇 ;𝑋). The derivative of order 𝑛 of S is the vector distri-
bution over ]0, 𝑇 [ with values in 𝑋 given by⟨

𝑑𝑛𝑆

𝑑𝑡𝑛
, 𝜙

⟩
= (−1)𝑛

⟨
𝑆,
𝑑𝑛𝜙

𝑑𝑡𝑛

⟩
, ∀𝜙 ∈ 𝒟(0, 𝑇 ).

Consider the space

𝑊𝑚,𝑝(0, 𝑇 ;𝑋) = {𝑢 ∈ 𝐿𝑝(0, 𝑇 ;𝑋);𝑢(𝑗) ∈ 𝐿𝑝(0, 𝑇,𝑋), 𝑗 = 1, . . . ,𝑚},

where 𝑢(𝑗) represents the 𝑗−th derivative of 𝑢 in the sense of vector distributions endowed

with the norm

‖𝑢‖𝑊 𝑚,𝑝(0,𝑇 ;𝑋) =
⎛⎝ 𝑚∑︁

𝑗=0
‖𝑢(𝑗)‖𝑝

𝐿𝑝(0,𝑇 ;𝑋)

⎞⎠ 1
𝑝

.

The space
(︁
𝑊𝑚,𝑝(0, 𝑇 ;𝑋), ‖ · ‖𝑊 𝑚,𝑝(0,𝑇 ;𝑋)

)︁
is a Banach space.

Remark 1.3.6. When 𝑝 = 2 and 𝑋 is a Hilbert space, the space 𝑊𝑚,𝑝(0, 𝑇 ;𝑋) will be
denoted by 𝐻𝑚(0, 𝑇 ;𝑋). Endowed with the inner product

(𝑢, 𝑣)𝐻𝑚(0,𝑇 ;𝑋) =
𝑚∑︁

𝑗=0
(𝑢(𝑗), 𝑣(𝑗))𝐿2(0,𝑇 ;𝑋),

it is a Hilbert space. We denote by 𝐻𝑚
0 (0, 𝑇 ;𝑋) the closure of 𝒟(0, 𝑇 ;𝑋) in 𝐻𝑚(0, 𝑇 ;𝑋)

and denote by 𝐻−𝑚(0, 𝑇 ;𝑋) the topological dual of 𝐻𝑚
0 (0, 𝑇 ;𝑋).

The following lemma can be found in (AUBIN, 1963).

Lemma 1.3.7 (Aubin-Lions lemma). Let 𝑋0, 𝑋 and 𝑋1 be Banach spaces with 𝑋0 ⊆ 𝑋 ⊆

𝑋1. Suppose that 𝑋0 is compactly embedded in 𝑋 and that 𝑋 is continuously embedded in
𝑋1. For 1 ≤ 𝑝, 𝑞 ≤ ∞, let

𝑊 = {𝑢 ∈ 𝐿𝑝([0, 𝑇 ], 𝑋0);𝑢′ ∈ 𝐿𝑞([0, 𝑇 ];𝑋1)}.

(𝑖) If 𝑝 < ∞, then the embedding of 𝑊 into 𝐿𝑝([0, 𝑇 ], 𝑋) is compact.

(𝑖𝑖) If 𝑝 = ∞ and 𝑞 > 1, then the embedding of 𝑊 into 𝐶([0, 𝑇 ];𝑋) is compact.
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1.3.2 Interpolation of Sobolev spaces

The results that we will state from now on, as well as their demonstrations, can be found

in (LIONS; MAGENES, 1968) and (TAYLOR, 2011).

Let 𝑋 and 𝑌 be two separable Hilbert spaces with a continuous and dense embedding

𝑋 →˓ 𝑌. Let (·, ·)𝑋 and (·, ·)𝑌 be the inner products of 𝑋 and 𝑌, respectively. We denote by

𝐷(𝑆) the set of all functions 𝑢 defined in 𝑋 such that the application 𝑣 ↦−→ (𝑢, 𝑣)𝑋 , 𝑣 ∈ 𝑋,

is continuous in the topology induced by 𝑌. Moreover, the identification (𝑢, 𝑣)𝑋 = (𝑆𝑢, 𝑣)𝑌

defines 𝑆 as an unbounded operator on 𝑌 with domain 𝐷(𝑆) dense in 𝑌. Since 𝑆 is a self-

adjoint and strictly positive operator, using the spectral decomposition of self-adjoint operators,

we define 𝑆𝜃, 𝜃 ∈ R. In particular, we use 𝐴 = 𝑆
1
2 . The operator 𝐴 is self-adjoint, positive

and defined on 𝑌 with domain 𝑋 and

(𝑢, 𝑣)𝑋 = (𝐴𝑢,𝐴𝑣)𝑌 ,∀𝑢, 𝑣 ∈ 𝑋.

Definition 1.3.5. With the previous assumptions, we define the intermediate space

[𝑋, 𝑌 ]𝜃 = 𝐷 (domain of 𝐴1−𝜃), 0 ≤ 𝜃 ≤ 1,

with norm
‖𝑢‖[𝑋,𝑌 ]𝜃 = (‖𝑢‖2

𝑌 + ‖𝐴1−𝜃𝑢‖2
𝑌 ) 1

2 .

Note that

1. 𝑋 →˓ [𝑋, 𝑌 ]𝜃 →˓ 𝑌 ;

2. ‖𝑢‖[𝑋,𝑌 ]𝜃 ≤ ‖𝑢‖1−𝜃
𝑋 ‖𝑢‖𝜃

𝑌 ;

3. If 0 < 𝜃0 < 𝜃1 < 1, then [𝑋, 𝑌 ]𝜃0 →˓ [𝑋, 𝑌 ]𝜃1 ;

4. [[𝑋, 𝑌 ]𝜃0 , [𝑋, 𝑌 ]𝜃1 ]𝜃 = [𝑋, 𝑌 ](1−𝜃)𝜃0+𝜃𝜃1 .

Theorem 1.3.1. Let 𝑠1, 𝑠2 ∈ R, 𝑠1 ≥ 𝑠2. If 𝑠 = (1 − 𝜃)𝑠1 + 𝜃𝑠2, then

[𝐻𝑠1(R3), 𝐻𝑠2(R3)]𝜃 = 𝐻𝑠(R3)

and
‖𝑢‖[𝐻𝑠1 (R3),𝐻𝑠2 (R3)]𝜃 ≤ ‖𝑢‖1−𝜃

𝐻𝑠1 (R3)‖𝑢‖𝜃
𝐻𝑠2 (R3).
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1.3.3 Some Important Inequalities

Let us present a series of inequalities that will be used throughout this thesis. The results

are classical and the proofs will be omitted. For more details see, e.g., (ADAMS; FOURNIER,

2003) and (BREZIS, 2011).

Lemma 1.3.8 (Young’s Inequality). Let 𝑎 and 𝑏 be positive constants. If 1 ≤ 𝑝 ≤ ∞ and
1 ≤ 𝑞 ≤ ∞ are such that 1

𝑝
+ 1
𝑞

= 1, then

𝑎𝑏 ≤ 𝑎𝑝

𝑝
+ 𝑏𝑞

𝑞
.

Lemma 1.3.9 (Generalized Young’s Inequality). Let 𝑎 and 𝑏 be positive constants, 1 ≤ 𝑝 ≤

∞, and 1 ≤ 𝑞 ≤ ∞ such that 1
𝑝

+ 1
𝑞

= 1. For all 𝜖 > 0, there exists 𝐶(𝜖) > 0 such that

𝑎𝑏 ≤ 𝜖𝑎𝑝 + 𝐶(𝜖)𝑏𝑞.

Lemma 1.3.10 (Cauchy-Schwarz’s Inequality). Let (𝐸, ⟨·, ·⟩) be a vector space with an inner
product and ‖ · ‖ be its induced norm. One has

|⟨𝑥, 𝑦⟩| ≤ ‖𝑥‖‖𝑦‖, ∀𝑥, 𝑦 ∈ 𝐸.

Furthermore, the equality holds if, and only if, 𝑥 and 𝑦 are linearly dependent.

Lemma 1.3.11 (Hölder’s Inequality). Let 𝑓 ∈ 𝐿𝑝(Ω) e 𝑔 ∈ 𝐿𝑞(Ω) with 1 ≤ 𝑝 ≤ ∞ and
1
𝑝

+ 1
𝑞

= 1. Then, 𝑓𝑔 ∈ 𝐿1(Ω) and

‖𝑓𝑔‖𝐿1(Ω) =
∫︁

Ω
|𝑓𝑔| ≤ ‖𝑓‖𝐿𝑝(Ω)‖𝑔‖𝐿𝑞(Ω).

1.3.4 Semigroup theory

We state some results on semigroup theory. The results can be found in (PAZY, 2012). In

what follows, we denote by (𝑋, ‖ · ‖𝑋) a Banach space.

Definition 1.3.6. Let ℒ(𝑋) be the algebra of bounded linear operators over 𝑋. The appli-
cation 𝑆 : R+ → ℒ(𝑋) is a 𝐶0-semigroup of bounded operators on 𝑋 if

(i) 𝑆(0) = 𝐼, where 𝐼 is the identity operator on 𝑋;

(ii) 𝑆(𝑡+ 𝑠) = 𝑆(𝑡)𝑆(𝑠), for all 𝑡, 𝑠 ∈ R+;
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(iii) lim𝑡→0+ ‖(𝑆(𝑡) − 𝐼)𝑥‖𝑋 = 0, for all 𝑥 ∈ 𝑋.

Proposition 1.3.1. If 𝑆 : R+ → ℒ(𝑋) is a 𝐶0-semigroup, then

lim
𝑡→∞

ln‖𝑆(𝑡)‖ℒ(𝑋)

𝑡
= inf

𝑡>0

ln‖𝑆(𝑡)‖ℒ(𝑋)

𝑡
= 𝜔0.

Furthermore, for every 𝜔 > 𝜔0, there exists a constant 𝑀 ≥ 1 such that

‖𝑆(𝑡)‖ℒ(𝑋) ≤ 𝑀𝑒𝜔𝑡, for all 𝑡 ≥ 0. (1.2)

Remark 1.3.7. If 𝜔0 < 0, it follows by (1.2) that there exists 𝑀 ≥ 1 such that

‖𝑆(𝑡)‖ℒ(𝑋) ≤ 𝑀, for all 𝑡 ≥ 0.

Moreover, when 𝑀 ≤ 1, we call 𝑆 : R+ → ℒ(𝑋) a 𝐶0-semigroup of contractions.

Definition 1.3.7. Let 𝑆 : R+ → ℒ(𝑋) be a 𝐶0-semigroup. The operator

𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋

with domain 𝐷(𝐴) and value in 𝑥 defined, respectively, by

𝐷(𝐴) :=
{︃
𝑥 ∈ 𝑋; ∃ lim

ℎ→0+

(︃
𝑆(ℎ) − 𝐼

ℎ

)︃
𝑥

}︃

and
𝐴𝑥 := lim

ℎ→0

(︃
𝑆(ℎ) − 𝐼

ℎ

)︃
𝑥,

is called the infinitesimal generator of the 𝐶0-semigroup 𝑆(𝑡).

Remark 1.3.8. It is easy to see that if 𝐷(𝐴) ⊂ 𝑋 is a nonempty subset, then 𝐷(𝐴) is a
subspace of 𝑋 and 𝐴 is a linear operator.

Proposition 1.3.2. Let 𝑆 : R+ → ℒ(𝑋) be a 𝐶0-semigroup and 𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 its
infinitesimal generator.

(i) If 𝑥 ∈ 𝐷(𝐴), then 𝑆(𝑡)𝑥 ∈ 𝐷(𝐴), for all 𝑡 ≥ 0, and

𝑑

𝑑𝑡
𝑆(𝑡)𝑥 = 𝐴𝑆(𝑡)𝑥 = 𝑆(𝑡)𝐴𝑥, ∀𝑡 ≥ 0.

(ii) If 𝑥 ∈ 𝐷(𝐴), then

𝑆(𝑡)𝑥− 𝑆(𝑠)𝑥 =
∫︁ 𝑡

𝑠
𝐴𝑆(𝜉)𝑥𝑑𝜉 =

∫︁ 𝑡

𝑠
𝑆(𝜉)𝐴𝑥𝑑𝜉, 0 ≤ 𝑠 ≤ 𝑡.
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(iii) If 𝑥 ∈ 𝑋, then ∫︀ 𝑡
0 𝑆(𝜉)𝑥𝑑𝜉 ∈ 𝐷(𝐴) and

𝐴
∫︁ 𝑡

0
𝑆(𝜉)𝑥𝑑𝜉 = 𝑆(𝑡)𝑥− 𝑥.

Definition 1.3.8. Let 𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 be a linear operator. The resolvent set 𝜌(𝐴) of
𝐴 is the set of all complex numbers 𝜆 for which 𝜆𝐼 − 𝐴 is invertible, that is, (𝜆𝐼 − 𝐴)−1 is
a bounded linear operator in 𝑋. The family 𝑅(𝜆 : 𝐴) = (𝜆𝐼 − 𝐴)−1, 𝜆 ∈ 𝜌(𝐴), of bounded
linear operators is called the resolvent of 𝐴.

1.3.4.1 The Hille-Yosida and Lumer-Phillips theorems

This subsection presents two theorems that establish necessary and sufficient conditions

for a linear operator 𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 to generate a 𝐶0-semigroup.

Theorem 1.3.2. (Hille-Yosida) A linear operator 𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 is the infinitesimal
generator of a 𝐶0-semigroup of contractions 𝑇 (𝑡), 𝑡 ≥ 0 if, and only if,

(i) 𝐴 is closed and 𝐷(𝐴) = 𝑋;

(ii) The resolvent set 𝜌(𝐴) of 𝐴 contains R+ and, for all 𝜆 > 0, one has

‖𝑅(𝜆 : 𝐴)‖ℒ(𝑋) ≤ 1
𝜆
.

Before presenting the next result, we need another concept. Let 𝑋 be a Banach space and

let 𝑋* be its dual space. We denote the value of 𝑥* ∈ 𝑋* at 𝑥 ∈ 𝑋 by ⟨𝑥*, 𝑥⟩. For every

𝑥 ∈ 𝑋, define the duality set 𝐹 (𝑥) ⊆ 𝑋* by

𝐹 (𝑥) =
{︁
𝑥*; 𝑥* ∈ 𝑋* and ⟨𝑥*, 𝑥⟩ = ‖𝑥‖2

𝑋 = ‖𝑥*‖2
𝑋*

}︁
.

Remark 1.3.9. From the Hahn-Banach theorem, it follows that 𝐹 (𝑥) ̸= ∅, for all 𝑥 ∈ 𝑋.

Definition 1.3.9. A linear operator 𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 is dissipative if, for all 𝑥 ∈ 𝐷(𝐴),
there exists 𝑥* ∈ 𝐹 (𝑋) such that ⟨𝐴𝑥, 𝑥*⟩ ≤ 0.

Theorem 1.3.3. (Lumer-Phillips) Let 𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 be a linear operator with
𝐷(𝐴) = 𝑋.
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(a) If 𝐴 is dissipative and there is 𝜆0 > 0 such that the range 𝑅𝑎𝑛(𝜆0𝐼 −𝐴) of 𝜆0𝐼 −𝐴 is
𝑋, then 𝐴 is the infinitesimal generator of a 𝐶0-semigroup of contractions on 𝑋.

(b) If𝐴 is the infinitesimal generator of a 𝐶0-semigroup of contractions on𝑋, then𝑅𝑎𝑛(𝜆𝐼−

𝐴) = 𝑋 for all 𝜆 > 0 and 𝐴 is dissipative. Moreover,

⟨𝐴𝑥, 𝑥*⟩ ≤ 0, for all 𝑥 ∈ 𝐷(𝐴) and 𝑥* ∈ 𝐹 (𝑥).

Corolary 1.3.1. Let 𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 be a linear closed operator with 𝐷(𝐴) = 𝑋. If
both 𝐴 and its adjoint 𝐴* are dissipative, 𝐴 is a generator of a 𝐶0-semigroup of contractions
on 𝑋.

Definition 1.3.10. A semigroup 𝑆 of linear and bounded operators on a Hilbert space 𝐻
is said to be a unitary semigroup if, for each 𝑡 ≥ 0, 𝑆(𝑡) is a unitary operator, that is,
𝑆(𝑡)* = 𝑆(𝑡)−1 for all 𝑡 ≥ 0.

1.3.4.2 The abstract Cauchy problem: The linear case

Let 𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 be a linear operator. Given 𝑢0 ∈ 𝑋, the abstract Cauchy

problem for 𝐴 with initial data 𝑢0 consists of finding a solution 𝑢(𝑡) to the homogeneous

Cauchy problem ⎧⎪⎪⎨⎪⎪⎩
𝑑𝑢(𝑡)
𝑑𝑡

= 𝐴𝑢(𝑡), 𝑡 > 0,

𝑢(0) = 𝑢0.
(1.3)

Let us introduce a notion of solution to the problem (1.3).

Definition 1.3.11. (Classical solution) A function 𝑢 : R+ → 𝑋 is a classical solution of
problem (1.3) for all 𝑡 ≥ 0 if 𝑢 is continuous for all 𝑡 ≥ 0, continuously differentiable on R+,
𝑢(𝑡) ∈ 𝐷(𝐴) for all 𝑡 ∈ R+, 𝑢(0) = 𝑢0 and the equation in (1.3) is satisfied for all 𝑡 > 0.

Remark 1.3.10. Let 𝑆 : R+ → 𝑋 be a 𝐶0-semigroup. Due to Proposition 1.3.2, if 𝑢0 ∈ 𝐷(𝐴)

and 𝐴 is its infinitesimal generator, 𝑢(·) = 𝑆(·)𝑢0 : R+ → 𝐷(𝐴) is a classical solution of
problem (1.3). Moreover, 𝑆(·)𝑢0 is the unique solution of problem (1.3).

Consider the inhomogeneous Cauchy problem⎧⎪⎪⎨⎪⎪⎩
𝑑𝑢(𝑡)
𝑑𝑡

= 𝐴𝑢(𝑡) + 𝑓(𝑡), 𝑡 > 0,

𝑢(0) = 𝑢0,
(1.4)
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where 𝑓 :+→ 𝑋 is a continuous function. Let 𝐴 be the infinitesimal generator of a semigroup

S of class 𝐶0. Similarly to Definition 1.3.11, we have the following definition for the classical

solution of the problem (1.4) with 𝑇 > 0 a fixed constant.

Definition 1.3.12. (Classical solution) A function 𝑢 : [0, 𝑇 [→ 𝑋 is a classical solution of
problem (1.4) for all 𝑡 ∈ [0, 𝑇 [ if 𝑢 is continuous on [0, 𝑇 [, continuously differentiable on
]0, 𝑇 [, 𝑢(𝑡) ∈ 𝐷(𝐴) for all 𝑡 ∈]0, 𝑇 [, 𝑢(0) = 𝑢0 and the equation in (1.4) is satisfied for all
𝑡 ∈ (0, 𝑇 ).

Suppose that 𝐴 is an infinitesimal generator of a 𝐶0- semigroup 𝑆 and 𝑢(𝑡) is a classical

solution of problem (1.4). Then, 𝑣(𝑠) = 𝑆(𝑡− 𝑠)𝑢(𝑠) is differentiable for 0 < 𝑠 < 𝑡 and

𝑑𝑣

𝑑𝑠
= 𝑆(𝑡− 𝑠)𝑓(𝑠). (1.5)

Hence, if 𝑓 ∈ 𝐿1(0, 𝑇 ;𝑋), 𝑆(𝑡− 𝑠)𝑓(𝑠) is integrable on [0, 𝑡], integrating equation (1.5) from

0 to 𝑡 yields

𝑢(𝑡) = 𝑆(𝑡)𝑢0 +
∫︁ 𝑡

0
𝑆(𝑡− 𝑠)𝑓(𝑠)𝑑𝑠. (1.6)

As a consequence, the equation (1.6) has at most one solution 𝑢 ∈ 𝐶([0, 𝑇 ];𝑋). Moreover,

it is natural to define a generalized solution of problem (1.4).

Definition 1.3.13. Let 𝑢0 ∈ 𝑋 and 𝑓 ∈ 𝐿1([0, 𝑇 ];𝑋). The function 𝑢 ∈ 𝐶([0, 𝑇 ];𝑋) given
by

𝑢(𝑡) = 𝑆(𝑡)𝑢0 +
∫︁ 𝑡

0
𝑆(𝑡− 𝑠)𝑓(𝑠)𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑇,

is called the mild (generalized) solution of the inhomogeneous Cauchy problem (1.4) on [0, 𝑇 ].

Remark 1.3.11. In general, the homogeneous Cauchy problem (1.3) does not have a classical
solution, since, in general, 𝑢0 /∈ 𝐷(𝐴). Taking 𝑓 ≡ 0 in Definition 1.3.13, 𝑢(·) = 𝑆(·)𝑢0 is the
mild solution of problem (1.3) since 𝑢0 ∈ 𝑋. It is therefore clear that not every mild solution
of problem (1.4) is a classical solution even in the case 𝑓 ≡ 0.

Let us present another notion of solution to the Cauchy problem (1.4):

Definition 1.3.14. (Strong solution): Let 𝑢 be an almost everywhere differentiable function
on [0, 𝑇 ] such that 𝑑𝑢

𝑑𝑡
∈ 𝐿1([0, 𝑇 ];𝑋). We say that 𝑢 is a strong solution of the Cauchy

problem (1.4) if 𝑢(0) = 𝑢0 and
𝑑𝑢

𝑑𝑡
= 𝐴𝑢+ 𝑓,

almost everywhere on [0, 𝑇 ].
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Remark 1.3.12. Observe that if 𝐴 = 0 and 𝑓 ∈ 𝐿1([0, 𝑇 ];𝑋), then the Cauchy problem
(1.4) has usually no solution unless 𝑓 ∈ 𝐶([0, 𝑇 ];𝑋). However, problem (1.4) has always a
strong solution given by

𝑢(𝑡) = 𝑢0 +
∫︁ 𝑡

0
𝑓(𝑠)𝑑𝑠.

Moreover, it is easy to show that if 𝑢 is a strong solution of problem (1.4) and 𝑓 ∈ 𝐿1([0, 𝑇 ];𝑋),
then 𝑢 is a mild solution as well.

1.3.4.3 The abstract Cauchy problem: The nonlinear case

Let (𝑋, ‖.‖𝑋) be a reflexive Banach space. Consider the initial value problem⎧⎪⎪⎨⎪⎪⎩
𝑑𝑢(𝑡)
𝑑𝑡

= 𝐴𝑢(𝑡) + 𝐹 (𝑢(𝑡)), 𝑡 > 0,

𝑢(0) = 𝑢0,
(1.7)

where 𝐹 : 𝑋 → 𝑋 is a continuous function and 𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 is an infinitesimal

generator of a 𝐶0-semigroup 𝑆 : R+ → ℒ(𝑋) such that ‖𝑆(𝑡)‖ℒ(𝑋) ≤ 𝑀, ∀𝑡 ≥ 0. If 𝑢 is

either a classical solution or a strong solution of problem (1.7), it is not difficult to see that 𝑢

satisfies the integral equation

𝑢(𝑡) = 𝑆(𝑡)𝑢0 +
∫︁ 𝑡

0
𝑆(𝑡− 𝑠)𝐹 (𝑢(𝑠))𝑑𝑠,

and 𝑢 is a mild solution.

Theorem 1.3.4. Let 𝐹 : 𝑋 → 𝑋 be a Lipschitz function, i.e., there exists 𝐿 > 0 such that

‖𝐹 (𝑢) − 𝐹 (𝑣)‖𝑋 ≤ 𝐿‖𝑢− 𝑣‖𝑋 , ∀𝑢, 𝑣 ∈ 𝑋.

For all 𝑢0 ∈ 𝑋, there exists an unique mild solution of problem (1.7) 𝑢 ∈ 𝐶(R+;𝑋). Moreover,

(i) If 𝑢0, 𝑣0 ∈ 𝑋 are initial data and 𝑢, 𝑣 are their respective mild solutions of problem
(1.7), then

‖𝑢(𝑡) − 𝑣(𝑡)‖𝑋 ≤ 𝑀𝑒𝐿𝑀𝑡‖𝑢0 − 𝑣0‖𝑋 .

(ii) If 𝑢0 ∈ 𝐷(𝐴), then 𝑢 is a strong solution of problem (1.7) on [0, 𝑇 ].
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1.4 PSEUDODIFFERENTIAL OPERATORS AND MICROLOCAL ANALYSIS

1.4.1 Tempered distributions and the Schwartz space

Definition 1.4.1. A function 𝜙 ∈ 𝐶∞(R𝑛) is said to be rapidly decreasing at infinity if for
each 𝑘 ∈ N we have

𝑝𝑘(𝜙) = max
|𝛼|≤𝑘

sup
𝑥∈R𝑛

(1 + ‖𝑥‖2)𝑘|𝐷𝛼𝜙(𝑥)| < ∞, for all 𝛼 ∈ N.

This is equivalent to
lim

‖𝑥‖→∞
𝑝(𝑥)𝐷𝛼𝜙(𝑥) = 0

for any polynomial 𝑝 of 𝑛 real variables and for all 𝛼 ∈ N𝑛. Let 𝒮(R𝑛) be the vector space of
rapidly decreasing functions at infinity. Define the following notion of convergence in 𝒮(R𝑛): a
sequence (𝜙𝜈) of functions of 𝒮(R𝑛) converges to zero if, for all 𝑘 ∈ N, the sequence (𝑝𝑘(𝜙𝜈))

converges to zero in R (or C). The sequence (𝜙𝜈) converges to 𝜙 in 𝒮(R𝑛) if (𝑝𝑘(𝜙𝜈 − 𝜙))

converges to zero in R (or C), for all 𝑘 ∈ N.
The linear forms defined in 𝒮(R𝑛) which are continuous in the sense of the convergence de-

fined in 𝒮(R𝑛) are called tempered distributions. The vector space of all tempered distributions
will be represented by 𝒮 ′(R𝑛).

Remark 1.4.1. ∙ If 1 ≤ 𝑝 ≤ ∞, then 𝒮(R𝑛) ⊂ 𝐿𝑝(R𝑛);

∙ If 1 ≤ 𝑝 < ∞, then 𝒮(R𝑛) is dense in 𝐿𝑝(R𝑛);

∙ 𝐶∞
0 (R𝑛) ⊂ 𝒮(R𝑛).

1.4.2 Fourier transform

Definition 1.4.2. Given a function 𝑢 ∈ 𝐿1(R𝑛), its Fourier transform is function ℱ𝑢 defined
in R𝑛 by

(ℱ𝑢)(𝜉) = ̂︀𝑢(𝜉) =
∫︁
R𝑛
𝑒−𝑖𝑥·𝜉𝑢(𝑥) 𝑑𝑥,

where 𝑥 · 𝜉 = 𝑥1𝜉1 + 𝑥2𝜉2 + ... + 𝑥𝑛𝜉𝑛. The application (ℱ−1𝑢)(𝜉) = (2𝜋)− 𝑛
2 (ℱ𝑢)(−𝜉), for

all 𝜉 ∈ R𝑛, is called the inverse Fourier transform of 𝑢. One has ℱ𝑢 = ℱ−1𝑢, where 𝑢 the
complex conjugate of u. The Fourier’s inversion formula is

𝑢(𝑥) = (2𝜋)− 𝑛
2

∫︁
R𝑛
𝑒𝑖𝑥·𝜉 ̂︀𝑢(𝜉) 𝑑𝜉.
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Since 𝒮(R𝑛) ⊂ 𝐿1(R𝑛) for every 𝜙 ∈ 𝒮(R𝑛), ℱ𝜙 and ℱ−1𝜙 are well defined and it is possible

to show that they are rapidly decreasing at infinity. In addition, ℱ : 𝒮(R𝑛) → 𝒮(R𝑛) and

ℱ : 𝒮(R𝑛) → 𝒮(R𝑛) are continuous isomorphisms. For all 𝜙, 𝜓 ∈ 𝒮(R𝑛), we have

ℱ(𝐷𝛼𝜙) = 𝑖|𝛼|𝑥𝛼ℱ𝜙, 𝐷𝛼(ℱ𝜙) = ℱ((−𝑖)|𝛼|𝑥𝛼𝜙)

(ℱ𝜙,ℱ𝜓)𝐿2(R𝑛) = (𝜙, 𝜓)𝐿2(R𝑛) = (ℱ−1𝜙,ℱ−1𝜓)𝐿2(R𝑛).

Theorem 1.4.1. (Plancherel’s Theorem) The applications ℱ : 𝐿2(R𝑛) → 𝐿2(R𝑛) and ℱ−1 :

𝐿2(R𝑛) → 𝐿2(R𝑛) are isomorphisms of Hilbert spaces such that

(ℱ𝑢,ℱ𝑣)𝐿2(R𝑛) = (𝑢, 𝑣)𝐿2(R𝑛) = (ℱ−1𝑢,ℱ−1𝑣)𝐿2(R𝑛),

for every pair 𝑢, 𝑣 ∈ 𝐿2(R𝑛).

The notations ̂︀𝑢 and 𝑢̌ will also be used to denote ℱ𝑢 and ℱ−1𝑢, respectively.

1.4.3 Differential operators

From here we will follow the content explored in (BURQ; GÉRARD, 2002) and (CAVALCANTI;

CAVALCANTI, 2014). In what follows, Ω is an open and nonempty subset of R𝑛.

Definition 1.4.3. A differential operator on Ω is a linear map 𝑃 : 𝒟(Ω) → 𝒟(Ω) of the form

𝑃𝑢(𝑥) :=
∑︁

|𝛼|≤𝑚

𝑎𝛼(𝑥)𝜕𝛼
𝑥𝑢(𝑥), (1.8)

where 𝜕𝛼
𝑥 := 𝜕𝛼1

𝑥1 ...𝜕
𝛼𝑛
𝑥𝑛

and the complex valued functions 𝑎𝛼 are 𝐶∞ in Ω. The greatest integer
𝑚 for such that the functions 𝑎𝛼, |𝛼| = 𝑚, are not all zero is called the order of 𝑃 .

As mentioned before, considering the Fourier inversion formula, we obtain

𝑢(𝑥) = (2𝜋)− 𝑛
2

∫︁
R𝑛
𝑒𝑖𝑥·𝜉 ̂︀𝑢(𝜉) 𝑑𝜉,

since (̂𝜕𝛼
𝑥 )𝑢(𝜉) = (𝑖𝜉)𝛼̂︀𝑢(𝜉). Observing that 𝜕𝛼

𝑥𝑢 ∈ 𝒮(R𝑛), we get

𝜕𝛼𝑢(𝑥) = (2𝜋)− 𝑛
2

∫︁
R𝑛
𝑒𝑖𝑥·𝜉 ̂︂𝜕𝛼

𝑥𝑢(𝜉) 𝑑𝜉

= (2𝜋)− 𝑛
2

∫︁
R𝑛
𝑖|𝛼|𝑒𝑖𝑥·𝜉𝜉𝛼̂︀𝑢(𝜉) 𝑑𝜉
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which implies that expression in (1.8) can be rewritten as

𝑃𝑢(𝑥) =
∑︁

|𝛼|≤𝑚

𝑎𝛼(𝑥)𝜕𝛼
𝑥𝑢(𝑥)

=
∑︁

|𝛼|≤𝑚

𝑎𝛼(𝑥)𝑖|𝛼|(2𝜋)− 𝑛
2

∫︁
R𝑛
𝑒𝑖𝑥·𝜉𝜉𝛼̂︀𝑢(𝜉) 𝑑𝜉

= (2𝜋)− 𝑛
2

∫︁
R𝑛
𝑒𝑖𝑥·𝜉

⎛⎝ ∑︁
|𝛼|≤𝑚

𝑎𝛼(𝑥)𝑖|𝛼|𝜉𝛼

⎞⎠̂︀𝑢(𝜉) 𝑑𝜉.

The map 𝑝 : Ω × R𝑛 → C defined by

𝑝(𝑥, 𝜉) :=
∑︁

|𝛼|≤𝑚

𝑎𝛼(𝑥)(𝑖𝜉)𝛼

is called symbol of 𝑃 . In other words, differential operators with 𝐶∞ coefficients on Ω are the

operators of the form

𝑃𝑢(𝑥) = (2𝜋)− 𝑛
2

∫︁
R𝑛
𝑒𝑖𝑥·𝜉𝑝(𝑥, 𝜉)̂︀𝑢(𝜉) 𝑑𝜉, (1.9)

where 𝑝(𝑥, 𝜉) is a polynomial in 𝜉 with coefficients that are 𝐶∞ functions of 𝑥 ∈ Ω so that

the above integral makes sense.

Remark 1.4.2. Adopting the notation

𝐷 = 1
𝑖
𝜕,𝐷𝑗 = 1

𝑖
𝜕𝑗 and 𝐷𝛼 = 1

𝑖|𝛼|𝜕
𝛼,

and introducing the symbolic multi-index 𝐷 = (𝐷1, ..., 𝐷𝑛), where 𝐷𝑗 = 1
𝑖

𝜕
𝜕𝑥𝑗

, the operator
𝑃 can be written as

𝑃 =
∑︁

|𝛼|≤𝑚

𝑎𝛼(𝑥)𝜕𝛼 =
∑︁

|𝛼|≤𝑚

𝑎𝛼(𝑥)𝑖|𝛼|𝐷𝛼 = 𝑝(𝑥,𝐷).

Now, we list some results that help to characterize the differential operators.

Proposition 1.4.1. If 𝑃 = 𝑝(𝑥,𝐷) and 𝑄 = 𝑞(𝑥,𝐷) are differential operators on Ω of order
𝑚 and 𝑛, respectively, then the composition 𝑃𝑄 is a differential operator of order at most
𝑚+ 𝑛 and its symbol is given by

𝑝#𝑞(𝑥, 𝜉) =
∑︁

𝛼

1
𝛼!𝜕

𝛼
𝜉 𝑝(𝑥, 𝜉)𝐷𝛼𝑞(𝑥, 𝜉),

where the sum is finite.
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Proposition 1.4.2. If 𝑃 = 𝑝(𝑥,𝐷) is a differential operator of order 𝑚 on Ω, then there
exists a differential operator 𝑃 * of order 𝑚 on Ω such that, for all 𝑢, 𝑣 ∈ 𝒟(Ω),

(𝑃𝑢, 𝑣)𝐿2(Ω) = (𝑢, 𝑃 *𝑣)𝐿2(Ω).

The symbol of 𝑃 * is given by the finite sum

𝑝*(𝑥, 𝜉) =
∑︁

|𝛼|≤𝑚

(−1)|𝛼|

𝛼! 𝐷𝛼𝜕𝛼
𝜉 𝑝(𝑥, 𝜉).

Definition 1.4.4. If 𝑃 is a differential operator of order at most 𝑚 and symbol 𝑝, we call the
principal symbol of 𝑃 , which we will denote by 𝜎𝑚(𝑃 ), the homogeneous part of degree 𝑚 in
𝜉 of the polynomial function 𝑝(𝑥, 𝜉), namely

𝜎𝑚(𝑃 )(𝑥, 𝜉) =
∑︁

|𝛼|=𝑚

𝑎𝛼(𝑥)(𝑖𝜉)𝛼, if 𝑃 =
∑︁

|𝛼|≤𝑚

𝑎𝛼(𝑥)𝜕𝛼
𝑥 .

Remark 1.4.3. Note that 𝜎𝑚(𝑃 ) is a homogeneous polynomial of degree 𝑚 in 𝜉, i.e., a
polynomial such that 𝜎𝑚(𝑃 )(𝑥, 𝜆𝜉) = 𝜆𝑚𝜎𝑚(𝑃 )(𝑥, 𝜉), ∀𝜆 ∈ R. As a result, we can reconstruct
the principal symbol from its value at |𝜉| = 1. Indeed, note that

𝜎𝑚(𝑃 )(𝑥, 𝜉) = |𝜉|𝑚𝜎𝑚(𝑃 )
⎛⎝𝑥, 𝜉

|𝜉|

⎞⎠, for all (𝑥, 𝜉), 𝜉 ̸= 0.

Therefore, it is enough to consider 𝜉 ∈ 𝑆𝑛−1, where 𝑛 is the space dimension.

Definition 1.4.5. If 𝑓, 𝑔 are 𝐶∞ functions defined in an open set of R𝑥 × R𝑛
𝜉 , the Poisson

bracket of the functions f and g is defined by

{𝑓, 𝑔}(𝑥, 𝜉) =
𝑛∑︁

𝑗=1

⎛⎝ 𝜕𝑓
𝜕𝜉𝑗

𝜕𝑔

𝜕𝑥𝑗

− 𝜕𝑓

𝜕𝑥𝑗

𝜕𝑔

𝜕𝜉𝑗

⎞⎠.
Propositions 1.4.1 and 1.4.2 lead us to the following corollary.

Corolary 1.4.1. If 𝑃 is of order 𝑚 and 𝑄 of order 𝑛, then

(𝑖) 𝜎𝑚+𝑛(𝑃𝑄) = 𝜎𝑚(𝑃 )𝜎𝑛(𝑄);

(𝑖𝑖) 𝜎𝑚+𝑛−1([𝑃,𝑄]) = 1
𝑖
{𝜎𝑚(𝑃 ), 𝜎𝑛(𝑄)};

(𝑖𝑖𝑖) 𝜎𝑚(𝑃 *) = 𝜎𝑚(𝑃 ),

where [𝑃,𝑄] means the commutator of operators, i.e, [𝑃,𝑄] = 𝑃𝑄 − 𝑄𝑃 and {𝑓, 𝑔} is the
Poisson bracket.
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1.4.4 Pseudodifferential calculus

Definition 1.4.6. Let 𝑚 ∈ R. A symbol of order at most 𝑚 in Ω is a function 𝑎 : Ω×R → C

of class 𝐶∞ verifying the following estimates: for all 𝛼 ∈ N𝑛, 𝛽 ∈ N𝑛, there exists a constant
𝐶𝛼𝛽 such that

|𝜕𝛼
𝑥𝜕

𝛽
𝜉 𝑎(𝑥, 𝜉)| ≤ 𝐶𝛼𝛽(1 + |𝛽|)𝑚−|𝛽|.

We denote by 𝑆𝑚(Ω × R𝑛) the vector space of symbols of order at most 𝑚 in Ω.

Definition 1.4.7. If 𝑎 ∈ 𝑆𝑚(Ω × R𝑛), the formula

𝐴𝑢(𝑥) = 1
(2𝜋)𝑛

∫︁
R𝑛
𝑒𝑖𝑥·𝜉𝑎(𝑥, 𝜉)̂︀𝑢(𝜉) 𝑑𝜉

defines, for all 𝑢 ∈ 𝒟(Ω), an element 𝐴𝑢 of 𝒟(Ω). The linear application A is called a
pseudodifferential operator on Ω of symbol 𝑎. The set of all pseudodifferential operators of
order 𝑚 on Ω will be denoted by Ψ𝑚(Ω).

Definition 1.4.8. An operator 𝐴 ∈ Ψ𝑚(Ω) is essentially homogeneous if there exists a
function 𝑎𝑚 = 𝑎𝑚(𝑥, 𝜉), homogeneous of order 𝑚 in 𝜉, smooth except at 𝜉 = 0, and a
function 𝜒 ∈ 𝐶∞(R𝑛) being zero near 0 and 1 in the infinity such that

𝑎(𝑥, 𝜉) = 𝑎𝑚(𝑥, 𝜉)𝜒(𝜉) + 𝑟(𝑥, 𝜉),

for some 𝑟 ∈ 𝑆𝑚−1(Ω).

Proposition 1.4.3. Let 𝐴 ∈ Ψ𝑚(Ω) essentially homogeneous. Then, for all 𝑢 ∈ 𝒟(Ω), for all
𝜉 ∈ R𝑛∖{0}, and for all 𝑥 ∈ Ω,

𝑡−𝑚𝑒−𝑖(𝑡𝑥)·𝜉𝐴(𝑢𝑒𝑡𝜉)(𝑥) → 𝑎𝑚(𝑥, 𝜉)𝑢(𝑥), as 𝑡 → +∞, (1.10)

where 𝑒𝜉 = 𝑒𝑖𝑥·𝜉.

Definition 1.4.9. Under the conditions of Proposition 1.4.3, we say that 𝐴 admits a principal
symbol of order 𝑚; the function 𝑎𝑚 characterized by (1.10) is called the principal symbol of
order 𝑚 of 𝐴, and it is denoted by 𝜎𝑚(𝐴).

We state some theorems of symbolic calculus.



31

Theorem 1.4.2. Let 𝐴 be a pseudodifferential operator of symbol 𝑎 ∈ 𝑆𝑚(Ω) and let 𝜒 ∈

𝐶∞
0 (Ω) such that 𝜒(𝑥) = 1 for the values close to the projection of 𝑥 of the support of 𝑎.

There exists a pseudodifferential operator 𝐴*
𝜒 on Ω such that

(𝐴(𝜒𝑢), 𝑣)𝐿2(Ω) = (𝑢,𝐴*
𝜒𝑣)𝐿2(Ω),

for all 𝑢, 𝑣 ∈ 𝒟(Ω). In addition, 𝐴*
𝜒 admits a symbol 𝑎*

𝜒 ∈ 𝑆𝑚(Ω) verifying

𝑎*
𝜒 −

∑︁
|𝛼|≤𝑁

1
𝛼!𝐷

𝛼
𝑥𝜕

𝛼
𝜉 𝑎 ∈ 𝑆𝑚−𝑁−1(Ω),

for all 𝑁 ∈ N. In particular, if 𝐴 admits a principal symbol of order 𝑚, then it is the same of
𝐴* and

𝜎𝑚(𝐴*
𝜒) = 𝜎𝑚(𝐴).

Theorem 1.4.3. Let 𝐴 and 𝐵 be pseudodifferential operators with symbols 𝑎 ∈ 𝑆𝑚(Ω),
𝑏 ∈ 𝑆𝑛(Ω), respectively. The composition 𝐴𝐵 is a pseudodifferential operator which admits a
symbol 𝑆𝑚+𝑛(Ω) verifying

𝑎#𝑏−
∑︁

|𝛼|≤𝑁

1
𝛼!𝜕

𝛼
𝜉 𝑎𝐷

𝛼
𝑥 𝑏 ∈ 𝑆𝑚+𝑛−𝑁−1(Ω),

for all 𝑁 ∈ N. In particular, if 𝐴 admits a principal symbol of order 𝑚 and 𝐵 admits a principal
symbol of order 𝑛, then 𝐴𝐵 admits a principal symbol of order 𝑚 + 𝑛 and [𝐴,𝐵] admits a
principal symbol of order 𝑚+ 𝑛− 1 given by

𝜎𝑚+𝑛(𝐴𝐵) = 𝜎𝑚(𝐴)𝜎𝑚(𝐵),

𝜎𝑚+𝑛−1([𝐴,𝐵]) = 1
𝑖
{𝜎𝑚(𝐴), 𝜎𝑛(𝐵)}.

1.4.5 Microlocal defect measures

Let Ω be an open set of R𝑑. Let (𝑢𝑛)𝑛∈N be a bounded sequence in 𝐿2
𝑙𝑜𝑐(Ω), i.e.,

sup
𝑛∈N

∫︁
𝐾

|𝑢𝑛(𝑥)|2 𝑑𝑥 < +∞,

for all compact set 𝐾 ⊂ Ω. We say that 𝑢𝑛 converges weakly to 𝑢 ∈ 𝐿2
𝑙𝑜𝑐(Ω) if

∫︁
Ω
𝑢𝑛(𝑥)𝑓(𝑥) 𝑑𝑥 −→

∫︁
Ω
𝑢(𝑥)𝑓(𝑥) 𝑑𝑥
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as 𝑛 → +∞, for all 𝑓 ∈ 𝐿2
𝑐𝑜𝑚𝑝(Ω) = ⋃︀

𝐾 𝐿2
𝐾(Ω) (when 𝐾 ranges over all compact subsets

of Ω). Once (𝑢𝑛)𝑛∈N converges weakly to 𝑢 in 𝐿2
𝑙𝑜𝑐(Ω), then (𝑢𝑛)𝑛∈N converges in the distri-

butional sense to 𝑢, namely, 𝑢𝑛 → 𝑢 in 𝒟′(Ω). We are interested in a description of the loss

of strong compactness in 𝐿2
𝑙𝑜𝑐(Ω) for the set {𝑢} ∪ {𝑢𝑛;𝑛 ∈ N}. To address this subject we

need the notion of defect measure.

Proposition 1.4.4. The sequence

𝜈𝑛 = |𝑢𝑛 − 𝑢|2,

converges weakly to a positive Radon measure 𝜈 called the defect measure of (𝑢𝑛)𝑛∈N.

Remark 1.4.4. The support of 𝜈 is the set of points in Ω near which 𝑢𝑛 does not converge
to 𝑢 in the strong topology of 𝐿2. This notion provides the first tool for the classification of
defects of compactness. Thus 𝜈 is defined by

(𝜙(𝑢𝑛 − 𝑢), 𝑢𝑛 − 𝑢)𝐿2(Ω) →
∫︁
𝜙 𝑑𝜈, ∀𝜙 ∈ 𝐶∞

0 (Ω) (1.11)

as 𝑛 → +∞, and, consequently, 𝑢𝑛 → 𝑢 as 𝑛 → +∞, strongly in 𝐿2
𝑙𝑜𝑐 if, and only if, 𝜈 ≡ 0.

It is natural to look for a generalization of the formula (1.11) in which the multiplication

by test functions 𝜙 is replaced by the testing operators, bounded on 𝐿2, which are able to

select the possible frequencies of the sequence (𝑢𝑛). This can be achieved by using the class

of pseudodifferential operators of order zero and the corresponding object is then a positive

Radon measure 𝜇 on 𝑇 1Ω := Ω×𝑆𝑑−1, whose concept is introduced in Gérard (GÉRARD, 1991)

and Tartar (TARTAR, 1990). This type of measure is called microlocal defect measure, since

it provides microlocal quantitative information on the sequence (𝑢𝑛).

1.5 OBSERVABILITY INEQUALITIES

The results of this subsection can be seen in (LIONS, 1988). To obtain the stabilization in

which we are interested in this thesis, it will be necessary to use an observability inequality.

We introduce this concept below.

Let (𝑋, ‖ ‖) be a Banach space, 𝑋 ′ the dual space of 𝑋, where ⟨⟨ , ⟩⟩ indicates the duality

between 𝑋 ′ and 𝑋, and let 𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 be a linear operator. Define

𝐷(𝐴*) = {𝑢* ∈ 𝑋 ′; ∃𝑣* ∈ 𝑋 ′ such that ⟨⟨𝑢*, 𝐴𝑢⟩⟩ = ⟨⟨𝑣*, 𝑢⟩⟩,∀𝑢 ∈ 𝐷(𝐴)}.
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When 𝐷(𝐴) is dense in 𝑋, the vector 𝑣* corresponding to 𝑢* is unique. This allows us to

define the adjoint operator 𝐴* as

𝐴* : 𝐷(𝐴*) ⊂ 𝑋 ′ −→ 𝑋 ′

𝑢* ↦−→ 𝐴*𝑢* = 𝑣*.

If (𝑋, ⟨ , ⟩) is a Hilbert space, its dual can be identified with the space 𝑋 itself. In this case,

the inner product on 𝑋 represents this identification, i.e.,

⟨⟨𝑢*, 𝑣⟩⟩ = ⟨𝑢*, 𝑣⟩.

So, the adjoint of the operator 𝐴 is the operator 𝐴* with domain

𝒟(𝐴*) = {𝑧 ∈ 𝑋 : ∃𝐶 ∈ R+; |⟨𝐴𝑦, 𝑧⟩𝑋 | ≤ 𝐶‖𝑦‖𝑋 ,∀𝑦 ∈ 𝒟(𝐴)}

which is defined by

⟨𝐴𝑦, 𝑧⟩𝑋 = ⟨𝑦, 𝐴*𝑧⟩𝑋 , ∀𝑦 ∈ 𝒟(𝐴), ∀𝑧 ∈ 𝒟(𝐴*).

Furthermore, if 𝐴 generates a continuous semigroup (𝑒𝑡𝐴)𝑡≥0, then 𝐴* also generates a con-

tinuous semigroup (𝑒𝑡𝐴*)𝑡≥0 satisfying

𝑒𝑡𝐴* = (𝑆(𝑡))*, ∀𝑡 ≥ 0.

If 𝐴* = 𝐴 (respectively 𝐴* = −𝐴), then the operator 𝐴 is said to be self-adjoint (respectively

skew-adjoint)1.

Consider the abstract system⎧⎪⎪⎨⎪⎪⎩
𝑦′(𝑡) = 𝐴𝑦(𝑡) +𝐵𝑢(𝑡), 0 < 𝑡 < 𝑇,

𝑦 (0) = 𝑦0,

where 𝐴 generates a strongly continuous group on a Hilbert space 𝑋(state space) and 𝐵 ∈

𝐿(𝑋,𝑋). Consider the adjoint system⎧⎪⎪⎨⎪⎪⎩
𝜙′(𝑡) = −𝐴*𝜙(𝑡), 0 < 𝑡 < 𝑇,

𝜙 (𝑇 ) = 𝜙𝑇 .

(1.12)

1 A skew-adjoint operator generates a continuous group of isometries (e.g. (PAZY, 2012)).
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Definition 1.5.1. The system (1.12) is said to be observable in time 𝑇 > 0 if there exists
𝐶 > 0 such that ∫︁ 𝑇

0
‖𝐵*𝜙‖𝑑𝑡 ≥ 𝐶‖𝜙𝑇 ‖, ∀𝜙𝑇 ∈ 𝑋, (1.13)

where 𝜙 is the solution of problem (1.12). The inequality (1.13) is called the observability
inequality of system (1.12).

Remark 1.5.1. Inequality (1.13) is equivalent to the following unique continuation principle:

𝐵*𝜙(𝑡) = 0,∀𝑡 ∈ [0, 𝑇 ] ⇒ 𝜙𝑇 = 0.

We finish this chapter with a subsection about Homogeneous Sobolev spaces, which will

be much used in this work.

1.5.1 Homogeneous Sobolev spaces

Definition 1.5.2. Let 𝑠 ∈ R. The homogeneous Sobolev space 𝐻̇𝑠(R𝑑) is the space of
tempered distributions 𝑢 defined over R𝑑 whose Fourier transform belongs to 𝐿1

𝑙𝑜𝑐(R𝑑) and
satisfies

‖𝑢‖2
𝐻̇𝑠 :=

∫︁
R𝑑

|𝜉|2𝑠|̂︀𝑢(𝜉)|2 𝑑𝜉 < ∞.

Remark 1.5.2. The spaces 𝐻̇𝑠 and 𝐻̇𝑠′ , where 𝐻̇𝑠′ denotes the dual space of 𝐻̇𝑠, cannot be
compared for the inclusion. Moreover, by the Fourier-Plancherel formula, one has 𝐿2 = 𝐻̇0.

Proposition 1.5.1. If 𝑠0 ≤ 𝑠 ≤ 𝑠1, then, (𝐻̇𝑠0 ∩ 𝐻̇𝑠1) ⊂ 𝐻̇𝑠 and

‖𝑢‖𝐻̇𝑠 ≤ ‖𝑢‖1−𝜃
𝐻̇𝑠0 ‖𝑢‖𝜃

𝐻̇𝑠1 , with 𝑠 = (1 − 𝜃)𝑠0 + 𝜃𝑠1.

Proposition 1.5.2. The homogeneous Sobolev space 𝐻̇𝑠(R𝑑) is a Hilbert space if, and only
if, 𝑠 < 𝑑

2·

Proposition 1.5.3. If 𝑠 < 𝑑
2 , then the space 𝒮0(R𝑑) of functions of 𝒮(R𝑑) whose Fourier

transform vanishes near the origin is dense in 𝐻̇𝑠.

The next proposition characterizes the dual space of 𝐻̇𝑠.

Proposition 1.5.4. If |𝑠| < 𝑑
2 , then the bilinear functional

ℬ : 𝒮0 × 𝒮0 → C

(𝜑, 𝜙) ↦→
∫︁
R𝑑
𝜑(𝑥)𝜙(𝑥) 𝑑𝑥
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can be extended to a continuous bilinear functional on 𝐻̇−𝑠×𝐻̇𝑠. Moreover, if 𝐿 is a continuous
linear functional on 𝐻̇𝑠, then there exists a unique tempered distribution 𝑢 ∈ 𝐻̇−𝑠 such that

∀𝜑 ∈ 𝐻̇𝑠, ⟨𝐿, 𝜑⟩ = ℬ(𝑢, 𝜑) and ‖𝐿‖(𝐻̇𝑠)′ = ‖𝑢‖𝐻̇−𝑠 .

Denote the dual space of 𝐻̇𝑠(R𝑑) by 𝐻̇−𝑠(R𝑑). Now we state the embedding of 𝐻̇𝑠(R𝑑) spaces

in 𝐿𝑝(R𝑑) spaces.

Theorem 1.5.1. If 𝑠 ∈ [0, 𝑑/2[, then the space 𝐻̇𝑠(R𝑑) is continuously embedded in 𝐿 2𝑑
𝑑−2𝑠 (R𝑑).

Corolary 1.5.1. If 𝑝 ∈]1, 2], then 𝐿𝑝(R𝑑) is continuously embedded in 𝐻̇𝑠(R𝑑) with 𝑠 =
𝑑
2 − 𝑑

𝑝
·
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2 PROBLEMS AND MAIN RESULTS OBTAINED

In this chapter, we present the well-posedness, stabilization and control problems for the

quintic defocusing Schrödinger equation we are interested in. We summarize the main results

obtained in this work and we clarify in which order these results appear in the text.

2.1 WELL-POSEDNESS AND STABILIZATION FOR THE NONLINEAR SCHRÖDINGER

EQUATION

The first part of this thesis presents results of well-posedness and stability for the quintic

defocusing Schrödinger equation in R3+1

⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑢+ Δ𝑢 = |𝑢|4𝑢, (𝑡, 𝑥) ∈ [0,+∞) × R3,

𝑢(0) = 𝑢0,

(2.1)

where 𝑢(𝑡, 𝑥) is a complex-valued field in spacetime [0,+∞) × R3. We also consider the

following system ⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑢+ Δ𝑢− 𝑢− |𝑢|4𝑢 = 0, (𝑡, 𝑥) ∈ [0,+∞) × R3,

𝑢(0) = 𝑢0 ∈ 𝐻1(R3)
(2.2)

in 𝐻1(R3) which presents an energy identity that involves the full norm in 𝐻1(R3). We are

mainly concerned with the following stabilization problem for system (2.2).

Stabilization problem: Can one find a feedback control law 𝑓(𝑥, 𝑡) = 𝒦𝑢 so that the resulting

closedloop system

𝑖𝜕𝑡𝑢+ Δ𝑢− 𝑢− |𝑢|4𝑢 = 𝒦𝑢, (𝑡, 𝑥) ∈ [0,+∞) × R3

is asymptotically stable as 𝑡 → +∞ ?

Consider 𝑎 ∈ 𝐶∞(R3; [0, 1]) an almost everywhere non-negative satisfying

𝑎(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
0 if |𝑥| ≤ 𝑅,

1 if |𝑥| ≥ 𝑅 + 1,
(2.3)

for some 𝑅 > 0 and 𝜂 > 0 such that

𝑎(𝑥) ≥ 𝜂 > 0, for |𝑥| ≥ 𝑅.
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The stabilization system we consider is⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑢+ Δ𝑢− 𝑢− |𝑢|4𝑢− 𝑎(𝑥)(1 − Δ)−1𝑎(𝑥)𝜕𝑡𝑢 = 0, (𝑡, 𝑥) ∈ [0,+∞) × R3,

𝑢(0) = 𝑢0 ∈ 𝐻1(R3).
(2.4)

First, we prove the well-posedness of system (2.4), using some Strichartz estimates.

Theorem 2.1. Let 𝑢0 ∈ 𝐻1(R3) and 𝑎(𝑥) ∈ 𝐶∞(R3) be a non-negative real valued function
satisfying (2.3). There exists an unique 𝑢 ∈ 𝐶(R+, 𝐻

1(R3)), solution of the system (2.4)

satisfying
‖𝑢‖𝐿10([0,𝑇 ]);𝐿10(R3) < ∞, ‖∇𝑢‖

𝐿
10
3 ([0,𝑇 ]);𝐿

10
3 (R3)

< ∞

for all 𝑇 < ∞.

Our main theorem states that it is possible to obtain exponential decay for some solutions

of the perturbed system (2.4) which are bounded in the energy space but small in a lower

norm.

Theorem 2.2. Let 𝜆0 > 0. There exist 𝐶, 𝛾 > 0 and 𝛿 > 0 such that for all 𝑢0 in 𝐻1(R3)

satisfying
‖𝑢0‖𝐻1(R3) ≤ 𝜆0 and ‖𝑢0‖𝐻−1(R3) ≤ 𝛿,

the unique strong solution of problem (2.4) satisfies

𝐸(𝑢)(𝑡) ≤ 𝐶𝑒−𝛾𝑡𝐸(𝑢)(0), ∀𝑡 ≥ 0.

To prove the exponential decay for the energy of system (2.4), it is necessary to show an

observability estimate obtained through propagation results for a microlocal defect measure,

using the same strategy used by Dehman in (DEHMAN; LEBEAU; ZUAZUA, 2003). Before that,

we need to prove that the solutions for the nonlinear system behave similarly to the solutions

for the associated linear system. In this part of the work, we introduce a decomposition into

profiles for both linear and nonlinear solutions, as in Keraani (KERAANI, 2001). Furthermore,

we also use a scattering property of the system (2.1).

Even with a perturbation term, our approach will not undergo any significant modification

since, with the change of variables 𝑤 = 𝑒𝑖𝑡𝑢, 𝑤 is a solution of⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑤 = −Δ𝑤 + |𝑤|4𝑤, (𝑡, 𝑥) ∈ R × R3,

𝑤(0) = 𝑢0 ∈ 𝐻̇1(R3)
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and we get the original system back. Therefore, it is possible to use the entire profile decompo-

sition theory developed by Keraani in (KERAANI, 2001) for our new system and the scattering

property through this change of variables.

2.2 CONTROL OF SCHRÖDINGER EQUATION IN R3: THE CRITICAL CASE

The second part of this thesis deals with the 𝐻̇1-level null controllability for the defocusing

critical nonlinear Schrödinger equation on R3. Consider the system⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑢+ Δ𝑢− |𝑢|4𝑢 = 𝑓(𝑡, 𝑥), (𝑡, 𝑥) ∈ [0, 𝑇 ] × R3,

𝑢(0) = 𝑢0 ∈ 𝐻̇1(R3),
(2.5)

where 𝑢 = 𝑢(𝑡, 𝑥) is a complex-valued function of two real variables 𝑥 ∈ R3 and 𝑡 ∈ R, where

the function 𝑓(𝑡, 𝑥) is a control input. We are interested in answering the following question:

Control problem: Let 𝑇 > 0 be given. For any given 𝑢0 ∈ 𝐻̇1(R3), can one find a con-

trol 𝑓(𝑡, 𝑥) such that the system (2.5) admits a solution 𝑢 in 𝐶
(︁
[0, 𝑇 ]; 𝐻̇1(R3)

)︁
satisfying

𝑢(𝑇, 𝑥) = 0 in R3?

Firstly, we show the problem under consideration to be well-posed using Strichartz estimates

and considering 𝑓 ∈ 𝐿∞
𝑙𝑜𝑐(R, 𝐻1(R3)) resulting in the following theorem.

Theorem 2.3. Let 𝑢0 ∈ 𝐻1(R3), with ‖𝑢0‖𝐻1 small enough. There exist 𝑇 > 0 and an
unique 𝑢 ∈ 𝐶(R+, 𝐻

1(R3)) solution of the system (2.5) satisfying

‖𝑢‖𝐿10([0,𝑇 ]);𝐿10(R3) < ∞, ‖∇𝑢‖
𝐿

10
3 ([0,𝑇 ]);𝐿

10
3 (R3)

< ∞ and ‖∇𝑢‖
𝐿10([0,𝑇 ]);𝐿

30
13 (R3)

< ∞.

Through the Hilbert uniqueness method, we show the linear Schrödinger equation to be

controllable. Finally, we use a perturbation argument and show local null controllability for the

critical nonlinear Schrödinger equation obtaining a first answer to the control problem above.

More specifically, consider the control system⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑢+ Δ𝑢− |𝑢|4𝑢 = 𝜙(𝑥)ℎ(𝑡, 𝑥), (𝑡, 𝑥) ∈ [0, 𝑇 ] × R3,

𝑢(0) = 𝑢0 ∈ 𝐻̇1(R3),
(2.6)

where the function 𝜙 satisfies the condition (2.3). Our result is as follows.

Theorem 2.4. Let 𝑇 > 0 be given. There exists 𝛿 > 0 such that for any 𝑢0 in 𝐻1(R3)

satisfying ‖𝑢0‖𝐻1 ≤ 𝛿, one can find ℎ(𝑡, 𝑥) ∈ 𝐶(R;𝐻1(R3)) such that problem (2.6) admits
a solution 𝑢 ∈ 𝐶([0, 𝑇 ];𝐻1(R3)) satisfying 𝑢(𝑇 ) = 0.
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The reader may have noticed that the controllability result is obtained for the original

system, without adding a perturbation. Since these are two different systems, we prove the

well-posedness of each of them. In Chapter 3, we prove the well-posedness for the perturbed

system (2.2) and, since these demonstrations will be similar, the proof of the Theorem 2.3 is

given in the Appendix.

Remark 2.2.1. The following observations are worth mentioning:

i. Theorem 2.2 completes the analysis begun in (SILVA et al., ), where local controllability
was shown.

ii. Note that 𝑎 ∈ 𝐶∞(R3) satisfying (2.3) act in 𝜔 :=
(︁
R3∖𝐵𝑅(0)

)︁
. Thus, as opposed to

(LAURENT, 2010a), the function 𝜔 satisfies a unique geometrical assumption: There
exists 𝑇0 > 0 such that every geodesic travelling at speed 1 meets 𝜔 in a time 𝑡 < 𝑇0.

iii. As mentioned in (LAURENT, 2010b), the most physically relevant damping term for
system (2.4) would be 𝑖𝑎(𝑥)𝑢 instead of 𝑎(𝑥)(1 − Δ)−1𝑎(𝑥)𝜕𝑡𝑢, as used in the one-
dimensional case (LAURENT, 2011). For this damping term, the analysis remains open.
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3 WELL-POSEDNESS FOR THE NONLINEAR SCHRÖDINGER EQUATION

3.1 INTRODUCTION

The theory of the Cauchy problem for the equation (1.1) has been extensively investigated,

see, for instance, (CAZENAVE; WEISSLER, 1990; GRILLAKIS, 2000; BOURGAIN, 1999a; BOURGAIN,

1999b; GINIBRE; VELO, 1985; IBRAHIM, 1987). In (CAZENAVE; WEISSLER, 1990), the authors

showed that when the initial data 𝑢0(𝑥) possesses finite energy, the Cauchy problem is locally

well-posed. This implies the existence of a local-in-time solution to (2.1) belonging to the

space 𝐶0
𝑡 𝐻̇

1
𝑥 ∩ 𝐿10

𝑡,𝑥. Moreover, such a solution is unique within this class and the mapping

taking initial data to its corresponding solution exhibits local Lipschitz continuity in these

norms. In cases where the energy is small, the solution exists globally in time and scatters to

a solution 𝑢±(𝑡) of the free Schrödinger equation (𝑖𝜕𝑡 + Δ)𝑢± = 0. This scattering behavior

is characterized by ‖𝑢(𝑡) − 𝑢±(𝑡)‖𝐻̇1(R3) → 0 as 𝑡 → ±∞.

For large finite energy data, particularly for those assumed to be radially symmetric, Bour-

gain (BOURGAIN, 1999a) proved global existence and scattering for (2.1) in 𝐻̇1 (R3). Sub-

sequently, Grillakis (GRILLAKIS, 2000) presented an alternative argument that partially reco-

vered the results of (BOURGAIN, 1999a), focusing on global existence from smooth, radial,

finite energy data. Recently, Colliander et al. (COLLIANDER et al., 2008) obtained global well-

posedness, scattering, and global 𝐿10 space-time bounds for energy class solutions to the

quintic defocusing Schrödinger equation in R1+3, which is energy critical. In our case, we

study the Schrödinger equation (1.1) with 𝑝 = 5⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑢 = −Δ𝑢+ |𝑢|4𝑢, (𝑡, 𝑥) ∈ R × R3,

𝑢(0) = 𝑢0 ∈ 𝐻̇1(R3)
(3.1)

in 𝐻̇1(R3). The solution of problem (3.1) satisfies some integrability properties and Strichartz

estimates (more details will be given later). Furthermore, equation (3.1) has a hamiltonian

structure, namely

𝐸(𝑢(𝑡)) := 1
2

∫︁
R3

|∇𝑢(𝑡)|2 𝑑𝑥+ 1
6

∫︁
R3

|𝑢(𝑡)|6 𝑑𝑥 (3.2)

which is preserved by the flow (3.1). We shall often refer to it as the energy and write 𝐸(𝑢)

for 𝐸(𝑢(𝑡)). Our interest here in the defocusing quintic equation (3.1) is motivated mainly by

the fact that the problem concerning the energy norm is critical.
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The first term of the right-hand side of energy (3.2) of the originally proposed equation

(3.1) presents the norm of the homogeneous Sobolev space 𝐻̇1, a space in which there are

not many known immersions and inclusions. For this reason, we replaced the equation by a

perturbed formulation (2.2) presenting the complete energy

𝐸(𝑢(𝑡)) := 1
2

∫︁
R3

|𝑢(𝑡)|2 𝑑𝑥+ 1
2

∫︁
R3

|∇𝑢(𝑡)|2 𝑑𝑥+ 1
6

∫︁
R3

|𝑢(𝑡)|6 𝑑𝑥, (3.3)

which we call 𝐻1-energy, involving now the 𝐿2-mass defined as ‖𝑢(𝑡)‖2
𝐿2 , which is also preser-

ved by the flow. In this case, we can use, for instance, the immersion of 𝐻1(R3) in 𝐻−1(R3),

which is not available for the space 𝐻̇1(R3), to complete the proof of the observability estimate

giving the exponential decay of energy.

From here onwards, the stabilization system we consider is⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑢+ Δ𝑢− 𝑢− |𝑢|4𝑢− 𝑎(𝑥)(1 − Δ)−1𝑎(𝑥)𝜕𝑡𝑢 = 0, (𝑡, 𝑥) ∈ [0,+∞) × R3,

𝑢(0) = 𝑢0 ∈ 𝐻1(R3),
(3.4)

where 𝑎(𝑥) satisfies (2.3). A solution 𝑢 = 𝑢(𝑡, 𝑥) to problem (3.4) satisfies the energy identity

𝐸(𝑢)(𝑡2) − 𝐸(𝑢)(𝑡1) = −2
∫︁ 𝑡2

𝑡1

⃦⃦⃦⃦
(1 − Δ)− 1

2𝑎(𝑥)𝜕𝑡𝑢
⃦⃦⃦⃦2

𝐿2
𝑑𝑡, (3.5)

where 𝐸(𝑢)(𝑡) is decreasing and, therefore, system (3.4) is dissipative. The well-posedness of

systems (2.2) and (3.4) are the content of this chapter. We follow the approach from (KENIG;

MERLE, 2006) for the case 𝑁 = 3.

3.2 NOTATION AND AUXILIARY RESULTS

Before presenting the main results of the chapter, we give some definitions, notations,

and auxiliary results, which can be seen in more details in (CAZENAVE, 2003). We begin by

introducing the notion of an admissible pair.

Definition 3.2.1.

i) A pair (𝑞, 𝑟) is called 𝐿2-admissible if 𝑟 ∈ [2, 6] and q satisfies

2
𝑞

+ 3
𝑟

= 3
2 . (3.6)

ii) A pair (𝑞, 𝑟) is called 𝐻1-admissible if 𝑟 ∈ [6,+∞) and q satisfies

2
𝑞

+ 3
𝑟

= 1
2 . (3.7)
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Remark 3.2.1. If (𝑞, 𝑟) is a 𝐿2-admissible pair, then 2 ≤ 𝑞 ≤ ∞. The pair (∞, 2) is always
𝐿2-admissible. The pair (2, 2𝑁

𝑁−2) is 𝐿2- admissible if 𝑁 > 3.

The following estimates are essential for solving nonlinear Schrödinger equations and they

are derived thoroughly in (CAZENAVE, 2003). The first estimates of this type were obtained by

Strichartz (STRICHARTZ, 1977) as a Fourier restriction theorem. Strichartz’s estimates were

generalized by Ginibre and Velo (GINIBRE; VELO, 1985), who gave a remarkable elementary

proof. Strichartz’s estimates for the nonhomogeneous problem were obtained by Yajima (YA-

JIMA, 1987) and by Cazenave and Weissler (CAZENAVE; WEISSLER, 1990).

Lemma 3.2.1. (Strichartz estimates) Let (𝑞, 𝑟) be a 𝐿2-admissible pair. We have

‖𝑒𝑖𝑡Δℎ‖𝐿𝑞
𝑡 𝐿𝑟

𝑥
≤ 𝑐‖ℎ‖𝐿2 , (3.8)⃦⃦⃦⃦

⃦⃦ ∫︁ +∞

−∞
𝑒𝑖(𝑡−𝜏)Δ𝑔 𝑑𝜏

⃦⃦⃦⃦
⃦⃦

𝐿𝑞
𝑡 𝐿𝑟

𝑥

+

⃦⃦⃦⃦
⃦⃦ ∫︁ 𝑡

0
𝑒𝑖(𝑡−𝜏)Δ𝑔 𝑑𝜏

⃦⃦⃦⃦
⃦⃦

𝐿𝑞
𝑡 𝐿𝑟

𝑥

≤ 𝑐‖𝑔‖
𝐿𝑞′

𝑡 𝐿𝑟′
𝑥
, (3.9)

and ⃦⃦⃦⃦
⃦⃦ ∫︁ +∞

−∞
𝑒𝑖𝑡Δ𝑔(𝜏) 𝑑𝜏

⃦⃦⃦⃦
⃦⃦

𝐿2
𝑥

≤ 𝐶‖𝑔‖
𝐿𝑞′

𝑡 𝐿𝑟′
𝑥
. (3.10)

Additionally, we have ⃦⃦⃦⃦
⃦⃦ ∫︁ +∞

−∞
𝑒𝑖(𝑡−𝜏)Δ𝑔(𝜏) 𝑑𝜏

⃦⃦⃦⃦
⃦⃦

𝐿𝑞
𝑡 𝐿𝑟

𝑥

≤ 𝐶‖𝑔‖𝐿𝑚′
𝑡 𝐿𝑛′

𝑥
(3.11)

where (𝑞, 𝑟), (𝑚,𝑛) are any pair of 𝐿2-admissible indices and 𝑞′, 𝑟′, 𝑚′, 𝑛′ are the conjugate
exponents of 𝑞, 𝑟, 𝑚,𝑛, respectively.

Lemma 3.2.2. (Sobolev embedding) For 𝑣 ∈ 𝐶∞
0 (R × R3), we have

‖𝑣‖𝐿10
𝑡 𝐿10

𝑥
≤ 𝐶‖∇𝑣‖

𝐿10
𝑡 𝐿

30
13
𝑥

.

Define the 𝑆(𝐼), 𝑊 (𝐼), 𝑍(𝐼) norms for an interval 𝐼 by

‖𝑢‖𝑆(𝐼) = ‖𝑢‖𝐿10(𝐼;𝐿10(R3)), ‖𝑢‖𝑍(𝐼) = ‖𝑢‖
𝐿10(𝐼;𝐿

30
13 (R3))

and ‖𝑢‖𝑊 (𝐼) = ‖𝑢‖
𝐿

10
3 (𝐼;𝐿

10
3 (R3))

.

Remark 3.2.2. Note that
(︁
10, 30

13

)︁
and

(︁
10
3 ,

10
3

)︁
are 𝐿2-admissible pairs.
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3.3 CAUCHY PROBLEM

In this section, we will study the well-posedness of the system⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑢+ Δ𝑢− 𝑢− |𝑢|4𝑢 = 𝑔, (𝑡, 𝑥) ∈ [0, 𝑇 ] × R3,

𝑢(0) = 𝑢0 ∈ 𝐻1(R3),
(3.12)

where 𝑔 ∈ 𝐿∞
𝑙𝑜𝑐(R, 𝐻1(R3)), i.e., the 𝐻1 critical defocusing Cauchy problem for the nonlinear

Schrödinger equation with a perturbation term. Then, we replace the function 𝑔 by the dam-

ping term 𝑎(1 − Δ)−1𝑎𝜕𝑡𝑢, where 𝑎 satisfies (2.3), resulting in the system (3.4). Finally, we

investigate the existence of solutions for this case as well.

Theorem 3.3.1. Let 𝑢0 ∈ 𝐻1(R3), with ‖𝑢0‖𝐻1 small enough. There exist an interval 𝐼 and
an unique 𝑢 ∈ 𝐶(R+, 𝐻

1(R3)) solution of problem (3.12) with

‖𝑢‖𝑆(𝐼) < ∞, ‖∇𝑢‖𝑊 (𝐼) < ∞ and ‖∇𝑢‖𝑍(𝐼) < ∞.

Demonstração. Assume, without loss of generality, that 𝐼 = [0, 𝑇 ], 𝑇 > 0. The Cauchy

problem is equivalent to the integral equation

𝑢(𝑡) = 𝑒𝑖𝑡Δ𝑢0 −
∫︁ 𝑡

0
𝑒𝑖(𝑡−𝜏)Δ[𝑢+ |𝑢|4𝑢+ 𝑔] 𝑑𝜏

by Duhamel’s formula. Consider the set 𝑋𝐼 of functions with norm

‖𝑢‖𝑋𝐼
= sup

𝑡∈𝐼
‖∇𝑢(𝑡)‖𝐿2 + sup

𝑡∈𝐼
‖𝑢(𝑡)‖𝐿2 + ‖𝑢‖𝑆(𝐼) + ‖∇𝑢‖𝑊 (𝐼) + ‖∇𝑢‖𝑍(𝐼)

finite. Let 𝑅 > 0, which will be chosen later and denote 𝐵𝑅 =
{︁
𝑢 ∈ 𝑋𝐼 ; ‖𝑢‖𝑋𝐼

≤ 𝑅
}︁
. Let

𝐴 > 0 fixed, to be chosen later and assume ‖𝑢0‖𝐻1 < 𝐴. Consider the operator

Φ𝑢0(𝑢) = 𝑒𝑖𝑡Δ𝑢0 −
∫︁ 𝑡

0
𝑒𝑖(𝑡−𝜏)Δ[𝑢+ |𝑢|4𝑢+ 𝑔] 𝑑𝜏. (3.13)

We will show that it is possible to choose 𝑅,𝐴 so that Φ𝑢0 satisfies Φ𝑢0 : 𝐵𝑅 −→ 𝐵𝑅 and it

is a contraction there. First, note that, by (3.13),

‖Φ𝑢0(𝑢)‖𝐿2
𝑥

≤ ‖𝑒𝑖𝑡Δ𝑢0‖𝐿2
𝑥

+
⃦⃦⃦⃦ ∫︁ 𝑡

0
𝑒𝑖(𝑡−𝜏)Δ[𝑢+ |𝑢|4𝑢+ 𝑔] 𝑑𝜏

⃦⃦⃦⃦
𝐿2

𝑥

≤ ‖𝑢0‖𝐿2 + 𝐶‖|𝑢|4𝑢‖𝐿1
𝑡 𝐿2

𝑥
+ 𝐶‖𝑔‖𝐿1

𝑡 𝐿2
𝑥

+ 𝐶‖𝑢‖𝐿1
𝑡 𝐿2

𝑥

≤ 𝐶𝐴+ 𝐶𝑇
1
2 ‖𝑢‖5

𝑆(𝐼) + 𝐶𝑇‖𝑔‖𝐿∞
𝑡 𝐻1

𝑥
+ 𝐶𝑇‖𝑢‖𝐿∞

𝑡 𝐿2
𝑥

≤ 2𝐶𝐴+ 𝐶𝑅5 + 𝐶𝑇𝑅,
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‖∇Φ𝑢0(𝑢)‖𝐿2
𝑥

≤ ‖∇𝑒𝑖𝑡Δ𝑢0‖𝐿2
𝑥

+
⃦⃦⃦⃦ ∫︁ 𝑡

0
∇𝑒𝑖(𝑡−𝜏)Δ[𝑢+ 𝑢5 + 𝑔] 𝑑𝜏

⃦⃦⃦⃦
𝐿2

𝑥

≤ ‖∇𝑢0‖𝐿2 + 𝐶‖∇|𝑢|4𝑢‖
𝐿

10
7

𝑡 𝐿
10
7

𝑥

+ 𝐶‖∇𝑔‖𝐿1
𝑡 𝐿2

𝑥
+ 𝐶‖∇𝑢‖𝐿1

𝑡 𝐿2
𝑥

≤ 𝐶𝐴+ 𝐶‖𝑢‖4
𝑆(𝐼)‖∇𝑢‖𝑊 (𝐼) + 𝐶𝑇‖𝑔‖𝐿∞

𝑡 𝐻1
𝑥

+ 𝐶𝑇‖∇𝑢‖𝐿∞
𝑡 𝐿2

𝑥

≤ 2𝐶𝐴+ 𝐶𝑅5 + 𝐶𝑇𝑅.

Choosing 𝑇 such that 𝑇 < min
{︁
1, 1

4𝐶
, (2 13

4 𝐶
5
4 ‖𝑔‖𝐿∞

𝑡 𝐻1
𝑥
)−1

}︁
and ‖𝑢0‖𝐻1 < 𝐴 with 𝐴 ≤ 𝑅

8𝐶
,

we have

‖Φ𝑢0(𝑢)‖𝐿2
𝑥

+ ‖∇Φ𝑢0(𝑢)‖𝐿2
𝑥

≤ 𝑅

2 + 𝐶𝑅5.

Secondly, by identity (3.13),

‖∇Φ𝑢0(𝑢)‖𝑊 (𝐼) ≤ ‖∇𝑒𝑖𝑡Δ𝑢0‖𝑊 (𝐼) +
⃦⃦⃦⃦ ∫︁ 𝑡

0
∇𝑒𝑖(𝑡−𝜏)Δ[𝑢+ 𝑢5 + 𝑔] 𝑑𝜏

⃦⃦⃦⃦
𝑊 (𝐼)

≤ ‖∇𝑢0‖𝐿2 + 𝐶‖∇|𝑢|4𝑢‖
𝐿

10
7

𝑡 𝐿
10
7

𝑥

+ 𝐶‖∇𝑔‖𝐿1
𝑡 𝐿2

𝑥
+ 𝐶‖∇𝑢‖𝐿1

𝑡 𝐿2
𝑥
.

Using Hölder’s inequality with 𝑝 = 7
4 , 𝑞 = 7

3 , 𝑝 = 25
12 , 𝑞 = 25

13 and 𝑝 = 5
4 , 𝑞 = 5, we have

‖∇|𝑢|4𝑢‖
𝐿2

𝑡 𝐿
6
5
𝑥

≤ 𝐶‖𝑢‖4
𝑆(𝐼)‖∇𝑢‖𝑍(𝐼) and ‖∇|𝑢|4𝑢‖

𝐿
10
7

𝑡 𝐿
10
7

𝑥

≤ 𝐶‖𝑢‖4
𝑆(𝐼)‖∇𝑢‖𝑊 (𝐼).

Indeed,

‖∇|𝑢|4𝑢‖
𝐿

10
7

𝑡 𝐿
10
7

𝑥

=
⎛⎝∫︁ 𝑇

0

∫︁
R3

|∇|𝑢|4𝑢|
10
7 𝑑𝑥𝑑𝑡

⎞⎠ 7
10

=
⎛⎝∫︁ 𝑇

0

∫︁
R3

|𝑢|
40
7 |∇𝑢|

10
7 𝑑𝑥𝑑𝑡

⎞⎠ 7
10

≤

⎛⎝∫︁ 𝑇

0

(︂ ∫︁
R3

(|𝑢|
40
7 ) 7

4 𝑑𝑥
)︂ 4

7
·
(︂ ∫︁

R3
(|∇𝑢|

10
7 ) 7

3 𝑑𝑥
)︂ 3

7
𝑑𝑡

⎞⎠ 7
10

≤

⎛⎝∫︁ 𝑇

0

(︂ ∫︁
R3

|𝑢|10 𝑑𝑥
)︂ 4

7
·
(︂ ∫︁

R3
|∇𝑢|

10
3 𝑑𝑥

)︂ 3
7
𝑑𝑡

⎞⎠ 7
10

≤

⎛⎝∫︁ 𝑇

0
‖𝑢‖

40
7

𝐿10
𝑥

· ‖∇𝑢‖
10
7

𝐿
10
3

𝑥

𝑑𝑡

⎞⎠ 7
10

≤

⎛⎝(︂∫︁ 𝑇

0
(‖𝑢‖

40
7

𝐿10
𝑥

) 7
4 𝑑𝑡

)︂ 4
7

·
(︂ ∫︁ 𝑇

0
(‖∇𝑢‖

10
7

𝐿
10
3

𝑥

) 7
3 𝑑𝑡

)︂ 3
7

⎞⎠ 7
10

≤

⎛⎝‖𝑢‖
40
7

𝐿10
𝑡 𝐿10

𝑥
· ‖∇𝑢‖

10
7

𝐿
10
3

𝑡 𝐿
10
3

𝑥

⎞⎠ 7
10

≤ ‖𝑢‖4
𝐿10

𝑡 𝐿10
𝑥

‖∇𝑢‖
𝐿

10
3

𝑡 𝐿
10
3

𝑥

.
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Additionally,

‖∇|𝑢|4𝑢‖
𝐿2

𝑡 𝐿
6
5
𝑥

=
⎛⎝∫︁ 𝑇

0
‖𝑢4 · ∇𝑢‖2

𝐿
6
5
𝑥

⎞⎠ 1
2

=
⎛⎝∫︁ 𝑇

0

(︂ ∫︁
R3

(|𝑢|4) 6
5 · |∇𝑢|

6
5 𝑑𝑥

)︂ 5
6 ·2
⎞⎠ 1

2

=
⎛⎝∫︁ 𝑇

0

⎛⎝∫︁
R3

|𝑢|
24
5 · |∇𝑢|

6
5 𝑑𝑥

⎞⎠ 5
3

𝑑𝑡

⎞⎠ 1
2

≤

⎛⎝∫︁ 𝑇

0

⎛⎝∫︁
R3

|𝑢|
24
5 · 25

12 𝑑𝑥

⎞⎠ 12
25 · 5

3
⎛⎝∫︁

R3
|∇𝑢|

6
5 · 25

13 𝑑𝑥

⎞⎠ 13
25 · 5

3

𝑑𝑡

⎞⎠ 1
2

≤

⎛⎝∫︁ 𝑇

0

⎛⎝∫︁
R3

|𝑢|10 𝑑𝑥

⎞⎠ 4
5
⎛⎝∫︁

R3
|∇𝑢|

30
13 𝑑𝑥

⎞⎠ 13
15

𝑑𝑡

⎞⎠ 1
2

≤

⎛⎝∫︁ 𝑇

0
‖𝑢‖8

𝐿10
𝑥
𝑑𝑥 · ‖∇𝑢‖2

𝐿
30
13
𝑥

𝑑𝑡

⎞⎠ 1
2

≤

⎛⎝⎛⎝∫︁ 𝑇

0
‖𝑢‖8· 10

8
𝐿10

𝑥
𝑑𝑡

⎞⎠ 4
5
⎛⎝∫︁ 𝑇

0
‖∇𝑢‖10

𝐿
30
13
𝑥

𝑑𝑥

⎞⎠ 1
5
⎞⎠ 1

2

,

i.e.,

‖∇|𝑢|4𝑢‖
𝐿2

𝑡 𝐿
6
5
𝑥

≤

⎛⎝‖𝑢‖4·2
𝐿10

𝑡 𝐿10
𝑥

· ‖∇𝑢‖2
𝐿10

𝑡 𝐿
30
13
𝑥

⎞⎠ 1
2

≤ ‖𝑢‖4
𝐿10

𝑡 𝐿10
𝑥

‖∇𝑢‖
𝐿10

𝑡 𝐿
30
13
𝑥

.

So

‖∇Φ𝑢0(𝑢)‖𝑊 (𝐼) ≤ 𝐶
(︂

‖∇𝑢0‖𝐿2 + ‖𝑢‖4
𝑆(𝐼)‖∇𝑢‖𝑊 (𝐼) + ‖∇𝑔‖𝐿1

𝑡 𝐿2
𝑥

+ ‖∇𝑢‖𝐿1
𝑡 𝐿2

𝑥

)︂
≤ 𝐶𝐴+ 𝐶𝑅5 + 𝐶𝑇‖𝑔‖𝐿∞

𝑡 𝐻1
𝑥

+ 𝐶𝑇𝑅.

With the same choice of 𝑇 and 𝐴 as made previously, we have

‖∇Φ𝑢0(𝑢)‖𝑊 (𝐼) ≤ 𝑅

2 + 𝐶𝑅5.

On the other hand, by (3.8), (3.9), and by (3.11), with 𝑞, 𝑟 satisfying 𝑞 = 10, 𝑟 = 30
13 and
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𝑚′ = 2, 𝑛′ = 6
5 and Hölder’s inequality,

‖∇Φ𝑢0(𝑢)‖𝑍(𝐼) ≤ ‖∇𝑒𝑖𝑡Δ𝑢0‖𝑍(𝐼) +
⃦⃦⃦⃦ ∫︁ 𝑡

0
∇𝑒𝑖(𝑡−𝜏)Δ[𝑢+ 𝑢5 + 𝑔] 𝑑𝜏

⃦⃦⃦⃦
𝑍(𝐼)

≤ 𝐶‖∇𝑢0‖𝐿2 + 𝐶‖∇|𝑢|4𝑢‖
𝐿2

𝑡 𝐿
6
5
𝑥

+ 𝐶‖∇𝑔‖𝐿1
𝑡 𝐿2

𝑥
+ 𝐶‖∇𝑢‖𝐿1

𝑡 𝐿2
𝑥

≤ 𝐶‖∇𝑢0‖𝐿2 + 𝐶‖∇𝑢‖𝑍(𝐼)‖𝑢‖4
𝑆(𝐼) + 𝐶‖∇𝑔‖𝐿1

𝑡 𝐿2
𝑥

+ 𝐶‖∇𝑢‖𝐿1
𝑡 𝐿2

𝑥

≤ 𝐶𝐴+ 𝐶𝑅5 + 𝐶𝑇‖𝑔‖𝐿∞
𝑡 𝐻1

𝑥
+ 𝐶𝑇‖∇𝑢‖𝐿∞

𝑡 𝐿2
𝑥

≤ 2𝐶𝐴+ 𝐶𝑅5 + 𝐶𝑇‖𝑔‖𝐿∞
𝑡 𝐻1

𝑥
+ 𝐶𝑇𝑅.

Choosing 𝑇 such that 𝑇 < min
{︁
1, 1

4𝐶
, (2 13

4 𝐶
5
4 ‖𝑔‖𝐿∞

𝑡 𝐻1
𝑥
)−1

}︁
and ‖𝑢0‖𝐻1 < 𝐴 with 𝐴 ≤ 𝑅

8𝐶
,

we have

‖∇Φ𝑢0(𝑢)‖𝑍(𝐼) ≤ 𝑅

2 + 𝐶𝑅5.

Finally, by Sobolev’s embedding,

‖Φ𝑢0(𝑢)‖𝑆(𝐼) ≤ ‖∇Φ𝑢0(𝑢)‖𝑍(𝐼)

≤ 2𝐶𝐴+ 𝐶𝑅5 + 𝐶𝑇‖𝑔‖𝐿∞
𝑡 𝐻1

𝑥
+ 𝐶𝑇𝑅,

and, with the same choice of 𝑇 and 𝐴 as before, we have

‖Φ𝑢0(𝑢)‖𝑆(𝐼) ≤ 𝑅

2 + 𝐶𝑅5.

Adding up all the estimates above,

‖Φ𝑢0(𝑢)‖𝑋𝐼
≤ 𝑅

2 + 𝐶𝑅5 ≤ 𝑅,

as long as 𝑅 < 1
(2𝐶)

1
4
.

Next, to show that Φ𝑢0 is a contraction, denote 𝑓(𝑢) = |𝑢|4𝑢. By the definition of Φ𝑢0

(3.13),

‖Φ𝑢0(𝑢) − Φ𝑢0(𝑣)‖𝐿2
𝑥

≤ 𝐶‖𝑓(𝑢) − 𝑓(𝑣)‖𝐿1
𝑡 𝐿2

𝑥
+ 𝐶‖𝑢− 𝑣‖𝐿1

𝑡 𝐿2
𝑥

≤ 𝐶𝑇
1
2 ‖𝑢− 𝑣‖𝑆(𝐼)

(︁
‖𝑢‖4

𝑆(𝐼) + ‖𝑣‖4
𝑆(𝐼)

)︁
+ 𝐶𝑇‖𝑢− 𝑣‖𝐿∞

𝑡 𝐿2
𝑥

≤ 𝐶𝑇
1
2𝑅4‖𝑢− 𝑣‖𝑆(𝐼) + 𝐶𝑇‖𝑢− 𝑣‖𝐿∞

𝑡 𝐿2
𝑥

≤ (2𝐶𝑇 1
2𝑅4 + 𝐶𝑇 )‖𝑢− 𝑣‖𝑋𝐼

,
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‖∇Φ𝑢0(𝑢) − ∇Φ𝑢0(𝑣)‖𝐿2
𝑥

≤ 𝐶‖∇𝑓(𝑢) − ∇𝑓(𝑣)‖
𝐿

10
7

𝑡 𝐿
10
7

𝑥

+ 𝐶‖∇𝑢− ∇𝑣‖𝐿1
𝑡 𝐿2

𝑥

≤ 𝐶

⎛⎝⃦⃦⃦⃦|𝑢|4|∇𝑢− ∇𝑣|
⃦⃦⃦⃦

𝐿
10
7

𝑡 𝐿
10
7

𝑥

+
⃦⃦⃦⃦
|𝑢− 𝑣||𝑢|3|∇𝑣|

⃦⃦⃦⃦
𝐿

10
7

𝑡 𝐿
10
7

𝑥

+
⃦⃦⃦⃦
|𝑢− 𝑣||𝑣|3|∇𝑣|

⃦⃦⃦⃦
𝐿

10
7

𝑡 𝐿
10
7

𝑥

⎞⎠+ 𝐶𝑇‖∇𝑢− ∇𝑣‖𝐿∞
𝑡 𝐿2

𝑥

≤ 𝐶

⎛⎝‖𝑢‖4
𝑆(𝐼)‖∇𝑢− ∇𝑣‖𝑊 (𝐼) + ‖𝑢− 𝑣‖𝑆(𝐼)‖∇𝑣‖𝑊 (𝐼)‖𝑢‖3

𝑆(𝐼) +

+ ‖𝑢− 𝑣‖𝑆(𝐼)‖∇𝑣‖𝑊 (𝐼)‖𝑣‖3
𝑆(𝐼)

⎞⎠+ 𝐶𝑇‖∇𝑢− ∇𝑣‖𝐿∞
𝑡 𝐿2

𝑥

≤ 𝐶𝑅4‖𝑢− 𝑣‖𝑆(𝐼) + 𝐶𝑅4‖∇𝑢− ∇𝑣‖𝑊 (𝐼) + 𝐶𝑇‖∇𝑢− ∇𝑣‖𝐿∞
𝑡 𝐿2

𝑥

≤ (2𝐶𝑅4 + 𝐶𝑇 )‖𝑢− 𝑣‖𝑋𝐼

and

‖∇Φ𝑢0(𝑢) − ∇Φ𝑢0(𝑣)‖𝑊 (𝐼) ≤ 𝐶‖∇𝑓(𝑢) − ∇𝑓(𝑣)‖
𝐿

10
7

𝑡 𝐿
10
7

𝑥

+ 𝐶‖∇𝑢− ∇𝑣‖𝐿1
𝑡 𝐿2

𝑥

≤ 𝐶

⎛⎝⃦⃦⃦⃦|𝑢|4|∇𝑢− ∇𝑣|
⃦⃦⃦⃦

𝐿
10
7

𝑡 𝐿
10
7

𝑥

+
⃦⃦⃦⃦
|𝑢− 𝑣||𝑢|3|∇𝑣|

⃦⃦⃦⃦
𝐿

10
7

𝑡 𝐿
10
7

𝑥

+
⃦⃦⃦⃦
|𝑢− 𝑣||𝑣|3|∇𝑣|

⃦⃦⃦⃦
𝐿

10
7

𝑡 𝐿
10
7

𝑥

⎞⎠+ 𝐶𝑇‖∇𝑢− ∇𝑣‖𝐿∞
𝑡 𝐿2

𝑥

≤ 𝐶

⎛⎝‖𝑢‖4
𝑆(𝐼)‖∇𝑢− ∇𝑣‖𝑊 (𝐼) + ‖𝑢− 𝑣‖𝑆(𝐼)‖∇𝑣‖𝑊 (𝐼)‖𝑢‖3

𝑆(𝐼) +

+ ‖𝑢− 𝑣‖𝑆(𝐼)‖∇𝑣‖𝑊 (𝐼)‖𝑣‖3
𝑆(𝐼)

⎞⎠+ 𝐶𝑇‖∇𝑢− ∇𝑣‖𝐿∞
𝑡 𝐿2

𝑥

≤ 𝐶𝑅4‖𝑢− 𝑣‖𝑆(𝐼) + 𝐶𝑅4‖∇𝑢− ∇𝑣‖𝑊 (𝐼) + 𝐶𝑇‖∇𝑢− ∇𝑣‖𝐿∞
𝑡 𝐿2

𝑥

≤ (2𝐶𝑅4 + 𝐶𝑇 )‖𝑢− 𝑣‖𝑋𝐼
.

Following the same reasoning,

‖∇Φ𝑢0(𝑢) − ∇Φ𝑢0(𝑣)‖𝑍(𝐼) ≤ 𝐶

⎛⎝‖𝑢‖4
𝑆(𝐼)‖∇𝑢− ∇𝑣‖𝑍(𝐼) + ‖𝑢− 𝑣‖𝑆(𝐼)‖∇𝑣‖𝑍(𝐼)‖𝑢‖3

𝑆(𝐼) +

+ ‖𝑢− 𝑣‖𝑆(𝐼)‖∇𝑣‖𝑍(𝐼)‖𝑣‖3
𝑆(𝐼)

⎞⎠+ 𝐶𝑇‖∇𝑢− ∇𝑣‖𝐿∞
𝑡 𝐿2

𝑥

≤ 𝐶𝑅4‖∇𝑢− ∇𝑣‖𝑍(𝐼) + 𝐶𝑅4‖𝑢− 𝑣‖𝑆(𝐼) + 𝐶𝑇‖∇𝑢− ∇𝑣‖𝐿∞
𝑡 𝐿2

𝑥

≤ (2𝐶𝑅4 + 𝐶𝑇 )‖𝑢− 𝑣‖𝑋𝐼
.

Moreover, by Sobolev’s embedding,

‖Φ𝑢0(𝑢) − Φ𝑢0(𝑣)‖𝑆(𝐼) ≤ ‖∇Φ𝑢0(𝑢) − ∇Φ𝑢0(𝑣)‖𝑍(𝐼) ≤ (2𝐶𝑅4 + 𝐶𝑇 )‖𝑢− 𝑣‖𝑋𝐼
.
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Adding up,

‖Φ𝑢0(𝑢) − Φ𝑢0(𝑣)‖𝑋𝐼
≤ 𝐶(𝑅4 + 𝑇

1
2𝑅4 + 𝑇 )‖𝑢− 𝑣‖𝑋𝐼

.

Thus, choosing 𝑅 and 𝑇 such that 𝐶(𝑅4 + 𝑇
1
2𝑅4 + 𝑇 ) < 1, we conclude that Φ𝑢0 is a

contraction. Therefore, there exists 𝑢 ∈ 𝐵𝑅 satisfying Φ𝑢0(𝑢) = 𝑢.

Remark 3.3.1. Observe that the solution 𝑢 = 𝑢(𝑡, 𝑥) of problem (3.12) is globally well-
defined in time. To verify this, first consider the energy defined by (3.3) which is conserved if
𝑔 = 0. Multiplying equation (3.12) by 𝜕𝑡𝑢, integrating and taking the real part, we have

𝐸(𝑡) ≤ 𝐸(0) −𝑅𝑒
∫︁ 𝑡

0

∫︁
R3
𝑔𝜕𝑡𝑢 𝑑𝑥𝑑𝑡

≤ 𝐸(0) −𝑅𝑒
∫︁ 𝑡

0

∫︁
R3
𝑔(𝑖Δ𝑢− 𝑖𝑢− 𝑖|𝑢|4𝑢− 𝑖𝑔) 𝑑𝑥𝑑𝑡

≤ 𝐸(0) + 𝐶
∫︁ 𝑡

0
‖∇𝑔(𝜏)‖𝐿2‖∇𝑢(𝜏)‖𝐿2 𝑑𝜏 + 𝐶

∫︁ 𝑡

0
‖𝑔(𝜏)‖𝐿2‖𝑢(𝜏)‖𝐿2 𝑑𝜏

+ 𝐶
∫︁ 𝑡

0
‖𝑔(𝜏)‖𝐿6‖𝑢(𝜏)5‖

𝐿
6
5
𝑑𝜏 +

∫︁ 𝑡

0
‖𝑔(𝜏)‖2

𝐿2 𝑑𝜏

≤ 𝐸(0) + 𝐶
∫︁ 𝑡

0
‖𝑔(𝜏)‖𝐻1

√︁
𝐸(𝜏) 𝑑𝜏 + 𝐶

∫︁ 𝑡

0
‖𝑔(𝜏)‖𝐿6(𝐸(𝜏)) 5

6 𝑑𝜏 + ‖𝑔‖2
𝐿2([0,𝑇 ]×R3)

≤ 𝐸(0) + 𝐶
∫︁ 𝑡

0
‖𝑔(𝜏)‖𝐻1

√︁
𝐸(𝜏) 𝑑𝜏 + 𝐶

∫︁ 𝑡

0
‖𝑔(𝜏)‖𝐻1(𝐸(𝜏)) 5

6 𝑑𝜏 + ‖𝑔‖2
𝐿2([0,𝑇 ]×R3).

One has

𝐸(𝑡) ≤ 𝐸(0) + 𝐶
∫︁ 𝑡

0
‖𝑔(𝜏)‖𝐻1(𝐸(𝜏))− 1

3 (𝐸(𝜏)) 5
6 𝑑𝜏 + 𝐶

∫︁ 𝑡

0
‖𝑔(𝜏)‖𝐻1(𝐸(𝜏)) 5

6 𝑑𝜏 + ‖𝑔‖2
𝐿2([0,𝑇 ]×R3)

≤ 𝐸(0) + 𝐶
∫︁ 𝑡

0
‖𝑔(𝜏)‖𝐻1(𝐸(𝜏)) 5

6 𝑑𝜏 + ‖𝑔‖2
𝐿2([0,𝑇 ]×R3)

≤ 𝐸(0) + 𝐶
∫︁ 𝑡

0
‖𝑔(𝜏)‖𝐻1

(︁
1 + (𝐸(𝜏)) 5

6
)︁
𝑑𝜏 + ‖𝑔‖2

𝐿2([0,𝑇 ]×R3).

Therefore,

max
0≤𝜏≤𝑡

𝐸(𝜏) ≤ 𝐸(0) + 𝐶
(︂

1 + max
0≤𝜏≤𝑡

(𝐸(𝜏)) 5
6

)︂
‖𝑔‖𝐿1([0,𝑇 ];𝐻1(R3)) + ‖𝑔‖2

𝐿2([0,𝑇 ]×R3).

Denoting 𝐹 (𝑡) := max0≤𝜏≤𝑡 𝐸(𝜏), 𝛼 := ‖𝑔‖2
𝐿2([0,𝑇 ]×R3) and 𝛽 := 𝐶‖𝑔‖𝐿1([0,𝑇 ];𝐻1(R3)), we have

𝐹 (𝑡)6 ≤ 𝐹 (0)6 + 𝛼6 + 𝛽6𝐹 (𝑡)5 + 𝐼 + 𝐼𝐼,
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where 𝐼 and 𝐼𝐼 are two extremely long terms that belong to the calculation of the sixth power.
We omit their explicit expression for simplicity. Then,

𝐹 (𝑡) ≤ 1
𝐹 (𝑡)5𝐹 (0)6 + 1

𝐹 (𝑡)5𝛼
6 + 𝛽6 + 1

𝐹 (𝑡)5 · 𝐼 + 1
𝐹 (𝑡)5 · 𝐼𝐼. (3.14)

Assuming that 𝑔 ∈ 𝐿∞
𝑙𝑜𝑐(R, 𝐻1(R3)) and suposing that there exists 𝑀 > 0 such that 𝐹 (𝑡) ≥

𝑀 , this implies 1
𝐹 (𝑡) ≤ 1

𝑀
, 0 ≤ 𝑡 ≤ 𝑇 . Hence, the last two terms of (3.14) are bounded. So,

max
0≤𝜏≤𝑡

𝐸(𝜏) ≤ 𝐶(1 + 𝐸(0)6 + ‖𝑔‖12
𝐿2([0,𝑇 ]×R3) + ‖𝑔‖6

𝐿1([0,𝑇 ];𝐻1(R3)))

and finally
𝐸(𝑡) ≤ 𝐶

(︂
1 + 𝐸(0)6 + ‖𝑔‖12

𝐿2([0,𝑇 ]×R3) + ‖𝑔‖6
𝐿1([0,𝑇 ];𝐻1(R3))

)︂
.

This implies that the energy is bounded if 𝑔 ∈ 𝐿∞
𝑙𝑜𝑐(R, 𝐻1(R3)).

To finish this section, we prove the existence of solutions for the 𝐻1 critical nonlinear Schrö-

dinger equation with a modified damping term, that is, changing 𝑔 by 𝑎(𝑥)(1 − Δ)−1𝑎(𝑥)𝜕𝑡𝑢

in the system (3.12). The local result is the following.

Theorem 3.3.2. Let 𝑇 > 0, 𝑢0 ∈ 𝐻1(R3) with ‖𝑢0‖𝐻1 small enough and 𝑎(𝑥) ∈ 𝐶∞(R3) a
non-negative real valued function. There exists an unique 𝑢 ∈ 𝐶(R+, 𝐻

1(R3)) solution of the
system⎧⎪⎪⎨⎪⎪⎩

𝑖𝜕𝑡𝑢+ Δ𝑢− 𝑢− |𝑢|4𝑢− 𝑎(𝑥)(1 − Δ)−1𝑎(𝑥)𝜕𝑡𝑢 = 0, (𝑡, 𝑥) ∈ [0, 𝑇 ] × R3,

𝑢(0) = 𝑢0, 𝑥 ∈ R3,

(3.15)

with
‖𝑢‖𝑆([0,𝑇 ]) < ∞, ‖∇𝑢‖𝑊 ([0,𝑇 ]) < ∞ and ‖∇𝑢‖𝑍([0,𝑇 ]) < ∞

for all 𝑇 < ∞.

Demonstração. We claim that the operator 𝐽𝑣 = (1 − 𝑖𝑎(𝑥)(1 − Δ)−1𝑎(𝑥))𝑣 is a pseudo-

differential operator of order 0 which defines an isomorphism in 𝐻𝑠(R3), for 𝑠 ∈ R, and

also in 𝐿𝑝(R3). Indeed, note that we can write 𝐽 as 𝐽 = 𝐼 + 𝐽1, where 𝐽1 is an anti-self-

adjoint operator in 𝐿2(R3). Thus, 𝐽 is an isomorphism in 𝐿2(R3) and, due to the ellipticity,

in 𝐻𝑠(R3), for 𝑠 > 0. Moreover, 𝐽−1 (considered, for example, acting in 𝐿2([0, 𝑇 ] ×R3)) is a

pseudodifferential operator of order 0 and satisfies 𝐽−1 = 1 − 𝐽1𝐽
−1.

Denote 𝑣 = 𝐽𝑢 and write system (3.15) as
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⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡𝑣 − 𝑖Δ𝑣 −𝑅0𝑣 + 𝑖|𝑢|4𝑢 = 0, (𝑡, 𝑥) ∈ [0, 𝑇 ] × R3,

𝑣 = 𝐽𝑢,

𝑣(0) = 𝑣0 = 𝐽𝑢0, 𝑥 ∈ R3,

(3.16)

where 𝑅0 = −𝑖Δ𝐽1𝐽
−1+𝑖𝐽−1 is a pseudodifferential operator of order 0. The Cauchy problem

(3.16) is equivalent to the integral equation

𝑣(𝑡) = 𝑒𝑖𝑡Δ𝑣0 +
∫︁ 𝑡

0
𝑒𝑖(𝑡−𝜏)Δ[𝑅0𝑣 − 𝑖|𝑢|4𝑢] 𝑑𝜏. (3.17)

Let 𝐼 = [0, 𝑇 ] and consider the set 𝑋𝐼 of functions having the norm

‖𝑣‖𝑋𝐼
= sup

𝑡∈𝐼
‖∇𝑣(𝑡)‖𝐿2 + sup

𝑡∈𝐼
‖𝑣(𝑡)‖𝐿2 + ‖𝑣‖𝑆(𝐼) + ‖∇𝑣‖𝑊 (𝐼)

finite. Let 𝑅 > 0, which will be chosen later and denote 𝐵𝑅 =
{︂
𝑣 ∈ 𝑋𝐼 ; ‖𝑣‖𝑋𝐼

≤ 𝑅
}︂

. Let

‖𝑣0‖𝐻1 < 𝐴, with 𝐴 > 0 small enough fixed (which will be chosen later as well). Define the

functional

Φ𝑢0(𝑣)(𝑡) = 𝑒𝑖𝑡Δ𝑣0 +
∫︁ 𝑡

0
𝑒𝑖(𝑡−𝜏)Δ𝑅0𝑣 𝑑𝜏 −

∫︁ 𝑡

0
𝑒𝑖(𝑡−𝜏)Δ𝑖|𝑢|4𝑢 𝑑𝜏. (3.18)

Our goal is to show that this functional, defined in a suitable ball 𝐵𝑅, has a fixed point. We

show that 𝑅 may be chosen in such a way that Φ(𝑣) : 𝐵𝑅 −→ 𝐵𝑅 is a contraction. First,

‖∇Φ𝑢0(𝑣)‖𝐿2
𝑥

≤ ‖∇𝑒𝑖𝑡Δ𝑣0‖𝐿2 +
⃦⃦⃦⃦ ∫︁ 𝑡

0
∇𝑒𝑖(𝑡−𝜏)Δ|𝑢|4𝑢 𝑑𝜏

⃦⃦⃦⃦
𝐿2

𝑥

+
⃦⃦⃦⃦ ∫︁ 𝑡

0
∇𝑒𝑖(𝑡−𝜏)Δ𝑅0𝑣 𝑑𝜏

⃦⃦⃦⃦
𝐿2

𝑥

≤ ‖∇𝑣0‖𝐿2 + 𝐶‖∇|𝑢|4𝑢‖
𝐿

10
7

𝑡 𝐿
10
7

𝑥

+ 𝐶‖∇𝑅0𝑣‖𝐿1
𝑡 𝐿2

𝑥

≤ ‖∇𝑣0‖𝐿2 + 𝐶‖𝑢‖4
𝑆(𝐼)‖∇𝑢‖𝑊 (𝐼) + 𝐶‖[∇, 𝑅0]𝑣‖𝐿1

𝑡 𝐿2
𝑥

+ 𝐶‖𝑅0∇𝑣‖𝐿1
𝑡 𝐿2

𝑥
.

On the other hand,

‖∇𝑢‖𝑊 (𝐼) = ‖∇𝐽−1𝑣‖𝑊 (𝐼)

= ‖[∇, 𝐽−1]𝑣 + 𝐽−1∇𝑣‖𝑊 (𝐼)

≤ 𝐶‖𝑣‖𝑊 (𝐼) + 𝐶‖∇𝑣‖𝑊 (𝐼).
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Then,

‖∇Φ𝑢0(𝑣)‖𝐿2
𝑥

≤ ‖∇𝑣0‖𝐿2 + 𝐶‖𝑣‖4
𝑆(𝐼)

(︁
‖𝑣‖𝑊 (𝐼) + ‖∇𝑣‖𝑊 (𝐼)

)︁
+ 𝐶‖[∇, 𝑅0]𝑣‖𝐿1

𝑡 𝐿2
𝑥

+ ‖𝑅0∇𝑣‖𝐿1
𝑡 𝐿2

𝑥

≤ ‖∇𝑣0‖𝐿2 + 𝐶‖𝑣‖4
𝑆(𝐼)

(︁
‖𝑣‖𝑊 (𝐼) + ‖∇𝑣‖𝑊 (𝐼)

)︁
+ 𝐶‖𝑣‖𝐿1

𝑡 𝐿2
𝑥

+ 𝐶‖∇𝑣‖𝐿1
𝑡 𝐿2

𝑥

≤ ‖𝑣0‖𝐻1 + 𝐶‖𝑣‖4
𝑆(𝐼)‖𝑣‖𝑊 (𝐼) + 𝐶‖𝑣‖4

𝑆(𝐼)‖∇𝑣‖𝑊 (𝐼)

+ 𝐶𝑇 sup
𝑡∈𝐼

‖𝑣(𝑡)‖𝐿2 + 𝐶𝑇 sup
𝑡∈𝐼

‖∇𝑣(𝑡)‖𝐿2 .

By interpolation,

‖𝑣(𝑡)‖
𝐿

10
3

≤ ‖𝑣(𝑡)‖
2
5
𝐿2‖𝑣(𝑡)‖

3
5
𝐿6 .

Then,
∫︁ 𝑇

0
‖𝑣(𝑡)‖

10
3

𝐿
10
3
𝑑𝑡 ≤

∫︁ 𝑇

0
‖𝑣(𝑡)‖

4
3
𝐿2‖𝑣(𝑡)‖2

𝐿6 𝑑𝑡

≤ sup
𝑡∈𝐼

‖𝑣(𝑡)‖
4
3
𝐿2

∫︁ 𝑇

0
‖𝑣(𝑡)‖2

𝐿6 𝑑𝑡

≤ 𝑇 sup
𝑡∈𝐼

‖𝑣(𝑡)‖
4
3
𝐿2 sup

𝑡∈𝐼
‖𝑣(𝑡)‖2

𝐿6

≤ 𝑇‖𝑣‖
4
3
𝑋𝐼

‖𝑣‖2
𝑋𝐼

≤ 𝑇‖𝑣‖
10
3

𝑋𝐼

⇒ ‖𝑣‖𝑊 (𝐼) ≤ 𝑇
3

10 ‖𝑣‖𝑋𝐼
.

Hence,

‖∇Φ𝑢0(𝑣)‖𝐿2
𝑥

≤ ‖∇𝑣0‖𝐿2 + 𝐶𝑇
3

10 ‖𝑣‖4
𝑆(𝐼)‖𝑣‖𝑋𝐼

+ 𝐶‖𝑣‖4
𝑆(𝐼)‖∇𝑣‖𝑊 (𝐼)

+ 𝐶𝑇 sup
𝑡∈𝐼

‖𝑣(𝑡)‖𝐿2 + 𝐶𝑇 sup
𝑡∈𝐼

‖∇𝑣(𝑡)‖𝐿2

≤ 𝐶‖𝑣0‖𝐻1 + 𝐶𝑇
3

10 ‖𝑣‖5
𝑋𝐼

+ 𝐶‖𝑣‖5
𝑋𝐼

+ 𝐶𝑇‖𝑣‖𝑋𝐼
,

where, for these inequalities, we are using estimate (3.8) with (𝑞, 𝑟) =
(︂10

3 ,
10
3

)︂
and estimate

(3.11) with (𝑞, 𝑟) =
(︂10

3 ,
10
3

)︂
and (𝑚,𝑛) = (∞, 2). Again,

‖Φ𝑢0(𝑣)‖𝐿2
𝑥

≤ ‖𝑒𝑖𝑡Δ𝑣0‖𝐿2 +
⃦⃦⃦⃦ ∫︁ 𝑡

0
𝑒𝑖(𝑡−𝜏)Δ|𝑢|4𝑢 𝑑𝜏

⃦⃦⃦⃦
𝐿2

𝑥

+
⃦⃦⃦⃦ ∫︁ 𝑡

0
𝑒𝑖(𝑡−𝜏)Δ𝑅0𝑣 𝑑𝜏

⃦⃦⃦⃦
𝐿2

𝑥

≤ ‖𝑣0‖𝐿2 + 𝐶‖|𝑢|4𝑢‖𝐿1
𝑡 𝐿2

𝑥
+ 𝐶‖𝑅0𝑣‖𝐿1

𝑡 𝐿2
𝑥

≤ ‖𝑣0‖𝐿2 + 𝐶𝑇
1
2 ‖𝑢‖5

𝑆(𝐼) + 𝐶𝑇 sup
𝑡∈𝐼

‖𝑣(𝑡)‖𝐿2

≤ 𝐶‖𝑣0‖𝐻1 + 𝐶𝑇‖𝑣‖5
𝑋𝐼

+ 𝐶𝑇‖𝑣‖𝑋𝐼
.
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Moreover,

‖∇Φ𝑢0(𝑣)‖𝑊 (𝐼) ≤ ‖∇𝑒𝑖𝑡Δ𝑣0‖𝑊 (𝐼) +
⃦⃦⃦⃦ ∫︁ 𝑡

0
∇𝑒𝑖(𝑡−𝜏)Δ|𝑢|4𝑢 𝑑𝜏

⃦⃦⃦⃦
𝑊 (𝐼)

+
⃦⃦⃦⃦ ∫︁ 𝑡

0
∇𝑒𝑖(𝑡−𝜏)Δ𝑅0𝑣 𝑑𝜏

⃦⃦⃦⃦
𝑊 (𝐼)

≤ ‖∇𝑣0‖𝐿2 + 𝐶‖∇|𝑢|4𝑢‖
𝐿

10
7

𝑡 𝐿
10
7

𝑥

+ 𝐶‖∇𝑅0𝑣‖𝐿1
𝑡 𝐿2

𝑥

≤ ‖∇𝑣0‖𝐿2 + 𝐶‖𝑢‖4
𝑆(𝐼)‖∇𝑢‖𝑊 (𝐼) + 𝐶‖[∇, 𝑅0]𝑣‖𝐿1

𝑡 𝐿2
𝑥

+ 𝐶‖𝑅0∇𝑣‖𝐿1
𝑡 𝐿2

𝑥
.

Consequently,

‖∇Φ𝑢0(𝑣)‖𝑊 (𝐼) ≤ ‖∇𝑣0‖𝐿2 + 𝐶𝑇
3

10 ‖𝑣‖4
𝑆(𝐼)‖𝑣‖𝑋𝐼

+ 𝐶‖𝑣‖4
𝑆(𝐼)‖∇𝑣‖𝑊 (𝐼)

+ 𝐶𝑇 sup
𝑡∈𝐼

‖𝑣(𝑡)‖𝐿2 + 𝐶𝑇 sup
𝑡∈𝐼

‖∇𝑣(𝑡)‖𝐿2

≤ 𝐶‖𝑣0‖𝐻1 + 𝐶𝑇
3

10 ‖𝑣‖5
𝑋𝐼

+ 𝐶‖𝑣‖5
𝑋𝐼

+ 𝐶𝑇‖𝑣‖𝑋𝐼
.

Finally,

‖Φ𝑢0(𝑣)‖𝑆(𝐼) ≤ ‖∇Φ𝑢0(𝑣)‖𝑍(𝐼)

≤ ‖∇𝑒𝑖𝑡Δ𝑣0‖𝑍(𝐼) +
⃦⃦⃦⃦ ∫︁ 𝑡

0
∇𝑒𝑖(𝑡−𝜏)Δ|𝑢|4𝑢 𝑑𝜏

⃦⃦⃦⃦
𝑍(𝐼)

+
⃦⃦⃦⃦ ∫︁ 𝑡

0
∇𝑒𝑖(𝑡−𝜏)Δ𝑅0𝑣 𝑑𝜏

⃦⃦⃦⃦
𝑍(𝐼)

≤ ‖∇𝑣0‖𝐿2 + 𝐶‖𝑢‖4
𝑆(𝐼)‖∇𝑢‖𝑊 (𝐼) + 𝐶‖[∇, 𝑅0]𝑣‖𝐿1

𝑡 𝐿2
𝑥

+ 𝐶‖𝑅0∇𝑣‖𝐿1
𝑡 𝐿2

𝑥

≤ ‖∇𝑣0‖𝐿2 + 𝐶𝑇
3

10 ‖𝑣‖4
𝑆(𝐼)‖𝑣‖𝑋𝐼

+ 𝐶‖𝑣‖4
𝑆(𝐼)‖∇𝑣‖𝑊 (𝐼)

+ 𝐶𝑇 sup
𝑡∈𝐼

‖𝑣(𝑡)‖𝐿2 + 𝐶𝑇 sup
𝑡∈𝐼

‖∇𝑣(𝑡)‖𝐿2

≤ 𝐶‖𝑣0‖𝐻1 + 𝐶𝑇
3

10 ‖𝑣‖5
𝑋𝐼

+ 𝐶‖𝑣‖5
𝑋𝐼

+ 𝐶𝑇‖𝑣‖𝑋𝐼
,

where, in the third inequality, we used estimate (3.8) with (𝑞, 𝑟) =
(︂

10, 30
13

)︂
and estimate

(3.11) with (𝑞, 𝑟) =
(︂

10, 30
13

)︂
, (𝑚,𝑛) =

(︂
10
3 ,

10
3

)︂
and again (𝑚,𝑛) = (∞, 2). Adding up, we

have

‖Φ𝑢0(𝑣)‖𝑋𝐼
≤ 𝐶‖𝑣0‖𝐻1 + 𝐶𝑇

3
10 ‖𝑣‖5

𝑋𝐼
+ 𝐶‖𝑣‖5

𝑋𝐼
+ 𝐶𝑇‖𝑣‖𝑋𝐼

.

Choosing 𝑇 < min
{︁
1, 1

4𝐶

}︁
, 𝐴 < 𝑅

8𝐶
and 𝑅 < 1

(4𝐶)
1
4
, we conclude that Φ𝑢0 takes elements of

𝐵𝑅 to elements of 𝐵𝑅. To prove that Φ0 is a contraction, consider the two systems⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑢+ Δ𝑢− 𝑢− |𝑢|4𝑢− 𝑎(1 − Δ)−1𝑎𝜕𝑡𝑢 = 0, (𝑡, 𝑥) ∈ [0, 𝑇 ] × R3,

𝑢(0) = 𝑢0, 𝑥 ∈ R3,

and ⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑧 + Δ𝑧 − 𝑧 − |𝑧|4𝑧 − 𝑎(1 − Δ)−1𝑎𝜕𝑡𝑧 = 0, (𝑡, 𝑥) ∈ [0, 𝑇 ] × R3,

𝑧(0) = 𝑢0, 𝑥 ∈ R3,
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performing the transformation 𝑣 = 𝐽𝑢 and 𝑤 = 𝐽𝑧, we have⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡𝑣 − 𝑖Δ𝑣 −𝑅0𝑣 + 𝑖|𝑢|4𝑢 = 0, (𝑡, 𝑥) ∈ [0, 𝑇 ] × R3,

𝑣 = 𝐽𝑢,

𝑣(0) = 𝑣0 = 𝐽𝑢0, 𝑥 ∈ R3,

(3.19)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡𝑤 − 𝑖Δ𝑤 −𝑅0𝑤 + 𝑖|𝑧|4𝑧 = 0, (𝑡, 𝑥) ∈ [0, 𝑇 ] × R3,

𝑤 = 𝐽𝑧,

𝑤(0) = 𝑤0 = 𝑣0 = 𝐽𝑢0, 𝑥 ∈ R3.

(3.20)

Using Duhamel’s formula, the difference between the systems (3.19) and (3.20) is

Φ𝑢0(𝑣) − Φ𝑢0(𝑤) =
∫︁ 𝑡

0
𝑒𝑖(𝑡−𝜏)Δ𝑅0(𝑣 − 𝑤) 𝑑𝜏 −

∫︁ 𝑡

0
𝑒𝑖(𝑡−𝜏)Δ𝑖

(︂
|𝑢|4𝑢− |𝑧|4𝑧

)︂
𝑑𝜏.

Bound,

‖∇Φ𝑢0(𝑣) − ∇Φ𝑢0(𝑤)‖𝐿2
𝑥

≤
⃦⃦⃦⃦ ∫︁ 𝑡

0
∇𝑒𝑖(𝑡−𝜏)Δ(|𝑢|4𝑢− |𝑧|4𝑧) 𝑑𝜏

⃦⃦⃦⃦
𝐿2

𝑥

+
⃦⃦⃦⃦ ∫︁ 𝑡

0
∇𝑒𝑖(𝑡−𝜏)Δ𝑅0(𝑣 − 𝑤) 𝑑𝜏

⃦⃦⃦⃦
𝐿2

𝑥

≤ 𝐶‖∇(|𝑢|4𝑢− |𝑧|4𝑧)‖
𝐿

10
7

𝑡 𝐿
10
7

𝑥

+ 𝐶‖∇𝑅0(𝑣 − 𝑤)‖𝐿1
𝑡 𝐿2

𝑥

≤ 𝐶‖∇(|𝑢|4𝑢− |𝑧|4𝑧)‖
𝐿

10
7

𝑡 𝐿
10
7

𝑥

+ 𝐶‖[∇, 𝑅0](𝑣 − 𝑤)‖𝐿1
𝑡 𝐿2

𝑥

+ 𝐶‖𝑅0∇(𝑣 − 𝑤)‖𝐿1
𝑡 𝐿2

𝑥

≤ 𝐶‖∇(|𝑢|4𝑢− |𝑧|4𝑧)‖
𝐿

10
7

𝑡 𝐿
10
7

𝑥

+ 𝐶‖𝑣 − 𝑤‖𝐿1
𝑡 𝐿2

𝑥
+ 𝐶‖∇(𝑣 − 𝑤)‖𝐿1

𝑡 𝐿2
𝑥

≤ 𝐶‖∇(|𝑢|4𝑢− |𝑧|4𝑧)‖
𝐿

10
7

𝑡 𝐿
10
7

𝑥

+ 𝐶𝑇 sup
𝑡∈𝐼

‖(𝑣 − 𝑤)(𝑡)‖𝐿2

+ 𝐶𝑇 sup
𝑡∈𝐼

‖∇(𝑣 − 𝑤)(𝑡)‖𝐿2 .

We have

‖∇(|𝑢|4𝑢− |𝑧|4𝑧)‖
𝐿

10
7

𝑡 𝐿
10
7

𝑥

≤ 𝐶

⎛⎝‖𝑢‖4
𝑆(𝐼)‖∇𝑢− ∇𝑧‖𝑊 (𝐼) + ‖𝑢− 𝑧‖𝑆(𝐼)‖∇𝑧‖𝑊 (𝐼)‖𝑢‖3

𝑆(𝐼) +

+ ‖𝑢− 𝑧‖𝑆(𝐼)‖∇𝑧‖𝑊 (𝐼)‖𝑧‖3
𝑆(𝐼)

⎞⎠
≤ 𝐶

⎛⎝‖𝑣‖4
𝑆(𝐼)‖∇𝑢− ∇𝑧‖𝑊 (𝐼) + ‖𝑣 − 𝑤‖𝑆(𝐼)‖∇𝑧‖𝑊 (𝐼)‖𝑣‖3

𝑆(𝐼) +

+ ‖𝑣 − 𝑤‖𝑆(𝐼)‖∇𝑧‖𝑊 (𝐼)‖𝑤‖3
𝑆(𝐼)

⎞⎠.
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But

‖∇(𝑢− 𝑧)‖𝑊 (𝐼) = ‖∇𝐽−1(𝑣 − 𝑤)‖𝑊 (𝐼)

≤ ‖[∇, 𝐽−1](𝑣 − 𝑤)‖𝑊 (𝐼) + ‖𝐽−1∇(𝑣 − 𝑤)‖𝑊 (𝐼)

≤ 𝐶‖𝑣 − 𝑤‖𝑊 (𝐼) + 𝐶‖∇(𝑣 − 𝑤)‖𝑊 (𝐼).

So,

‖∇(|𝑢|4𝑢− |𝑧|4𝑧)‖
𝐿

10
7

𝑡 𝐿
10
7

𝑥

≤ 𝐶

⎛⎝‖𝑣‖4
𝑆(𝐼)‖∇𝑢− ∇𝑧‖𝑊 (𝐼) + ‖𝑣 − 𝑤‖𝑆(𝐼)‖∇𝑧‖𝑊 (𝐼)‖𝑣‖3

𝑆(𝐼) +

+ ‖𝑣 − 𝑤‖𝑆(𝐼)‖∇𝑧‖𝑊 (𝐼)‖𝑤‖3
𝑆(𝐼)

⎞⎠,
i.e.,

‖∇(|𝑢|4𝑢− |𝑧|4𝑧)‖
𝐿

10
7

𝑡 𝐿
10
7

𝑥

≤ 𝐶

⎛⎝‖𝑣‖4
𝑆(𝐼)‖𝑣 − 𝑤‖𝑊 (𝐼) + ‖𝑣‖4

𝑆(𝐼)‖∇(𝑣 − 𝑤)‖𝑊 (𝐼)

+ ‖𝑣 − 𝑤‖𝑆(𝐼)‖𝑤‖𝑊 (𝐼)‖𝑣‖3
𝑆(𝐼) + ‖𝑣 − 𝑤‖𝑆(𝐼)‖∇𝑤‖𝑊 (𝐼)‖𝑣‖3

𝑆(𝐼)

+ ‖𝑣 − 𝑤‖𝑆(𝐼)‖𝑤‖𝑊 (𝐼)‖𝑤‖3
𝑆(𝐼) + ‖𝑣 − 𝑤‖𝑆(𝐼)‖∇𝑤‖𝑊 (𝐼)‖𝑤‖3

𝑆(𝐼)

⎞⎠
≤ 𝐶

⎛⎝𝑇 3
10𝑅4‖𝑣 − 𝑤‖𝑋𝐼

+𝑅4‖𝑣 − 𝑤‖𝑋𝐼

+ 𝑇
3

10𝑅4‖𝑣 − 𝑤‖𝑋𝐼
+𝑅4‖𝑣 − 𝑤‖𝑋𝐼

+ 𝑇
3

10𝑅4‖𝑣 − 𝑤‖𝑋𝐼
+𝑅4‖𝑣 − 𝑤‖𝑋𝐼

⎞⎠
≤ 𝐶𝑇

3
10𝑅4‖𝑣 − 𝑤‖𝑋𝐼

+ 𝐶𝑅4‖𝑣 − 𝑤‖𝑋𝐼
.

Hence,

‖∇Φ𝑢0(𝑣) − ∇Φ𝑢0(𝑤)‖𝐿2
𝑥

≤ 𝐶𝑇
3

10𝑅4‖𝑣 − 𝑤‖𝑋𝐼
+ 𝐶𝑅4‖𝑣 − 𝑤‖𝑋𝐼

+ 𝐶𝑇‖𝑣 − 𝑤‖𝑋𝐼
.
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Secondly,

‖∇Φ𝑢0(𝑣) − ∇Φ𝑢0(𝑤)‖𝑊 (𝐼) ≤
⃦⃦⃦⃦ ∫︁ 𝑡

0
∇𝑒𝑖(𝑡−𝜏)Δ(|𝑢|4𝑢− |𝑧|4𝑧) 𝑑𝜏

⃦⃦⃦⃦
𝑊 (𝐼)

+
⃦⃦⃦⃦ ∫︁ 𝑡

0
∇𝑒𝑖(𝑡−𝜏)Δ𝑅0(𝑣 − 𝑤) 𝑑𝜏

⃦⃦⃦⃦
𝑊 (𝐼)

≤ 𝐶‖∇(|𝑢|4𝑢− |𝑧|4𝑧)‖
𝐿

10
7

𝑡 𝐿
10
7

𝑥

+ 𝐶‖∇𝑅0(𝑣 − 𝑤)‖𝐿1
𝑡 𝐿2

𝑥

≤ 𝐶‖∇(|𝑢|4𝑢− |𝑧|4𝑧)‖
𝐿

10
7

𝑡 𝐿
10
7

𝑥

+ 𝐶‖[∇, 𝑅0](𝑣 − 𝑤)‖𝐿1
𝑡 𝐿2

𝑥

+ 𝐶‖𝑅0∇(𝑣 − 𝑤)‖𝐿1
𝑡 𝐿2

𝑥

≤ 𝐶‖∇(|𝑢|4𝑢− |𝑧|4𝑧)‖
𝐿

10
7

𝑡 𝐿
10
7

𝑥

+ 𝐶‖𝑣 − 𝑤‖𝐿1
𝑡 𝐿2

𝑥
+ 𝐶‖∇(𝑣 − 𝑤)‖𝐿1

𝑡 𝐿2
𝑥

≤ 𝐶‖∇(|𝑢|4𝑢− |𝑧|4𝑧)‖
𝐿

10
7

𝑡 𝐿
10
7

𝑥

+ 𝐶𝑇 sup
𝑡∈𝐼

‖(𝑣 − 𝑤)(𝑡)‖𝐿2

+ 𝐶𝑇 sup
𝑡∈𝐼

‖∇(𝑣 − 𝑤)(𝑡)‖𝐿2

≤ 𝐶𝑇
3

10𝑅4‖𝑣 − 𝑤‖𝑋𝐼
+ 𝐶𝑅4‖𝑣 − 𝑤‖𝑋𝐼

+ 𝐶𝑇‖𝑣 − 𝑤‖𝑋𝐼
.

Moreover,

‖Φ𝑢0(𝑣) − Φ𝑢0(𝑤)‖𝐿2 ≤
⃦⃦⃦⃦ ∫︁ 𝑡

0
𝑒𝑖(𝑡−𝜏)Δ(|𝑢|4𝑢− |𝑧|4𝑧) 𝑑𝜏

⃦⃦⃦⃦
𝐿2

+
⃦⃦⃦⃦ ∫︁ 𝑡

0
𝑒𝑖(𝑡−𝜏)Δ𝑅0(𝑣 − 𝑤) 𝑑𝜏

⃦⃦⃦⃦
𝐿2

≤ 𝐶‖|𝑢|4𝑢− |𝑧|4𝑧‖𝐿1
𝑡 𝐿2

𝑥
+ 𝐶‖𝑅0(𝑣 − 𝑤)‖𝐿1

𝑡 𝐿2
𝑥

≤ 𝐶‖|𝑢|4𝑢− |𝑧|4𝑧‖𝐿1
𝑡 𝐿2

𝑥
+ 𝐶‖𝑣 − 𝑤‖𝐿1

𝑡 𝐿2
𝑥

≤ 𝐶‖|𝑢|4𝑢− |𝑧|4𝑧‖𝐿1
𝑡 𝐿2

𝑥
+ 𝐶𝑇 sup

𝑡∈𝐼
‖(𝑣 − 𝑤)(𝑡)‖𝐿2

≤ 𝐶𝑇
1
2 ‖𝑢− 𝑧‖𝑆(𝐼)

(︂
‖𝑢‖4

𝑆(𝐼) + ‖𝑧‖4
𝑆(𝐼)

)︂
+ 𝐶𝑇 sup

𝑡∈𝐼
‖(𝑣 − 𝑤)(𝑡)‖𝐿2

≤ 𝐶𝑇
1
2 ‖𝑣 − 𝑤‖𝑆(𝐼)

(︂
‖𝑣‖4

𝑆(𝐼) + ‖𝑤‖4
𝑆(𝐼)

)︂
+ 𝐶𝑇 sup

𝑡∈𝐼
‖(𝑣 − 𝑤)(𝑡)‖𝐿2

≤ 𝐶𝑇
1
2𝑅4‖𝑣 − 𝑤‖𝑋𝐼

+ 𝐶𝑇‖𝑣 − 𝑤‖𝑋𝐼
.
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Finally,

‖Φ𝑢0(𝑣) − Φ𝑢0(𝑤)‖𝑆(𝐼) ≤
⃦⃦⃦⃦ ∫︁ 𝑡

0
𝑒𝑖(𝑡−𝜏)Δ(|𝑢|4𝑢− |𝑧|4𝑧) 𝑑𝜏

⃦⃦⃦⃦
𝑍(𝐼)

+
⃦⃦⃦⃦ ∫︁ 𝑡

0
𝑒𝑖(𝑡−𝜏)Δ𝑅0(𝑣 − 𝑤) 𝑑𝜏

⃦⃦⃦⃦
𝑍(𝐼)

≤ 𝐶‖∇(|𝑢|4𝑢− |𝑧|4𝑧)‖
𝐿

10
7

𝑡 𝐿
10
7

𝑥

+ 𝐶‖∇𝑅0(𝑣 − 𝑤)‖𝐿1
𝑡 𝐿2

𝑥

≤ 𝐶‖∇(|𝑢|4𝑢− |𝑧|4𝑧)‖
𝐿

10
7

𝑡 𝐿
10
7

𝑥

+ 𝐶‖[∇, 𝑅0](𝑣 − 𝑤)‖𝐿1
𝑡 𝐿2

𝑥

+ 𝐶‖𝑅0∇(𝑣 − 𝑤)‖𝐿1
𝑡 𝐿2

𝑥

≤ 𝐶‖∇(|𝑢|4𝑢− |𝑧|4𝑧)‖
𝐿

10
7

𝑡 𝐿
10
7

𝑥

+ 𝐶‖𝑣 − 𝑤‖𝐿1
𝑡 𝐿2

𝑥
+ 𝐶‖∇(𝑣 − 𝑤)‖𝐿1

𝑡 𝐿2
𝑥

≤ 𝐶‖∇(|𝑢|4𝑢− |𝑧|4𝑧)‖
𝐿

10
7

𝑡 𝐿
10
7

𝑥

+ 𝐶𝑇 sup
𝑡∈𝐼

‖(𝑣 − 𝑤)(𝑡)‖𝐿2

+ 𝐶𝑇 sup
𝑡∈𝐼

‖∇(𝑣 − 𝑤)(𝑡)‖𝐿2

≤ 𝐶𝑇
3

10𝑅4‖𝑣 − 𝑤‖𝑋𝐼
+ 𝐶𝑅4‖𝑣 − 𝑤‖𝑋𝐼

+ 𝐶𝑇‖𝑣 − 𝑤‖𝑋𝐼
.

Therefore,

‖Φ𝑢0(𝑣) − Φ𝑢0(𝑤)‖𝑋𝐼
≤ 𝐶𝑇

1
2𝑅4‖𝑣 − 𝑤‖𝑋𝐼

+ 𝐶𝑇
3

10𝑅4‖𝑣 − 𝑤‖𝑋𝐼

+ 𝐶𝑅4‖𝑣 − 𝑤‖𝑋𝐼
+ 𝐶𝑇‖𝑣 − 𝑤‖𝑋𝐼

,

which provides the local existence if we take constants 𝑇,𝑅 satisfying 𝐶(𝑇 1
2𝑅4 + 𝑇

3
10𝑅4 +

𝑅4 + 𝑇 ) < 1.

To prove global existence, notice that, since

𝐸(𝑡) ≤ 𝐸(0), ∀𝑡 ∈ 𝐼.

Thus, the energy is bounded for every 𝑡 ≥ 0. We use this property and the finite blow-up

criterion below to prove that the maximal interval where the solution of system (3.15) is

defined can not be finite.

Lemma 3.3.1 (Finite blow-up criterion). Let 𝑇 (𝑢0) > 0 and 𝐼0 = [0, 𝑇 (𝑢0)] be the maximal
interval for which the solution 𝑢 for system (3.15) is defined on 𝐼0. If 𝑇 (𝑢0) < +∞, then

‖𝑢‖𝑆([0,𝑇 (𝑢0)]) = +∞.

Demonstração. We argue by contradiction. Assume that 𝑇 (𝑢0) < +∞ and ‖𝑢‖𝑆([0,𝑇 (𝑢0)]) <

+∞. Let ‖𝑢‖𝑆([0,𝑇 (𝑢0)]) = 𝑀 and, for 𝜀 > 0 which will be chosen below, we choose 𝑁 = 𝑁(𝜀)

intervals 𝐼𝑗 such that
𝑁⋃︁

𝑗=1
𝐼𝑗 = [0, 𝑇 (𝑢0)]
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with ‖𝑢‖𝑆(𝐼𝑗) ≤ 𝜀. The first step is to show that

‖𝑢‖𝐿∞[0,𝑇 (𝑢0)];𝐻̇1(R3)+‖𝑢‖𝐿∞[0,𝑇 (𝑢0)];𝐿2(R3)+‖∇𝑢‖𝑊 ([0,𝑇 (𝑢0)])+‖∇𝑢‖𝑍([0,𝑇 (𝑢0)]) < +∞. (3.21)

We write the integral equation (3.17) on each interval 𝐼𝑗 (or apply Proposition 4.4.2 to system

(3.15) on each interval 𝐼𝑗) to obtain

sup
𝑡∈𝐼𝑗

‖𝑢(𝑡)‖𝐻̇1(R3) + sup
𝑡∈𝐼𝑗

‖𝑢(𝑡)‖𝐿2(R3) + ‖∇𝑢‖𝑊 (𝐼𝑗) + ‖∇𝑢‖𝑍(𝐼𝑗)

≤ 𝐶‖𝑢(𝑡𝑗)‖𝐻̇1(R3) + 𝐶‖𝑢‖4
𝑆(𝐼𝑗)‖∇𝑢‖𝑍(𝐼𝑗) + 𝐶‖𝑢‖4

𝑆(𝐼𝑗)‖𝑢‖𝑆(𝐼𝑗)

≤ 𝐶‖𝑢(𝑡𝑗)‖𝐻̇1(R3) + 𝐶‖𝑢‖4
𝑆(𝐼𝑗)‖∇𝑢‖𝑍(𝐼𝑗)

≤ 𝐶‖𝑢(𝑡𝑗)‖𝐻̇1(R3) + 𝐶𝜀4‖∇𝑢‖𝑍(𝐼𝑗),

where 𝑡𝑗 is a fixed point in 𝐼𝑗. The desired estimate (3.21) follows if we choose 𝜀 > 0 such

that 𝐶𝜀4 < 1
2 . For the second step, we choose a sequence (𝑡𝑛)𝑛∈N such that 𝑡𝑛 → 𝑇 (𝑢0) as

𝑛 → ∞. Let 𝑇* be the length of the existence interval given by Theorem 3.3.2. Let 𝑛 be large

enough but fixed such that

𝑇 (𝑢0) − 𝑡𝑛 = 𝜀0

with 𝜀0 > 0 satisfying 𝜀0 = 𝑇*
2 . Since 𝐸(𝑡𝑛) ≤ 𝐸(0) for all 𝑡𝑛 ≥ 0, Theorem 3.3.2 may

be applied for the interval [0, 𝑇 (𝑢0) + 𝜀] whose length is 𝑇*. However, this contradicts the

maximality of 𝑇 (𝑢0) and concludes the proof.

Remark 3.3.2. We have proved that for all 𝑢0, 𝑔 with ‖𝑢0‖𝐻1 +‖𝑔‖𝐿∞([0,𝑇 ];𝐻1) small enough,
the solution 𝑢 of system (3.12) satisfies

‖𝑢‖𝑋𝐼
≤ 𝐶

(︁
‖𝑢0‖𝐻1 + ‖𝑔‖𝐿∞([0,𝑇 ];𝐻1) + ‖𝑢‖5

𝑋𝐼

)︁
.

Hence,

‖𝑢‖𝑋𝐼
≤ 𝐶

(︁
‖𝑢0‖𝐻1 + ‖𝑔‖𝐿∞([0,𝑇 ];𝐻1)

)︁
≤ 𝐶(𝑇,𝐴),

applying a classical bootstrap argument (Lemma 4.3.2).

Remark 3.3.3. If 𝑢 is a solution of system (3.15), then, using Proposition 4.4.2, one has

‖𝑢‖𝑋𝐼
≤ 𝐶

(︁
‖𝑢(𝑎)‖𝐻1 + ‖𝑢‖5

𝑋𝐼

)︁
.

So, for ‖𝑢0‖𝐻1 small enough, one has

‖𝑢‖𝑋𝐼
≤ 𝐶(𝑇, ‖𝑢0‖𝐻1) (3.22)

by a classical bootstrap argument (Lemma 4.3.2).
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3.4 SCATTERING RESULT

In this section, we bring the scattering result obtained as a consequence of the existence of

solutions in the Strichartz space, proven by Cazenave and Weissler in (CAZENAVE; WEISSLER,

1990).

Proposition 3.4.1. Let 𝑢 be a solution of⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑢+ Δ𝑢− |𝑢|4𝑢 = 0 (𝑡, 𝑥) ∈ R × R3,

𝑢(𝑡0) = 𝑢0,

where 𝑢0 ∈ 𝐻1(R3) and supposed to be small enough, 𝑢 ∈ 𝐿10(R4) and 𝑢 ∈ 𝐿10(R;𝐿 30
13 (R3)).

There exist 𝑢+, 𝑢− ∈ 𝐻̇1(R3) such that

lim
𝑡→+∞

‖𝑢(𝑡) − 𝑒𝑖𝑡Δ𝑢+‖𝐻̇1 = 0 and lim
𝑡→−∞

‖𝑢(𝑡) − 𝑒𝑖𝑡Δ𝑢−‖𝐻̇1 .

Demonstração. Note that⃦⃦⃦⃦ ∫︁ +∞

𝑡
∇𝑒𝑖(𝑡−𝜏)Δ|𝑢|4𝑢 𝑑𝜏

⃦⃦⃦⃦
𝐿2

≤ 𝐶‖∇|𝑢|4𝑢‖
𝐿2(𝑡,+∞)𝐿

6
5 (R3)

≤ 𝐶‖𝑢‖4
𝐿10(𝑡,+∞)𝐿10(R3)‖∇𝑢‖

𝐿10(𝑡,+∞)𝐿
30
13 (R3)

→ 0(3.23)

as 𝑡 → +∞. Then, since

𝑢(𝑡) = 𝑒𝑖(𝑡−𝑡0)Δ𝑢0 +
∫︁ 𝑡

𝑡0
𝑒𝑖(𝑡−𝜏)Δ|𝑢|4𝑢 𝑑𝜏,

taking

𝑢+ = 𝑒−𝑖𝑡0Δ𝑢0 +
∫︁ +∞

𝑡0
𝑒−𝑖𝜏Δ|𝑢|4𝑢 𝑑𝜏

and

𝑢− = 𝑒−𝑖𝑡0Δ𝑢0 −
∫︁ 𝑡0

−∞
𝑒−𝑖𝜏Δ|𝑢|4𝑢 𝑑𝜏,

𝑢+ and 𝑢− have the desired property. Indeed,

‖𝑢(𝑡) − 𝑒𝑖𝑡Δ𝑢+‖𝐻̇1 =

⃦⃦⃦⃦
⃦⃦𝑒𝑖(𝑡−𝑡0)Δ𝑢0 +

∫︁ 𝑡

𝑡0
𝑒𝑖(𝑡−𝜏)Δ|𝑢|4𝑢 𝑑𝜏

− 𝑒𝑖𝑡Δ𝑒−𝑖𝑡0Δ𝑢0 −
∫︁ +∞

𝑡0
𝑒𝑖𝑡Δ𝑒−𝑖𝜏Δ|𝑢|4𝑢 𝑑𝜏

⃦⃦⃦⃦
⃦⃦

𝐻̇1

=

⃦⃦⃦⃦
⃦⃦ ∫︁ 𝑡

𝑡0
𝑒𝑖(𝑡−𝜏)Δ|𝑢|4𝑢 𝑑𝜏 −

∫︁ +∞

𝑡0
𝑒𝑖(𝑡−𝜏)Δ|𝑢|4𝑢 𝑑𝜏

⃦⃦⃦⃦
⃦⃦

𝐻̇1

=

⃦⃦⃦⃦
⃦⃦ ∫︁ +∞

𝑡
𝑒𝑖(𝑡−𝜏)Δ|𝑢|4𝑢 𝑑𝜏

⃦⃦⃦⃦
⃦⃦

𝐻̇1

→ 0
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as 𝑡 → +∞, by (3.23). Moreover,

‖𝑢(𝑡) − 𝑒𝑖𝑡Δ𝑢−‖𝐻̇1 =

⃦⃦⃦⃦
⃦⃦𝑒𝑖(𝑡−𝑡0)Δ𝑢0 +

∫︁ 𝑡

𝑡0
𝑒𝑖(𝑡−𝜏)Δ|𝑢|4𝑢 𝑑𝜏

− 𝑒𝑖𝑡Δ𝑒−𝑖𝑡0Δ𝑢0 +
∫︁ 𝑡0

−∞
𝑒𝑖𝑡Δ𝑒−𝑖𝜏Δ|𝑢|4𝑢 𝑑𝜏

⃦⃦⃦⃦
⃦⃦

𝐻̇1

=

⃦⃦⃦⃦
⃦⃦ ∫︁ 𝑡

𝑡0
𝑒𝑖(𝑡−𝜏)Δ|𝑢|4𝑢 𝑑𝜏 +

∫︁ 𝑡0

−∞
𝑒𝑖(𝑡−𝜏)Δ|𝑢|4𝑢 𝑑𝜏

⃦⃦⃦⃦
⃦⃦

𝐻̇1

=

⃦⃦⃦⃦
⃦⃦ ∫︁ 𝑡

−∞
𝑒𝑖(𝑡−𝜏)Δ|𝑢|4𝑢 𝑑𝜏

⃦⃦⃦⃦
⃦⃦

𝐻̇1

→ 0

as 𝑛 → −∞, by (3.23), concluding the proof.
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4 PROFILE DECOMPOSITION

4.1 INTRODUCTION

In this chapter, we consider the linear Schrödinger equation⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑢+ Δ𝑢 = 0, (𝑡, 𝑥) ∈ [0, 𝑇 ] × R3,

𝑢(0, 𝑥) = 𝜙(𝑥), 𝑥 ∈ R3.

(4.1)

For 𝜙 ∈ 𝐻̇1(R3), the solution of problem (4.1) is given explicitly by 𝑣 = 𝑒𝑖𝑡Δ𝜙 ∈ 𝐶(R𝑡, 𝐻̇
1(R3

𝑥))

and we have the conservation law

𝐸0(𝑣)(𝑡) :=
∫︁
R3

|∇𝑣(𝑡)|2 𝑑𝑥 = 𝐸0(𝜙). (4.2)

The nonlinear 𝐻̇1-critical Schrödinger equation in three space dimensions associated to (4.1)

is ⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑢+ Δ𝑢− |𝑢|4𝑢 = 0, (𝑡, 𝑥) ∈ [0, 𝑇 ] × R3,

𝑢(0, 𝑥) = 𝜙(𝑥) 𝑥 ∈ R3.

(4.3)

The Cauchy problem (4.3) has the following properties: (see, e.g., (CAZENAVE; WEISSLER,

1990)).

i) For all 𝜙 ∈ 𝐻̇1(R3), there exists a unique maximal solution 𝑢(𝑡, 𝑥) of problem (4.3)

satisfying

𝑢 ∈ 𝐶((𝑇*, 𝑇
*); 𝐻̇1(R3)), and ∇𝑢 ∈ 𝐿𝑞

𝑙𝑜𝑐((𝑇*, 𝑇
*);𝐿𝑟(R3)),

for every 𝐿2-admissible pair(𝑞, 𝑟).

ii) The solution 𝑢 satisfies the conservation law

𝐸1(𝑢)(𝑡) := 1
2

∫︁
R3

|∇𝑢(𝑡)|2 𝑑𝑥+ 1
6

∫︁
R3

|𝑢(𝑡)|6 𝑑𝑥 = 𝐸1(𝜙).

iii) If either 𝑇* or 𝑇 * is finite, then ‖∇𝑢‖𝐿𝑞((𝑇*,𝑇 *);𝐿𝑟(R3)) = ∞ for all 𝐿2-admissible pair

(𝑞, 𝑟) with 𝑟 > 2.

Furthermore, the theory of small data explored in (CAZENAVE; WEISSLER, 1990) ensures

that for ‖𝜙‖𝐻̇1(R3) small enough there exists a unique maximal solution 𝑢(𝑡, 𝑥) of the initial

value problem (IVP) (4.3) satisfying

𝑢 ∈ 𝐶(R; 𝐻̇1(R3)), 𝑢 ∈ 𝐿10(R4), and ∇𝑢 ∈ 𝐿
10
3 (R4). (4.4)
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We prove that every sequence of solutions to the linear Schrödinger equation with bounded

data in 𝐻̇1(R3) can be written, up to a subsequence, as an almost orthogonal sum of sequences

of the type ℎ− 1
2

𝑛 𝜙
(︂

𝑡−𝑡𝑛

ℎ2
𝑛
, 𝑥−𝑥𝑛

ℎ𝑛

)︂
, where 𝜙 is a solution of the linear Schrödinger equation with a

small remainder term in Strichartz norms. Using this decomposition, we prove a similar one for

the defocusing 𝐻̇1-critical nonlinear Schrödinger equation (4.3), assuming that the initial data

belong to a ball in the energy space where the equation is solvable. This implies, in particular,

the existence of an estimate for the Strichartz norms in terms of the energy.

4.1.1 Notations

Throughout this chapter, 𝐶 denotes a numerical constant that can be different from one

step to another in the demonstrations. 𝑢𝑛 (or 𝑣𝑛) denotes a sequence (𝑢𝑛)𝑛∈N (or (𝑣𝑛)𝑛∈N).

Definition 4.1. Let 𝜙 ∈ 𝐻̇1(R3) with ‖𝜙‖𝐻̇1 < 𝜆 for 𝜆 > 0 small enough such that the

global existence for the problem (4.3) holds with 𝑢 ∈ 𝐶(R; 𝐻̇1(R3)∩𝐿10(R4), ∇𝑢 ∈ 𝐿
10
3 (R4).

We define 𝜆0 as the supremum of these 𝜆.

Remark 4.2. If ‖𝜙‖𝐻̇1(R3) < 𝜆0, then system (4.3) admits a complete scattering theory

relative to its associated linear problem. However, it is an open problem to prove that 𝜆0 = ∞,

i.e., to prove global well-posedness for the IVP (4.3) for any initial data in 𝐻̇1(R3)1.

The following definition will be useful in the first part of the proof of the linear profile

decomposition, which consists of the extraction of the scales of oscillation ℎ𝑛.

Definition 4.3.

i) We call scale every sequence ℎ = (ℎ𝑛)𝑛≥0 of positive numbers converging to 0 and

core every sequence [𝑥, 𝑡] = (𝑥𝑛, 𝑡𝑛)𝑛≥0 ⊂ R3 ×R. We denote a scale-core by [ℎ, 𝑥, 𝑡].

ii) We say that two sequences of scale-core [ℎ(1), 𝑥(1), 𝑡(1)] and [ℎ(2), 𝑥(2), 𝑡(2)] are orthogonal

if either
ℎ(1)

𝑛

ℎ
(2)
𝑛

+ ℎ(2)
𝑛

ℎ
(1)
𝑛

−→ +∞ as 𝑛 → ∞, (4.5)

or ℎ(1)
𝑛 = ℎ(2)

𝑛 = ℎ𝑛 and⃒⃒⃒⃒
⃒⃒𝑡(1)

𝑛 − 𝑡(2)
𝑛

ℎ2
𝑛

⃒⃒⃒⃒
⃒⃒+

⃒⃒⃒⃒
⃒⃒𝑥(1)

𝑛 − 𝑥(2)
𝑛

ℎ𝑛

⃒⃒⃒⃒
⃒⃒ −→ +∞ as 𝑛 → ∞. (4.6)

1 Bourgain solved this problem in the particular case of radially symmetric data (BOURGAIN, 1999a).
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We denote [ℎ(1), 𝑥(1), 𝑡(1)] ⊥ [ℎ(2), 𝑥(2), 𝑡(2)] and (𝑥(1), 𝑡(1)) ⊥ℎ𝑛 (𝑥(2), 𝑡(2)), if ℎ(1) =

ℎ(2) = ℎ𝑛.

4.1.2 Concentrating solutions

Now, we introduce the concept of concentration solution, which will be extremely important

for the study of the asymptotic behavior of systems (4.1) and (4.3).

Definition 4.4.

i) Let 𝑓 ∈ 𝐿∞(R; 𝐻̇1(R3)), ℎ = ℎ𝑛 ∈ R*
+, 𝑥 = 𝑥𝑛 ∈ R3 and 𝑡 = 𝑡𝑛 ∈ R such

that lim𝑛(ℎ𝑛, 𝑥𝑛, 𝑡𝑛) = (0, 𝑥∞, 𝑡∞). A linear concentrating solution associated to

[𝑓, ℎ, 𝑥, 𝑡] is a sequence (𝑣𝑛)𝑛∈N of solutions to

𝑖𝜕𝑡𝑣𝑛 + Δ𝑣𝑛 = 0, (𝑡, 𝑥) ∈ R × R3, (4.7)

of the form

𝑣𝑛(𝑡, 𝑥) = 1√
ℎ𝑛

𝑓
(︂
𝑡− 𝑡𝑛
ℎ2

𝑛

,
𝑥− 𝑥𝑛

ℎ𝑛

)︂
; (4.8)

ii) The associated nonlinear concentrating solution is a sequence (𝑢𝑛)𝑛∈N of solutions

to ⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑢𝑛 + Δ𝑢𝑛 − |𝑢𝑛|4𝑢𝑛 = 0, (𝑡, 𝑥) ∈ R × R3,

𝑢𝑛(0) = 𝑣𝑛(0), 𝑥 ∈ R3,

(4.9)

of the form

𝑢𝑛(𝑡, 𝑥) = 1√
ℎ𝑛

𝑓
(︂
𝑡− 𝑡𝑛
ℎ2

𝑛

,
𝑥− 𝑥𝑛

ℎ𝑛

)︂
,

where 𝑓(−𝑡𝑛/ℎ2
𝑛) = 𝑓(−𝑡𝑛/ℎ2

𝑛).

The next definition is the tool that will be used to “track back” the concentrations.

Definition 4.5. Let 𝑥∞ ∈ R3, 𝑡∞ ∈ R, ℎ = ℎ𝑛 ∈ R*
+, 𝑥 = 𝑥𝑛 ∈ R3, 𝑡 = 𝑡𝑛 ∈ R and

𝑓 ∈ 𝐿∞(R; 𝐻̇1(R3)) such that lim𝑛(ℎ𝑛, 𝑥𝑛, 𝑡𝑛) = (0, 𝑥∞, 𝑡∞). Given a bounded sequence

(𝑓𝑛)𝑛∈N in 𝐿∞(R; 𝐻̇1(R3)), we write

𝐷ℎ𝑛𝑓𝑛 ⇀ 𝑓

if

ℎ
1
2
𝑛𝑓𝑛(𝑡𝑛 + ℎ2

𝑛𝑡, 𝑥𝑛 + ℎ𝑛𝑥) ⇀ 𝑓(𝑡, 𝑥) weakly in 𝐻̇1(R3)

as 𝑛 → ∞, for all 𝑡 ∈ R.
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Of course, this definition depends on the core of concentration ℎ𝑛, 𝑥𝑛 and 𝑡𝑛. When several

rates of concentration [ℎ(𝑗), 𝑥(𝑗), 𝑡(𝑗)], 𝑗 ∈ N, are used in a proof, we use the notation 𝐷(𝑗)
ℎ to

distinguish them.

Now, we state a series of results related to the concept of concentration solutions.

Lemma 4.1.1. 𝐷ℎ𝑛𝑓𝑛 ⇀ 𝑓 is equivalent to∫︁
R3

∇𝑥𝑓𝑛(𝑡𝑛 + ℎ2
𝑛𝑠) · ∇𝑢𝑛(𝑡𝑛 + ℎ2

𝑛𝑠) 𝑑𝑥 −→
∫︁
R3

∇𝑦𝑓(𝑠) · ∇𝑦𝜙(𝑠) 𝑑𝑦 as 𝑛 → ∞, ∀𝑠 ∈ R,

where 𝑢𝑛 is of the form 𝑢𝑛(𝑡, 𝑥) = 1√
ℎ𝑛
𝜙
(︂

𝑡−𝑡𝑛

ℎ2
𝑛
, 𝑥−𝑥𝑛

ℎ𝑛

)︂
with 𝜙 ∈ 𝐿∞(R; 𝐻̇1(R3)).

Demonstração. Assume 𝜙 ∈ 𝐶∞
0 (R × R3). We denote

𝐿𝑛 =
√︁
ℎ𝑛

∫︁
R3

∇𝑦𝑓𝑛(𝑡𝑛 + ℎ2
𝑛𝑠, 𝑥𝑛 + ℎ𝑛𝑦) · ∇𝑦𝜙(𝑠, 𝑦) 𝑑𝑦.

So, with the change of variables 𝑥𝑛 + ℎ𝑛𝑦 = 𝑥,

𝐿𝑛 =
√︁
ℎ𝑛

∫︁
R3

∇𝑦𝑓𝑛(𝑡𝑛 + ℎ2
𝑛𝑠, 𝑥) · ∇𝑦𝜙

(︂
𝑠,
𝑥− 𝑥𝑛

ℎ𝑛

)︂
𝑑𝑥

ℎ3
𝑛

=
∫︁
R3

∇𝑥𝑓𝑛(𝑡𝑛 + ℎ2
𝑛𝑠, 𝑥) · ∇𝑥

1√
ℎ𝑛

𝜙
(︂
𝑠,
𝑥− 𝑥𝑛

ℎ𝑛

)︂
𝑑𝑥

=
∫︁
R3

∇𝑥𝑓𝑛(𝑡𝑛 + ℎ2
𝑛𝑠) · ∇𝑥𝑢𝑛(𝑡𝑛 + ℎ2

𝑛𝑠) 𝑑𝑥

Therefore, 𝐿𝑛 tends to
∫︁
R3

∇𝑦𝑓(𝑠) · ∇𝑠𝜙(𝑠) 𝑑𝑦 for all 𝑠 ∈ R if, and only if,
∫︀
R3 ∇𝑥𝑓𝑛(𝑡𝑛 +

ℎ2
𝑛𝑠) · ∇𝑥𝑢𝑛(𝑡𝑛 + ℎ2

𝑛𝑠) 𝑑𝑥 has the same limit.

The previous lemma is directly linked to the concept of concentrating solutions.

Lemma 4.1.2. If 𝑓𝑛 is a linear concentrating solution associated to [𝑓, ℎ, 𝑥, 𝑡], then

𝐷ℎ𝑛𝑓𝑛 ⇀ 𝑓.

Demonstração. Since 𝑓𝑛 has the form

𝑓𝑛(𝑡, 𝑥) = 1√
ℎ𝑛

𝑓
(︂
𝑡− 𝑡𝑛
ℎ2

𝑛

,
𝑥− 𝑥𝑛

ℎ𝑛

)︂
,

the change of variables √︁
ℎ𝑛𝑓𝑛(𝑡𝑛 + ℎ2

𝑛𝑠, 𝑥𝑛 + ℎ𝑛𝑦) = 𝑓(𝑠, 𝑦)

yields that

𝐿𝑛 =
√︁
ℎ𝑛

∫︁
R3

∇𝑦𝑓𝑛(𝑡𝑛 + ℎ2
𝑛𝑠, 𝑥𝑛 + ℎ𝑛𝑦) · ∇𝑦𝜙(𝑠, 𝑦) 𝑑𝑥

=
∫︁
R3

∇𝑦𝑓(𝑠) · ∇𝑦𝜙(𝑠) 𝑑𝑦.
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Thus, the same computation of Lemma 4.1.1 yields
∫︁
R3

∇𝑥𝑓𝑛(𝑡𝑛 + ℎ2
𝑛𝑠) · ∇𝑥𝑢𝑛(𝑡𝑛 + ℎ2

𝑛𝑠) 𝑑𝑥 =
∫︁
R3

∇𝑦𝑓(𝑠) · ∇𝑦𝜙(𝑠) 𝑑𝑦,

which gives 𝐷ℎ𝑛𝑓𝑛 ⇀ 𝑓 .

Lemma 4.1.3. If 𝑢𝑛 is a concentrating solution associated to [𝜙, ℎ, 𝑥, 𝑡], then

‖𝑢𝑛‖𝐿∞𝐻̇1 = ‖𝜙‖𝐿∞𝐻̇1 , ‖𝑢𝑛‖𝐿10
𝑡 𝐿10

𝑥
= ‖𝜙‖𝐿10

𝑡 𝐿10
𝑥

and ‖∇𝑢𝑛‖
𝐿

10
3

𝑡 𝐿
10
3

𝑥

= ‖∇𝜙‖
𝐿

10
3

𝑡 𝐿
10
3

𝑥

.

(4.10)

Demonstração. Using Definition 4.4 and the change of variables 𝑡−𝑡𝑛

ℎ2
𝑛

= 𝑠 and 𝑥−𝑥𝑛

ℎ𝑛
= 𝑦, we

get

‖∇𝑢𝑛(𝑡)‖𝐿2 =
⎛⎝∫︁

R3
|∇𝑥𝑢𝑛(𝑡, 𝑥)|2 𝑑𝑥

⎞⎠ 1
2

= 1√
ℎ𝑛

⎛⎝∫︁
R3

⃒⃒⃒⃒
∇𝑥𝜙

(︂
𝑡− 𝑡𝑛
ℎ2

𝑛

,
𝑥− 𝑥𝑛

ℎ𝑛

)︂⃒⃒⃒⃒2
𝑑𝑥

⎞⎠ 1
2

= 1√
ℎ𝑛

⎛⎝∫︁
R3

|∇𝑥𝜙(𝑠, 𝑦)|2 ℎ3
𝑛𝑑𝑦

⎞⎠ 1
2

=
⎛⎝∫︁

R3
|∇𝑦𝜙(𝑠, 𝑦)|2 𝑑𝑦

⎞⎠ 1
2

= ‖∇𝜙(𝑠)‖𝐿2 .

Second, through the same change of variables 𝑡−𝑡𝑛

ℎ2
𝑛

= 𝑠 and 𝑥−𝑥𝑛

ℎ𝑛
= 𝑦, one has

‖𝑢𝑛‖10
𝐿10

𝑡 𝐿10
𝑥

=
∫︁
R

∫︁
R3

|𝑢𝑛(𝑡, 𝑥)|10 𝑑𝑥𝑑𝑡

=
∫︁
R

∫︁
R3

⃒⃒⃒⃒ 1√
ℎ𝑛

𝜙
(︂
𝑡− 𝑡𝑛
ℎ2

𝑛

,
𝑥− 𝑥𝑛

ℎ𝑛

)︂⃒⃒⃒⃒10
𝑑𝑥𝑑𝑡

= 1
ℎ5

𝑛

∫︁
R

∫︁
R3

|𝜙(𝑠, 𝑦)|10 ℎ3
𝑛𝑑𝑦ℎ

2
𝑛𝑑𝑠

= ‖𝜙‖10
𝐿10

𝑡 𝐿10
𝑥
.
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Finally,

‖∇𝑢𝑛‖
10
3

𝐿
10
3

𝑡 𝐿
10
3

𝑥

=
∫︁
R

∫︁
R3

|∇𝑥𝑢𝑛(𝑡, 𝑥)| 10
3 𝑑𝑥𝑑𝑡

=
∫︁
R

∫︁
R3

⃒⃒⃒⃒
∇𝑥

1√
ℎ𝑛

𝜙
(︂
𝑡− 𝑡𝑛
ℎ2

𝑛

,
𝑥− 𝑥𝑛

ℎ𝑛

)︂⃒⃒⃒⃒ 10
3
𝑑𝑥𝑑𝑡

= 1
ℎ

5
3
𝑛

∫︁
R

∫︁
R3

|∇𝑥𝜙(𝑠, 𝑦)| 10
3 ℎ3

𝑛𝑑𝑦ℎ
2
𝑛𝑑𝑠

= 1
ℎ

5
3
𝑛

∫︁
R

∫︁
R3

|∇𝑥𝜙(𝑠, 𝑦)| 10
3 ℎ3

𝑛𝑑𝑦ℎ
− 4

3
𝑛 ℎ

10
3

𝑛 𝑑𝑠

= 1
ℎ

5
3
𝑛

∫︁
R

∫︁
R3

|∇𝑦𝜙(𝑠, 𝑦)| 10
3 ℎ3

𝑛𝑑𝑦ℎ
− 4

3
𝑛 𝑑𝑠

= ‖∇𝜙‖
10
3

𝐿
10
3

𝑡 𝐿
10
3

𝑥

.

4.1.3 Scales

On the Hilbert space 𝐻1(R3),we define the self-adjoint operator 𝐴 by

𝐷(𝐴) = 𝐻2(R3)

𝐴𝑢 = (−Δ) 1
2𝑢.

The next definition and remarks can be found in (LAURENT, 2011).

Definition 4.6. Let 𝐴 be a self-adjoint (unbounded) operator on a Hilbert space 𝐻. Let ℎ𝑛

be a sequence of positive numbers converging to 0. A bounded sequence (𝑢𝑛) in 𝐻 is said to

be ℎ𝑛-oscillatory with respect to A if

lim sup
𝑛→∞

⃦⃦⃦⃦
1|𝐴|≥ 𝑅

ℎ𝑛
𝑢𝑛

⃦⃦⃦⃦
𝐻

−→ 0 as 𝑅 → ∞, (4.11)

and (𝑢𝑛) is said to be strictly ℎ𝑛-oscillatory with respect to 𝐴 if it satisfies (4.11) and

lim sup
𝑛→∞

⃦⃦⃦⃦
1|𝐴|≤ 𝜖

ℎ𝑛
𝑢𝑛

⃦⃦⃦⃦
𝐻

−→ 0 as 𝜖 → 0. (4.12)

Moreover, (𝑢𝑛) is said to be ℎ𝑛-singular with respect to 𝐴 if
⃦⃦⃦⃦
1 𝑎

ℎ𝑛
≤|𝐴|≤ 𝑏

ℎ𝑛
𝑢𝑛

⃦⃦⃦⃦
𝐻

−→ 0 as 𝑛 → ∞, for all 𝑎, 𝑏 > 0. (4.13)

Remark 4.1.1.
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i) Let (ℎ𝑛) be a scale. Let (𝑓𝑛) and (𝑔𝑛) be two bounded sequences in 𝐿2(R3) such that

(𝑓𝑛) is ℎ𝑛-oscillatory and (𝑔𝑛) is ℎ𝑛-singular. Then, via Plancherel’s inversion formula

and Cauchy-Schwartz inequality,∫︁
R3
𝑓𝑛(𝑥)𝑔𝑛(𝑥) 𝑑𝑥 −→ 0 as 𝑛 → ∞.

Hence, it follows that

‖𝑓𝑛 + 𝑔𝑛‖2
𝐿2(R3) = ‖𝑔𝑛‖2

𝐿2(R3) + ‖𝑓𝑛‖2
𝐿2(R3) + 𝑜(1), as 𝑛 → ∞.

ii) Let (ℎ𝑛) be a scale and (𝑓𝑛) a bounded sequence in 𝐿2(R3), such that (𝑓𝑛) is ℎ𝑛-

oscillatory. Then (𝑓𝑛) is ℎ′
𝑛-singular for every scale ℎ′

𝑛 orthogonal to ℎ𝑛.

iii) We remark that a sequence is (strictly) ℎ𝑛-oscillatory with respect to 𝐴 if and only if it

is (strictly) ℎ2
𝑛-oscillatory with respect to 𝐴2. So we can replace 𝐴 by −Δ.

The next result ensures that the Schrödinger equation conserves ℎ𝑛-oscillation.

Proposition 4.1.1. Let 𝑇 > 0. Let 𝜙𝑛 be a bounded sequence of 𝐻1(R3) that is (strictly)
ℎ𝑛- oscillatory with respect to A. If 𝑢𝑛 is the solution of⎧⎪⎪⎨⎪⎪⎩

𝑖𝜕𝑡𝑢𝑛 + Δ𝑢𝑛 = 0, (𝑡, 𝑥) ∈ [0, 𝑇 ] × R3,

𝑢𝑛(0) = 𝜙𝑛, 𝑥 ∈ R3,

(4.14)

then, (𝑢𝑛(𝑡)) is (strictly) ℎ𝑛-oscillatory with respect to A, uniformly on [0, 𝑇 ]. If (𝜙𝑛) is ℎ𝑛-
singular with respect to A, then (𝑢𝑛(𝑡)) is ℎ𝑛-singular with respect to A, uniformly on [0, 𝑇 ].

Demonstração. Consider the cut-off function 𝜒 ∈ 𝐶∞
0 (R) such that 0 ≤ 𝜒(𝑠) ≤ 1 and

𝜒(𝑠) = 1 for |𝑠| ≤ 1. The ℎ𝑛-oscillation (respectively strict oscillation) is equivalent to

lim sup
𝑛→∞

⃦⃦⃦⃦
∇(1 − 𝜒)(ℎ

2
𝑛Δ
𝑅2 )𝑢𝑛

⃦⃦⃦⃦
𝐿2

−→ 0 as 𝑅 → ∞

(resp. lim sup𝑛→∞ ‖∇𝜒(𝑅2ℎ2
𝑛Δ)𝑢𝑛‖𝐿2 −→ 0 as 𝑅 → ∞). Note that 𝑣𝑛 = (1 − 𝜒)(ℎ2

𝑛Δ
𝑅2 )𝑢𝑛

is a solution of ⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑖𝜕𝑡𝑣𝑛 + Δ𝑣𝑛 = 0,

𝑣𝑛(0) = (1 − 𝜒)
(︂

ℎ2
𝑛Δ
𝑅2

)︂
𝜙𝑛,

and the conservation of energy gives

‖∇𝑣𝑛(𝑡)‖𝐿2 = ‖∇𝑣𝑛(0)‖𝐿2

=
⃦⃦⃦⃦
∇(1 − 𝜒)(ℎ

2
𝑛Δ
𝑅2 )𝜙𝑛

⃦⃦⃦⃦
𝐿2
.
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Therefore, taking the limsup in 𝑛 we get the expected result uniformly in 𝑡 for 0 ≤ 𝑡 ≤ 𝑇 . The

results for strict oscillation are proved similarly. Regarding the case of singularity, note that

if 𝑢𝑛 is a solution of (4.14) then 𝑣𝑛(𝑡) = 𝜎𝑛(𝐷)𝑢𝑛(𝑡) is also solution to the same equation,

where 𝜎𝑛(𝜉) = 1 𝑎
ℎ𝑛

≤|𝜉|≤ 𝑏
ℎ𝑛

(𝜉). Then, since

‖∇𝑣𝑛‖𝐿2 = ‖∇𝑣𝑛(0)‖𝐿2 ,

we get the result.

Definition 4.7. The Besov space 𝐵̇0
2,∞(R3) is defined by

𝐵̇0
2,∞(R3) :=

{︂
𝑢 = 𝑢(𝑥) : ‖𝑢‖2

𝐵̇0
2,∞(R3) = sup

𝑘∈Z

∫︁
2𝑘≤|𝜉|≤2𝑘+1

|̂︀𝑢(𝜉)|2 𝑑𝜉 < +∞
}︂
.

The following result gives us an estimation of Besov spaces.

Proposition 4.1.2. For every (𝜙𝑛) bounded sequence of 𝐻1(R3), there exists 𝐶𝑇 > 0 such
that

lim sup
𝑛→∞

‖∇𝑢𝑛‖𝐿∞([0,𝑇 ];𝐵̇0
2,∞(R3)) ≤ 𝐶𝑇 lim sup

𝑛→∞
‖∇𝜙𝑛‖𝐵̇0

2,∞(R3)

where 𝑢𝑛 is the solution of system (4.14).

Demonstração. Since 𝑢𝑛 is the solution of system (4.14), the function 𝜎𝑘(𝐷)𝑢𝑛 is also a solu-

tion to the same system, where 𝜎𝑘(𝜉) = 12𝑘≤|𝜉|≤2𝑘+1 . The conservation law for all 𝜎𝑘(𝐷)𝑢𝑛(𝑡),

𝑘 ∈ Z, gives

‖∇𝑢𝑛(𝑡)‖𝐵̇0
2,∞(R3) = ‖∇𝑢𝑛(0)‖𝐵̇0

2,∞(R3) = ‖∇𝜙𝑛‖𝐵̇0
2,∞(R3),

showing the result.

4.2 LINEAR PROFILE DECOMPOSITION

The main result of this section is a combination of theories developed by Bahouri and

Gerard (BAHOURI, 2011), Keraani (KERAANI, 2001) and Laurent (LAURENT, 2011) and is

given by the following theorem.

Theorem 4.8. Let (𝑣𝑛) be a sequence of solutions to the Schrödinger equation (4.14) on [0, 𝑇 ]

with initial data 𝜙𝑛, at time 𝑡 = 0, bounded in 𝐻1(R3) and such that lim sup𝑛→∞ ‖𝜙𝑛‖𝐻1 <

𝜆0, where 𝜆0 was given in Definition 4.1. Then, up to extraction, there exists a sequence
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of linear concentrating solutions (𝑝(𝑗)) associated to [𝜙(𝑗), ℎ(𝑗), 𝑥(𝑗), 𝑡(𝑗)] such that, for any
𝑙 ∈ N*,

𝑣𝑛(𝑡, 𝑥) =
𝑙∑︁

𝑗=1
𝑝(𝑗)

𝑛 (𝑡, 𝑥) + 𝑤(𝑙)
𝑛 (𝑡, 𝑥) (4.15)

satisfies
lim sup

𝑛→∞
‖𝑤(𝑙)

𝑛 ‖𝐿∞
𝑡 𝐿6

𝑥∩𝐿10
𝑡 𝐿10

𝑥
−→ 0 as 𝑙 → ∞, (4.16)

for all 𝑇 > 0 and

‖∇𝑣𝑛‖2
𝐿2 =

𝑙∑︁
𝑗=1

‖∇𝑝(𝑗)
𝑛 ‖2

𝐿2 + ‖∇𝑤(𝑙)
𝑛 ‖2

𝐿2 + 𝑜(1) as 𝑛 → ∞. (4.17)

Moreover, we have (ℎ(𝑗), 𝑥(𝑗), 𝑡(𝑗)) ⊥ (ℎ(𝑘), 𝑥(𝑘), 𝑡(𝑘)) for any 𝑗 ̸= 𝑘, according to Definition
4.3.

Our goal in this section is to prove Theorem 4.8. We split its proof into four steps: the first

one is the extraction of the scales ℎ(𝑗)
𝑛 , where we decompose 𝑣𝑛 in an infinite sum of sequences

𝑣(𝑗)
𝑛 which are respectively ℎ(𝑗)

𝑛 -oscillatory.

Demonstração. Step 1. (Extraction of scales): In this first step, we present the determination

of the family of scales, where we perform the first decomposition we need. Before that, we

establish the next result which will be necessary to obtain this decomposition.

Proposition 4.2.1. Let (𝑓𝑛) be a bounded sequence in 𝐿2(R3). Then, up to an extraction,
there exists a family (ℎ𝑗

𝑛) of pairwise orthogonal scales and a family (𝑔𝑗
𝑛) of bounded sequences

in 𝐿2(R3) such that

i) for every j, 𝑔𝑗
𝑛 is ℎ𝑗

𝑛-oscillatory;

ii) for every 𝑙 ≥ 1 and 𝑥 ∈ R3,

𝑓𝑛(𝑥) =
𝑙∑︁

𝑗=1
𝑔𝑗

𝑛(𝑥) +𝑅𝑙
𝑛,

where (𝑅𝑗
𝑛) is ℎ𝑗

𝑛-singular for every 𝑗 ∈ 1, ..., 𝑙, and

lim sup
𝑛→∞

‖𝑅𝑙
𝑛‖𝐵̇0

2,∞
−→ 0 as 𝑙 → ∞;

iii) for every 𝑙 ≥ 1,

‖𝑓𝑛‖𝐿2 =
𝑙∑︁

𝑗=1
‖𝑔𝑗

𝑛‖2
𝐿2 + ‖𝑅𝑙

𝑛‖2
𝐿2 + 𝑜(1) as 𝑛 → ∞.
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The proof of Proposition 4.2.1 is found in (BAHOURI, 2011). With this in mind, let us present

the following proposition.

Proposition 4.2.2. Let 𝑇 > 0. Let (𝜙𝑛) be a bounded sequence of 𝐻1(R3) and 𝑣𝑛 the
solution of ⎧⎪⎪⎨⎪⎪⎩

𝑖𝜕𝑡𝑣𝑛 + Δ𝑣𝑛 = 0 (𝑡, 𝑥) ∈ [0, 𝑇 ] × R3,

𝑣𝑛(0) = 𝜙𝑛.

(4.18)

Then, up to an extraction, 𝑣𝑛 can be decomposed in the following way: for any 𝑙 ∈ N*,

𝑣𝑛(𝑡, 𝑥) =
𝑙∑︁

𝑗=1
𝑣(𝑗)

𝑛 (𝑡, 𝑥) + 𝜌(𝑙)
𝑛 (𝑡, 𝑥), (4.19)

where 𝑣(𝑗)
𝑛 is a strictly (ℎ(𝑗)

𝑛 )-oscillatory solution of the linear Schrödinger equation (4.18) on
R3. The scales ℎ(𝑗)

𝑛 satisfy ℎ(𝑗)
𝑛 → 0 as 𝑛 → ∞ and are pairwise orthogonal. Additionally, we

have
lim sup

𝑛→∞
‖𝜌(𝑙)

𝑛 ‖𝐿∞([0,𝑇 ];𝐿6(R3))∩𝐿10([0,𝑇 ];𝐿10(R3)) −→ 0 (4.20)

as 𝑙 → ∞ and

‖∇𝑣𝑛(𝑡)‖2
𝐿2 =

𝑙∑︁
𝑗=1

‖∇𝑣(𝑗)
𝑛 (𝑡)‖2

𝐿2 + ‖∇𝜌(𝑙)
𝑛 (𝑡)‖2

𝐿2 + 𝑜(1) as 𝑛 → ∞. (4.21)

Proof of Proposition 4.2.2. First, we prove this decomposition for the initial data through the

Proposition 4.2.1. Then, using the propagation of ℎ𝑛-oscillation, proved in Proposition 4.1.1,

we extend it for all time.

Applying Proposition 4.2.1 to the sequence (∇𝜙𝑛)𝑛, we obtain a family of scales ℎ(𝑗)
𝑛 and

a family (𝜙(𝑗)
𝑛 ) of bounded sequences in 𝐻̇1(R3) such that

𝜙𝑛(𝑥) =
𝑙∑︁

𝑗=1
𝜙(𝑗)

𝑛 (𝑥) + Φ(𝑙)
𝑛 (𝑥),

where 𝜙(𝑗)
𝑛 is ℎ𝑗

𝑛-oscillatory with respect to 𝐴 for every 𝑗 ≥ 1. Moreover, Φ(𝑙)
𝑛 is ℎ(𝑗)

𝑛 -singular

with respect to 𝐴 for every 𝑗 ∈ 1, 2, ..., 𝑙, and

lim sup
𝑛→∞

‖∇Φ𝑙
𝑛‖𝐵̇0

2,∞
−→ 0 as 𝑙 → ∞. (4.22)

Furthermore, the following almost orthogonality identity

‖∇𝜙𝑛‖2
𝐿2 =

𝑙∑︁
𝑗=1

‖∇𝜙(𝑗)
𝑛 ‖2

𝐿2 + ‖∇Φ(𝑙)
𝑛 ‖2

𝐿2 + 𝑜(1)
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holds for all 𝑙 ≥ 1, and the ℎ(𝑗)
𝑛 are pairwise orthogonal. This decomposition for the initial

data can be extended to the solution by

𝑣𝑛(𝑡, 𝑥) =
𝑙∑︁

𝑗=1
𝑣(𝑗)

𝑛 (𝑡, 𝑥) + 𝜌(𝑙)
𝑛 (𝑡, 𝑥),

where each 𝑣(𝑗)
𝑛 is a solution of⎧⎪⎪⎨⎪⎪⎩

𝑖𝜕𝑡𝑣
(𝑗)
𝑛 + Δ𝑣(𝑗)

𝑛 = 0 on [0, 𝑇 ] × R3,

𝑣(𝑗)
𝑛 (0) = 𝜙(𝑗)

𝑛 ,

and 𝜌(𝑙)
𝑛 is a solution to the same system with initial data equal to Φ(𝑙)

𝑛 .

Due to Proposition 4.1.1, each 𝑣(𝑗)
𝑛 (𝑡) is strictly ℎ(𝑗)

𝑛 -oscillatory and 𝜌(𝑙)
𝑛 (𝑡) is ℎ(𝑗)

𝑛 -singular

for 1 ≤ 𝑗 ≤ 𝑙. So,

⟨∇𝜌(𝑙)
𝑛 (𝑡),∇𝑣(𝑗)

𝑛 (𝑡)⟩𝐿2 −→ 0

as 𝑛 → ∞, uniformly in [0, 𝑇 ]. This also holds for the product between 𝑣(𝑗)
𝑛 and 𝑣𝑘

𝑛, 𝑗 ̸= 𝑘 by

the orthogonality of the scales, i.e.,

⟨∇𝑣(𝑗)
𝑛 (𝑡),∇𝑣(𝑘)

𝑛 (𝑡)⟩𝐿2 −→ 0,

as 𝑛 → ∞. Then, we get

‖∇𝑣𝑛(𝑡)‖2
𝐿2 =

𝑙∑︁
𝑗=1

‖∇𝑣(𝑗)
𝑛 (𝑡)‖2

𝐿2 + ‖∇𝜌(𝑙)
𝑛 (𝑡)‖2

𝐿2 + 𝑜(1)

which is the desired equation (4.21).

Let us now prove convergence (4.20) for the remaining term in 𝐿∞𝐿6. The convergence

(4.22) gives the convergence to zero of ∇𝜌(𝑙)
𝑛 (0) = ∇Φ(𝑙)

𝑛 in 𝐵̇0
2,∞. We extend this convergence

for all time with Proposition 4.1.2 to get

sup
𝑡∈[0,𝑇 ]

lim sup
𝑛→∞

‖∇𝜌(𝑙)
𝑛 (𝑡)‖𝐵̇0

2,∞
−→ 0 as 𝑙 → ∞.

The proof of the smallness of the remainder term is based on the following refined Sobolev

inequality which can be found in (BAHOURI, 2011, Lemma 3.5).

Proposition 4.2.3. For all 𝑓 ∈ 𝐻̇1(R3), there exists 𝐶 > 0 such that

‖𝑓‖𝐿6(R3) ≤ 𝐶‖∇𝑓‖
1
3
𝐿2(R3)‖∇𝑓‖

2
3
𝐵̇0

2,∞
. (4.23)
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Using inequality (4.23), one has

lim sup
𝑛→∞

‖𝜌(𝑙)
𝑛 (𝑡)‖𝐿6 ≤ 𝐶 lim sup

𝑛→∞
‖∇𝜌(𝑙)

𝑛 (𝑡)‖
1
3
𝐿2 lim sup

𝑛→∞
‖∇𝜌(𝑙)

𝑛 (𝑡)‖
2
3
𝐵̇0

2,∞
.

Observe that

‖∇𝜌(𝑙)
𝑛 (𝑡)‖2

𝐿2 ≤ ‖∇𝑣𝑛(𝑡)‖2
𝐿2 ≤ ‖∇𝜙𝑛‖2

𝐿2 ≤ 𝐶.

Therefore,

lim sup
𝑛→∞

‖𝜌(𝑙)
𝑛 ‖𝐿∞

𝑡 𝐿6
𝑥

−→ 0 as 𝑙 → ∞.

By an interpolation inequality, we obtain

‖𝜌(𝑙)
𝑛 ‖𝐿10

𝑡 𝐿10
𝑥

≤ ‖𝜌(𝑙)
𝑛 ‖𝛼

𝐿∞
𝑡 𝐿6

𝑥
‖𝜌(𝑙)

𝑛 ‖𝛽
𝐿7

𝑡 𝐿14
𝑥
. (4.24)

But, since
(︂

7, 42
17

)︂
is a 𝐿2-admissible pair and by Sobolev’s embedding,

‖𝜌(𝑙)
𝑛 ‖𝐿7

𝑡 𝐿14
𝑥

≤ ‖∇𝑒𝑖𝑡ΔΦ(𝑙)
𝑛 ‖

𝐿7
𝑡 𝐿

42
17
𝑥

≤ ‖∇Φ(𝑙)
𝑛 ‖

𝐿7
𝑡 𝐿

42
17
𝑥

≤ 𝐶‖∇Φ(𝑙)
𝑛 ‖𝐿2

which means

lim sup
𝑛→∞

‖𝜌(𝑙)
𝑛 ‖𝐿10

𝑡 𝐿10
𝑥

−→ 0 as 𝑙 → ∞.

This shows (4.20) and completes the proof of Proposition 4.2.2.

Step 2. (Description of linear concentrating solutions): Now we describe the “non-reconcentration”

property for linear concentrating solutions.

Lemma 4.9. Let 𝑣 = [𝜙, ℎ, 𝑥, 𝑡] be a linear concentrating solution. Consider the interval 𝐼 =

[−𝑇, 𝑇 ] of R containing 𝑡∞. Then, if we set 𝐼1,Λ
𝑛 = [−𝑇, 𝑡𝑛 − Λℎ𝑛] and 𝐼3,Λ

𝑛 = (𝑡𝑛 + Λℎ𝑛, 𝑇 ],
we have

lim sup
𝑛→∞

‖𝑣𝑛‖
𝐿∞(𝐼1,Λ

𝑛 ∪𝐼3,Λ
𝑛 ,𝐿6(R3)) −→ 0 as Λ → ∞ (4.25)

and
lim sup

𝑛→∞
‖𝑣𝑛‖

𝐿10(𝐼1,Λ
𝑛 ∪𝐼3,Λ

𝑛 ,𝐿10(R3)) −→ 0 as Λ → ∞. (4.26)

Proof of Lemma 4.9. We show the convergence (4.25) and get (4.26) through an interpola-

tion argument, similarly to what was done in (4.24). In order to prove (4.25), we argue by

contradiction: Suppose that (4.25) is not valid. In this case, there exist a constant 𝐶 > 0,
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a real subsequence (Λ𝑗)𝑗 tending to +∞ and a subsequence (𝑡𝑛𝑗
)𝑗 of (𝑡𝑛)𝑛 convergent to 𝜏

such that

|𝑡𝑛𝑗
− 𝑡∞| > Λ𝑗ℎ𝑛𝑗

and lim
𝑗

‖𝑣𝑛𝑗
(𝑡𝑛𝑗

, .)‖𝐿6(R3) −→ 𝐶. (4.27)

Let us consider separately the cases 𝜏 ̸= 𝑡∞ and 𝜏 = 𝑡∞. If 𝜏 ̸= 𝑡∞, we have⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑖𝜕𝑡𝑣𝑛𝑗

+ Δ𝑣𝑛𝑗
= 0,

𝑣𝑛𝑗
(𝑡∞) = 1√

ℎ𝑛𝑗

𝜙
(︂

𝑥
ℎ𝑛𝑗

)︂
.

Then,

𝑣𝑛𝑗
(𝑡, 𝑥) = 𝑒𝑖(𝑡−𝑡∞)Δ 1√︁

ℎ𝑛𝑗

𝜙
(︂
𝑥

ℎ𝑛𝑗

)︂
,

and so

𝑣𝑛𝑗
(𝑡𝑛𝑗

, 𝑥) = 𝑒𝑖(𝑡𝑛𝑗 −𝑡∞)Δ 1√︁
ℎ𝑛𝑗

𝜙
(︂
𝑥

ℎ𝑛𝑗

)︂
,

with 𝑡𝑛𝑗
− 𝑡∞ → 𝜏 − 𝑡∞ = 𝑘.

𝑣𝑛𝑗
(𝑡𝑛𝑗

, 𝑥) = 𝑒𝑖(𝑡𝑛𝑗 −𝑡∞)Δ 1√︁
ℎ𝑛𝑗

𝜙
(︂
𝑥

ℎ𝑛𝑗

)︂

= (𝑡𝑛𝑗
− 𝑡∞)− 3

2
1√︁
ℎ𝑛𝑗

∫︁
R3
𝑒

𝑖
|𝑦−𝑥|2

2(𝑡𝑛𝑗 −𝑡∞)𝜙
(︂
𝑦

ℎ𝑛𝑗

)︂
𝑑𝑦

= (𝑡𝑛𝑗
− 𝑡∞)− 3

2ℎ
5
2
𝑛𝑗

∫︁
R3
𝑒

𝑖
|ℎ𝑛𝑗 𝑧−𝑥|2

2(𝑡𝑛𝑗 −𝑡∞)𝜙(𝑧) 𝑑𝑧

= (𝑡𝑛𝑗
− 𝑡∞)− 3

2ℎ
5
2
𝑛𝑗

∫︁
R3
𝑒

𝑖
ℎ2

𝑛𝑗
|𝑧|2

2(𝑡𝑛𝑗 −𝑡∞) · 𝑒
−𝑖ℎ𝑛𝑗 ⟨𝑧,𝑥⟩
(𝑡𝑛𝑗 −𝑡∞) · 𝑒

𝑖|𝑥|2
2(𝑡𝑛𝑗 −𝑡∞)𝜙(𝑧) 𝑑𝑧

≤ 𝐶

⃒⃒⃒⃒
⃒⃒(𝑡𝑛𝑗

− 𝑡∞)− 3
2ℎ

5
2
𝑛𝑗

∫︁
R3
𝑒

𝑖
ℎ2

𝑛𝑗
|𝑧|2

2(𝑡𝑛𝑗 −𝑡∞) · 𝑒
−𝑖ℎ𝑛𝑗 ⟨𝑧,𝑥⟩
(𝑡𝑛𝑗 −𝑡∞) 𝜙(𝑧) 𝑑𝑧

⃒⃒⃒⃒
⃒⃒.

Therefore

‖𝑣𝑛𝑗
(𝑡𝑛𝑗

, 𝑥)‖𝐿6 ≤ 𝐶

⎛⎝∫︁
R3

⃒⃒⃒⃒
⃒⃒(𝑡𝑛𝑗

− 𝑡∞)− 3
2ℎ

5
2
𝑛𝑗

∫︁
R3
𝑒

𝑖
ℎ2

𝑛𝑗
|𝑧|2

2(𝑡𝑛𝑗 −𝑡∞) · 𝑒
−𝑖ℎ𝑛𝑗 ⟨𝑧,𝑥⟩
(𝑡𝑛𝑗 −𝑡∞) 𝜙(𝑧) 𝑑𝑧

⃒⃒⃒⃒
⃒⃒
6

𝑑𝑥

⎞⎠ 1
6

≤ (𝑡𝑛𝑗
− 𝑡∞)−1ℎ2

𝑛𝑗

⎛⎝∫︁
R3

⃒⃒⃒⃒
⃒⃒ ∫︁

R3
𝑒

𝑖
ℎ̃2

𝑗
|𝑧|2

2(𝑡𝑛𝑗 −𝑡∞) · 𝑒−𝑖⟨𝑧,𝑤⟩𝜙(𝑧) 𝑑𝑧

⃒⃒⃒⃒
⃒⃒
6

𝑑𝑤

⎞⎠ 1
6

≃ (𝑡𝑛𝑗
− 𝑡∞)−1ℎ2

𝑛𝑗

⎛⎝∫︁
R3

|𝜙(𝑤)|6 𝑑𝑤
⎞⎠ 1

6

→ 0 as 𝑗 → ∞,

i.e., the right side of this inequality converges to 0 as 𝑗 goes to ∞, which contradicts (4.27).
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Now, if 𝜏 = 𝑡∞, we set 𝜀2
𝑗 = |𝑡∞ − 𝑡𝑛𝑗

|, ℎ̃𝑗 = ℎ𝑛𝑗

𝜀𝑗
and define the sequence

𝑓𝑗(𝑠, 𝑦) = 𝜀
1
2
𝑗 𝑣𝑛𝑗

(𝑡∞ + 𝜀2
𝑗𝑠, 𝜀𝑗𝑦).

Note that, since |𝑡∞ − 𝑡𝑛𝑗
| ≥ Λ𝑗ℎ𝑛𝑗

and lim𝑗 Λ𝑗 = +∞, then lim𝑗 ℎ̃𝑗 = 0. The sequence (𝑓𝑗)

is the solution of the system

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑖𝜕𝑠𝑓𝑗 + Δ𝑦𝑓𝑗 = 0,

𝑓𝑗(0) = 1√
ℎ̃𝑗

𝜙
(︂

𝑦

ℎ̃𝑗

)︂
.

To conclude the proof, it remains to show that lim𝑗 ‖𝑓𝑗(1, .)‖𝐿6(R3) = 0. Note that

𝑓𝑗(1, 𝑦) = 𝑒𝑖Δ 1√︁
ℎ̃𝑗

𝜙
(︂
𝑦

ℎ̃𝑗

)︂
= 1√︁

ℎ̃𝑗

∫︁
R3
𝑒𝑖

|𝑦−𝑥|2
2 𝜙

(︂
𝑥

ℎ̃𝑗

)︂
𝑑𝑥

= ℎ̃
5
2
𝑗

∫︁
R3
𝑒𝑖

|ℎ̃𝑗 𝑧−𝑦|2

2 𝜙(𝑧) 𝑑𝑧

= ℎ̃
5
2
𝑗

∫︁
R3
𝑒𝑖

ℎ̃2
𝑗

|𝑧|2

2 · 𝑒−𝑖ℎ̃𝑗⟨𝑧,𝑦⟩ · 𝑒
𝑖|𝑦|2

2 𝜙(𝑧) 𝑑𝑧

≤ 𝐶

⃒⃒⃒⃒
⃒⃒ℎ̃ 5

2
𝑗

∫︁
R3
𝑒𝑖

ℎ̃2
𝑗

|𝑧|2

2 · 𝑒−𝑖ℎ̃𝑗⟨𝑧,𝑦⟩𝜙(𝑧) 𝑑𝑧

⃒⃒⃒⃒
⃒⃒.

Then

‖𝑓𝑗(1, 𝑦)‖𝐿6 ≤

⎛⎝∫︁
R3

⃒⃒⃒⃒
⃒⃒ℎ̃ 5

2
𝑗

∫︁
R3
𝑒𝑖

ℎ̃2
𝑗

|𝑧|2

2 · 𝑒−𝑖ℎ̃𝑗⟨𝑧,𝑦⟩𝜙(𝑧) 𝑑𝑧

⃒⃒⃒⃒
⃒⃒
6

𝑑𝑦

⎞⎠ 1
6

≤ ℎ̃2
𝑗

⎛⎝∫︁
R3

⃒⃒⃒⃒
⃒⃒ ∫︁

R3
𝑒𝑖

ℎ̃2
𝑗

|𝑧|2

2 · 𝑒−𝑖⟨𝑧,𝑥⟩𝜙(𝑧) 𝑑𝑧

⃒⃒⃒⃒
⃒⃒
6

𝑑𝑥

⎞⎠ 1
6

≃ ℎ̃2
𝑗

⎛⎝∫︁
R3

|𝜙(𝑥)|6 𝑑𝑥
⎞⎠ 1

6

→ 0 as 𝑗 → ∞.

Hence, ‖𝑓𝑗(1, 𝑦)‖𝐿6 → 0 as 𝑗 → ∞. Therefore, since

‖𝑓𝑗(1, 𝑦)‖𝐿6 = ‖𝑣𝑛𝑗(𝑡𝑛𝑗, .)‖𝐿6 ,

this contradicts what was stated in (4.27) again, which finishes the proof of this lemma.

Step 3. (Extraction of times and cores of concentration):
Let ℎ𝑛 be a fixed sequence in R*

+ converging to 0. This step focuses on demonstrating

the next proposition, which gives us the profile decomposition for ℎ𝑛-oscillatory sequences. By

merging this decomposition with the one presented in Proposition 4.2.2, we obtain Theorem

4.8
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Before presenting the main result of this step, we state and prove two auxiliary lemmas

that will be important for the orthogonality of the cores.

Lemma 4.2.1. Let (𝑥(1), 𝑡(1)) ̸⊥ℎ𝑛 (𝑥(2), 𝑡(2)). Let 𝑣𝑛 be an (strictly) ℎ𝑛-oscillatory sequence
of solutions to the linear Schrödinger equation such that

𝐷
(1)
ℎ𝑛
𝑣𝑛 ⇀ 𝜙(1) (4.28)

as 𝑛 → ∞. There exists 𝜙(2) such that,

𝐷
(2)
ℎ𝑛
𝑣𝑛 ⇀ 𝜙(2) (4.29)

as 𝑛 → ∞. Moreover,
‖𝜙(1)‖𝐿∞𝐻̇1 = ‖𝜙(2)‖𝐿∞𝐻̇1 . (4.30)

Demonstração. Let 𝑥(2)
𝑛 = 𝑥(1)

𝑛 + (−→𝐷 + 𝑜(1))ℎ𝑛, −→
𝐷 ∈ R3 constant, and 𝑡(2)

𝑛 = 𝑡(1)
𝑛 + (−→𝐶 +

𝑜(1))ℎ2
𝑛, −→
𝐶 constant. We have

√
ℎ𝑣𝑛(𝑡(1)

𝑛 + ℎ2
𝑛𝑠, 𝑥

(1)
𝑛 + ℎ𝑛𝑦) ⇀ 𝜙(1)(𝑠, 𝑦) as 𝑛 → ∞, ∀𝑠 ∈ R.

Then,√︁
ℎ𝑛𝑣𝑛(𝑡(2)

𝑛 + ℎ2
𝑛𝑠, 𝑥

(2)
𝑛 + ℎ𝑛𝑦) =

√︁
ℎ𝑛𝑣𝑛(𝑡(1)

𝑛 + (−→𝐶 + 𝑜(1))ℎ2
𝑛 + ℎ2

𝑛𝑠, 𝑥
(1)
𝑛 + (−→𝐷 + 𝑜(1))ℎ𝑛 + ℎ𝑛𝑦)

=
√︁
ℎ𝑛𝑣𝑛(𝑡(1)

𝑛 + (−→𝐶 + 𝑠)ℎ2
𝑛, 𝑥

(1)
𝑛 + (−→𝐷 + 𝑦)ℎ𝑛)

⇀ 𝜙(1)(−→𝐶 + 𝑠,
−→
𝐷 + 𝑦), (𝑠+ −→

𝐶 ) ∈ R.

Taking 𝜙(1)(−→𝐶 + 𝑠,
−→
𝐷 + 𝑦) = 𝜙(2)(𝑠, 𝑦), one has

𝐷
(2)
ℎ𝑛
𝑣𝑛 ⇀ 𝜙(2), 𝑠 ∈ R.

Moreover,

‖∇𝜙(2)(𝑠)‖𝐿2 = ‖∇𝜙(1)(𝑠+ −→
𝐶 )‖𝐿2 ≤ sup

𝑠′∈R
‖∇𝜙(1)(𝑠′)‖𝐿2 = ‖∇𝜙(1)(𝑠)‖𝐿∞𝐿2

and

‖∇𝜙(1)(𝑠+ −→
𝐶 )‖𝐿2 = ‖∇𝜙(2)(𝑠)‖𝐿2

≤ sup
𝑠∈R

‖∇𝜙(2)(𝑠)‖𝐿2

= ‖∇𝜙(2)(𝑠)‖𝐿∞𝐿2 .

This finishes the proof of Lemma 4.2.1.
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The second lemma is the following, where we keep the notation of the construction that

allowed us to extract the scales and cores.

Lemma 4.2.2. Let {𝑗, 𝑗′} ∈ {1, ..., 𝐾}2 be such that

(𝑥(𝑗), 𝑡(𝑗)) ̸⊥ℎ𝑛 (𝑥(𝐾+1), 𝑡(𝐾+1)) and (𝑥(𝑗), 𝑡(𝑗)) ⊥ℎ𝑛 (𝑥(𝑗′), 𝑡(𝑗
′)).

If 𝐷(𝐾+1)
ℎ𝑛

𝑤(𝐾+1)
𝑛 ⇀ 0, then 𝐷(𝑗)

ℎ𝑛
𝑤(𝐾+1)

𝑛 ⇀ 0. Moreover, 𝐷(𝑗)
ℎ𝑛
𝑝(𝑗′)

𝑛 ⇀ 0 for any concentrating
solution 𝑝(𝑗′)

𝑛 associated with [𝜙(𝑗′), ℎ, 𝑥(𝑗′), 𝑡(𝑗
′)].

Demonstração. The first result is a particular case of Lemma 4.2.1. So, it only remains to

show that

𝐷
(𝑗)
ℎ𝑛
𝑝(𝑗′)

𝑛 ⇀ 0 as 𝑛 → ∞

or, equivalently, √︁
ℎ𝑛𝑝

(𝑗′)
𝑛 (𝑡(𝑗)

𝑛 + ℎ2
𝑛𝑠, 𝑥

(𝑗)
𝑛 + ℎ𝑛𝑦) ⇀ 0 in 𝐻̇1(R3)

as 𝑛 → ∞. Since 𝑝(𝑗′)
𝑛 is a concentrating solution associated with [𝜙(𝑗′), ℎ, 𝑥(𝑗′), 𝑡(𝑗

′)], we have

𝑝(𝑗′)
𝑛 (𝑡, 𝑥) = 1√

ℎ𝑛

𝜙(𝑗′)
(︂
𝑡− 𝑡(𝑗

′)
𝑛

ℎ2
𝑛

,
𝑥− 𝑥(𝑗′)

𝑛

ℎ𝑛

)︂
and √︁

ℎ𝑛𝑝
(𝑗′)
𝑛 (ℎ2

𝑛𝑠, 𝑥
(𝑗)
𝑛 + ℎ𝑛𝑦) = 𝜙(𝑗′)

(︂
𝑡(𝑗)
𝑛 − 𝑡(𝑗

′)
𝑛

ℎ2
𝑛

+ 𝑠,
𝑥(𝑗)

𝑛 − 𝑥(𝑗′)
𝑛

ℎ𝑛

+ 𝑦
)︂
.

Suposing that (𝑥(𝑗), 𝑡(𝑗)) ⊥ℎ𝑛 (𝑥(𝑗′), 𝑡(𝑗
′)), we assume, without loss of generality, that 𝜙(𝑗′) is

continuous and compactly supported. Thus,∫︁
R3

∇
√︁
ℎ𝑛𝑝

(𝑗′)
𝑛 (𝑡(𝑗)

𝑛 +ℎ2
𝑛𝑠, 𝑥

(𝑗)
𝑛 +ℎ𝑛𝑦)·∇𝜓(𝑦) 𝑑𝑦 =

∫︁
R3

∇𝜙(𝑗′)
(︂
𝑡(𝑗)
𝑛 − 𝑡(𝑗

′)
𝑛

ℎ2
𝑛

+𝑠, 𝑥
(𝑗)
𝑛 − 𝑥(𝑗′)

𝑛

ℎ𝑛

+𝑦
)︂

·∇𝜓(𝑦) 𝑑𝑦

which tends to 0 as 𝑛 tends to ∞ if
⃒⃒⃒⃒

𝑡
(𝑗)
𝑛 −𝑡

(𝑗′)
𝑛

ℎ2
𝑛

⃒⃒⃒⃒
→ ∞ or

⃒⃒⃒⃒
𝑥

(𝑗)
𝑛 −𝑥

(𝑗′)
𝑛

ℎ𝑛

⃒⃒⃒⃒
→ ∞ as 𝑛 → ∞, since 𝜙(𝑗′)

is compactly supported. This proves the lemma.

Now we prove the main result of this step. Precisely, the following proposition will ensure

the profile decomposition for ℎ𝑛-oscillatory sequences.

Proposition 4.2.4. Let (𝑣𝑛)𝑛∈N be an (strictly) ℎ𝑛-oscillatory sequence of solutions to the
linear Schrödinger equation (4.18). Then, up to extraction, there exist linear concentrating
solutions 𝑝𝑘

𝑛, as defined in Definition 4.4, associated to [𝜙(𝑘), ℎ, 𝑥(𝑘), 𝑡(𝑘)] such that, for any
𝑙 ∈ N* and up to a subsequence,

𝑣𝑛(𝑡, 𝑥) =
𝑙∑︁

𝑗=1
𝑝(𝑗)

𝑛 (𝑡, 𝑥) + 𝑤(𝑙)
𝑛 (𝑡, 𝑥), (4.31)
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lim sup
𝑛→∞

‖𝑤(𝑙)
𝑛 ‖𝐿∞([0,𝑇 ];𝐿6(R3) −→ 0 as 𝑙 → ∞, (4.32)

for all 𝑇 > 0 and

‖∇𝑣𝑛(𝑡)‖2
𝐿2 =

𝑙∑︁
𝑗=1

‖∇𝑝𝑛(𝑡)(𝑗)‖2
𝐿2 + ‖∇𝑤𝑛(𝑡)(𝑙)‖2

𝐿2 + 𝑜(1) as 𝑛 → ∞, (4.33)

for 𝑡 ∈ [0, 𝑇 ]. Moreover, for any 𝑗 ̸= 𝑘, we have (𝑥(𝑘), 𝑡(𝑘)) ⊥ (𝑥(𝑗), 𝑡(𝑗)).

Proof of Proposition 4.2.4. Using the notation of Definition 4.5, if 𝑣𝑛 ∈ 𝐿∞([0, 𝑇 ], 𝐻̇1(R3)),

consider ̃︀𝑣𝑛 its extension in R by zero outside [0, 𝑇 ] and denote

𝛿(𝑣) = sup
(𝑡𝑛,𝑥𝑛)

{︂
‖∇𝜙(0)‖2

𝐿2 ;𝐷ℎ𝑛
̃︀𝑣𝑛 ⇀ 𝜙, up to a subsequence, 𝜙 ∈ 𝐿∞(R; 𝐻̇1(R3))

}︂
,

where (𝑡𝑛, 𝑥𝑛) are sequences in [0, 𝑇 ] × R3. This means that ℎ𝑛.
1
2 ̃︀𝑣𝑛(𝑡𝑛 + ℎ2

𝑛𝑡, 𝑥𝑛 + ℎ𝑛𝑥) ⇀

𝜙(𝑡, 𝑥) in 𝐻̇1(R3) as 𝑛 → ∞. In this scenario, we consider 𝜙 the weak limit of the translated

sequence ̃︀𝑣𝑛. Taking a linear concentrating solution associated to 𝜙 such that 𝑝𝑛(𝑡, 𝑥) =
1√
ℎ𝑛
𝜙
(︂

𝑡−𝑡𝑛

ℎ2
𝑛
, 𝑥−𝑥𝑛

ℎ𝑛

)︂
and let ̃︀𝑝𝑛 be its extension on R by zero outside [0, 𝑇 ], we have ̃︀𝑝𝑛(𝑡, 𝑥) =

1√
ℎ𝑛
𝜙
(︂

𝑡−𝑡𝑛

ℎ2
𝑛
, 𝑥−𝑥𝑛

ℎ𝑛

)︂
. Let 𝒱(𝑣𝑛) be the set of such functions 𝜙.

If 𝛿(𝑣) = 0, we take 𝑝(𝑗)
𝑛 = ̃︀𝑝(𝑗)

𝑛 = 0, for all 𝑗 = 1, ..., 𝑙.

If 𝛿(𝑣) > 0, we choose 𝜙(1) ∈ 𝒱(𝑣𝑛) such that

‖∇𝜙(1)(0)‖𝐿2 ≥ 1
2𝛿(𝑣) > 0.

This means that there exists (𝑥(1), 𝑡(1)) ∈ [0, 𝑇 ] × R3 → (𝑥(1)
∞ , 𝑡(1)

∞ ) such that

𝐷ℎ𝑛
̃︀𝑣𝑛 ⇀ 𝜙(1) as 𝑛 → ∞,

equivalently,

√︁
ℎ𝑛̃︀𝑣𝑛(𝑡(1)

𝑛 + ℎ2
𝑛𝑠, 𝑥

(1)
𝑛 + ℎ𝑛𝑦) ⇀ 𝜙(1)(𝑠, 𝑦) as 𝑛 → ∞, 𝑠 ∈ R.

Now, choose 𝑝(1)
𝑛 as the linear concentrating solution associated with [𝜙(1), ℎ, 𝑥(1), 𝑡(1)] and let

̃︀𝑝(1)
𝑛 be its extension on R by zero outside [0, 𝑇 ]. Note that the assumption 𝑡(1)

𝑛 ∈ [0, 𝑇 ] ensures

𝑡(1)
∞ ∈ [0, 𝑇 ], which will always be the case for all the concentrating solutions we consider. To

proceed, we first state a lemma that will be used for the orthogonality of energies.

Lemma 4.2.3. Let 𝑤(1)
𝑛 = ̃︀𝑣𝑛 − ̃︀𝑝(1)

𝑛 . One has

‖∇̃︀𝑣𝑛(𝑡)‖2
𝐿2 = ‖∇̃︀𝑝(1)

𝑛 (𝑡)‖2
𝐿2 + ‖∇𝑤(1)

𝑛 (𝑡)‖2
𝐿2 + 𝑜(1) as 𝑛 → ∞. (4.34)
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Proof of Lemma 4.2.3. Observe that√︁
ℎ𝑛𝑤

(1)
𝑛 (𝑡(1)

𝑛 + ℎ2
𝑛𝑠, 𝑥

(1)
𝑛 + ℎ𝑛𝑦) =

√︁
ℎ𝑛̃︀𝑣𝑛(𝑡(1)

𝑛 + ℎ2
𝑛𝑠, 𝑥

(1)
𝑛 + ℎ𝑛𝑦) −

√︁
ℎ𝑛̃︀𝑝(1)

𝑛 (𝑡(1)
𝑛 + ℎ2

𝑛𝑠, 𝑥
(1)
𝑛 + ℎ𝑛𝑦)

=
√︁
ℎ𝑛̃︀𝑣𝑛(𝑡(1)

𝑛 + ℎ2
𝑛𝑠, 𝑥

(1)
𝑛 + ℎ𝑛𝑦) − 𝜙(1)(𝑠, 𝑦) ⇀ 0

as 𝑛 → ∞, which means that 𝐷ℎ𝑛𝑤
(1)
𝑛 ⇀ 0. Then,

‖∇̃︀𝑣𝑛(𝑡)‖2
𝐿2 = ‖∇𝑤(1)

𝑛 (𝑡)‖2
𝐿2 + 2⟨∇𝑤(1)

𝑛 (𝑡),∇̃︀𝑝(1)
𝑛 (𝑡)⟩ + ‖∇̃︀𝑝(1)

𝑛 (𝑡)‖2
𝐿2 .

The change of variables 𝑡−𝑡𝑛

ℎ2
𝑛

= 𝑠 and 𝑥−𝑥𝑛

ℎ𝑛
= 𝑦 yields

⟨∇𝑤(1)
𝑛 (𝑡),∇̃︀𝑝(1)

𝑛 (𝑡)⟩ =
∫︁
R3

∇𝑥𝑤
(1)
𝑛 (𝑡, 𝑥) · ∇𝑥̃︀𝑝(1)

𝑛 (𝑡, 𝑥) 𝑑𝑥

=
∫︁
R3

∇𝑥𝑤
(1)
𝑛 (𝑡, 𝑥) · ∇𝑥

1√
ℎ𝑛

𝜙(1)
(︂
𝑡− 𝑡(1)

𝑛

ℎ2
𝑛

,
𝑥− 𝑥(1)

𝑛

ℎ𝑛

)︂
𝑑𝑥

=
∫︁
R3

∇𝑥𝑤
(1)
𝑛 (𝑡(1)

𝑛 + ℎ2
𝑛𝑠, 𝑥

(1)
𝑛 + ℎ𝑛𝑦) · ∇𝑥

1√
ℎ𝑛

𝜙(1)(𝑠, 𝑦) ℎ3
𝑛𝑑𝑦

=
∫︁
R3

∇𝑦

√︁
ℎ𝑛𝑤

(1)
𝑛 (𝑡(1)

𝑛 + ℎ2
𝑛𝑠, 𝑥

(1)
𝑛 + ℎ𝑛𝑦) · ∇𝑦𝜙

(1)(𝑠, 𝑦) 𝑑𝑦

which tends to 0 as 𝑛 → ∞, proving Lemma 4.2.3.

The previous lemma ensures that we get the expansion of 𝑣𝑛 announced in Proposition

4.2.4 by induction iterating the same process. To this end, let us assume that

̃︀𝑣𝑛(𝑡, 𝑥) =
𝑙∑︁

𝑗=1
̃︀𝑝(𝑗)

𝑛 (𝑡, 𝑥) + 𝑤(𝑙)
𝑛 (𝑡, 𝑥).

Hence,

𝑣𝑛(𝑡, 𝑥) =
𝑙∑︁

𝑗=1
𝑝(𝑗)

𝑛 (𝑡, 𝑥) + 𝑤(𝑙)
𝑛 (𝑡, 𝑥)

and

‖∇𝑣𝑛(𝑡)‖2
𝐿2 =

𝑙∑︁
𝑗=1

‖∇𝑝(𝑗)
𝑛 (𝑡)‖2

𝐿2 + ‖∇𝑤(𝑙)
𝑛 (𝑡)‖2

𝐿2 + 𝑜(1) as 𝑛 → ∞, (4.35)

where 𝑝(𝑗)
𝑛 is a linear concentrating solution associated with [𝜙(𝑗), ℎ, 𝑥(𝑗), 𝑡(𝑗)], which are mu-

tually orthogonal due to Lemma 4.2.3.

We now argue as before: if 𝛿(𝑤(𝑙)
𝑛 ) = 0, we just choose 𝑝(𝑙+1)

𝑛 = 0. If 𝛿(𝑤(𝑙)) > 0, choose

[𝜙(𝑙+1), 𝑥(𝑙+1), 𝑡(𝑙+1)] such that

‖∇𝜙(𝑙+1)(0)‖2
𝐿2 ≥ 1

2𝛿(𝑤
(𝑙)) (4.36)

and

𝐷ℎ𝑛𝑤
(𝑙)
𝑛 ⇀ 𝜙(𝑙+1) as 𝑛 → ∞.
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Define 𝑝(𝑙+1)
𝑛 as a linear concentrating solution associated with [𝜙(𝑙+1), ℎ, 𝑥(𝑙+1), 𝑡(𝑙+1)]. Again,

Lemma 4.2.3 applied to 𝑤(𝑙)
𝑛 and ̃︀𝑝(𝑙+1)

𝑛 gives estimates (4.33) with 𝑤(𝑙+1)
𝑛 = 𝑤(𝑙)

𝑛 − ̃︀𝑝(𝑙+1)
𝑛 .

Let us now show the convergence (4.32). Using Lemma 4.1.3 and energy estimates, we

have

‖∇𝜙(𝑗)(0)‖2
𝐿2 = ‖∇𝑝(𝑗)

𝑛 (𝑡(𝑗)
𝑛 )‖2

𝐿2 = ‖∇𝑝(𝑗)
𝑛 (0)‖2

𝐿2 .

Using (4.33), we have, for some 𝐶 > 0 depending only on 𝑇 ,

𝑙∑︁
𝑗=1

‖∇𝜙(𝑗)(0)‖2
𝐿2 =

𝑙∑︁
𝑗=1

‖∇𝑝(𝑗)
𝑛 (0)‖2

𝐿2

≤ lim sup
𝑛→∞

‖∇𝑣𝑛(0)‖2
𝐿2

≤ 𝐶.

So, the series with general term ‖∇𝜙(𝑗)(0)‖2
𝐿2 converges and

‖∇𝜙(𝑗)(0)‖2
𝐿2 → 0 as 𝑙 → ∞.

Using estimate (4.36), one obtains

𝛿(𝑤(𝑙)) → 0 as 𝑙 → ∞.

To get the first part of Proposition 4.2.4, it remains to show

lim sup
𝑛→∞

‖𝑤(𝑙)
𝑛 ‖𝐿∞

𝑡 𝐿6
𝑥

−→ 0 as 𝑙 → ∞.

We begin by introducing a family of functions 𝜒𝑅(𝑡, 𝑥) = 𝜒1
𝑅(𝑡) · 𝜒2

𝑅(𝑥) ∈ 𝐶∞
0 (R × R3)

satisfying the following properties:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|̃︁𝜒1
𝑅| + |̂︁𝜒2

𝑅| ≤ 2;

𝑠𝑢𝑝𝑝(̂︁𝜒2
𝑅) ⊂

{︂
1

2𝑅ℎ𝑛
≤ |𝜉| ≤ 2𝑅

ℎ𝑛

}︂
;

̂︁𝜒2
𝑅 ≡ 1 for

{︂
1

𝑅ℎ𝑛
≤ |𝜉| ≤ 𝑅

ℎ𝑛

}︂
;

̃︁𝜒1
𝑅

(︂
|𝜉|2

)︂
= 1 on 𝑠𝑢𝑝𝑝(̂︁𝜒2

𝑅);

𝑠𝑢𝑝𝑝(𝜒1
𝑅) ⊂ [−𝑇, 0],

where ̃︀ and ̂︀ denote de Fourier transform in time and space, respectively. One has

‖𝑤(𝑙)
𝑛 ‖𝐿∞([0,𝑇 ];𝐿6(R3)) ≤ ‖𝜒𝑅 * 𝑤(𝑙)

𝑛 ‖𝐿∞([0,𝑇 ];𝐿6(R3)) + ‖(𝛿 − 𝜒𝑅) * 𝑤(𝑙)
𝑛 ‖𝐿∞([0,𝑇 ];𝐿6(R3)), (4.37)

where * denotes the convolution in (𝑡, 𝑥) and 𝛿 denotes the Dirac distribution.
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1. Bound for ‖𝜒𝑅 * 𝑤(𝑙)
𝑛 ‖𝐿∞([0,𝑇 ];𝐿6(R3))

Note that

‖𝜒𝑅 * 𝑤(𝑙)
𝑛 ‖𝐿∞([0,𝑇 ];𝐿6(R3)) ≤ ‖𝜒𝑅 * 𝑤(𝑙)

𝑛 ‖
1
3
𝐿∞([0,𝑇 ];𝐿2(R3)) · ‖𝜒𝑅 * 𝑤(𝑙)

𝑛 ‖
2
3
𝐿∞([0,𝑇 ]×R3). (4.38)

The function 𝜒𝑅 *𝑤(𝑙)
𝑛 is a solution to the first equation of (4.18) on R and, in particular, the

𝐿2-conservation law gives

‖𝜒𝑅 * 𝑤(𝑙)
𝑛 ‖2

𝐿∞([0,𝑇 ];𝐿2(R3)) = ‖(𝜒𝑅 * 𝑤(𝑙)
𝑛 )(0)‖2

𝐿2
𝑥

= 1
(2𝜋)3 ‖F𝑥→𝜉((𝜒𝑅 * 𝑤(𝑙)

𝑛 )(0))(𝜉)‖2
𝐿2

𝜉
. (4.39)

On the other hand, we write

(𝜒𝑅 * 𝑤(𝑙)
𝑛 )(0, 𝑥) =

∫︁
R
𝜒1

𝑅(−𝑠)
∫︁
R3
𝜒2

𝑅(𝑥− 𝑦)𝑤(𝑙)
𝑛 (𝑠, 𝑦) 𝑑𝑦𝑑𝑠.

By the Plancherel inversion formula, we get

(𝜒𝑅 * 𝑤(𝑙)
𝑛 )(0, 𝑥) = 1

(2𝜋)3

∫︁
R
𝜒1

𝑅(−𝑠)
∫︁
R3
𝜒2

𝑅(𝑥− 𝑦)
∫︁
R3
𝑒𝑖𝑦𝜉𝑤

(𝑙)
𝑛 (𝑠)(𝜉)𝑒−𝑖𝑥𝜉𝑒𝑖𝑥𝜉 𝑑𝜉𝑑𝑦𝑑𝑠

= 1
(2𝜋)3

∫︁
R
𝜒1

𝑅(−𝑠)
∫︁
R3
𝑒−𝑖(𝑥−𝑦)𝜉𝜒2

𝑅(𝑥− 𝑦)
∫︁
R3
𝑤

(𝑙)
𝑛 (𝑠)(𝜉)𝑒𝑖𝑥𝜉 𝑑𝜉𝑑𝑦𝑑𝑠

= 1
(2𝜋)3

∫︁
R
𝜒1

𝑅(−𝑠)
∫︁
R3

̂︁𝜒2
𝑅(𝜉)𝑤(𝑙)

𝑛 (𝑠)(𝜉)𝑒𝑖𝑥𝜉 𝑑𝜉𝑑𝑠.

Since 𝑤(𝑙)
𝑛 (𝑠)(𝜉) = 𝑒𝑖𝑠|𝜉|2𝑤

(𝑙)
𝑛 (0)(𝜉), we obtain

(𝜒𝑅 * 𝑤(𝑙)
𝑛 )(0, 𝑥) = 1

(2𝜋)3

∫︁
R
𝜒1

𝑅(−𝑠)
∫︁
R3

̂︁𝜒2
𝑅(𝜉)𝑤(𝑙)

𝑛 (0)(𝜉)𝑒𝑖𝑠|𝜉|2𝑒𝑖𝑥𝜉 𝑑𝜉𝑑𝑠

= 1
(2𝜋)3

∫︁
R3

̃︁𝜒1
𝑅

(︂
|𝜉|2

)︂̂︁𝜒2
𝑅(𝜉)𝑤(𝑙)

𝑛 (0)(𝜉)𝑒𝑖𝑥𝜉 𝑑𝜉

= F−1
𝜉→𝑥

[︂̃︁𝜒1
𝑅

(︂
|𝜉|2

)︂̂︁𝜒2
𝑅(𝜉)𝑤(𝑙)

𝑛 (0)(𝜉)
]︂
(𝑥).

Consequently

F𝑥→𝜉((𝜒𝑅 * 𝑤(𝑙)
𝑛 )(0))(𝜉) = ̃︁𝜒1

𝑅

(︂
|𝜉|2

)︂̂︁𝜒2
𝑅(𝜉)𝑤(𝑙)

𝑛 (0)(𝜉). (4.40)

Using the properties of 𝜒𝑅, (4.39) and (4.40), we get

‖𝜒𝑅 * 𝑤(𝑙)
𝑛 ‖2

𝐿∞([0,𝑇 ];𝐿2(R3)) = 1
(2𝜋)3

⃦⃦⃦⃦ ̃︁𝜒1
𝑅

(︂
|𝜉|2

)︂̂︁𝜒2
𝑅(𝜉)𝑤(𝑙)

𝑛 (0)(𝜉)
⃦⃦⃦⃦2

𝐿2
𝜉

≤ 𝐶
1

(2𝜋)3

∫︁
1

2𝑅ℎ𝑛
≤|𝜉|≤ 2𝑅

ℎ𝑛

|̂︁𝜒2
𝑅(𝜉)𝑤(𝑙)

𝑛 (0)(𝜉)|2 𝑑𝜉

≤ 𝐶1(𝑅)ℎ2
𝑛‖𝜉𝑤(𝑙)

𝑛 (0)‖2
𝐿2

≤ 𝐶1(𝑅)ℎ2
𝑛‖∇𝑤(𝑙)

𝑛 (0)‖2
𝐿2

𝑥
, (4.41)
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where 𝐶1(𝑅) is a 𝑅-dependent constant. Now, observe that

lim sup
𝑛→∞

‖𝜒𝑅 * 𝑤(𝑙)
𝑛 ‖𝐿∞([0,𝑇 ]×R3) = sup

(𝑡𝑛,𝑥𝑛)
lim sup

𝑛→∞

⃒⃒⃒⃒
(𝜒𝑅 * 𝑤(𝑙)

𝑛 )(𝑡𝑛, 𝑥𝑛)
⃒⃒⃒⃒
.

Let 𝜙 ∈ 𝒱(𝑤(𝑙)
𝑛 ) be such that

√︁
ℎ𝑛𝑤

(𝑙)
𝑛 (𝑡𝑛 + ℎ2

𝑛𝑠, 𝑥𝑛 + ℎ𝑛𝑦) ⇀ 𝜙(𝑠, 𝑦) as 𝑛 → ∞

and let ̃︀𝑝𝑛 be the rescaled function ̃︁𝑝𝑛(𝑡, 𝑥) = 1√
ℎ𝑛
𝜙
(︂

𝑡
ℎ2

𝑛
, 𝑥

ℎ𝑛

)︂
. We have that ̃︀𝑝𝑛 satisfies the

linear Schrödinger equation and

𝑤(𝑙)
𝑛 (𝑡𝑛 + 𝑡, 𝑥𝑛 + 𝑥) ⇀ ̃︀𝑝𝑛(𝑡, 𝑥) as 𝑛 → ∞.

Hence,

(𝜒𝑅 * 𝑤(𝑙)
𝑛 )(𝑡𝑛 + 𝑡, 𝑥𝑛 + 𝑥) ⇀ (𝜒𝑅 * 𝑝𝑛)(𝑡, 𝑥) as 𝑛 → ∞

and

(𝜒𝑅 * 𝑤(𝑙)
𝑛 )(𝑡𝑛, 𝑥𝑛) ⇀ (𝜒𝑅 * 𝑝𝑛)(0, 0) as 𝑛 → ∞.

Thus,

lim sup
𝑛→∞

‖𝜒𝑅 * 𝑤(𝑙)
𝑛 ‖𝐿∞([0,𝑇 ]×R3) ≤ sup

⎧⎨⎩
⃒⃒⃒⃒
(𝜒𝑅 * ̃︀𝑝𝑛)(0, 0)

⃒⃒⃒⃒⎫⎬⎭
≤ sup

⎧⎨⎩
⃒⃒⃒⃒
⃒⃒ ∫︁

R

∫︁
R3
𝜒𝑅(−𝑡,−𝑥)̃︀𝑝𝑛(𝑡, 𝑥) 𝑑𝑥𝑑𝑡

⃒⃒⃒⃒
⃒⃒
⎫⎬⎭.

Therefore, by Hölder’s inequality, it follows that

lim sup
𝑛→∞

‖𝜒𝑅 * 𝑤(𝑙)
𝑛 ‖𝐿∞([0,𝑇 ]×R3) ≤ 𝐶2(𝑅) sup

{︂
‖̃︀𝑝𝑛‖𝐿∞

𝑡 𝐿6
𝑥

}︂
,

where 𝐶2(𝑅) = ‖𝜒𝑅‖
𝐿1([0,𝑇 ];𝐿

6
5 (R3))

. Since

‖̃︀𝑝𝑛(𝑡)‖𝐿6
𝑥

≤ ‖̃︀𝑝𝑛(𝑡)‖𝐻̇1
𝑥

= ‖̃︀𝑝𝑛(0)‖𝐻̇1
𝑥

= ‖𝜙(0)‖𝐻̇1
𝑥

≤ 𝐶𝛿(𝑤(𝑙)
𝑛 ),

it follows that

‖𝜒𝑅 * 𝑤(𝑙)
𝑛 ‖𝐿∞([0,𝑇 ]×R3) ≤ 𝐶2(𝑅)𝛿(𝑤(𝑙)

𝑛 ),

for every 𝑙 ≥ 1. Putting these estimates together, we conclude that

‖𝜒𝑅 * 𝑤(𝑙)
𝑛 ‖𝐿∞([0,𝑇 ];𝐿6(R3)) ≤ 𝐶1(𝑅)ℎ

1
3
𝑛 ‖∇𝑤(𝑙)

𝑛 ‖
1
3
𝐿2 · 𝐶2(𝑅)𝛿(𝑤(𝑙)

𝑛 ) 2
3

≤ 𝐶(𝑅)ℎ
1
3
𝑛𝛿(𝑤(𝑙)

𝑛 ) 2
3 , (4.42)
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which is the desired bound.

2. Bound for ‖(𝛿 − 𝜒𝑅) * 𝑤(𝑙)
𝑛 ‖𝐿∞([0,𝑇 ];𝐿6(R3))

The function (𝛿− 𝜒𝑅) *𝑤(𝑙)
𝑛 is a solution to linear Schrödinger equation in R. Therefore,

‖(𝛿 − 𝜒𝑅) * 𝑤(𝑙)
𝑛 ‖2

𝐿∞([0,𝑇 ];𝐿6(R3)) ≤ 𝐶‖∇(𝛿 − 𝜒𝑅) * 𝑤(𝑙)
𝑛 (𝑡)‖2

𝐿2 ≤ 𝐶‖∇(𝛿 − 𝜒𝑅) * 𝑤(𝑙)
𝑛 (0)‖2

𝐿2 .

By Plancherel’s theorem and identity (4.40), one has

‖∇(𝛿 − 𝜒𝑅) * 𝑤(𝑙)
𝑛 (0)‖𝐿2 = 1

(2𝜋)3

∫︁
R3

|𝜉|2
⃒⃒⃒⃒
𝑤

(𝑙)
𝑛 (0)(𝜉)

[︂
1 − ̃︁𝜒1

𝑅

(︂
|𝜉|2

)︂̂︁𝜒2
𝑅(𝜉)

]︂⃒⃒⃒⃒2
𝑑𝜉.

Observe that, [︂
1 − ̃︁𝜒1

𝑅

(︂
|𝜉|2

)︂̂︁𝜒2
𝑅(𝜉)

]︂
= 0, for 1

ℎ𝑛𝑅
≤ |𝜉| ≤ 𝑅

ℎ𝑛

and it is bounded. Consequently,

lim sup
𝑛→∞

‖(𝛿 − 𝜒𝑅) * 𝑤(𝑙)
𝑛 ‖2

𝐿∞([0,𝑇 ];𝐿6(R3)) ≤ 𝐶 lim sup
𝑛→∞

∫︁
{|𝜉|≤ 1

ℎ𝑛𝑅
}∪{|𝜉|≥ 𝑅

ℎ𝑛
}

|𝜉|2|𝑤(𝑙)
𝑛 (0)|2 𝑑𝜉,

(4.43)

which is the desired bound for the second term on the right-hand side of inequality (4.37).

With these bounds in hand, let us analyze inequality (4.37). From estimates (4.42) and

(4.43), one has

lim sup
𝑛→∞

‖𝑤(𝑙)
𝑛 ‖𝐿∞([0,𝑇 ];𝐿6(R3)) ≤ 𝐶(𝑅) lim sup

𝑛→∞

⎡⎣ℎ 1
3
𝑛𝛿(𝑤(𝑙)

𝑛 ) 2
3 +
∫︁

{|𝜉|≤ 1
ℎ𝑛𝑅

}∪{|𝜉|≥ 𝑅
ℎ𝑛

}
|𝜉|2|𝑤(𝑙)

𝑛 (0)|2 𝑑𝜉
⎤⎦.

So, taking 𝑙 tending to infinity, then 𝑅 tending to infinity, using the fact that 𝛿(𝑤(𝑙)
ℎ ) −→ 0

as 𝑙 → ∞ and 𝑤(𝑙)
𝑛 is (strictly) ℎ𝑛-oscillatory (Remark 4.2.1), it follows that

lim sup
𝑛→∞

‖𝑤(𝑙)
𝑛 ‖𝐿∞([0,𝑇 ];𝐿6(R3)) −→ 0 as 𝑙 → ∞.

Therefore, by interpolation, one gets

lim sup
𝑛→∞

‖𝑤(𝑙)
𝑛 ‖𝐿10([0,𝑇 ];𝐿10(R3)) −→ 0 as 𝑙 → ∞,

since ‖𝑤(𝑙)
𝑛 ‖𝐿7

𝑡 𝐿14
𝑥

≤ 𝐶‖𝑤𝑛(0)‖𝐻̇1 . This completes the proof of the first part of Proposition

4.2.4. It remains only to show the orthogonality of cores. We show it by contradiction. To this

end, assume that the index

𝑗𝐾 = max
{︁
𝑗 ∈ {1, ..., 𝐾}; (𝑡(𝑗)

𝑛 , 𝑥(𝑗)
𝑛 ) ̸⊥ℎ𝑛 (𝑡(𝐾+1)

𝑛 , 𝑥(𝐾+1)
𝑛 )

}︁
exists. The following are consequences of the construction at the beginning of the demonstra-

tion of Proposition 4.2.4:

𝐷
(𝑙+1)
ℎ𝑛

𝑤(𝑙)
𝑛 ⇀ 𝜙(𝑙+1) with 𝜙(𝑙+1) ̸= 0 if 𝑙 ≤ 𝐾, (4.44)
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𝑤(𝑙)
𝑛 = 𝑝(𝑙+1)

𝑛 + 𝑤(𝑙+1)
𝑛 , (4.45)

and

𝑤(𝑗𝐾)
𝑛 =

𝐾+1∑︁
𝑗=𝑗𝐾+1

𝑝(𝑗)
𝑛 + 𝑤(𝐾+1)

𝑛 . (4.46)

Moreover, the definition of 𝑝(𝑙)
𝑛 and Lemma 4.1.2 implies

𝐷
(𝑙)
ℎ𝑛
𝑝(𝑙)

𝑛 ⇀ 𝜙(𝑙).

Then, we get from (4.44) and (4.45) that

𝐷
(𝑙+1)
ℎ𝑛

𝑤(𝑙+1)
𝑛 ⇀ 0.

Applying this to 𝑙 + 1 = 𝑗𝐾 give us

𝐷
(𝐾+1)
ℎ𝑛

𝑤(𝑗𝐾)
𝑛 ⇀ 0,

due to the first part of Lemma 4.2.2 and the definition of 𝑗𝐾 , since (𝑡(𝑗𝐾)
𝑛 , 𝑥(𝑗𝐾)

𝑛 ) ̸⊥ℎ𝑛

(𝑡(𝐾+1)
𝑛 , 𝑥(𝐾+1)

𝑛 ). The definition of 𝑗𝐾 and the second part of Lemma 4.2.2 give

𝐷
(𝐾+1)
ℎ𝑛

𝑝(𝑙)
𝑛 ⇀ 0 for 𝑗𝐾 + 1 ≤ 𝑙 ≤ 𝐾.

“Applying"𝐷(𝐾+1)
ℎ𝑛

to equality (4.46) one gets

𝐷
(𝐾+1)
ℎ𝑛

𝑤(𝑗𝐾)
𝑛 =

𝐾+1∑︁
𝑗=𝑗𝐾+1

𝐷
(𝐾+1)
ℎ𝑛

𝑝(𝑗)
𝑛 +𝐷

(𝐾+1)
ℎ𝑛

𝑤(𝐾+1)
𝑛

=
𝐾∑︁

𝑗=𝑗𝐾+1
𝐷

(𝐾+1)
ℎ𝑛

𝑝(𝑗)
𝑛 +𝐷

(𝐾+1)
ℎ𝑛

𝑝(𝐾+1)
𝑛 +𝐷

(𝐾+1)
ℎ𝑛

𝑤(𝐾+1)
𝑛 .

Therefore,

𝐷
(𝐾+1)
ℎ𝑛

𝑤(𝑗𝐾)
𝑛 ⇀ 𝜙𝐾+1 ̸= 0,

while we have just proved

𝐷
(𝐾+1)
ℎ𝑛

𝑤(𝑗𝐾)
𝑛 ⇀ 0,

which is a contradiction and completes the proof of the Proposition 4.2.4.

Remark 4.2.1. Observe that 𝑤(𝑙)
𝑛 is (strictly) ℎ𝑛-oscillatory.

Indeed, being 𝑤(1)
𝑛 = ̃︀𝑣𝑛 − ̃︀𝑝(1)

𝑛 for 𝑙 = 1, we apply the operator 𝜎𝑅(𝐷) to equation (4.31),
where 𝜎𝑅 = 1{ℎ𝑛|𝜉|≤ 1

𝑅
}∪{ℎ𝑛|𝜉|≥𝑅}, for 𝑅 > 0. We get

‖∇𝜎𝑅(𝐷)̃︀𝑣𝑛‖2
𝐿2 = ‖∇𝜎𝑅(𝐷)̃︀𝑝(1)

𝑛 ‖2
𝐿2 + ‖∇𝜎𝑅(𝐷)𝑤(1)

𝑛 ‖2
𝐿2 + 𝑜(1).
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Iterating, we obtain

‖∇𝜎𝑅(𝐷)̃︀𝑣𝑛‖2
𝐿2 =

𝑙∑︁
𝑗=1

‖∇𝜎𝑅(𝐷)̃︀𝑝(𝑗)
𝑛 ‖2

𝐿2 + ‖∇𝜎𝑅(𝐷)𝑤(𝑙)
𝑛 ‖2

𝐿2 + 𝑜(1),

which means

lim sup
𝑛→∞

∫︁
{ℎ𝑛|𝜉|≤ 1

𝑅
}∪{ℎ𝑛|𝜉|≥𝑅}

|𝜉|2|𝑤̂(𝑙)
𝑛 (., 𝜉)|2 𝑑𝜉 ≤ lim sup

𝑛→∞

∫︁
{ℎ𝑛|𝜉|≤ 1

𝑅
}∪{ℎ𝑛|𝜉|≥𝑅}

|𝜉|2|𝑣𝑛(., 𝜉)|2 𝑑𝜉.

Since ̃︀𝑣𝑛 is a (strictly) ℎ𝑛-oscillatory sequence, so it is 𝑤(𝑙)
𝑛 .

For the sake of completeness, before presenting the proof of the Theorem 4.8, let us revisit

the result showed in (KERAANI, 2001, Lemma 2.7), which will be important in the proof of the

aforementioned theorem.

Lemma 4.2.4. Let (ℎ(𝑗), 𝑥(𝑗), 𝑡(𝑗)) be a family of pairwise orthogonal scales-cores and (𝑉 (𝑗))

a family of functions in 𝐿10(R, 𝐿10(R3)). Then⃦⃦⃦⃦
⃦⃦ 𝑙∑︁

𝑗=1

1√︁
ℎ

(𝑗)
𝑛

𝑉 (𝑗)
(︂
.− 𝑡(𝑗)

𝑛

ℎ
(𝑗)
𝑛

2 ,
.− 𝑥(𝑗)

𝑛

ℎ
(𝑗)
𝑛

)︂⃦⃦⃦⃦⃦⃦
10

𝐿10
𝑡 𝐿10

𝑥

−→
𝑙∑︁

𝑗=1
‖𝑉 (𝑗)‖10

𝐿10
𝑡 𝐿10

𝑥
as 𝑛 → ∞,

for every 𝑙 ≥ 1.

Demonstração. Denote

𝑉 (𝑗)
𝑛 (𝑡, 𝑥) = 1√︁

ℎ
(𝑗)
𝑛

𝑉 (𝑗)
(︂
𝑡− 𝑡(𝑗)

𝑛

ℎ
(𝑗)
𝑛

2 ,
𝑥− 𝑥(𝑗)

𝑛

ℎ
(𝑗)
𝑛

)︂
.

Note that it is enough to show that

𝐼𝑛 =
∫︁
R4
𝑉 (𝑗1)

𝑛 𝑉 (𝑗2)
𝑛 𝑉 (𝑗3)

𝑛 𝑉 (𝑗4)
𝑛 𝑉 (𝑗5)

𝑛 𝑉 (𝑗6)
𝑛 𝑉 (𝑗7)

𝑛 𝑉 (𝑗8)
𝑛 𝑉 (𝑗9)

𝑛 𝑉 (𝑗10)
𝑛 𝑑𝑥𝑑𝑡 −→ 0 as 𝑛 → ∞,

where 1 ≤ 𝑗𝑘 ≤ 𝑙 and at least two 𝑗𝑘’s different. Assume, for example, that 𝑗1 ̸= 𝑗2. By

Hölder’s inequality, we estimate

|𝐼𝑛| ≤ 𝐶‖𝑉 (𝑗1)
𝑛 𝑉 (𝑗2)

𝑛 ‖𝐿5
𝑡 𝐿5

𝑥
,

where 𝐶 = ∏︀10
𝑘=3 ‖𝑉 (𝑗𝑘)

𝑛 ‖𝐿10
𝑡 𝐿10

𝑥
. Now, let us compute ‖𝑉 (𝑗1)

𝑛 𝑉 (𝑗2)
𝑛 ‖𝐿5

𝑡 𝐿5
𝑥
:

‖𝑉 (𝑗1)
𝑛 𝑉 (𝑗2)

𝑛 ‖5
𝐿5

𝑡 𝐿5
𝑥

= 1
(ℎ(𝑗1)

𝑛 ℎ
(𝑗2)
𝑛 )5

2

∫︁
R

∫︁
R3

|𝑉 (𝑗1)|5
⎛⎝𝑡− 𝑡(𝑗1)

𝑛

ℎ
(𝑗1)
𝑛

2 ,
𝑥− 𝑥(𝑗1)

𝑛

ℎ
(𝑗1)
𝑛

⎞⎠|𝑉 (𝑗2)|

⎛⎝𝑡− 𝑡(𝑗2)
𝑛

ℎ
(𝑗2)
𝑛

2 ,
𝑥− 𝑥(𝑗2)

𝑛

ℎ
(𝑗2)
𝑛

⎞⎠ 𝑑𝑥𝑑𝑡.

The orthogonality of [ℎ(𝑗1)
𝑛 , 𝑥(𝑗1), 𝑡(𝑗1)], [ℎ(𝑗2)

𝑛 , 𝑥(𝑗2), 𝑡(𝑗2)] means that

either ℎ
(𝑗1)
𝑛

ℎ
(𝑗2)
𝑛

+ℎ
(𝑗2)
𝑛

ℎ
(𝑗1)
𝑛

−→ +∞ or ℎ(𝑗1)
𝑛 = ℎ(𝑗2)

𝑛 and
⃒⃒⃒⃒
𝑡(𝑗1)
𝑛 − 𝑡(𝑗2)

𝑛

ℎ
(𝑗1)
𝑛

2

⃒⃒⃒⃒
+
⃒⃒⃒⃒
𝑥(𝑗1)

𝑛 − 𝑥(𝑗2)
𝑛

ℎ
(𝑗1)
𝑛

⃒⃒⃒⃒
−→ +∞ as 𝑛 → ∞.

Without loss of generality, we assume that 𝑉 𝑗1 , 𝑉 𝑗2 are continuous and compactly supported.
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∙ If ℎ
(𝑗1)
𝑛

ℎ
(𝑗2)
𝑛

+ ℎ
(𝑗2)
𝑛

ℎ
(𝑗1)
𝑛

−→ +∞, then either ℎ
(𝑗1)
𝑛

ℎ
(𝑗2)
𝑛

−→ +∞ or ℎ
(𝑗2)
𝑛

ℎ
(𝑗1)
𝑛

−→ +∞. We assume
ℎ

(𝑗1)
𝑛

ℎ
(𝑗2)
𝑛

−→ +∞ (the other case is symmetrical).

The change of variables 𝑥 = ℎ(𝑗2)
𝑛 𝑦 + 𝑥(𝑗2)

𝑛 , 𝑡 = (ℎ(𝑗2)
𝑛 )2𝑠+ 𝑡(𝑗2)

𝑛 gives

‖𝑉 (𝑗1)
𝑛 𝑉 (𝑗2)

𝑛 ‖5
𝐿5

𝑡 𝐿5
𝑥

=
(︂
ℎ(𝑗2)

𝑛

ℎ
(𝑗1)
𝑛

)︂ 5
2
∫︁
R

∫︁
R3

|𝑉 (𝑗1)|5
⎛⎝𝑡(𝑗2)

𝑛 − 𝑡(𝑗1)
𝑛

ℎ
(𝑗1)
𝑛

2 + 𝑠
(︂
ℎ(𝑗2)

𝑛

ℎ
(𝑗1)
𝑛

)︂2
,
ℎ(𝑗2)

𝑛

ℎ
(𝑗1)
𝑛

𝑦 + 𝑥(𝑗2)
𝑛 − 𝑥(𝑗1)

𝑛

ℎ
(𝑗2)
𝑛

⎞⎠|𝑉 (𝑗2)(𝑠, 𝑦)|5 𝑑𝑦𝑑𝑠.

Since 𝑉 (𝑗1), 𝑉 (𝑗2) are assumed to be continuous and compactly supported, we obtain

‖𝑉 (𝑗1)
𝑛 𝑉 (𝑗2)

𝑛 ‖5
𝐿5

𝑡 𝐿5
𝑥

−→ 0 as 𝑛 → ∞.

∙ If ℎ(𝑗1)
𝑛 = ℎ(𝑗2)

𝑛 , with the same change of variables as above, we get

‖𝑉 (𝑗1)
𝑛 𝑉 (𝑗2)

𝑛 ‖5
𝐿5

𝑡 𝐿5
𝑥

=
∫︁
R

∫︁
R3

|𝑉 (𝑗1)|5
⎛⎝𝑡(𝑗2)

𝑛 − 𝑡(𝑗1)
𝑛

ℎ
(𝑗1)
𝑛

2 + 𝑠, 𝑦 + 𝑥(𝑗2)
𝑛 − 𝑥(𝑗1)

𝑛

ℎ
(𝑗1)
𝑛

⎞⎠ · |𝑉 (𝑗2)(𝑠, 𝑦)|5 𝑑𝑦𝑑𝑠.

Thus, the previous integral tends to 0 as n tends to ∞. This finishes the proof of Lemma

4.2.4.

Remark 4.2.2. (KERAANI, 2001) Using the inequality
⃒⃒⃒⃒⃒⃒⃒⃒ 𝑙∑︁

𝑗=1
𝑎𝑗

⃒⃒⃒⃒ 10
3

−
𝑙∑︁

𝑗=1
|𝑎𝑗|

10
3

⃒⃒⃒⃒
≤ 𝐶𝑙

∑︁
𝑗 ̸=𝑘

|𝑎𝑗||𝑎𝑘|
7
3

and arguing in the same way as in the proof of Lemma 4.2.4, we prove that
⃦⃦⃦⃦
⃦⃦∇(︂ 𝑙∑︁

𝑗=1

1√︁
ℎ

(𝑗)
𝑛

𝑉 (𝑗)
(︂
.− 𝑡(𝑗)

𝑛

ℎ
(𝑗)
𝑛

2 ,
.− 𝑥(𝑗)

𝑛

ℎ
(𝑗)
𝑛

)︂)︂⃦⃦⃦⃦⃦⃦
10
3

𝐿
10
3

𝑡 𝐿
10
3

𝑥

−→
𝑙∑︁

𝑗=1
‖∇𝑉 (𝑗)‖

10
3

𝐿
10
3

𝑡 𝐿
10
3

𝑥

as 𝑛 → ∞.

Now we have what we need to establish the proof of the Theorem 4.8.

Step 4. (Proof of Theorem 4.8): The idea is to combine the two decompositions we made.

Denote by 𝑣(𝑗)
𝑛 (and the rest (𝜌(𝑙)

𝑛 )) the ℎ(𝑗)
𝑛 -oscillatory component obtained by decomposition

(4.19) and 𝑝(𝑗,𝛼)
𝑛 the concentrating solutions obtained from decomposition (4.31) (and the rest

𝑤
(𝑗,𝐴𝑗)
𝑛 ). Adding everything up, one has

𝑣𝑛(𝑡, 𝑥) =
𝑙∑︁

𝑗=1

(︂ 𝐴𝑗∑︁
𝛼=1

𝑝(𝑗,𝛼)
𝑛 (𝑡, 𝑥) + 𝑤(𝑗,𝐴𝑗)

𝑛 (𝑡, 𝑥)
)︂

+ 𝜌(𝑙)
𝑛 (𝑡, 𝑥).
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Rewrite this equation as

𝑣𝑛(𝑡, 𝑥) =
𝑙∑︁

𝑗=1

(︂ 𝐴𝑗∑︁
𝛼=1

𝑝(𝑗,𝛼)
𝑛 (𝑡, 𝑥)

)︂
+ 𝑤(𝑙,𝐴1,...,𝐴𝑙)

𝑛 (𝑡, 𝑥),

where

𝑤(𝑙,𝐴1,...,𝐴𝑙)
𝑛 (𝑡, 𝑥) =

𝑙∑︁
𝑗=1

𝑤(𝑗,𝐴𝑗)
𝑛 (𝑡, 𝑥) + 𝜌(𝑙)

𝑛 (𝑡, 𝑥),

for 𝑙 and 𝐴𝑗 fixed, 1 ≤ 𝑗 ≤ 𝑙. We enumerate this pairs by the bijection 𝜎 : N2 → N defined by

𝜎(𝑗, 𝛼) < 𝜎(𝑘, 𝛽) if 𝑗 + 𝛼 < 𝑘 + 𝛽 or 𝑗 + 𝛼 = 𝑘 + 𝛽 and 𝑗 < 𝑘.

The almost orthogonality identity (4.17) is satisfied. Indeed, combining (4.21) and (4.33), we

obtain

‖∇𝑣𝑛‖2
𝐿2 =

𝑙∑︁
𝑗=1

‖∇𝑣(𝑗)
𝑛 ‖2

𝐿2 + ‖∇𝜌(𝑙)
𝑛 ‖2

𝐿2 + 𝑜(1)

=
𝑙∑︁

𝑗=1

(︂ 𝐴𝑗∑︁
𝛼=1

‖∇𝑝(𝑗,𝛼)
𝑛 ‖2

𝐿2 + ‖∇𝑤(𝑗,𝐴𝑗)
𝑛 ‖2

𝐿2

)︂
+ ‖∇𝜌(𝑙)

𝑛 ‖2
𝐿2 + 𝑜(1)

=
𝑙∑︁

𝑗=1

(︂ 𝐴𝑗∑︁
𝛼=1

‖∇𝑝(𝑗,𝛼)
𝑛 ‖2

𝐿2

)︂
+

𝑙∑︁
𝑗=1

‖∇𝑤(𝑗,𝐴𝑗)
𝑛 ‖2

𝐿2 + ‖∇𝜌(𝑙)
𝑛 ‖2

𝐿2 + 𝑜(1),

but

‖∇𝑤(𝑙,𝐴1,...,𝐴𝑙)
𝑛 ‖2

𝐿2 =

⃦⃦⃦⃦
⃦⃦∇
⎛⎝ 𝑙∑︁

𝑗=1
𝑤(𝑗,𝐴𝑗)

𝑛 + 𝜌(𝑙)
𝑛

⎞⎠⃦⃦⃦⃦⃦⃦
2

𝐿2

=
𝑙∑︁

𝑗=1
‖∇𝑤(𝑗,𝐴𝑗)

𝑛 ‖2
𝐿2 + ‖∇𝜌(𝑙)

𝑛 ‖2
𝐿2 ,

since 𝑤(𝑗,𝐴𝑗)
𝑛 is ℎ𝑗

𝑛-oscillatory and 𝜌(𝑙)
𝑛 is ℎ𝑗

𝑛-singular for all 1 ≤ 𝑗 ≤ 𝑙. Therefore,

‖∇𝑣𝑛‖2
𝐿2 =

𝑙∑︁
𝑗=1

𝐴𝑗∑︁
𝛼=1

‖∇𝑝(𝑗,𝛼)
𝑛 ‖2

𝐿2 + ‖∇𝑤(𝑙,𝐴1,...,𝐴𝑙)
𝑛 ‖2

𝐿2 + 𝑜(1) as 𝑛 → ∞. (4.47)

The last point that remains to be checked is the convergence of the remainder 𝑤(𝑙,𝐴1,...,𝐴𝑙)
𝑛 to

zero in the Strichartz norm. To this end, let 𝜀 > 0 be a small arbitrary number. To get the

result, it suffices to prove that for 𝑙0 large enough,

‖𝑤(𝑙,𝐴1,...,𝐴𝑙)
𝑛 ‖𝐿∞

𝑡 𝐿6
𝑥

≤ 𝜀 (4.48)

for all (𝑙, 𝐴1, ..., 𝐴𝑙) satisfying 𝑙 ≥ 𝑙0 and 𝜎(𝑗, 𝐴𝑗) ≥ 𝜎(𝑙0, 1). To prove this, first choose 𝑙0
such that, for every 𝑙 ≥ 𝑙0,

lim sup
𝑛→∞

‖𝜌(𝑙)
𝑛 ‖𝐿∞

𝑡 𝐿6
𝑥

≤ 𝜀. (4.49)
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Note that the existence of such 𝑙0 is ensured by (4.20). Moreover, by (4.32), for every 𝑙 ≥ 𝑙0,

there exists 𝐵𝑙 such that 𝐴𝑗 ≥ 𝐵𝑙, for every 𝑗 ∈ {1, ..., 𝑙} and

lim sup
𝑛→∞

‖𝑤(𝑗,𝐴𝑗)
𝑛 ‖𝐿∞

𝑡 𝐿6
𝑥

≤ 𝜀

𝑙
. (4.50)

Furthermore, the expression (4.47) implies that the series with general term
∑︁
(𝑗,𝛼)

lim sup
𝑛→∞

‖∇𝑝(𝑗,𝛼)
𝑛 (0)‖2

𝐿2

is convergent. In particular, we may also assume, increasing 𝑙0 if necessary, that 𝑙0 is such that
∑︁

𝜎(𝑗,𝛼)>𝜎(𝑙0,1)
lim sup

𝑛→∞
‖∇𝑝(𝑗,𝛼)

𝑛 (0)‖2
𝐿2 ≤ 𝜀. (4.51)

Now, the remainder term can be rewritten in the form

𝑤(𝑙,𝐴1,...,𝐴𝑙)
𝑛 = 𝜌(𝑙)

𝑛 +
∑︁

1≤𝑗≤𝑙

𝑤(𝑗,max(𝐴𝑗 ,𝐵𝑙))
𝑛 + 𝑆(𝑙,𝐴1,...,𝐴𝑙)

𝑛 ,

where

𝑆(𝑙,𝐴1,...,𝐴𝑙)
𝑛 =

∑︁
1≤𝑗≤𝑙,𝐴𝑗<𝐵𝑙

𝑤(𝑗,𝐴𝑗)
𝑛 − 𝑤(𝑗,𝐵𝑙)

𝑛 .

However, one has

𝑤(𝑗,𝐴𝑗)
𝑛 − 𝑤(𝑗,𝐵𝑙)

𝑛 =
𝐵𝑙∑︁

𝛼=1
𝑝(𝑗,𝛼)

𝑛 −
𝐴𝑗∑︁

𝛼=1
𝑝(𝑗,𝛼)

𝑛

=
∑︁

𝐴𝑗<𝛼≤𝐵𝑙

𝑝(𝑗,𝛼)
𝑛 .

Hence,

𝑆(𝑙,𝐴1,...,𝐴𝑙)
𝑛 =

∑︁
1≤𝑗≤𝑙,𝐴𝑗<𝐵𝑙

∑︁
𝐴𝑗<𝛼≤𝐵𝑙

𝑝(𝑗,𝛼)
𝑛 .

Therefore,

lim sup
𝑛→∞

‖𝑤(𝑙,𝐴1,...,𝐴𝑙)
𝑛 ‖𝐿∞

𝑡 𝐿6
𝑥

≤ lim sup
𝑛→∞

‖𝜌(𝑙)
𝑛 ‖𝐿∞

𝑡 𝐿6
𝑥

+ lim sup
𝑛→∞

𝑙∑︁
𝑗=1

‖𝑤(𝑗,max(𝐴𝑗 ,𝐵𝑙))
𝑛 ‖𝐿∞

𝑡 𝐿6
𝑥

+ lim sup
𝑛→∞

‖𝑆(𝑙,𝐴1,...,𝐴𝑙)
𝑛 ‖𝐿∞

𝑡 𝐿6
𝑥

≤ 2𝜀+ lim sup
𝑛→∞

‖𝑆(𝑙,𝐴1,...,𝐴𝑙)
𝑛 ‖𝐿∞

𝑡 𝐿6
𝑥
.

Since 𝑆(𝑙,𝐴1,...,𝐴𝑙)
𝑛 is a solution of the linear Schrödinger equation, we have

‖𝑆(𝑙,𝐴1,...,𝐴𝑙)
𝑛 ‖𝐿∞

𝑡 𝐿6
𝑥

≤ 𝐶‖∇𝑆(𝑙,𝐴1,...,𝐴𝑙)
𝑛 ‖𝐿2

≤ 𝐶‖∇𝑆(𝑙,𝐴1,...,𝐴𝑙)
𝑛 (0)‖𝐿2

≤ 𝐶
∑︁

1≤𝑗≤𝑙,𝐴𝑗<𝐵𝑙

∑︁
𝐴𝑗<𝛼≤𝐵𝑙

‖∇𝑝(𝑗,𝛼)
𝑛 (0)‖𝐿2

≤ 𝐶𝜀,
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because the sum is restricted to some 𝜎(𝑗, 𝛼) satisfying 𝜎(𝑗, 𝛼) > 𝜎(𝑗, 𝛼𝑗) > 𝜎(𝑙0, 1) and it is

indeed smaller than 𝐶𝜀 due to inequality (4.51). Therefore, lim sup𝑛→∞ ‖𝑤(𝑙,𝐴1,...,𝐴𝑙)
𝑛 ‖𝐿∞

𝑡 𝐿6
𝑥

is

smaller than (2 + 𝐶)𝜀 for all (𝑙, 𝐴1, ..., 𝐴𝑙) satisfying 𝑙 ≥ 𝑙0 and 𝜎(𝑗, 𝐴𝑗) ≥ 𝜎(𝑙0, 1). Through

the same procedure, we get the same estimates for the 𝐿10(𝐿10) norm, that is,

lim sup
𝑛→∞

‖𝑤(𝑙,𝐴1,...,𝐴𝑙)
𝑛 ‖𝐿10

𝑡 𝐿10
𝑥

≤ lim sup
𝑛→∞

‖𝜌(𝑙)
𝑛 ‖𝐿10

𝑡 𝐿10
𝑥

+ lim sup
𝑛→∞

𝑙∑︁
𝑗=1

‖𝑤(𝑗,max(𝐴𝑗 ,𝐵𝑙))
𝑛 ‖𝐿10

𝑡 𝐿10
𝑥

+ lim sup
𝑛→∞

‖𝑆(𝑙,𝐴1,...,𝐴𝑙)
𝑛 ‖𝐿10

𝑡 𝐿10
𝑥

≤ 2𝜀+ lim sup
𝑛→∞

‖𝑆(𝑙,𝐴1,...,𝐴𝑙)
𝑛 ‖𝐿10

𝑡 𝐿10
𝑥
.

Moreover,

lim sup
𝑛→∞

‖𝑆(𝑙,𝐴1,...,𝐴𝑙)
𝑛 ‖10

𝐿10
𝑡 𝐿10

𝑥
= lim sup

𝑛→∞

⃦⃦⃦⃦ ∑︁
(𝑗,𝛼)

𝑝(𝑗,𝛼)
𝑛

⃦⃦⃦⃦10

𝐿10
𝑡 𝐿10

𝑥

and, rescaling,

𝑝(𝑗,𝛼)
𝑛 (𝑡, 𝑥) = 1√

ℎ𝑛

𝜓(𝑗,𝛼)
(︂
𝑡− 𝑡(𝑗,𝛼)

𝑛

ℎ2
𝑛

,
𝑥− 𝑥(𝑗,𝛼)

𝑛

ℎ𝑛

)︂
,

where 𝜓(𝑗,𝛼) ∈ 𝐿∞(R; 𝐻̇1(R3)). So, by Lemma 4.2.4,

lim sup
𝑛→∞

⃦⃦⃦⃦ ∑︁
(𝑗,𝛼)

𝑝
(𝑗,𝛼)
ℎ

⃦⃦⃦⃦10

𝐿10
𝑡 𝐿10

𝑥

=
∑︁
(𝑗,𝛼)

‖𝜓(𝑗,𝛼)‖10
𝐿10

𝑡 𝐿10
𝑥
.

Furthermore, through Strichartz estimates and Lemma 4.1.3, one gets
∑︁
(𝑗,𝛼)

‖𝜓(𝑗,𝛼)‖10
𝐿10

𝑡 𝐿10
𝑥

=
∑︁
(𝑗,𝛼)

‖𝑝(𝑗,𝛼)
𝑛 ‖10

𝐿10
𝑡 𝐿10

𝑥

≤ 𝐶
∑︁
(𝑗,𝛼)

(︂
‖∇𝑝(𝑗,𝛼)

𝑛 (0)‖2
𝐿2

)︂5
. (4.52)

On the other hand, by (4.47), ∑︀(𝑗,𝛼) ‖∇𝑝(𝑗,𝛼)
𝑛 (0)‖2

𝐿2 is convergent, and so the right-hand side

of (4.52) is finite. Thus (︂ ∑︁
𝜎(𝑗,𝛼)>𝜎(𝑙0,1)

‖𝜓(𝑗,𝛼)‖10
𝐿10

𝑡 𝐿10
𝑥

)︂ 1
10

≤ 𝜀.

Hence,

lim sup
𝑛→∞

‖𝑤(𝑙,𝐴1,...,𝐴𝑙)
𝑛 ‖𝐿10

𝑡 𝐿10
𝑥

≤ 2𝜀+ lim sup
𝑛→∞

‖𝑆(𝑙,𝐴1,...,𝐴𝑙)
𝑛 ‖𝐿10

𝑡 𝐿10
𝑥

≤ 2𝜀+
(︂ ∑︁

(𝑗,𝛼)
‖𝜓(𝑗,𝛼)‖10

𝐿10
𝑡 𝐿10

𝑥

)︂ 1
10

= 3𝜀.

Since 𝜀 is an arbitrary small number, we conclude that

lim sup
𝑛→∞

‖𝑤(𝑙,𝐴1,...,𝐴𝑙)
𝑛 ‖𝐿10

𝑡 𝐿10
𝑥

−→ 0 as 𝑛 → ∞, (4.53)

which proves Theorem 4.8.
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To finish this section, we establish the following lemma, which is a consequence of the

construction we made during the proof of Proposition 4.2.4.

Lemma 4.2.5. Consider the notation and assumptions of Theorem 4.8. For any 𝑙 ∈ N and
1 ≤ 𝑗 ≤ 𝑙, we have

𝐷
(𝑗)
ℎ𝑛
𝑤(𝑙)

𝑛 ⇀ 0.

Demonstração. Assuming that 𝐷(𝑗)
ℎ𝑛
𝑤(𝑙)

𝑛 ⇀ 𝜙, we can directly use the decomposition of The-

orem 4.8 to write, for 𝐿 > 𝑙,

𝑤(𝑙)
𝑛 =

𝐿∑︁
𝑖=𝑙+1

𝑝(𝑖)
𝑛 + 𝑤(𝐿)

𝑛 .

In case of scale orthogonality of ℎ(𝑗)
𝑛 and ℎ(𝑖)

𝑛 , for 𝑙+1 ≤ 𝑖 ≤ 𝐿, we have 𝐷(𝑗)
ℎ𝑛
𝑝(𝑖)

𝑛 ⇀ 0. Indeed,

by hypothesis, 𝑝(𝑖)
𝑛 is a concentrating solution and so

𝑝(𝑖)
𝑛 (𝑡, 𝑥) = 1√︁

ℎ
(𝑖)
𝑛

𝜙(𝑖)
(︂
𝑡− 𝑡(𝑖)𝑛

ℎ
(𝑖)
𝑛

2 ,
𝑥− 𝑥(𝑖)

𝑛

ℎ
(𝑖)
𝑛

)︂
,

which means that
√︁
ℎ

(𝑗)
𝑛 𝑝(𝑖)

𝑛 (𝑡(𝑗)
𝑛 +(ℎ(𝑗)

𝑛 )2𝑠, 𝑥(𝑗)
𝑛 +ℎ(𝑗)

𝑛 𝑦) =

√︁
ℎ

(𝑗)
𝑛√︁
ℎ

(𝑖)
𝑛

𝜙(𝑖)
(︂
𝑡(𝑗)
𝑛 − 𝑡(𝑖)𝑛

ℎ
(𝑖)
𝑛

2 +𝑠
(︂
ℎ(𝑗)

𝑛

ℎ
(𝑖)
𝑛

)︂2
,
𝑥(𝑗)

𝑛 − 𝑥(𝑖)
𝑛

ℎ
(𝑖)
𝑛

+𝑦ℎ
(𝑗)
𝑛

ℎ
(𝑖)
𝑛

)︂
.

Without loss of generality, we may assume that 𝜙(𝑖) is continuous and compactly supported.

Thus, for a compactly supported function 𝜓, one has∫︁
R3

∇
√︁
ℎ

(𝑗)
𝑛 𝑝(𝑖)

𝑛 (𝑡(𝑗)
𝑛 + (ℎ(𝑗)

𝑛 )2𝑠, 𝑥(𝑗)
𝑛 + ℎ(𝑗)

𝑛 𝑦) · ∇𝜓(𝑦) 𝑑𝑦

=

√︁
ℎ

(𝑗)
𝑛√︁
ℎ

(𝑖)
𝑛

∫︁
R3

∇𝜙(𝑖)
(︂
𝑡(𝑗)
𝑛 − 𝑡(𝑖)𝑛

ℎ
(𝑖)
𝑛

2 + 𝑠
(︂
ℎ(𝑗)

𝑛

ℎ
(𝑖)
𝑛

)︂2
,
𝑥(𝑗)

𝑛 − 𝑥(𝑖)
𝑛

ℎ
(𝑖)
𝑛

+ 𝑦
ℎ(𝑗)

𝑛

ℎ
(𝑖)
𝑛

)︂
· ∇𝜓(𝑦) 𝑑𝑦

and the orthogonality of ℎ(𝑗)
𝑛 and ℎ(𝑖)

𝑛 means that

ℎ(𝑗)
𝑛

ℎ
(𝑖)
𝑛

+ ℎ(𝑖)
𝑛

ℎ
(𝑗)
𝑛

−→ +∞.

If ℎ
(𝑖)
𝑛

ℎ
(𝑗)
𝑛

−→ +∞, we have
√︁
ℎ

(𝑗)
𝑛√︁
ℎ

(𝑖)
𝑛

∫︁
R3

∇𝜙(𝑖)
(︂
𝑡(𝑗)
𝑛 − 𝑡(𝑖)𝑛

ℎ
(𝑖)
𝑛

2 + 𝑠
(︂
ℎ(𝑗)

𝑛

ℎ
(𝑖)
𝑛

)︂2
,
𝑥(𝑗)

𝑛 − 𝑥(𝑖)
𝑛

ℎ
(𝑖)
𝑛

+ 𝑦
ℎ(𝑗)

𝑛

ℎ
(𝑖)
𝑛

)︂
· ∇𝜓(𝑦) 𝑑𝑦 → 0

as 𝑛 → ∞, as done in Lemma 4.2.4. If ℎ
(𝑗)
𝑛

ℎ
(𝑖)
𝑛

−→ +∞, we make the change of variables

𝑥(𝑗)
𝑛 − 𝑥(𝑖)

𝑛

ℎ
(𝑖)
𝑛

+ 𝑦
ℎ(𝑗)

𝑛

ℎ
(𝑖)
𝑛

= 𝑥
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to get√︁
ℎ

(𝑗)
𝑛√︁
ℎ

(𝑖)
𝑛

∫︁
R3

∇𝜙(𝑖)
(︂
𝑡(𝑗)
𝑛 − 𝑡(𝑖)𝑛

ℎ
(𝑖)
𝑛

2 + 𝑠
(︂
ℎ(𝑗)

𝑛

ℎ
(𝑖)
𝑛

)︂2
, 𝑥
)︂

· ∇𝜓
(︂
ℎ(𝑖)

𝑛

ℎ
(𝑗)
𝑛

𝑥− 𝑥(𝑗)
𝑛 − 𝑥(𝑖)

𝑛

ℎ
(𝑖)
𝑛

)︂
ℎ(𝑖)

𝑛

ℎ
(𝑗)
𝑛

𝑑𝑥.

Hence,√︁
ℎ

(𝑖)
𝑛√︁
ℎ

(𝑗)
𝑛

∫︁
R3

∇𝜙(𝑖)
(︂
𝑡(𝑗)
𝑛 − 𝑡(𝑖)𝑛

ℎ
(𝑖)
𝑛

2 + 𝑠
(︂
ℎ(𝑗)

𝑛

ℎ
(𝑖)
𝑛

)︂2
, 𝑥
)︂

· ∇𝜓
(︂
ℎ(𝑖)

𝑛

ℎ
(𝑗)
𝑛

𝑥− 𝑥(𝑗)
𝑛 − 𝑥(𝑖)

𝑛

ℎ
(𝑖)
𝑛

)︂
𝑑𝑥 = 𝑂

⎛⎝(︂ℎ(𝑖)
𝑛

ℎ
(𝑗)
𝑛

)︂ 1
2

⎞⎠ → 0

as 𝑛 → ∞, since 𝜓 is assumed to be compactly supported, which gives the desired result

𝐷
(𝑗)
ℎ𝑛
𝑝(𝑖)

𝑛 ⇀ 0.

Otherwise, in case ℎ(𝑗)
𝑛 = ℎ(𝑖)

𝑛 and (𝑥(𝑗), 𝑡(𝑗)) ⊥ℎ𝑛 (𝑥(𝑖), 𝑡(𝑖)), the second part of Lemma

4.2.2 gives the same result. Therefore, in both cases one has

𝐷
(𝑗)
ℎ𝑛
𝑤(𝐿)

𝑛 ⇀ 𝜙.

Since, by Theorem 4.8, lim sup𝑛→∞ ‖𝑤(𝐿)
𝑛 ‖𝐿∞

𝑡 𝐿6
𝑥

→ 0, we have 𝜙 = 0, proving the lemma.

4.3 NONLINEAR PROFILE DECOMPOSITION

In this section, we establish a decomposition into profiles, similar to the one carried out

in the previous section, but this time for the sequence of nonlinear solutions to system (4.3).

The main objective of this subsection is to prove the following theorem. We follow in detail

what was done by Keraani in (KERAANI, 2001).

Theorem 4.10. Let 𝑢𝑛 be the sequence of solutions to nonlinear Schrödinger equation (4.3)

with initial data 𝜙𝑛 bounded in 𝐻̇1(R3) and satisfying lim sup𝑛→∞ ‖𝜙𝑛‖𝐻̇1 < 𝜆0. Let 𝑝(𝑗)
𝑛

be the linear concentrating solution given by Theorem 4.8 and 𝑞(𝑗)
𝑛 the associated nonlinear

concentrating solution. Then, up to extraction, we have

𝑢𝑛(𝑡, 𝑥) =
𝑙∑︁

𝑗=1
𝑞(𝑗)

𝑛 (𝑡, 𝑥) + 𝑤(𝑙)
𝑛 (𝑡, 𝑥) + 𝑟(𝑙)

𝑛 (𝑡, 𝑥) (4.54)

and

lim sup
𝑛→∞

(‖∇𝑟(𝑙)
𝑛 ‖

𝐿
10
3 ([0,𝑇 ];𝐿

10
3 (R3))

+‖𝑟(𝑙)
𝑛 ‖𝐿10([0,𝑇 ];𝐿10(R3))+‖𝑟(𝑙)

𝑛 ‖𝐿∞([0,𝑇 ];𝐻̇1(R3))) −→ 0 as 𝑙 → ∞.

(4.55)

The following notations will be often used in this section

𝛽(𝑧) = |𝑧|4𝑧,
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𝑊 (𝑙)
𝑛 =

𝑙∑︁
𝑗=1

𝑞(𝑗)
𝑛

and

𝑓 (𝑙)
𝑛 =

𝑙∑︁
𝑗=1

𝛽(𝑞(𝑗)
𝑛 ) − 𝛽

(︂ 𝑙∑︁
𝑗=1

𝑞(𝑗)
𝑛 + 𝑤(𝑙)

𝑛 + 𝑟(𝑙)
𝑛

)︂
.

Before getting such decomposition, we make sure that nonlinear concentration solutions behave

similarly to linear concentration solutions, at least in a specific type of interval.

4.3.1 Behavior of nonlinear concentrating solutions

As we saw at the beginning of Section 4.1, in the ball ‖𝑢0‖𝐻̇1(R3) < 𝜆0, the evolution

problem ⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑢+ Δ𝑢− |𝑢|4𝑢 = 0 on R × R3,

𝑢(0) = 𝑢0 ∈ 𝐻̇1(R3)

admits a complete scattering theory with respect to the linear problem. The main theorem of

this subsection is a consequence of this scattering property. In order to obtain it, we use the

following two lemmas from Keraani (KERAANI, 2001).

Lemma 4.3.1. Let 𝐼 = [𝑎, 𝑏]. The solution 𝑣 ∈ 𝐶([𝑎, 𝑏]; 𝐻̇1(R3)) of the equation

𝑖𝜕𝑡𝑣 + Δ𝑣 = 𝑓, 𝐼 × R3,

with ∇𝑓 ∈ 𝐿
10
7 (𝐼 × R3), satisfies

|||𝑣|||𝐼 + sup
𝑡∈𝐼

‖∇𝑣(𝑡)‖𝐿2 ≤ 𝐶
(︂

‖∇𝑣(𝑎)‖𝐿2 + ‖∇𝑓‖
𝐿

10
7 (𝐼×R3)

)︂
.

Lemma 4.3.2. Let 𝑀 = 𝑀(𝑡) be a positive continuous function on [0, 𝑇 ] such that 𝑀(0) = 0

and, for all 𝑡 ∈ [0, 𝑇 ], we have

𝑀(𝑡) ≤ 𝑐
(︂
𝑎+

5∑︁
𝛼=2

𝑀𝛼(𝑡)
)︂

with 0 < 𝑎 < 𝑎0 = 𝑎0(𝑐). One has
𝑀(𝑡) ≤ 2𝑐𝑎,

for all 𝑡 ∈ [0, 𝑇 ].

The next theorem is a consequence of the scattering property from Proposition 3.4.1.
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Theorem 4.11. Let 𝑢𝑛 be a nonlinear concentrating solution. There exist two linear concen-
trating solutions denoted by [𝜙𝑖, ℎ, 𝑥, 𝑡], 𝑖 = 1, 2, such that for all interval [−𝑇, 𝑇 ] containing
𝑡∞, one has

lim sup
𝑛→∞

(︂
‖𝑢𝑛 − [𝜙1, ℎ, 𝑥, 𝑡]‖𝐿10(𝐼1,Λ

𝑛 ×R3) + ‖𝑢𝑛 − [𝜙1, ℎ, 𝑥, 𝑡]‖𝐿∞(𝐼1,Λ
𝑛 ;𝐻̇1(R3))

)︂
−→ 0, (4.56)

and

lim sup
𝑛→∞

(︂
‖𝑢𝑛 − [𝜙2, ℎ, 𝑥, 𝑡]‖𝐿10(𝐼3,Λ

𝑛 ×R3) + ‖𝑢𝑛 − [𝜙2, ℎ, 𝑥, 𝑡]‖𝐿∞(𝐼3,Λ
𝑛 ;𝐻̇1(R3))

)︂
−→ 0 (4.57)

as Λ → ∞. Here, 𝐼1,Λ
𝑛 = [−𝑇, 𝑡𝑛 − Λℎ2

𝑛] and 𝐼3,Λ
𝑛 = (𝑡𝑛 + Λℎ2

𝑛, 𝑇 ].

Demonstração. We consider the case 𝑡𝑛

ℎ𝑛
→ ∞. The other cases are analogous. First, let us

show (4.56). The proof is based on Strichartz’s inequalities and the absorption Lemma 4.3.2.

For the sake of simplicity, we take 𝐼1,Λ
𝑛 = [0, 𝑡∞ − Λℎ2

𝑛]. We know that 𝑢𝑛 is a solution to⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑢𝑛 + Δ𝑢𝑛 − |𝑢𝑛|4𝑢𝑛 = 0 on [0, 𝑇 ] × R3,

𝑢𝑛(0) = 𝜙 ∈ 𝐻̇1(R3).

Since 𝑢𝑛(𝑡, 𝑥) is a nonlinear concentrating solution, one has

𝑢𝑛(𝑡, 𝑥) = 1√
ℎ𝑛

𝑢
(︂
𝑡− 𝑡𝑛
ℎ2

𝑛

,
𝑥− 𝑥𝑛

ℎ𝑛

)︂
,

where 𝑢 satisfies

𝑖𝜕𝑠𝑢+ Δ𝑢− |𝑢|4𝑢 = 0 on R × R3.

Using the scattering theory of Proposition 3.4.1, there exists 𝑣, solution of the linear system⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑠𝑣 + Δ𝑣 = 0 on R × R3,

𝑣(0) = 𝜙1,

such that

‖∇𝑢(𝑠) − ∇𝑣(𝑠)‖𝐿2 −→ 0 as 𝑠 → −∞.

Let

𝑣𝑛(𝑡, 𝑥) = 1√
ℎ𝑛

𝑣
(︂
𝑡− 𝑡𝑛
ℎ2

𝑛

,
𝑥− 𝑥𝑛

ℎ𝑛

)︂
satisfying ⎧⎪⎪⎨⎪⎪⎩

𝑖𝜕𝑡𝑣𝑛 + Δ𝑣𝑛 = 0 on [0, 𝑇 ] × R3,

𝑣𝑛(𝑡𝑛) = 1√
ℎ𝑛
𝜙1.



92

We should prove that

lim sup
𝑛→∞

(︂
‖𝑢𝑛 − 𝑣𝑛‖

𝐿10(𝐼1,Λ
𝑛 ×R3) + ‖𝑢𝑛 − 𝑣𝑛‖

𝐿∞(𝐼1,Λ
𝑛 ;𝐻̇1(R3))

)︂
−→ 0

when Λ → ∞. To this end, define 𝑤𝑛 := 𝑢𝑛 − 𝑣𝑛. Thus, 𝑤𝑛 satisfies the system⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑤𝑛 + Δ𝑤𝑛 = |𝑤𝑛 + 𝑣𝑛|4(𝑤𝑛 + 𝑣𝑛),

𝑤𝑛(0) = 𝑢𝑛(0) − 𝑣𝑛(0).
(4.58)

Using Lemma 4.3.1 and denoting |||.|||𝐼 := ‖.‖
𝐿10(𝐼1,Λ

𝑛 ×R3) + ‖∇.‖
𝐿

10
3 (𝐼1,Λ

𝑛 ×R3)
, we get

|||𝑤𝑛|||
𝐼1,Λ

𝑛
+ ‖∇𝑤𝑛‖

𝐿∞(𝐼1,Λ
𝑛 ;𝐿2(R3)) ≤ 𝑐

(︂
‖∇𝑤𝑛(0)‖𝐿2 + ‖∇(𝑤𝑛 + 𝑣𝑛)4(𝑤𝑛 + 𝑣𝑛)‖

𝐿
10
7 (𝐼1,Λ

𝑛 ×R3)

)︂
.

On the other hand, one has

‖∇𝑤𝑛(0)‖𝐿2 = ‖∇(𝑢𝑛(0) − 𝑣𝑛(0))‖𝐿2

=
⃦⃦⃦⃦
∇𝑢

(︂
− 𝑡𝑛
ℎ2

𝑛

)︂
− ∇𝑣

(︂
− 𝑡𝑛
ℎ2

𝑛

)︂⃦⃦⃦⃦
𝐿2

−→ 0

as 𝑛 → ∞. Therefore

|||𝑤𝑛|||
𝐼1,Λ

𝑛
+ ‖∇𝑤𝑛‖

𝐿∞(𝐼1,Λ
𝑛 ;𝐿2(R3)) ≤ 𝑐

(︂
‖∇𝑤𝑛(0)‖𝐿2

+ ‖𝑤𝑛 + 𝑣𝑛‖4
𝐿10(𝐼1,Λ

𝑛 ×R3)‖∇(𝑤𝑛 + 𝑣𝑛)‖
𝐿

10
3 (𝐼1,Λ

𝑛 ×R3)

)︂
≤ 𝑐

(︂
‖∇𝑤𝑛(0)‖𝐿2 + ‖𝑤𝑛‖4

𝐿10(𝐼1,Λ
𝑛 ×R3)‖∇𝑤𝑛‖

𝐿
10
3 (𝐼1,Λ

𝑛 ×R3)

+ ‖𝑤𝑛‖4
𝐿10(𝐼1,Λ

𝑛 ×R3)‖∇𝑣𝑛‖
𝐿

10
3 (𝐼1,Λ

𝑛 ×R3)

+ ‖𝑣𝑛‖4
𝐿10(𝐼1,Λ

𝑛 ×R3)‖∇𝑤𝑛‖
𝐿

10
3 (𝐼1,Λ

𝑛 ×R3)

+ ‖𝑣𝑛‖4
𝐿10(𝐼1,Λ

𝑛 ×R3)‖∇𝑣𝑛‖
𝐿

10
3 (𝐼1,Λ

𝑛 ×R3)

)︂
.

Using Lemma 4.9, one gets

lim sup
𝑛→∞

‖𝑣𝑛‖
𝐿10(𝐼1,Λ

𝑛 ×R3) −→ 0 as Λ → ∞.

Hence,

lim sup
𝑛→∞

(︂
‖∇𝑤𝑛(0)‖𝐿2 + ‖𝑣𝑛‖

𝐿10(𝐼1,Λ
𝑛 ×R3)

)︂
−→ 0 as Λ → ∞.

Given 𝛿 > 0, there exists a real number Λ0 such that for all Λ ≥ Λ0 and for any integer

𝑛 ≥ 𝑛0(Λ), one has ‖∇𝑤𝑛(0)‖𝐿2 + ‖𝑣𝑛‖
𝐿10(𝐼1,Λ

𝑛 ×R3) < 𝛿. Therefore, choosing 𝛿 such that

𝛿4 < 1
2𝑐

, one has

|||𝑤𝑛|||
𝐼1,Λ

𝑛
+ ‖∇𝑤𝑛‖

𝐿∞(𝐼1,Λ
𝑛 ;𝐿2(R3)) ≤ 𝐶

(︂
‖∇𝑤𝑛(0)‖𝐿2 + |||𝑤𝑛|||5

𝐼1,Λ
𝑛

+ |||𝑤𝑛|||4
𝐼1,Λ

𝑛

+ ‖𝑣𝑛‖4
𝐿10(𝐼1,Λ

𝑛 ×R3)

)︂
.
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In order to use Lemma 4.3.2, we denote

𝑀𝑛(𝑡) := ‖𝑤𝑛‖𝐿10([0,𝑡]×R3) + ‖∇𝑤𝑛‖
𝐿

10
3 ([0,𝑡]×R3)

+ ‖∇𝑤𝑛‖𝐿∞([0,𝑡];𝐿2(R3)).

Then

𝑀𝑛(𝑡) ≤ 𝐶
(︂

‖∇𝑤𝑛(0)‖𝐿2 + ‖𝑣𝑛‖4
𝐿10(𝐼1,Λ

𝑛 ×R3) +
5∑︁

𝛼=2
𝑀𝑛(𝑡)𝛼

)︂
,

for all 𝑡 ∈ 𝐼1,Λ
𝑛 . The bootstrap Lemma 4.3.2 enables us to deduce that, for any Λ ≥ Λ0 and

𝑛 ≥ 𝑛0(Λ), we have

𝑀𝑛(𝑡) ≤ 2𝐶
(︂

‖∇𝑤𝑛(0)‖𝐿2 + ‖𝑣𝑛‖4
𝐿10(𝐼1,Λ

𝑛 ×R3)

)︂
−→ 0 as 𝑛 → ∞, ∀𝑡 ∈ 𝐼1,Λ

𝑛 .

Hence,

lim sup
𝑛→∞

(︂
‖𝑢𝑛 − 𝑣𝑛‖

𝐿10(𝐼1,Λ
𝑛 ×R3) + ‖∇(𝑢𝑛 − 𝑣𝑛)‖

𝐿∞(𝐼1,Λ
𝑛 ;𝐿2(R3))

)︂
−→ 0 as Λ → ∞,

showing the convergence (4.56). Now, we prove (4.57) following the same procedure. We know

that 𝑢𝑛 is a solution to⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑢𝑛 + Δ𝑢𝑛 − |𝑢𝑛|4𝑢𝑛 = 0 on (𝑡𝑛 + Λℎ2

𝑛, 𝑇 ] × R3,

𝑢𝑛(0) = 𝜙 ∈ 𝐻̇1(R3).

Since 𝑢𝑛(𝑡, 𝑥) is a nonlinear concentrating solution, one has 𝑢𝑛(𝑡, 𝑥) = 1√
ℎ𝑛
𝑢
(︂
𝑡− 𝑡𝑛
ℎ2

𝑛

,
𝑥− 𝑥𝑛

ℎ𝑛

)︂
,

where 𝑢 satisfies

𝑖𝜕𝑠𝑢+ Δ𝑢− |𝑢|4𝑢 = 0 on R × R3.

However, using again the scattering theory we know that there exists a solution 𝑣 of the linear

problem ⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑠𝑣 + Δ𝑣 = 0 on R × R3,

𝑣(0) = 𝜙2

such that

‖∇𝑢(𝑠) − ∇𝑣(𝑠)‖𝐿2 −→ 0 as 𝑠 → +∞.

Let 𝑣𝑛(𝑡, 𝑥) = 1√
ℎ𝑛
𝑣
(︂

𝑡−𝑡𝑛

ℎ2
𝑛
, 𝑥−𝑥𝑛

ℎ𝑛

)︂
. It satisfies

⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑣𝑛 + Δ𝑣𝑛 = 0 on 𝐼3,Λ

𝑛 × R3,

𝑣𝑛(𝑡𝑛) = 1√
ℎ𝑛
𝜙2.
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We must show now that

lim sup
𝑛→∞

(︂
‖𝑢𝑛 − 𝑣𝑛‖

𝐿10(𝐼3,Λ
𝑛 ×R3) + ‖𝑢𝑛 − 𝑣𝑛‖

𝐿∞(𝐼3,Λ
𝑛 ;𝐻̇1(R3))

)︂
−→ 0 as Λ → ∞.

We will do the same procedure using

‖∇(𝑢𝑛 − 𝑣𝑛)(𝑡𝑛 + ℎ2
𝑛Λ)‖𝐿2 = ‖∇𝑢(Λ) − ∇𝑣(Λ)‖𝐿2 −→ 0 as Λ → ∞.

Define 𝑤𝑛 := 𝑢𝑛 − 𝑣𝑛. So, 𝑤𝑛 is a solution of the system⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑤𝑛 + Δ𝑤𝑛 = |𝑤𝑛 + 𝑣𝑛|4(𝑤𝑛 + 𝑣𝑛),

𝑤𝑛(𝑡𝑛 + ℎ2
𝑛Λ) = 𝑢𝑛(𝑡𝑛 + ℎ2

𝑛Λ) − 𝑣𝑛(𝑡𝑛 + ℎ2
𝑛Λ).

(4.59)

Using Lemma 4.3.1, one has

|||𝑤𝑛|||
𝐼3,Λ

𝑛
+ ‖∇𝑤𝑛‖

𝐿∞(𝐼3,Λ
𝑛 ;𝐿2(R3)) ≤ 𝑐

(︂
‖∇𝑤𝑛(𝑡𝑛 + ℎ2

𝑛Λ)‖𝐿2

+ ‖∇(𝑤𝑛 + 𝑣𝑛)4(𝑤𝑛 + 𝑣𝑛)‖
𝐿

10
7 (𝐼3,Λ

𝑛 ×R3)

)︂
.

Therefore,

|||𝑤𝑛|||
𝐼3,Λ

𝑛
+ ‖∇𝑤𝑛‖

𝐿∞(𝐼3,Λ
𝑛 ;𝐿2(R3)) ≤ 𝑐

(︂
‖∇𝑤𝑛(𝑡𝑛 + ℎ2

𝑛Λ)‖𝐿2 + ‖𝑤𝑛‖4
𝐿10(𝐼3,Λ

𝑛 ×R3)‖∇𝑤𝑛‖
𝐿

10
3 (𝐼3,Λ

𝑛 ×R3)

+ ‖𝑤𝑛‖4
𝐿10(𝐼3,Λ

𝑛 ×R3)‖∇𝑣𝑛‖
𝐿

10
3 (𝐼3,Λ

𝑛 ×R3)

+ ‖𝑣𝑛‖4
𝐿10(𝐼3,Λ

𝑛 ×R3)‖∇𝑤𝑛‖
𝐿

10
3 (𝐼3,Λ

𝑛 ×R3)

+ ‖𝑣𝑛‖4
𝐿10(𝐼3,Λ

𝑛 ×R3)‖∇𝑣𝑛‖
𝐿

10
3 (𝐼3,Λ

𝑛 ×R3)

)︂
.

By Lemma 4.9, we have

lim sup
𝑛→∞

‖𝑣𝑛‖
𝐿10(𝐼3,Λ

𝑛 ×R3) −→ 0 as Λ → ∞.

Hence,

lim sup
𝑛→∞

(︂
‖∇𝑤𝑛(𝑡𝑛 + ℎ2

𝑛Λ)‖𝐿2 + ‖𝑣𝑛‖
𝐿10(𝐼3,Λ

𝑛 ×R3)

)︂
−→ 0 as Λ → ∞.

Moreover, given 𝛿 > 0, there exists a real number Λ0 such that for all Λ ≥ Λ0 and for

any integer 𝑛 ≥ 𝑛0(Λ) the quantity ‖∇𝑤𝑛(𝑡𝑛 + ℎ2
𝑛Λ)‖𝐿2 + ‖𝑣𝑛‖

𝐿10(𝐼3,Λ
𝑛 ×R3) < 𝛿. Therefore,

choosing 𝛿 such that 𝛿4 < 1
2𝑐

, one has

|||𝑤𝑛|||
𝐼3,Λ

𝑛
+ ‖∇𝑤𝑛‖

𝐿∞(𝐼3,Λ
𝑛 ;𝐿2(R3)) ≤ 𝐶

(︂
‖∇𝑤𝑛(0)‖𝐿2 + |||𝑤𝑛|||5

𝐼3,Λ
𝑛

+ |||𝑤𝑛|||4
𝐼3,Λ

𝑛

+ ‖𝑣𝑛‖4
𝐿10(𝐼3,Λ

𝑛 ×R3)

)︂
.
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Denote

𝑀𝑛(𝑡) := ‖𝑤𝑛‖𝐿10([𝑡𝑛+ℎ2
𝑛Λ,𝑡]×R3) + ‖∇𝑤𝑛‖

𝐿
10
3 ([𝑡𝑛+ℎ2

𝑛Λ,𝑡]×R3)
+ ‖∇𝑤𝑛‖𝐿∞([𝑡𝑛+ℎ2

𝑛Λ,𝑡];𝐿2(R3))

with 𝑡 ∈ 𝐼3,Λ
𝑛 , we have

𝑀𝑛(𝑡) ≤ 𝑐
(︂

‖∇𝑤𝑛(𝑡𝑛 + ℎ2
𝑛Λ)‖𝐿2 + ‖𝑣𝑛‖

𝐿10(𝐼3,Λ
𝑛 ×R3) +

5∑︁
𝛼=2

𝑀𝑛(𝑡)𝛼
)︂
,

𝑡 ∈ 𝐼3,Λ
𝑛 . The bootstrap Lemma 4.3.2 enables us to deduce that, for any Λ ≥ Λ0 and 𝑛 ≥ 𝑛0(Λ)

𝑀𝑛(𝑡) ≤ 2𝑐
(︂

‖∇𝑤𝑛(𝑡𝑛 + ℎ2
𝑛Λ)‖𝐿2 + ‖𝑣𝑛‖

𝐿10(𝐼3,Λ
𝑛 ×R3)

)︂
−→ 0 as 𝑛 → ∞, ∀𝑡 ∈ 𝐼3,Λ

𝑛 .

Hence,

lim sup
𝑛→∞

(︂
‖𝑢𝑛 − 𝑣𝑛‖

𝐿10(𝐼3,Λ
𝑛 ×R3) + ‖∇(𝑢𝑛 − 𝑣𝑛)‖

𝐿∞(𝐼3,Λ
𝑛 ;𝐿2(R3))

)︂
−→ 0 as Λ → ∞.

showing (4.57).

4.3.2 Auxiliary results

From now on, we state and prove several results that will be paramount for the proof of

Theorem 4.10. Let us begin with the following lemma.

Lemma 4.3.3. There exists 𝛿0 > 0 such that, if v is a solution of linear Schrödinger equation
satisfying

|||𝑣|||R ≤ 𝛿0

and 𝑢 is a solution of the nonlinear Schrödinger equation satisfying 𝑣(𝑇, 𝑥) = 𝑢(𝑇, 𝑥), for
some 𝑇 ∈ [−∞,+∞], then

|||𝑢|||R ≤ 3|||𝑣|||R.

Proof of Lemma 4.3.3. Suppose that ‖∇(𝑢 − 𝑣)(𝑥,−∞)‖𝐿2 = 0 (the other cases can be

handled similarly). Let (𝑇𝑛)𝑛 be a sequence of numbers converging to +∞ as 𝑛 → +∞. Set

𝐽𝑛 = [−𝑇𝑛, 𝑇𝑛].

The difference 𝑤 = 𝑢− 𝑣 satisfies⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑤 + Δ𝑤 = |𝑤 + 𝑣|4(𝑤 + 𝑣) 𝑜𝑛 R,

𝑤(−𝑇𝑛) = (𝑢− 𝑣)(−𝑇𝑛).
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From Lemma 4.3.1, it follows that

|||𝑤|||𝐽𝑛 ≤ 𝐶
(︂

||∇(𝑢− 𝑣)(−𝑇𝑛)||𝐿2 + ‖∇(𝑤 + 𝑣)5‖
𝐿

10
7 (𝐽𝑛×R3)

)︂
≤ 𝐶

(︂
||∇(𝑢− 𝑣)(−𝑇𝑛)||𝐿2 + ‖𝑤 + 𝑣‖4

𝐿10(𝐽𝑛×R3)‖∇(𝑤 + 𝑣)‖
𝐿

10
3 (𝐽𝑛×R3)

)︂
≤ 𝐶

(︂
||∇(𝑢− 𝑣)(−𝑇𝑛)||𝐿2 + (‖𝑤‖4

𝐿10(𝐽𝑛×R3) + ‖𝑣‖4
𝐿10(𝐽𝑛×R3))‖∇(𝑤 + 𝑣)‖

𝐿
10
3 (𝐽𝑛×R3)

)︂
≤ 𝐶

(︂
|∇(𝑢− 𝑣)(−𝑇𝑛)||𝐿2 + ‖𝑤‖4

𝐿10(𝐽𝑛×R3)‖∇𝑤‖
𝐿

10
3 (𝐽𝑛×R3)

+ ‖𝑤‖4
𝐿10(𝐽𝑛×R3)‖∇𝑣‖

𝐿
10
3 (𝐽𝑛×R3)

+ ‖𝑣‖4
𝐿10(𝐽𝑛×R3)‖∇𝑤‖

𝐿
10
3 (𝐽𝑛×R3)

+ ‖𝑣‖4
𝐿10(𝐽𝑛×R3)‖∇𝑣‖

𝐿
10
3 (𝐽𝑛×R3)

)︂
.

Now, let 𝛿0 > 0 such that 𝛿4
0 <

1
2𝐶

, 𝛿5
0 <

𝑎0
2 and 𝛿0 < 1 (𝑎0 is the small constant from Lemma

4.3.2). Therefore,

‖𝑤‖𝐿10(𝐽𝑛×R3) + ‖∇𝑤‖
𝐿

10
3 (𝐽𝑛×R3)

≤ 2𝐶
(︂

‖∇(𝑢− 𝑣)(−𝑇𝑛)||𝐿2 + |||𝑤|||5𝐽𝑛

+ ‖𝑤‖4
𝐿10(𝐽𝑛×R3)‖∇𝑣‖

𝐿
10
3 (𝐽𝑛×R3)

+ |||𝑣|||5𝐽𝑛

)︂
≤ 2𝐶

(︂
‖∇(𝑢− 𝑣)(−𝑇𝑛)||𝐿2 + |||𝑤|||5𝐽𝑛

+ |||𝑤|||4𝐿10(𝐽𝑛×R3) + |||𝑣|||5𝐽𝑛

)︂
.

Using the fact that ‖∇(𝑢− 𝑣)(𝑥,−𝑇𝑛)‖𝐿2 → 0 as 𝑛 tends to infinity, we get, for large 𝑛,

‖∇(𝑢− 𝑣)(𝑥,−𝑇𝑛)‖𝐿2 + |||𝑣|||5𝐽𝑛
≤ 𝑎0.

Thus, for large 𝑛, the function 𝑀 : 𝑠 ↦→ |||𝑤|||[−𝑇𝑛,𝑠] satisfies the conditions of Lemma 4.3.2

on [−𝑇𝑛, 𝑇𝑛], so that

𝑀(𝑇𝑛) = |||𝑤|||𝐽𝑛 ≤ 4𝐶(‖∇(𝑢− 𝑣)(𝑥,−𝑇𝑛)‖𝐿2 + |||𝑣|||5𝐽𝑛
)

for 𝑛 large. Taking 𝑛 → +∞, we obtain

|||𝑤|||R ≤ 4𝐶|||𝑣|||5R.

Hence

|||𝑢|||R ≤ |||𝑤|||R + |||𝑣|||R ≤ (4𝐶|||𝑣|||4R + 1)|||𝑣|||R.

Since 2𝐶𝛿4
0 < 1, we conclude the proof of this lemma.
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With the previous lemma in hand, the following result holds.

Proposition 4.3.1. There exists 𝐶 > 0 such that

lim sup
𝑛→∞

|||𝑊 (𝑙)
𝑛 + 𝑤(𝑙)

𝑛 |||𝐼 ≤ 𝐶, (4.60)

for all 𝑙 ≥ 1.

Proof of Proposition 4.3.1. First of all, observe that, using (4.17),

lim sup
𝑛→∞

|||𝑤(𝑙)
𝑛 |||𝐼 ≤ 𝐶 lim sup

𝑛→∞
‖∇𝑤(𝑙)

𝑛 (0)‖𝐿2 ≤ 𝐶 lim sup
𝑛→∞

‖∇𝑣𝑛(0)‖𝐿2 ≤ 𝐶

for all 𝑙 ≥ 1. Thereby, to obtain (4.60), it suffices to prove that

lim sup
𝑛→∞

|||𝑊 (𝑙)
𝑛 |||𝐼 ≤ 𝐶,

for all 𝑙 ≥ 1. By definition, 𝑝(𝑗)
𝑛 and 𝑞(𝑗)

𝑛 satisfy

𝑝(𝑗)
𝑛 (𝑡, 𝑥) = 1√︁

ℎ
(𝑗)
𝑛

𝜙(𝑗)
(︂
𝑡− 𝑡(𝑗)

𝑛

(ℎ(𝑗)
𝑛 )2

,
𝑥− 𝑥(𝑗)

𝑛

ℎ
(𝑗)
𝑛

)︂

and

𝑞(𝑗)
𝑛 (𝑡, 𝑥) = 1√︁

ℎ
(𝑗)
𝑛

𝜓(𝑗)
(︂
𝑡− 𝑡(𝑗)

𝑛

(ℎ(𝑗)
𝑛 )2

,
𝑥− 𝑥(𝑗)

𝑛

ℎ
(𝑗)
𝑛

)︂
,

respectively, with 𝜙 and 𝜓 belonging to 𝐿∞(R; 𝐻̇1(R3)). Lemma 4.2.4 and Remark 4.2.2

ensure that, for all 𝑙,

‖𝑊 (𝑙)
𝑛 ‖10

𝐿10(𝐼×R3) →
𝑙∑︁

𝑗=1
‖𝜓(𝑗)‖10

𝐿10(R×R3) and ‖∇𝑊 (𝑙)
𝑛 ‖

10
3

𝐿
10
3 (𝐼×R3)

→
𝑙∑︁

𝑗=1
‖∇𝜓(𝑗)‖

10
3

𝐿
10
3 (R×R3)

as 𝑛 → ∞. So, we have to prove that the series ∑︀𝑗≥1 |||𝜓(𝑗)|||
10
3
R is convergent. To this end,

first note that (4.17) and Lemma 4.1.3 imply

∑︁
𝑗≥1

|||𝜙(𝑗)|||
10
3
R =

∑︁
𝑗≥1

|||𝑝(𝑗)
𝑛 |||

10
3

𝐼

≤ 𝐶
∑︁
𝑗≥1

‖∇𝑝(𝑗)
𝑛 (0)‖

10
3

𝐿2
𝑥

≤ 𝐶 (4.61)

where we have used the fact that the series ∑︀𝑗≥1 ‖∇𝑝(𝑗)
𝑛 (0)‖

10
3

𝐿2
𝑥

is convergent. Thus, if

|||𝜓(𝑗)|||R ≤ 𝐶|||𝜙(𝑗)|||R, (4.62)

for large enough 𝑗, then the series ∑︀𝑗≥1 |||𝜓(𝑗)|||
10
3
R is convergent. But, from (4.61), one has

that

|||𝜙(𝑗)|||R ≤ 𝛿0,
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for large enough 𝑗, since |||𝜙(𝑗)|||R is the general term of a convergent series, where 𝛿0 is as

in Lemma 4.3.3. Moreover,

‖∇(𝜓(𝑗) − 𝜙(𝑗))(−𝑡(𝑗)
𝑛 /(ℎ(𝑗)

𝑛 )2)‖𝐿2
𝑥

= ‖∇(𝑞(𝑗)
𝑛 − 𝑝(𝑗)

𝑛 )(0)‖𝐿2
𝑥

= 0.

Consequently, 𝜓(𝑗) and 𝜙(𝑗) satisfy the conditions of Lemma 4.3.3 for large 𝑗, then we get

(4.62) and, therefore, lim sup𝑛→∞ |||𝑊 (𝑙)
𝑛 |||R ≤ 𝐶, for all 𝑙 ≥ 1. This finishes the proof of

Proposition 4.3.1.

Let us present now a technical proposition.

Proposition 4.3.2. For every 𝜀 > 0, there exists an n-dependent finite partition of 𝐼 = [0, 𝑇 ]

[0, 𝑇 ] =
𝑝⋃︁

𝑖=1
𝐼 𝑖

𝑛 (4.63)

such that
lim sup

𝑛→∞
‖𝑊 (𝑙)

𝑛 + 𝑤(𝑙)
𝑛 ‖𝐿10(𝐼𝑖

𝑛×R3) ≤ 𝜀, (4.64)

for all 1 ≤ 𝑖 ≤ 𝑝, 𝑙 ≥ 1.

Proof of Proposition 4.3.2. Since

lim sup
𝑛→∞

‖𝑤(𝑙)
𝑛 ‖𝐿10(𝐼×R3) −→ 0 as 𝑙 → ∞,

given 𝜀 > 0 be a small fixed number, there exists 𝑙1 ≥ 1 such that

lim sup
𝑛→∞

‖𝑤(𝑙)
𝑛 ‖𝐿10(𝐼×R3) ≤ 𝜀

2 (4.65)

if 𝑙 ≥ 𝑙1. Moreover, by Lemma 4.2.4, there exists 𝑙2 ≥ 1 such that

lim sup
𝑛→∞

‖𝑊 (𝑙)
𝑛 ‖𝐿10(𝐼×R3) = lim sup

𝑛→∞

⃦⃦⃦⃦ 𝑙∑︁
𝑗=1

𝑞(𝑗)
𝑛

⃦⃦⃦⃦
𝐿10(𝐼×R3)

= lim sup
𝑛→∞

⃦⃦⃦⃦ 𝑙2∑︁
𝑗=1

𝑞(𝑗)
𝑛 +

𝑙∑︁
𝑗=𝑙2+1

𝑞(𝑗)
𝑛

⃦⃦⃦⃦
𝐿10(𝐼×R3)

≤ lim sup
𝑛→∞

‖𝑊 (𝑙2)
𝑛 ‖𝐿10(𝐼×R3) +

(︂ 𝑙∑︁
𝑗=𝑙2+1

‖𝜓(𝑗)‖10
𝐿10(R×R3)

)︂ 1
10
,(4.66)

for all 𝑙 ≥ 𝑙2 ≥ 1. Recall that the series ∑︀𝑗≥1 ‖𝜓(𝑗)‖10
𝐿10(R×R3) is convergent, so we may choose

𝑙2 such that (︂ ∑︁
𝑗≥𝑙2

‖𝜓(𝑗)‖10
𝐿10(R×R3)

)︂ 1
10

≤ 𝜀

4 . (4.67)
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Putting together estimates (4.65) and (4.67), it follows that

lim sup
𝑛→∞

‖𝑊 (𝑙)
𝑛 + 𝑤(𝑙)

𝑛 ‖𝐿10(𝐼×R3) ≤ lim sup
𝑛→∞

‖𝑊 (𝑙)
𝑛 ‖𝐿10(𝐼×R3) + lim sup

𝑛→∞
‖𝑤(𝑙)

𝑛 ‖𝐿10(𝐼×R3)

≤ lim sup
𝑛→∞

‖𝑊 (𝑙2)
𝑛 ‖𝐿10(𝐼×R3) +

(︂ 𝑙∑︁
𝑗=𝑙2+1

‖𝜓(𝑗)‖10
𝐿10(R×R3)

)︂ 1
10

+ 𝜀

2

≤ lim sup
𝑛→∞

‖𝑊 (𝑙3)
𝑛 ‖𝐿10(𝐼×R3) + 3𝜀

4 , (4.68)

for every 𝑙 ≥ 𝑙3 = sup(𝑙1, 𝑙2). Considering the natural number 𝑙3, the idea is to construct 𝑙3
partial finite partitions of 𝐼 for every 1 ≤ 𝑗 ≤ 𝑙3, and the global decomposition is obtained by

intersecting all the partial ones. Note that the partition (4.63) is needed for 𝑛 large. Therefore,

in the next construction, we take 𝑛 large enough.

For 𝑗 = 1, we split the interval [0, 𝑇 ] = 𝐼1,Λ
𝑛 ∪ 𝐼2,Λ

𝑛 ∪ 𝐼3,Λ
𝑛 according to Theorem 4.11.

i. For (𝐼1,Λ
𝑛 ): Using Theorem 4.11 and Lemma 4.9, there exists 𝑝(1)

𝑛 linear concentrating

solution such that

lim sup
𝑛→∞

‖𝑞(1)
𝑛 ‖

𝐿10(𝐼1,Λ
𝑛 ×R3) ≤ ‖𝑞(1)

𝑛 − 𝑝(1)
𝑛 ‖

𝐿10(𝐼1,Λ
𝑛 ×R3) + ‖𝑝(1)

𝑛 ‖
𝐿10(𝐼1,Λ

𝑛 ×R3) ≤ 𝜀

4𝑙3
.

ii. For (𝐼3,Λ
𝑛 ): Analogously,

lim sup
𝑛→∞

‖𝑞(1)
𝑛 ‖

𝐿10(𝐼3,Λ
𝑛 ×R3) ≤ ‖𝑞(1)

𝑛 − 𝑝(1)
𝑛 ‖

𝐿10(𝐼3,Λ
𝑛 ×R3) + ‖𝑝(1)

𝑛 ‖
𝐿10(𝐼3,Λ

𝑛 ×R3) ≤ 𝜀

4𝑙3
.

iii. For (𝐼2,Λ
𝑛 ): We have 𝐼2,Λ

𝑛 = [𝑡(1)
𝑛 − (ℎ(1)

𝑛 )2Λ, 𝑡(1)
𝑛 + (ℎ(1)

𝑛 )2Λ]. Therefore,

‖𝑞(1)
𝑛 ‖

𝐿10(𝐼2,Λ
𝑛 ×R3) = ‖𝜓(1)‖𝐿10([−Λ,Λ]×R3).

Once Λ is fixed, we may divide the interval [−Λ,Λ] in a finite number of intervals 𝐼(𝑖),Λ such

that

‖𝜓(1)‖𝐿10(𝐼(𝑖),Λ×R3) ≤ 𝜀

4𝑙3
.

Therefore

‖𝑞(1)
𝑛 ‖

𝐿10(𝐼(𝑖),Λ
𝑛 ×R3) = ‖𝜓(1)‖𝐿10(𝐼(𝑖),Λ×R3) ≤ 𝜀

4𝑙3
.

This gives the decomposition for 𝑗 = 1. Analogously, we construct a partial decomposition for

every 𝑗 = 2, ..., 𝑙3. Finally, the global decomposition is obtained by intersecting all the partial
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ones. Hence,

lim sup
𝑛→∞

‖𝑊 (𝑙)
𝑛 + 𝑤(𝑙)

𝑛 ‖𝐿10(𝐼𝑖
𝑛×R3) ≤ lim sup

𝑛→∞
‖𝑊 (𝑙3)

𝑛 ‖𝐿10(𝐼𝑖
𝑛×R3) + 3𝜀

4

≤ lim sup
𝑛→∞

⃦⃦⃦⃦ 𝑙3∑︁
𝑗=1

𝑞(𝑗)
𝑛

⃦⃦⃦⃦
𝐿10(𝐼𝑖

𝑛×R3)
+ 3𝜀

4

≤ lim sup
𝑛→∞

𝑙3∑︁
𝑗=1

‖𝑞(𝑗)
𝑛 ‖𝐿10(𝐼𝑖

𝑛×R3) + 3𝜀
4

≤
𝑙3∑︁

𝑗=1

𝜀

4𝑙3
+ 3𝜀

4 = 𝜀.

The Proposition 4.3.2 is proven.

The next technical lemma will be important for the next proposition.

Lemma 4.3.4. Let ℬ be a compact set of R × R3. For every 𝜀 > 0, there exists a constant
𝐶(𝜀) such that

‖∇𝑣‖𝐿2(ℬ) ≤ 𝐶(𝜀)‖𝑣‖𝐿10(R×R3) + 𝜀‖∇𝑣(0)‖𝐿2(R3), (4.69)

for all solutions 𝑣 of the linear Schrödinger equation.

Proof of Lemma 4.3.4. We argue by contradiction. Suppose that (4.69) does not hold. Then,

there exist 𝜀 > 0 and a sequence (𝑣𝑚) of solutions of the linear Schrödinger equation such

that

‖∇𝑣𝑚‖𝐿2(ℬ) > 𝑚‖𝑣𝑚‖𝐿10(R×R3) + 𝜀‖∇𝑣𝑚(0)‖𝐿2(R3).

Define 𝑣𝑚 := 𝑣𝑚/‖∇𝑣𝑚‖𝐿2(ℬ). One has

1 > 𝑚‖𝑣𝑚‖𝐿10(R×R3) + 𝜀‖∇𝑣𝑚(0)‖𝐿2(R3).

Note that ‖∇𝑣𝑚(0)‖𝐿2(R3) is bounded and

𝑚‖𝑣𝑚‖𝐿10(R×R3) < −𝜀‖∇𝑣𝑚(0)‖𝐿2(R3) + 1,

thus

‖𝑣𝑚‖𝐿10(R×R3) −→ 0 as 𝑚 → ∞. (4.70)

By Strichartz estimates,

‖∇𝑣𝑚‖
𝐿

10
3 (R×R3)

≤ 𝐶‖∇𝑣𝑚(0)‖𝐿2(R3).
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So, we conclude that ‖∇𝑣𝑚‖
𝐿

10
3 (R×R3)

is also bounded. In view of (4.70), there exists a

subsequence of (𝑣𝑚), also denoted by (𝑣𝑚), such that

∇𝑣𝑚 ⇀ 0 weakly in 𝐿
10
3 (R × R3) as 𝑚 → ∞. (4.71)

We need the following lemma (see Lemma 3.23 in (MERLE; VEGA, 1998) for two spatial

dimensions).

Lemma 4.3.5. Let (𝜙𝑚) and 𝜙 be in 𝐿2(R3). The following statements are equivalent.

i) 𝜙𝑚 ⇀ 𝜙 weakly in 𝐿2(R3);

ii) 𝑒𝑖𝑡Δ𝜙𝑚 ⇀ 𝑒𝑖𝑡Δ𝜙 in 𝐿 10
3 (R × R3).

Continuing with the proof of Lemma 4.3.4, we set 𝜓𝑚 = ∇𝑣𝑚(0, .). One has

‖𝑒𝑖𝑡Δ𝜓𝑚‖𝐿2(ℬ) = ‖𝑒𝑖𝑡Δ∇𝑣𝑚(0)‖𝐿2(ℬ)

=
‖∇𝑣𝑚(0)‖𝐿2(ℬ)

‖∇𝑣𝑚(𝑡)‖𝐿2(ℬ)

= 1.

But, up to a subsequence,

𝜓𝑚 ⇀ 0 in 𝐿2(R3) as 𝑚 → ∞.

This fact contradicts the compactness of the operator 𝜓 ↦→ 𝑈(𝑡)𝜓 from 𝐿2(R3) to 𝐿2
𝑙𝑜𝑐(R4).

Therefore, (4.69) holds.

The previous lemma ensures the following proposition, which guarantees the smallness of

𝛿(𝑙)
𝑛 , for large 𝑛 and 𝑙, where

𝛿(𝑙)
𝑛 =

⃦⃦⃦⃦
∇
[︂
𝛽(𝑊 (𝑙)

𝑛 + 𝑤(𝑙)
𝑛 ) − 𝛽(𝑊 (𝑙)

𝑛 )
]︂⃦⃦⃦⃦

𝐿
10
7 (𝐼×R3)

+
⃦⃦⃦⃦
∇
(︂ 𝑙∑︁

𝑗=1
𝛽(𝑞(𝑗)

𝑛 ) − 𝛽(𝑊 (𝑙)
𝑛 )

)︂⃦⃦⃦⃦
𝐿

10
7 (𝐼×R3)

.

Proposition 4.3.3. We have that

lim sup
𝑛→∞

𝛿(𝑙)
𝑛 −→ 0 as 𝑙 → ∞. (4.72)

Proof of Proposition 4.3.3. We split the proof into two parts. The first one is devoted to

proving that for every 𝑙 ≥ 1, one has⃦⃦⃦⃦
∇
(︂ 𝑙∑︁

𝑗=1
𝛽(𝑞(𝑗)

𝑛 ) − 𝛽(𝑊 (𝑗)
𝑛 )

)︂⃦⃦⃦⃦
𝐿

10
7 (𝐼×R3)

−→ 0 as 𝑛 → ∞. (4.73)
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In the second part, we shall prove that

lim sup
𝑛→∞

‖∇(𝛽(𝑊 (𝑙)
𝑛 + 𝑤(𝑙)

𝑛 ) − 𝛽(𝑊 (𝑙)
𝑛 ))‖

𝐿
10
7 (𝐼×R3)

−→ 0 as 𝑙 → ∞. (4.74)

Part 1. Note that ⃦⃦⃦⃦
∇
(︂ 𝑙∑︁

𝑗=1
𝛽(𝑞(𝑗)

𝑛 ) − 𝛽(𝑊 (𝑗)
𝑛 )

)︂⃦⃦⃦⃦
𝐿

10
7 (𝐼×R3)

≤ 𝐶𝐷𝑛,

i.e., the left-hand side of (4.73) is bounded by a sum of quantities

𝐷𝑛 = ‖∇(𝑞(𝑗1)
𝑛 𝑞(𝑗2)

𝑛 𝑞(𝑗3)
𝑛 𝑞(𝑗4)

𝑛 𝑞(𝑗5)
𝑛 )‖

𝐿
10
7 (𝐼×R3)

,

with at least two differents 𝑗𝑘, for 𝑘 = 1, 2, 3, 4, 5. Arguing in the same way as in the proof of

Lemma 4.2.4, we want to prove that

𝐷𝑛 −→ 0 as 𝑛 → ∞.

Assuming, for example, 𝑗1 ̸= 𝑗2, we have

𝐷
10
7

𝑛 =
∫︁
R

∫︁
R3

|∇𝑞(𝑗1)
𝑛 𝑞(𝑗2)

𝑛 (𝑞(𝑗𝑘)
𝑛 )3|

10
7 𝑑𝑥𝑑𝑡

=
∫︁
R

∫︁
R3

|∇(𝑞(𝑗1)
𝑛 𝑞(𝑗2)

𝑛 )(𝑞(𝑗𝑘)
𝑛 )3 + 𝑞(𝑗1)

𝑛 𝑞(𝑗2)
𝑛 ∇(𝑞(𝑗𝑘)

𝑛 )3|
10
7 𝑑𝑥𝑑𝑡

≤ 𝐶
∫︁
R

∫︁
R3

|∇𝑞(𝑗1)
𝑛 𝑞(𝑗2)

𝑛 |
10
7 |𝑞(𝑗𝑘)

𝑛 |
30
7 𝑑𝑥𝑑𝑡

+ 𝐶
∫︁
R

∫︁
R3

|𝑞(𝑗1)
𝑛 𝑞(𝑗2)

𝑛 |
10
7 |∇(𝑞(𝑗𝑘)

𝑛 )3|
10
7 𝑑𝑥𝑑𝑡. (4.75)

To bound the first integral on the right-hand side of the inequality above, use Hölder’s ine-

quality to get

∫︁
R

∫︁
R3

|∇𝑞(𝑗1)
𝑛 𝑞(𝑗2)

𝑛 |
10
7 |𝑞(𝑗𝑘)

𝑛 |
30
7 𝑑𝑥𝑑𝑡 ≤ 𝐶

⎛⎝∫︁
R

∫︁
R3

|∇𝑞(𝑗1)
𝑛 𝑞(𝑗2)

𝑛 |
10
4 𝑑𝑥𝑑𝑡

⎞⎠ 4
7
⎛⎝∫︁

R

∫︁
R3

|𝑞(𝑗𝑘)
𝑛 |10 𝑑𝑥𝑑𝑡

⎞⎠ 3
7

≤ 𝐶‖𝑞(𝑗𝑘)
𝑛 ‖3

𝐿10(R4)

⎛⎝∫︁
R

∫︁
R3

|∇𝑞(𝑗1)
𝑛 𝑞(𝑗2)

𝑛 |
10
4 𝑑𝑥𝑑𝑡

⎞⎠ 4
7

≤ 𝐶

⎛⎝∫︁
R

∫︁
R3

|∇𝑞(𝑗1)
𝑛 𝑞(𝑗2)

𝑛 |
5
2 𝑑𝑥𝑑𝑡

⎞⎠ 4
7

.

This last term can be written as

1
(ℎ(𝑗1)

𝑛 ℎ
(𝑗2)
𝑛 ) 5

7

⎛⎝∫︁
R

∫︁
R3

⃒⃒⃒⃒
⃒⃒∇𝑥𝜓

(𝑗1)

⎛⎝𝑡− 𝑡(𝑗1)
𝑛

(ℎ(𝑗1)
𝑛 )2

,
𝑥− 𝑥(𝑗1)

𝑛

ℎ
(𝑗1)
𝑛

⎞⎠𝜓(𝑗2)

⎛⎝𝑡− 𝑡(𝑗2)
𝑛

(ℎ(𝑗2)
𝑛 )2

,
𝑥− 𝑥(𝑗2)

𝑛

ℎ
(𝑗2)
𝑛

⎞⎠⃒⃒⃒⃒⃒⃒
5
2

𝑑𝑥𝑑𝑡

⎞⎠ 4
7

.
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The orthogonality of [ℎ(𝑗1)
𝑛 , 𝑥(𝑗1), 𝑡(𝑗1)] and [ℎ(𝑗2)

𝑛 , 𝑥(𝑗2), 𝑡(𝑗2)] means that

either ℎ
(𝑗1)
𝑛

ℎ
(𝑗2)
𝑛

+ ℎ(𝑗2)
𝑛

ℎ
(𝑗1)
𝑛

−→ +∞ or ℎ(𝑗1)
𝑛 = ℎ(𝑗2)

𝑛 and
⃒⃒⃒⃒
𝑡(𝑗1)
𝑛 − 𝑡(𝑗2)

𝑛

ℎ
(𝑗1)
𝑛

2

⃒⃒⃒⃒
+
⃒⃒⃒⃒
𝑥(𝑗1)

𝑛 − 𝑥(𝑗2)
𝑛

ℎ
(𝑗1)
𝑛

⃒⃒⃒⃒
−→ +∞,

as 𝑛 → ∞. Without loss of generality, we may assume 𝜓𝑗1 , 𝜓𝑗2 to be continuous and compactly

supported and analyze the possible cases:

∙ If ℎ
(𝑗1)
𝑛

ℎ
(𝑗2)
𝑛

+ ℎ
(𝑗2)
𝑛

ℎ
(𝑗1)
𝑛

−→ +∞, then either ℎ
(𝑗1)
𝑛

ℎ
(𝑗2)
𝑛

−→ +∞ or ℎ
(𝑗2)
𝑛

ℎ
(𝑗1)
𝑛

−→ +∞. We assume
ℎ

(𝑗1)
𝑛

ℎ
(𝑗2)
𝑛

−→ +∞ (the other case is analogous).

Using the change of variables 𝑡 = 𝑠(ℎ(𝑗2)
𝑛 )2 + 𝑡(𝑗2)

𝑛 , 𝑥 = 𝑦ℎ(𝑗2)
𝑛 + 𝑥(𝑗2)

𝑛 , we have

1
(ℎ(𝑗1)

𝑛 ℎ
(𝑗2)
𝑛 ) 5

7

⎛⎝∫︁
R4

⃒⃒⃒⃒
⃒⃒∇𝑥𝜓

(𝑗1)

⎛⎝𝑡(𝑗2)
𝑛 − 𝑡(𝑗1)

𝑛

(ℎ(𝑗1)
𝑛 )2

+ 𝑠
(ℎ(𝑗2)

𝑛 )2

(ℎ(𝑗1)
𝑛 )2

,
𝑥(𝑗2)

𝑛 − 𝑥(𝑗1)
𝑛

ℎ
(𝑗1)
𝑛

+ 𝑦
ℎ(𝑗2)

𝑛

ℎ
(𝑗1)
𝑛

⎞⎠𝜓(𝑗2)(𝑠, 𝑦)

⃒⃒⃒⃒
⃒⃒

5
2

𝑑𝑦𝑑𝑠(ℎ(𝑗2)
𝑛 )5

⎞⎠ 4
7

= (ℎ(𝑗2)
𝑛 ) 5

7

(ℎ(𝑗1)
𝑛 ) 5

7

⎛⎝∫︁
R4

⃒⃒⃒⃒
⃒⃒∇𝑦𝜓

(𝑗1)

⎛⎝𝑡(𝑗2)
𝑛 − 𝑡(𝑗1)

𝑛

(ℎ(𝑗1)
𝑛 )2

+ 𝑠
(ℎ(𝑗2)

𝑛 )2

(ℎ(𝑗1)
𝑛 )2

,
𝑥(𝑗2)

𝑛 − 𝑥(𝑗1)
𝑛

ℎ
(𝑗1)
𝑛

+ 𝑦
ℎ(𝑗2)

𝑛

ℎ
(𝑗1)
𝑛

⎞⎠𝜓(𝑗2)(𝑠, 𝑦)

⃒⃒⃒⃒
⃒⃒

5
2

𝑑𝑦𝑑𝑠

⎞⎠ 4
7

→ 0

as 𝑛 → ∞, since that 𝜓𝑗1 , 𝜓𝑗2 are continuous and compactly supported.

∙ If ℎ(𝑗1)
𝑛 = ℎ(𝑗2)

𝑛 , with the same change of variables as above, we get

⎛⎝∫︁
R

∫︁
R3

⃒⃒⃒⃒
⃒⃒∇𝑦𝜓

(𝑗1)

⎛⎝𝑡(𝑗2)
𝑛 − 𝑡(𝑗1)

𝑛

(ℎ(𝑗1)
𝑛 )2

+ 𝑠
(ℎ(𝑗2)

𝑛 )2

(ℎ(𝑗1)
𝑛 )2

,
𝑥(𝑗2)

𝑛 − 𝑥(𝑗1)
𝑛

ℎ
(𝑗1)
𝑛

+ 𝑦
ℎ(𝑗2)

𝑛

ℎ
(𝑗1)
𝑛

⎞⎠𝜓(𝑗2)(𝑠, 𝑦)

⃒⃒⃒⃒
⃒⃒

5
2

𝑑𝑦𝑑𝑠

⎞⎠ 4
7

.

Since
⃒⃒⃒⃒

𝑡
(𝑗1)
𝑛 −𝑡

(𝑗2)
𝑛

ℎ
(𝑗1)
𝑛

2

⃒⃒⃒⃒
+
⃒⃒⃒⃒

𝑥
(𝑗1)
𝑛 −𝑥

(𝑗2)
𝑛

ℎ
(𝑗1)
𝑛

⃒⃒⃒⃒
−→ +∞ as 𝑛 → ∞, the previous integral tends to 0, which

ensures that the first integral on the right-hand side of (4.75) converges to 0.

Now, we examine the second integral on the right-hand side of (4.75). Again, Hölder’s

inequality ensures that
∫︁
R

∫︁
R3

|𝑞(𝑗1)
𝑛 𝑞(𝑗2)

𝑛 |
10
7 |∇(𝑞(𝑗𝑘)

𝑛 )3|
10
7 𝑑𝑥𝑑𝑡 ≤ 𝐶

∫︁
R

∫︁
R3

|𝑞(𝑗1)
𝑛 𝑞(𝑗2)

𝑛 |
10
7 |(𝑞(𝑗𝑘)

𝑛 )2∇𝑞(𝑗𝑘)
𝑛 |

10
7 𝑑𝑥𝑑𝑡

≤ 𝐶
∫︁
R

∫︁
R3

|𝑞(𝑗1)
𝑛 𝑞(𝑗2)

𝑛 |
10
7 |𝑞(𝑗𝑘)

𝑛 |
20
7 |∇𝑞(𝑗𝑘)

𝑛 |
10
7 𝑑𝑥𝑑𝑡

≤ 𝐶‖𝑞(𝑗𝑘)
𝑛 ‖

20
7

𝐿10(R4)‖∇𝑞(𝑗𝑘)
𝑛 ‖

10
7

𝐿
10
3 (R4)

(︂ ∫︁
R

∫︁
R3

|𝑞(𝑗1)
𝑛 𝑞(𝑗2)

𝑛 |5 𝑑𝑥𝑑𝑡
)︂ 2

7

≤ 𝐶
(︂ ∫︁

R

∫︁
R3

|𝑞(𝑗1)
𝑛 𝑞(𝑗2)

𝑛 |5 𝑑𝑥𝑑𝑡
)︂ 2

7
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and (︂ ∫︁
R

∫︁
R3

|𝑞(𝑗1)
𝑛 𝑞(𝑗2)

𝑛 |5 𝑑𝑥𝑑𝑡
)︂ 2

7

= 1
(ℎ(𝑗1)

𝑛 ℎ
(𝑗2)
𝑛 ) 5

7

⎛⎝∫︁
R

∫︁
R3

⃒⃒⃒⃒
⃒⃒𝜓(𝑗1)

⎛⎝𝑡− 𝑡(𝑗1)
𝑛

(ℎ(𝑗1)
𝑛 )2

,
𝑥− 𝑥(𝑗1)

𝑛

ℎ
(𝑗1)
𝑛

⎞⎠𝜓(𝑗2)

⎛⎝𝑡− 𝑡(𝑗2)
𝑛

(ℎ(𝑗2)
𝑛 )2

,
𝑥− 𝑥(𝑗2)

𝑛

ℎ
(𝑗2)
𝑛

⎞⎠⃒⃒⃒⃒⃒⃒
5

𝑑𝑥𝑑𝑡

⎞⎠ 2
7

.

Analogously to the previous case, one concludes that the second integral on the right-hand

side of (4.75) converges to 0 as well, which shows the convergence (4.73).

Part 2. By Leibnitz formula and Hölder’s inequality, we get

‖∇(𝛽(𝑊 (𝑙)
𝑛 + 𝑤(𝑙)

𝑛 ) − 𝛽(𝑊 (𝑙)
𝑛 ))‖

𝐿
10
7 (𝐼×R3)

≤ 𝐶
(︂

‖𝑤(𝑙)
𝑛 ‖𝐿10(𝐼×R3)|||𝑊 (𝑙)

𝑛 + 𝑤(𝑙)
𝑛 |||4𝐼

+ |||𝑊 (𝑙)
𝑛 |||3𝐼‖𝑊 (𝑙)

𝑛 ∇𝑤(𝑙)
𝑛 ‖

𝐿
5
2 (𝐼×R3)

)︂
.

Since that (4.16) and (4.60) hold, if we prove that

lim sup
𝑛→∞

‖𝑊 (𝑙)
𝑛 ∇𝑤(𝑙)

𝑛 ‖
𝐿

5
2 (𝐼×R3)

−→ 0 as 𝑙 → ∞, (4.76)

the proof of (4.74) is complete. Indeed, the convergence of the series ∑︀𝑗≥1 ‖𝜓(𝑗)‖10
𝐿10(R×R3)

implies that, for every 𝜀 > 0, there exists 𝑙(𝜀) such that
∑︁

𝑗≥𝑙(𝜀)
‖𝜓(𝑗)‖10

𝐿10(R×R3) ≤ 𝜀10. (4.77)

In particular, using Hölder’s inequality with 𝑝 = 4 and 𝑞 = 4
3 ,

lim sup
𝑛→∞

⃦⃦⃦⃦(︂ 𝑙∑︁
𝑗=𝑙(𝜀)

𝑞(𝑗)
𝑛

)︂
∇𝑤(𝑙)

𝑛

⃦⃦⃦⃦10

𝐿
5
2 (𝐼×R3)

= lim sup
𝑛→∞

⃦⃦⃦⃦ 𝑙∑︁
𝑗=𝑙(𝜀)

𝑞(𝑗)
𝑛

⃦⃦⃦⃦10

𝐿10(𝐼×R3)
lim sup

𝑛→∞
‖∇𝑤(𝑙)

𝑛 ‖10
𝐿

10
3 (𝐼×R3)

≤
∑︁

𝑗≥𝑙(𝜖)
‖𝜓(𝑗)‖10

𝐿10(R×R3) lim sup
𝑛→∞

‖∇𝑤(𝑙)
𝑛 ‖10

𝐿
10
3 (𝐼×R3)

≤ 𝐶𝜀10,

where the last inequality follows from the fact that ‖∇𝑤(𝑙)
𝑛 ‖10

𝐿
10
3 (𝐼×R3)

is uniformly bounded,

by Strichartz estimates. Therefore,

lim sup
𝑛→∞

‖𝑊 (𝑙)
𝑛 ∇𝑤(𝑙)

𝑛 ‖
𝐿

5
2 (𝐼×R3)

= lim sup
𝑛→∞

⃦⃦⃦⃦(︂ 𝑙∑︁
𝑗=1

𝑞(𝑗)
𝑛

)︂
∇𝑤(𝑙)

𝑛

⃦⃦⃦⃦
𝐿

5
2 (𝐼×R3)

≤ lim sup
𝑛→∞

⃦⃦⃦⃦(︂ 𝑙(𝜀)∑︁
𝑗=1

𝑞(𝑗)
𝑛 +

𝑙∑︁
𝑗=𝑙(𝜀)

𝑞(𝑗)
𝑛

)︂
∇𝑤(𝑙)

𝑛

⃦⃦⃦⃦
𝐿

5
2 (𝐼×R3)

≤ lim sup
𝑛→∞

⃦⃦⃦⃦(︂ 𝑙(𝜀)∑︁
𝑗=1

𝑞(𝑗)
𝑛

)︂
∇𝑤(𝑙)

𝑛

⃦⃦⃦⃦
𝐿

5
2 (𝐼×R3)

+ lim sup
𝑛→∞

⃦⃦⃦⃦(︂ 𝑙∑︁
𝑗=𝑙(𝜀)

𝑞(𝑗)
𝑛

)︂
∇𝑤(𝑙)

𝑛

⃦⃦⃦⃦
𝐿

5
2 (𝐼×R3)

≤ lim sup
𝑛→∞

‖𝑊 (𝑙(𝜀))
𝑛 ∇𝑤(𝑙)

𝑛 ‖
𝐿

5
2 (𝐼×R3)

+ 𝐶𝜀,
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for 𝑙 ≥ 𝑙(𝜀). Hence, our problem is reduced to prove that

lim sup
𝑛→∞

‖𝑊 (𝑙0)
𝑛 ∇𝑤(𝑙)

𝑛 ‖
𝐿

5
2 (𝐼×R3)

−→ 0 as 𝑙 → ∞

for every fixed 𝑙0 ≥ 1. Since 𝑊 (𝑙0)
𝑛 = ∑︀𝑙0

𝑗=1 𝑞
(𝑗)
𝑛 , we have to show that

lim sup
𝑛→∞

‖𝑞(𝑗)
𝑛 ∇𝑤(𝑙)

𝑛 ‖
𝐿

5
2 (𝐼×R3)

−→ 0 as 𝑙 → ∞, (4.78)

for every 𝑙0 ≥ 𝑗 ≥ 1, i.e.,

lim sup
𝑛→∞

⃦⃦⃦⃦ 1√︁
ℎ

(𝑗)
𝑛

𝜓(𝑗)
(︂
𝑡− 𝑡(𝑗)

𝑛

(ℎ(𝑗)
𝑛 )2

,
𝑥− 𝑥(𝑗)

𝑛

ℎ
(𝑗)
𝑛

)︂
∇𝑤(𝑙)

𝑛

⃦⃦⃦⃦
𝐿

5
2 (𝐼×R3)

−→ 0 as 𝑙 → ∞.

To this end, change variables to 𝑦 = 𝑥− 𝑥(𝑗)
𝑛

ℎ
(𝑗)
𝑛

, 𝑠 = 𝑡− 𝑡(𝑗)
𝑛

(ℎ(𝑗)
𝑛 )2

to get

‖𝑞(𝑗)
𝑛 ∇𝑤(𝑙)

𝑛 ‖
𝐿

5
2 (𝐼×R3)

= ‖𝜓(𝑗)∇𝑤̃(𝑙)
𝑛 ‖

𝐿
5
2 (R×R3)

,

where

𝑤̃(𝑙)
𝑛 (𝑠, 𝑦) =

√︁
ℎ

(𝑗)
𝑛 𝑤(𝑙)

𝑛 (𝑡(𝑗)
𝑛 + (ℎ(𝑗)

𝑛 )2𝑠, 𝑥(𝑗)
𝑛 + ℎ(𝑗)

𝑛 𝑦).

Observe that, by Lemma 4.1.3,

‖𝑤(𝑙)
𝑛 ‖𝐿10(𝐼×R3) = ‖𝑤̃(𝑙)

𝑛 ‖𝐿10(R×R3) and ‖∇𝑤(𝑙)
𝑛 ‖

𝐿
10
3 (𝐼×R3)

= ‖∇𝑤̃(𝑙)
𝑛 ‖

𝐿
10
3 (R×R3)

.

By density, we can take 𝜓(𝑗) ∈ 𝐶∞
0 (R4). Using Hölder’s inequality, one sees that it is enough

to prove that

lim sup
𝑛→∞

‖∇𝑤̃(𝑙)
𝑛 ‖𝐿2(ℬ) −→ 0 as 𝑙 → ∞, (4.79)

where ℬ is a fixed compact of R × R3. Indeed, let 𝜈𝑙
𝑛 be the function defined by

𝜈𝑙
𝑛(𝑡, 𝑥) =

⎧⎪⎪⎨⎪⎪⎩
𝑤̃(𝑙)

𝑛 (𝑡, 𝑥), if (𝑡, 𝑥) ∈ ℬ,

0, otherwise.

Then, 𝜈𝑙
𝑛 is a solution for the linear Schrödinger equation and we get, by Strichartz estimates,

lim sup
𝑛→∞

‖𝜓(𝑗)∇𝑤̃(𝑙)
𝑛 ‖

𝐿
5
2 (R×R3)

≤ lim sup
𝑛→∞

‖𝜓(𝑗)∇𝑤̃(𝑙)
𝑛 ‖

𝐿
5
2 (ℬ)

≤ lim sup
𝑛→∞

‖𝜓(𝑗)‖𝐿10(ℬ)‖∇𝑤̃(𝑙)
𝑛 ‖

𝐿
10
3 (ℬ)

≤ lim sup
𝑛→∞

‖𝜓(𝑗)‖𝐿10(ℬ)‖∇𝜈(𝑙)
𝑛 ‖

𝐿
10
3 (ℬ)

≤ lim sup
𝑛→∞

‖𝜓(𝑗)‖𝐿10(ℬ)‖∇𝜈(𝑙)
𝑛 ‖

𝐿
10
3 (R4)

≤ lim sup
𝑛→∞

‖𝜓(𝑗)‖𝐿10(ℬ)‖∇𝜈(𝑙)
𝑛 ‖𝐿2(R3)

≤ lim sup
𝑛→∞

‖𝜓(𝑗)‖𝐿10(ℬ)‖∇𝜈(𝑙)
𝑛 ‖𝐿2(ℬ)

≤ lim sup
𝑛→∞

‖𝜓(𝑗)‖𝐿10(ℬ)‖∇𝑤̃(𝑙)
𝑛 ‖𝐿2(ℬ).
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Applying Lemma 4.3.4 to 𝑤̃(𝑙)
𝑛 gives

‖∇𝑤̃(𝑙)
𝑛 ‖𝐿2(ℬ) ≤ 𝐶(𝜀)‖𝑤̃(𝑙)

𝑛 ‖𝐿10(R×R3) + 𝜀‖∇𝑤̃(𝑙)
𝑛 (0)‖𝐿2(R3).

The invariance of the 𝐿10 and 𝐻̇1 norms by the change of variables gives

‖∇𝑤̃(𝑙)
𝑛 ‖𝐿2(ℬ) ≤ 𝐶(𝜀)‖𝑤(𝑙)

𝑛 ‖𝐿10(𝐼×R3) + 𝜀‖∇𝑤(𝑙)
𝑛 (0)‖𝐿2(R3).

So, it follows that

lim sup
𝑙→∞

‖∇𝑤̃(𝑙)
𝑛 ‖𝐿2(ℬ) ≤ 𝐶𝜀.

Since 𝜀 is arbitrary, (4.79) holds. This concludes the proof of Proposition 4.3.3.

4.3.3 Proof of the nonlinear decomposition

We finally prove Theorem 4.10 following the ideas introduced in (KERAANI, 2001). First of

all, note that the nonlinear profile 𝑞(𝑗)
𝑛 is globally well-defined. Indeed, for a bounded sequence

(𝜙𝑛) in 𝐻̇(R3) such that lim sup𝑛→∞ ‖𝜙𝑛‖𝐻̇1 < 𝜆0 (where 𝜆0 is given by Definition 4.1), and

(𝑣𝑛) (respectively (𝑢𝑛)) the sequence of solutions to the linear equation (respectively to the

nonlinear equation) with initial data 𝜙𝑛, Theorem 4.8 provides a decomposition of 𝑣𝑛 for a

subsequence (still denoted as 𝑣𝑛) in the form

𝑣𝑛(𝑡, 𝑥) =
𝑙∑︁

𝑗=1
𝑝(𝑗)

𝑛 (𝑡, 𝑥) + 𝑤(𝑙)
𝑛 (𝑡, 𝑥)

where 𝑝(𝑗)
𝑛 is a family of linear concentrating solutions associated with [𝜙(𝑗), ℎ(𝑗), 𝑥(𝑗), 𝑡(𝑗)]and

the remainder term 𝑤(𝑙)
𝑛 satisfies

lim sup
𝑛→∞

‖𝑤(𝑙)
𝑛 ‖𝐿∞

𝑡 𝐿6
𝑥∩𝐿10

𝑡 𝐿10
𝑥

−→ 0 as 𝑙 → ∞,

for all 𝑇 > 0 and (ℎ(𝑗), 𝑥(𝑗), 𝑡(𝑗)) ⊥ (ℎ(𝑘), 𝑥(𝑘), 𝑡(𝑘)), for any 𝑗 ̸= 𝑘. Also, the following almost

orthogonality identity holds

‖∇𝑣𝑛‖2
𝐿2 =

𝑙∑︁
𝑗=1

‖∇𝑝(𝑗)
𝑛 ‖2

𝐿2 + ‖∇𝑤(𝑙)
𝑛 ‖2

𝐿2 + 𝑜(1) as 𝑛 → ∞.

Let 𝑞(𝑗)
𝑛 be the nonlinear concentrating solution associated to 𝑝(𝑗)

𝑛 for every 𝑗 ≥ 1. Observe

that, given the almost orthogonality identity,

‖∇𝑞(𝑗)
𝑛 (0)‖2

𝐿2 = ‖∇𝑝(𝑗)
𝑛 (0)‖2

𝐿2 ≤ lim sup
𝑛→∞

‖∇𝑣𝑛(0)‖2
𝐿2 ≤ ‖∇𝜙𝑛‖2

𝐿2 ≤ 𝜆2
0,

and then the nonlinear profile 𝑞(𝑗)
𝑛 is globally well defined.
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Proof of Theorem 4.10. Consider

𝑟(𝑙)
𝑛 (𝑡, 𝑥) = 𝑢𝑛(𝑡, 𝑥) −

𝑙∑︁
𝑗=1

𝑞(𝑗)
𝑛 (𝑡, 𝑥) − 𝑤(𝑙)

𝑛 (𝑡, 𝑥).

We need to prove the convergence

lim sup
𝑛→∞

(‖∇𝑟(𝑙)
𝑛 ‖

𝐿
10
3 ([0,𝑇 ];𝐿

10
3 (R3))

+‖𝑟(𝑙)
𝑛 ‖𝐿10([0,𝑇 ];𝐿10(R3))+‖𝑟(𝑙)

𝑛 ‖𝐿∞([0,𝑇 ];𝐻̇1(R3))) −→ 0 as 𝑙 → ∞.

To this end, recall the notation used before,

𝛽(𝑧) = |𝑧|4𝑧,

𝑊 (𝑙)
𝑛 =

𝑙∑︁
𝑗=1

𝑞(𝑗)
𝑛 ,

and

𝑓 (𝑙)
𝑛 =

𝑙∑︁
𝑗=1

𝛽(𝑞(𝑗)
𝑛 ) − 𝛽

(︂ 𝑙∑︁
𝑗=1

𝑞(𝑗)
𝑛 + 𝑤(𝑙)

𝑛 + 𝑟(𝑙)
𝑛

)︂
.

The function 𝑟(𝑙)
𝑛 satisfies the equation⎧⎪⎪⎨⎪⎪⎩

𝑖𝜕𝑡𝑟
(𝑙)
𝑛 + Δ𝑟(𝑙)

𝑛 = 𝑓 (𝑙)
𝑛 ,

𝑟(𝑙)
𝑛 (0) = ∑︀𝑙

𝑗=1(𝑝(𝑗)
𝑛 − 𝑞(𝑗)

𝑛 )(0) = 0.

Introduce the norm

|||𝑔|||𝐼 = ‖𝑔‖𝐿10(𝐼×R3) + ‖∇𝑔‖
𝐿

10
3 (𝐼×R3)

.

Note that, by Strichartz estimates, for any 𝑣 solution of linear Schrödinger equation with initial

data 𝜙 ∈ 𝐻̇1, one has

|||𝑣|||𝐼 = ‖𝑣‖𝐿10
𝑡 𝐿10

𝑥
+ ‖∇𝑣‖

𝐿
10
3

𝑡 𝐿
10
3

𝑥

≤ 𝐶‖∇𝑒𝑖𝑡Δ𝜙‖𝐿2
𝑥

≤ 𝐶‖∇𝜙‖𝐿2
𝑥
.

From now on, we use the notation

𝛾(𝑙)
𝑛 (𝑎) = ‖∇𝑟(𝑙)

𝑛 (𝑎)‖𝐿2
𝑥
,

for every 𝑎 ∈ [0, 𝑇 ]. Applying Lemma 4.3.1 to 𝑟(𝑙)
𝑛 on 𝐼 = [0, 𝑇 ], we obtain

|||𝑟(𝑙)
𝑛 |||𝐼 + sup

𝑡∈𝐼
‖∇𝑟(𝑙)

𝑛 (𝑡)‖𝐿2 ≤ 𝐶
(︂

‖∇𝑓 (𝑙)
𝑛 ‖

𝐿
10
7 (𝐼×R3)

)︂
. (4.80)

We estimate the right-hand side of inequality (4.80) by

‖∇𝑓 (𝑙)
𝑛 ‖

𝐿
10
7 (𝐼×R3)

≤
⃦⃦⃦⃦
∇
(︂ 𝑙∑︁

𝑗=1
𝛽(𝑞(𝑗)

𝑛 ) − 𝛽(𝑊 (𝑙)
𝑛 )

)︂⃦⃦⃦⃦
𝐿

10
7 (𝐼×R3)

+
⃦⃦⃦⃦
∇
[︂
𝛽(𝑊 (𝑙)

𝑛 + 𝑤(𝑙)
𝑛 ) − 𝛽(𝑊 (𝑙)

𝑛 )
]︂⃦⃦⃦⃦

𝐿
10
7 (𝐼×R3)

+
⃦⃦⃦⃦
∇
[︂
𝛽(𝑊 (𝑙)

𝑛 + 𝑤(𝑙)
𝑛 + 𝑟(𝑙)

𝑛 ) − 𝛽(𝑊 (𝑙)
𝑛 + 𝑤(𝑙)

𝑛 )
]︂⃦⃦⃦⃦

𝐿
10
7 (𝐼×R3)

.(4.81)
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Furthermore, a combination of Leibnitz formula and Hölder’s inequality gives that⃦⃦⃦⃦
∇
[︂
𝛽(𝑊 (𝑙)

𝑛 + 𝑤(𝑙)
𝑛 + 𝑟(𝑙)

𝑛 ) − 𝛽(𝑊 (𝑙)
𝑛 + 𝑤(𝑙)

𝑛 )
]︂⃦⃦⃦⃦

𝐿
10
7 (𝐼×R3)

(4.82)

≤ 𝐶
(︂

|||𝑊 (𝑙)
𝑛 + 𝑤(𝑙)

𝑛 |||3𝐼‖𝑊 (𝑙)
𝑛 + 𝑤(𝑙)

𝑛 ‖𝐿10(𝐼×R3)|||𝑟(𝑙)
𝑛 |||𝐼

+
5∑︁

𝛼=2
|||𝑊 (𝑙)

𝑛 + 𝑤(𝑙)
𝑛 |||5−𝛼

𝐼 |||𝑟(𝑙)
𝑛 |||𝛼𝐼

)︂
.

Denote

𝛿(𝑙)
𝑛 =

⃦⃦⃦⃦
∇
[︂
𝛽(𝑊 (𝑙)

𝑛 + 𝑤(𝑙)
𝑛 ) − 𝛽(𝑊 (𝑙)

𝑛 )
]︂⃦⃦⃦⃦

𝐿
10
7 (𝐼×R3)

+
⃦⃦⃦⃦
∇
(︂ 𝑙∑︁

𝑗=1
𝛽(𝑞(𝑗)

𝑛 ) − 𝛽(𝑊 (𝑙)
𝑛 )

)︂⃦⃦⃦⃦
𝐿

10
7 (𝐼×R3)

.

(4.83)

Using (4.81), (4.82) and (4.83) into (4.80), it follows that

|||𝑟(𝑙)
𝑛 |||𝐼 + sup

𝑡∈𝐼
‖∇𝑟(𝑙)

𝑛 (𝑡)‖𝐿2 ≤ 𝐶
(︂
𝛿(𝑙)

𝑛 +
5∑︁

𝛼=2
|||𝑊 (𝑙)

𝑛 + 𝑤(𝑙)
𝑛 |||5−𝛼

𝐼 |||𝑟(𝑙)
𝑛 |||𝛼𝐼

+ |||𝑊 (𝑙)
𝑛 + 𝑤(𝑙)

𝑛 |||3𝐼‖𝑊 (𝑙)
𝑛 + 𝑤(𝑙)

𝑛 ‖𝐿10(𝐼×R3)|||𝑟(𝑙)
𝑛 |||𝐼

)︂
.(4.84)

In view of bound (4.84) and Proposition 4.3.1, we get

|||𝑟(𝑙)
𝑛 |||𝐼 +sup

𝑡∈𝐼
‖∇𝑟(𝑙)

𝑛 (𝑡)‖𝐿2 ≤ 𝐶
(︂
𝛾(𝑙)

𝑛 (𝑎)+𝛿(𝑙)
𝑛 +

5∑︁
𝛼=2

|||𝑟(𝑙)
𝑛 |||𝛼𝐼 +‖𝑊 (𝑙)

𝑛 +𝑤(𝑙)
𝑛 ‖𝐿10(𝐼×R3)|||𝑟(𝑙)

𝑛 |||𝐼
)︂
,

(4.85)

for all 𝑙 ≥ 1 and 𝑛 ≥ 𝑁(𝑙). The Proposition 4.3.2 shows that under a suitable finite partition

of [0, 𝑇 ], one can absorb the linear term in |||𝑟(𝑙)
𝑛 |||𝐼 in the right-hand side of (4.85). Applying

(4.85) on an interval 𝐼 𝑖
𝑛 , provided by Proposition 4.3.2, one gets

|||𝑟(𝑙)
𝑛 |||𝐼𝑖

𝑛
+ sup

𝑡∈𝐼𝑖
𝑛

‖∇𝑟(𝑙)
𝑛 (𝑡)‖𝐿2 ≤ 𝐶

(︂
𝛾(𝑙)

𝑛 (𝑎𝑖
𝑛) + 𝛿(𝑙)

𝑛 +
5∑︁

𝛼=2
|||𝑟(𝑙)

𝑛 |||𝛼𝐼𝑖
𝑛

+ 2𝜀|||𝑟(𝑙)
𝑛 |||𝐼𝑖

𝑛

)︂
,

for all 𝑙 ≥ 1 and 𝑛 ≥ 𝑁(𝑙). So, choosing 𝜀 so that 𝐶𝜖 < 1
4 , we obtain

|||𝑟(𝑙)
𝑛 |||𝐼𝑖

𝑛
+ sup

𝑡∈𝐼𝑖
𝑛

‖∇𝑟(𝑙)
𝑛 (𝑡)‖𝐿2 ≤ 𝐶

(︂
𝛾(𝑙)

𝑛 (𝑎𝑖
𝑛) + 𝛿(𝑙)

𝑛 +
5∑︁

𝛼=2
|||𝑟(𝑙)

𝑛 |||𝛼𝐼𝑖
𝑛

)︂
. (4.86)

Now, we use an iterative process to achieve the result. For 𝑖 = 1, (4.86) reads

|||𝑟(𝑙)
𝑛 |||𝐼1

𝑛
+ sup

𝑡∈𝐼1
𝑛

‖∇𝑟(𝑙)
𝑛 (𝑡)‖𝐿2 ≤ 𝐶

(︂
𝛾(𝑙)

𝑛 (0) + 𝛿(𝑙)
𝑛 +

5∑︁
𝛼=2

|||𝑟(𝑙)
𝑛 |||𝛼𝐼1

𝑛

)︂
. (4.87)

Recall that, in view of definition of 𝛾(𝑙)
𝑛 , we have

𝛾(𝑙)
𝑛 (0) = ‖∇𝑟(𝑙)

𝑛 (0)‖𝐿2 =
⃦⃦⃦⃦
∇
(︂ 𝑙∑︁

𝑗=1
(𝑝(𝑗)

𝑛 − 𝑞(𝑗)
𝑛 )(0)

)︂⃦⃦⃦⃦
𝐿2

= 0, (4.88)
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for all 𝑙 ≥ 1. Due to (4.72) and (4.88), it follows that, for all large enough 𝑙, there exists 𝑁(𝑙)

such that, if 𝑛 ≥ 𝑁(𝑙), then

𝛾(𝑙)
𝑛 (0) + 𝛿(𝑙)

𝑛 ≤ 𝑎0(𝑐). (4.89)

Denote by 𝑀 𝑙
𝑛 the function defined on 𝐼1

𝑛 = [0, 𝑎1
𝑛] by

𝑀 𝑙
𝑛(𝑠) = |||𝑟(𝑙)

𝑛 |||[0,𝑠] + 𝑠

𝑎1
𝑛

sup
𝑡∈[0,𝑠]

‖∇𝑟(𝑙)
𝑛 (𝑡)‖𝐿2 .

It is clear that (4.86) still holds if we replace 𝐼1
𝑛 = [0, 𝑎1

𝑛] by [0, 𝑠] for all 𝑠 ∈ 𝐼1
𝑛 .Thus,

𝑀 𝑙
𝑛(𝑠) ≤ 𝐶

(︂
𝛾(𝑙)

𝑛 (0) + 𝛿(𝑙)
𝑛 +

5∑︁
𝛼=2

(𝑀 𝑙
𝑛)𝛼(𝑠)

)︂
.

Hence, the function 𝑀 𝑙
𝑛 satisfies the conditions of Lemma 4.3.2 for large 𝑙 and 𝑛 ≥ 𝑁(𝑙). So

𝑀 𝑙
𝑛(𝑎1

𝑛) = |||𝑟(𝑙)
𝑛 |||𝐼1

𝑛
+ sup

𝑡∈𝐼1
𝑛

‖∇𝑟(𝑙)
𝑛 (𝑡)‖𝐿2 ≤ 2𝑐(𝛾(𝑙)

𝑛 (0) + 𝛿(𝑙)
𝑛 ), (4.90)

for large 𝑙 and 𝑛 ≥ 𝑁(𝑙). Using (4.72), (4.88) and (4.90), one obtains

lim sup
𝑛→∞

(︂
|||𝑟(𝑙)

𝑛 |||𝐼1
𝑛

+ sup
𝑡∈𝐼1

𝑛

‖∇𝑟(𝑙)
𝑛 (𝑡)‖𝐿2

)︂
−→ 0 as 𝑙 → ∞.

On the other hand, we have

𝛾(𝑙)
𝑛 (𝑎1

𝑛) ≤ sup
𝑡∈𝐼1

𝑛

‖∇𝑟(𝑙)
𝑛 (𝑡)‖𝐿2 ,

which gives

lim sup
𝑛→∞

𝛾(𝑙)
𝑛 (𝑎1

𝑛) −→ 0 as 𝑙 → ∞.

This allows us to repeat the same argument on the interval 𝐼2
𝑛 = [𝑎1

𝑛, 𝑎
2
𝑛]. We get, similarly,

|||𝑟(𝑙)
𝑛 |||𝐼2

𝑛
+ sup

𝑡∈𝐼2
𝑛

‖∇𝑟(𝑙)
𝑛 (𝑡)‖𝐿2 ≤ 𝑐(𝛾(𝑙)

𝑛 (𝑎1
𝑛) + 𝛿(𝑙)

𝑛 ).

Thus

lim sup
𝑛→∞

(︂
|||𝑟(𝑙)

𝑛 |||𝐼2
𝑛

+ sup
𝑡∈𝐼2

𝑛

‖∇𝑟(𝑙)
𝑛 (𝑡)‖𝐿2

)︂
−→ 0 as 𝑙 → ∞.

Iterating this process, we get

lim sup
𝑛→∞

(︂
|||𝑟(𝑙)

𝑛 |||𝐼𝑖
𝑛

+ sup
𝑡∈𝐼𝑖

𝑛

‖∇𝑟(𝑙)
𝑛 (𝑡)‖𝐿2

)︂
−→ 0 as 𝑙 → ∞,

for all 1 ≤ 𝑖 ≤ 𝑝. Since 𝑝 does not depend on 𝑛 and 𝑙, one has

lim sup
𝑛→∞

(︂
|||𝑟(𝑙)

𝑛 |||[0,𝑇 ] + sup
𝑡∈[0,𝑇 ]

‖∇𝑟(𝑙)
𝑛 (𝑡)‖𝐿2

)︂
−→ 0 as 𝑙 → ∞,

which concludes the proof.
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4.4 APPLICATIONS

In this section, we bring some properties satisfied by the solutions of the nonlinear equation.

Some of these results will be useful in demonstrating the Theorem 2.2, one of the two main

results obtained in this thesis.

4.4.1 Some estimates for the nonlinear evolution solution

Our first result is a consequence of Theorem 4.10.

Proposition 4.4.1. [Corollary 1.14, (KERAANI, 2001)] There exists a nondecreasing function
𝐴 : [0, 𝜆0 → [0,+∞[ such that, for every solution 𝑢 to system (4.3) with ‖∇𝑢(0, .)‖𝐿2(R3) <

𝜆0, we have
‖∇𝑢‖

𝐿
10
3 ([0,𝑇 ]×R3)

+ ‖𝑢‖𝐿10([0,𝑇 ]×R3) ≤ 𝐴(‖∇𝑢(0, .)‖𝐿2(R3)). (4.91)

Demonstração. We argue by contradiction: Assume that the estimate (4.91) fails. Then, there

exists a sequence (𝑢𝑛)𝑛∈N of solutions to system (4.3) such that

sup
𝑛∈N

‖∇𝑢𝑛(0, .)‖𝐿2(R3) < 𝜆0 (4.92)

and

‖∇𝑢𝑛‖
𝐿

10
3 ([0,𝑇 ]×R3)

+ ‖𝑢𝑛‖𝐿10([0,𝑇 ]×R3) −→ ∞ (4.93)

as 𝑛 → ∞. Applying Theorem 4.10 to the sequence (𝑢𝑛(0, .))𝑛∈N,we get that there exists a

subsequence (still denoted by (𝑢𝑛)𝑛∈N) such that

𝑢𝑛(𝑡, 𝑥) =
𝑙∑︁

𝑗=1
𝑞(𝑗)

𝑛 (𝑡, 𝑥) + 𝑤(𝑙)
𝑛 (𝑡, 𝑥) + 𝑟(𝑙)

𝑛 (𝑡, 𝑥),

with

lim sup
𝑛→∞

|||𝑤(𝑙)
𝑛 + 𝑟𝑙

𝑛|||[0,𝑇 ] ≤ 𝐶,

for all 𝑙 ≥ 1. Hence,

lim sup
𝑛→∞

|||𝑢|||[0,𝑇 ] ≤ lim sup
𝑛→∞

|||𝑤(𝑙)
𝑛 + 𝑟(𝑙)

𝑛 |||[0,𝑇 ] +
𝑙∑︁

𝑗=1
|||Ψ(𝑗)|||R < +∞,

which contradicts (4.93) and proves the existence of a function 𝐴 satisfying (4.91).

The next proposition is a consequence of Strichartz estimates.
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Proposition 4.4.2. Let 𝑢 ∈ 𝐶([𝑎, 𝑏];𝐻1(R3)) be a solution of the damped Schrödinger
equation

𝑖𝜕𝑡𝑣 + Δ𝑣 − 𝑣 − 𝑎(1 − Δ)−1𝑎𝜕𝑡𝑣 = 𝑓

on 𝐼 = [𝑎, 𝑏] with ∇𝑓 ∈ 𝐿2(𝐼;𝐿 6
5 (R3)) and 𝑓 ∈ 𝐿1(𝐼;𝐿2(R3)). Thus, the following inequality

holds
‖∇𝑣‖

𝐿
10
3 (𝐼;𝐿

10
3 (R3))

+ ‖∇𝑣‖
𝐿10(𝐼;𝐿

30
13 (R3))

+ sup
𝑡∈𝐼

‖𝑣(𝑡)‖𝐿2 + sup
𝑡∈𝐼

‖∇𝑣(𝑡)‖𝐿2

≤ 𝐶
(︂

‖𝑣(𝑎)‖𝐻1 + ‖∇𝑓‖
𝐿2(𝐼;𝐿

6
5 (R3))

+ ‖𝑓‖𝐿1(𝐼;𝐿2(R3))

)︂
.

Demonstração. The solution 𝑣 satisfies

𝑣(𝑡) = 𝑒𝑖𝑡Δ𝑣(𝑎) +
∫︁ 𝑡

𝑎
𝑒𝑖(𝑡−𝜏)Δ𝑓 𝑑𝜏 +

∫︁ 𝑡

𝑎
𝑒𝑖(𝑡−𝜏)Δ[𝑣 + 𝑎(1 − Δ)−1𝑎𝜕𝑡𝑣] 𝑑𝜏.

Applying Strichartz’s estimates,

‖𝑣(𝑡)‖𝐿2 ≤ 𝐶‖𝑣(𝑎)‖𝐿2 +
⃦⃦⃦⃦ ∫︁ 𝑡

𝑎
𝑒𝑖(𝑡−𝜏)Δ𝑓 𝑑𝜏

⃦⃦⃦⃦
𝐿2

+
⃦⃦⃦⃦ ∫︁ 𝑡

𝑎
𝑒𝑖(𝑡−𝜏)Δ[𝑣 + 𝑎(1 − Δ)−1𝑎𝜕𝑡𝑣] 𝑑𝜏

⃦⃦⃦⃦
𝐿2

≤ 𝐶‖𝑣(𝑎)‖𝐻1 + 𝐶‖𝑓‖𝐿1(𝐼;𝐿2(R3)) + 𝐶‖𝑣‖𝐿1(𝐼;𝐿2(R3)) + ‖𝑎(1 − Δ)−1𝑎𝜕𝑡𝑣‖𝐿1(𝐼;𝐿2(R3))

≤ 𝐶‖𝑣(𝑎)‖𝐻1 + 𝐶‖𝑓‖𝐿1(𝐼;𝐿2(R3)) + 𝐶𝐼 sup
𝑡∈𝐼

‖𝑣(𝑡)‖𝐿2(R3)

+ 𝐶‖𝑎(1 − Δ)−1𝑎𝐽−1Δ𝑣‖𝐿1(𝐼;𝐿2(R3)) + 𝐶‖𝑎(1 − Δ)−1𝑎𝐽−1𝑓‖𝐿1(𝐼;𝐿2(R3))

≤ 𝐶‖𝑣(𝑎)‖𝐻1 + 𝐶‖𝑓‖𝐿1(𝐼;𝐿2(R3)) + 𝐶𝐼 sup
𝑡∈𝐼

‖𝑣(𝑡)‖𝐿2(R3),

and

‖∇𝑣(𝑡)‖𝐿2 ≤ 𝐶‖∇𝑣(𝑎)‖𝐿2 +
⃦⃦⃦⃦ ∫︁ 𝑡

𝑎
∇𝑒𝑖(𝑡−𝜏)Δ𝑓 𝑑𝜏

⃦⃦⃦⃦
𝐿2

+
⃦⃦⃦⃦ ∫︁ 𝑡

𝑎
∇𝑒𝑖(𝑡−𝜏)Δ[𝑣 + 𝑎(1 − Δ)−1𝑎𝜕𝑡𝑣] 𝑑𝜏

⃦⃦⃦⃦
𝐿2

≤ 𝐶‖𝑣(𝑎)‖𝐻1 + 𝐶‖∇𝑓‖
𝐿2(𝐼;𝐿

6
5 (R3))

+ ‖∇𝑣‖𝐿1(𝐼;𝐿2(R3)) + 𝐶‖∇𝑎(1 − Δ)−1𝑎𝜕𝑡𝑣‖𝐿1(𝐼;𝐿2(R3))

≤ 𝐶‖𝑣(𝑎)‖𝐻1 + 𝐶‖∇𝑓‖
𝐿2(𝐼;𝐿

6
5 (R3))

+ 𝐶𝐼 sup
𝑡∈𝐼

‖∇𝑣(𝑡)‖𝐿2(R3) + 𝐶𝐼 sup
𝑡∈𝐼

‖𝑣(𝑡)‖𝐿2(R3)

+ 𝐶‖∇𝑎(1 − Δ)−1𝑎𝐽−1Δ𝑣‖𝐿1(𝐼;𝐿2(R3)) + 𝐶‖∇𝑎(1 − Δ)−1𝑎𝐽−1𝑓‖𝐿1(𝐼;𝐿2(R3))

≤ 𝐶‖𝑣(𝑎)‖𝐻1 + 𝐶‖∇𝑓‖
𝐿2(𝐼;𝐿

6
5 (R3))

+ 𝐶𝐼 sup
𝑡∈𝐼

‖∇𝑣(𝑡)‖𝐿2(R3) + 𝐶𝐼 sup
𝑡∈𝐼

‖𝑣(𝑡)‖𝐿2(R3)

+ 𝐶‖𝑓‖𝐿1(𝐼;𝐿2(R3)).
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Additionally, we get

‖𝑣‖𝐿10(𝐼×R3) ≤ ‖∇𝑣‖
𝐿10(𝐼;𝐿

30
13 (R3))

≤ 𝐶‖∇𝑣(𝑎)‖𝐿2 +
⃦⃦⃦⃦ ∫︁ 𝑡

𝑎
∇𝑒𝑖(𝑡−𝜏)Δ𝑓 𝑑𝜏

⃦⃦⃦⃦
𝐿10

𝑡 𝐿
30
13
𝑥

+
⃦⃦⃦⃦ ∫︁ 𝑡

𝑎
∇𝑒𝑖(𝑡−𝜏)Δ[𝑣 + 𝑎(1 − Δ)−1𝑎𝜕𝑡𝑣] 𝑑𝜏

⃦⃦⃦⃦
𝐿10

𝑡 𝐿
30
13
𝑥

≤ 𝐶‖𝑣(𝑎)‖𝐻1 + 𝐶‖∇𝑓‖
𝐿2(𝐼;𝐿

6
5 (R3))

+ 𝐶‖∇𝑣‖𝐿1(𝐼;𝐿2(R3))

+ 𝐶‖∇𝑎(1 − Δ)−1𝑎𝜕𝑡𝑣‖𝐿1(𝐼;𝐿2(R3))

≤ 𝐶‖𝑣(𝑎)‖𝐻1 + 𝐶‖∇𝑓‖
𝐿2(𝐼;𝐿

6
5 (R3))

+ 𝐶𝐼 sup
𝑡∈𝐼

‖∇𝑣(𝑡)‖𝐿2(R3) + 𝐶𝐼 sup
𝑡∈𝐼

‖𝑣(𝑡)‖𝐿2(R3)

+ 𝐶‖∇𝑎(1 − Δ)−1𝑎𝐽−1Δ𝑣‖𝐿1(𝐼;𝐿2(R3)) + 𝐶‖∇𝑎(1 − Δ)−1𝑎𝐽−1𝑓‖𝐿1(𝐼;𝐿2(R3))

≤ 𝐶‖𝑣(𝑎)‖𝐻1 + 𝐶‖∇𝑓‖
𝐿2(𝐼;𝐿

6
5 (R3))

+ 𝐶𝐼 sup
𝑡∈𝐼

‖∇𝑣(𝑡)‖𝐿2(R3) + 𝐶𝐼 sup
𝑡∈𝐼

‖𝑣(𝑡)‖𝐿2(R3)

+ 𝐶‖𝑓‖𝐿1(𝐼;𝐿2(R3)).

Finally,

‖∇𝑣‖
𝐿

10
3

𝑡 𝐿
10
3

𝑥

≤ 𝐶‖∇𝑣(𝑎)‖𝐿2 +
⃦⃦⃦⃦ ∫︁ 𝑡

𝑎
∇𝑒𝑖(𝑡−𝜏)Δ𝑓 𝑑𝜏

⃦⃦⃦⃦
𝐿

10
3

𝑡 𝐿
10
3

𝑥

+
⃦⃦⃦⃦ ∫︁ 𝑡

𝑎
∇𝑒𝑖(𝑡−𝜏)Δ[𝑣 + 𝑎(1 − Δ)−1𝑎𝜕𝑡𝑣] 𝑑𝜏

⃦⃦⃦⃦
𝐿

10
3

𝑡 𝐿
10
3

𝑥

≤ 𝐶‖𝑣(𝑎)‖𝐻1 + 𝐶‖∇𝑓‖
𝐿2(𝐼;𝐿

6
5 (R3))

+ 𝐶𝐼 sup
𝑡∈𝐼

‖∇𝑣(𝑡)‖𝐿2(R3)

+ 𝐶‖∇𝑎(1 − Δ)−1𝑎𝜕𝑡𝑣‖𝐿1(𝐼;𝐿2(R3))

≤ 𝐶‖𝑣(𝑎)‖𝐻1 + 𝐶‖∇𝑓‖
𝐿2(𝐼;𝐿

6
5 (R3))

+ 𝐶𝐼 sup
𝑡∈𝐼

‖∇𝑣(𝑡)‖𝐿2(R3) + 𝐶𝐼 sup
𝑡∈𝐼

‖𝑣(𝑡)‖𝐿2(R3)

+ 𝐶‖∇𝑎(1 − Δ)−1𝑎𝐽−1Δ𝑣‖𝐿1(𝐼;𝐿2(R3)) + 𝐶‖∇𝑎(1 − Δ)−1𝑎𝐽−1𝑓‖𝐿1(𝐼;𝐿2(R3))

≤ 𝐶‖𝑣(𝑎)‖𝐻1 + 𝐶‖∇𝑓‖
𝐿2(𝐼;𝐿

6
5 (R3))

+ 𝐶𝐼 sup
𝑡∈𝐼

‖∇𝑣(𝑡)‖𝐿2(R3) + 𝐶𝐼 sup
𝑡∈𝐼

‖𝑣(𝑡)‖𝐿2(R3)

+ 𝐶‖𝑓‖𝐿1(𝐼;𝐿2(R3)).

Putting together these inequalities, one obtains

‖∇𝑣‖
𝐿

10
3 (𝐼;𝐿

10
3 (R3))

+ ‖∇𝑣‖
𝐿10(𝐼;𝐿

30
13 (R3))

+ sup
𝑡∈𝐼

‖𝑣(𝑡)‖𝐿2 + sup
𝑡∈𝐼

‖∇𝑣(𝑡)‖𝐿2

≤ 𝐶‖𝑣(𝑎)‖𝐻1 +𝐶‖∇𝑓‖
𝐿2(𝐼;𝐿

6
5 (R3))

+𝐶‖𝑓‖𝐿1(𝐼;𝐿2(R3)) +𝐶𝐼 sup
𝑡∈𝐼

‖𝑣(𝑡)‖𝐿2 + sup
𝑡∈𝐼

𝐶𝐼‖∇𝑣(𝑡)‖𝐿2 .

Now, we absorb the additional terms to obtain the desired estimate for 𝐼 with small enough

length. Reiterating the process, it is possible to get the result for large times.

Remark 4.4.1. Using the same reasoning it is possible to show a similar result.
Let 𝑢 ∈ 𝐶([𝑎, 𝑏];𝐻1(R3)) be a solution of the nohomogeneous Schrödinger equation

𝑖𝜕𝑡𝑣 + Δ𝑣 − 𝑣 = 𝑓
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on 𝐼 = [𝑎, 𝑏], with ∇𝑓 ∈ 𝐿2(𝐼;𝐿 6
5 (R3)) and 𝑓 ∈ 𝐿1(𝐼;𝐿2(R3)). The following inequality

holds
‖∇𝑣‖

𝐿
10
3 (𝐼;𝐿

10
3 (R3))

+ ‖∇𝑣‖
𝐿10(𝐼;𝐿

30
13 (R3))

+ sup
𝑡∈𝐼

‖𝑣(𝑡)‖𝐿2 + sup
𝑡∈𝐼

‖∇𝑣(𝑡)‖𝐿2

≤ 𝐶
(︂

‖𝑣(𝑎)‖𝐻1 + ‖∇𝑓‖
𝐿

10
7 (𝐼;𝐿

10
7 (R3))

+ ‖𝑓‖𝐿1(𝐼;𝐿2(R3))

)︂
.

The next lemma guarantees the 𝐿2-norm dependence of the solution on the initial data.

Lemma 4.4.1. Let 𝑇 > 0. There exists 𝐶 > 0 such that any solution 𝑢 to⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑖𝜕𝑡𝑢+ Δ𝑢− 𝑢− |𝑢|4𝑢 = 𝑎(1 − Δ)−1𝑎𝜕𝑡𝑢 on [0, 𝑇 ] × R3,

𝑢(0) = 𝑢0,

‖𝑢0‖𝐻1 ≤ 𝜆0, where 𝜆0 is giving by Definition 4.1,

(4.94)

satisfies
‖𝑢‖𝐿∞([0,𝑇 ];𝐿2(R3)) ≤ 𝐶‖𝑢0‖𝐿2(R3).

Demonstração. First, notice that 𝑢 ∈ 𝐿7([0, 𝑇 ];𝐿14(R3)). Indeed, write

𝑢(𝑡) = 𝑒𝑖𝑡Δ𝑢0 +
∫︁ 𝑡

0
𝑒𝑖(𝑡−𝜏)Δ[𝑢+ |𝑢|4𝑢+ 𝑎(1 − Δ)−1𝑎𝜕𝑡𝑢] 𝑑𝜏.

Through Sobolev embedding and Strichartz estimates, one has

‖𝑢‖𝐿7
𝑡 𝐿14

𝑥
≤ ‖∇𝑢‖

𝐿7
𝑡 𝐿

42
17
𝑥

≤ 𝐶‖∇𝑢(0)‖𝐿2 + 𝐶‖∇|𝑢|4𝑢‖
𝐿

10
7 ([0,𝑇 ]×R3)

+ 𝐶‖∇𝑢‖𝐿1([0,𝑇 ];𝐿2(R3))

+ 𝐶‖∇𝑎(1 − Δ)−1𝑎𝜕𝑡𝑢‖𝐿1([0,𝑇 ];𝐿2(R3))

≤ 𝐶‖∇𝑢0‖𝐿2 + 𝐶‖𝑢‖4
𝐿10

𝑡 𝐿10
𝑥

‖∇𝑢‖
𝐿

10
3

𝑡 𝐿
10
3

𝑥

+ 𝐶𝑇 sup
𝑡∈[0,𝑇 ]

‖∇𝑢(𝑡)‖𝐿2

+ 𝐶𝑇 sup
𝑡∈[0,𝑇 ]

‖𝑢(𝑡)‖𝐿2 + ‖𝑢‖5
𝐿10([0,𝑇 ];𝐿10(R3))

≤ 𝐶,

since
(︂

7, 42
17

)︂
is a 𝐿2- admissible pair. By interpolation, we get

‖𝑢(𝑡)‖𝐿12 ≤ ‖𝑢(𝑡)‖
5

12
𝐿10‖𝑢(𝑡)‖

7
12
𝐿14 .

So,

‖𝑢(𝑡)‖4
𝐿12 ≤ ‖𝑢(𝑡)‖

5
3
𝐿10‖𝑢(𝑡)‖

7
3
𝐿14 .
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Thereafter,
∫︁ 𝑇

0
‖𝑢(𝑡)‖4

𝐿12 𝑑𝑡 ≤
∫︁ 𝑇

0
‖𝑢(𝑡)‖

5
3
𝐿10‖𝑢(𝑡)‖

7
3
𝐿14 𝑑𝑡

≤
(︂ ∫︁ 𝑇

0
‖𝑢(𝑡)‖

10
3

𝐿10 𝑑𝑡
)︂ 1

2
(︂ ∫︁ 𝑇

0
‖𝑢(𝑡)‖

14
3

𝐿14 𝑑𝑡
)︂ 1

2

≤ ‖𝑢‖
5
3

𝐿
10
3 ([0,𝑇 ];𝐿10(R3))

‖𝑢‖
7
3

𝐿
14
3 ([0,𝑇 ];𝐿14(R3))

≤ 𝐶‖𝑢‖
5
3
𝐿10([0,𝑇 ];𝐿10(R3))‖𝑢‖

7
3
𝐿7([0,𝑇 ];𝐿14(R3))

≤ 𝐶.

Thus, 𝑢 ∈ 𝐿4([0, 𝑇 ];𝐿12(R3)). Multiplying the first equation of system (4.94) by 𝑢, integrating

in 𝑥 and taking its imaginary part, one has

1
2
𝑑

𝑑𝑡

∫︁
R3

|𝑢(𝑡)|2 𝑑𝑥 = 𝐼𝑚
(︂ ∫︁

R3
𝑎(1 − Δ)−1𝑎𝜕𝑡𝑢 · 𝑢 𝑑𝑥

)︂
≤

∫︁
R3

|𝑎(1 − Δ)−1𝑎𝜕𝑡𝑢 · 𝑢| 𝑑𝑥.

Integrating from 0 to 𝑡,

1
2‖𝑢(𝑡)‖2

𝐿2 − 1
2‖𝑢(0)‖2

𝐿2 ≤
∫︁ 𝑡

0

∫︁
R3

|𝑎(1 − Δ)−1𝑎𝜕𝑡𝑢 · 𝑢| 𝑑𝑥𝑑𝑡

≤
∫︁ 𝑡

0
‖𝑎(1 − Δ)−1𝑎𝜕𝑡𝑢‖𝐿2‖𝑢(𝑡)‖𝐿2 𝑑𝑡.

On one hand,

‖𝑎(1 − Δ)−1𝑎𝜕𝑡𝑢‖𝐿2 = ‖𝑎(1 − Δ)−1𝑎(−𝑖𝐽−1(1 − Δ)𝑢− 𝑖𝐽−1|𝑢|4𝑢)‖𝐿2

≤ ‖𝑎(1 − Δ)−1𝑎𝐽−1(1 − Δ)𝑢‖𝐿2 + ‖𝑎(1 − Δ)−1𝑎𝐽−1|𝑢|4𝑢‖𝐿2

≤ 𝐶‖𝑢(𝑡)‖𝐿2 + ‖|𝑢|4𝑢‖𝐻−1 .

Observe that taking 𝑉 = |𝑢|4, since 𝑢 ∈ 𝐿4([0, 𝑇 ];𝐿12(R3)), we have 𝑉 ∈ 𝐿1([0, 𝑇 ];𝐿3(R3)).

Also, using Sobolev’s embedding and Hölder’s inequality,

‖|𝑢|4𝑢‖𝐻−1 ≤ 𝐶‖𝑉 𝑢‖𝐿 6
5

≤ 𝐶‖𝑉 ‖𝐿3‖𝑢‖𝐿2 .
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Therefore,

1
2‖𝑢(𝑡)‖2

𝐿2 ≤
∫︁ 𝑡

0
‖𝑎(1 − Δ)−1𝑎𝜕𝑡𝑢‖𝐿2‖𝑢(𝑡)‖𝐿2 𝑑𝑡+ 1

2‖𝑢(0)‖2
𝐿2

≤ 𝐶
∫︁ 𝑡

0

(︂
‖𝑢(𝑡)‖𝐿2 + ‖|𝑢|4𝑢‖𝐻−1

)︂
‖𝑢(𝑡)‖𝐿2 𝑑𝑡+ 1

2‖𝑢(0)‖2
𝐿2

≤ 𝐶
∫︁ 𝑡

0

(︂
‖𝑢(𝑡)‖𝐿2 + ‖𝑉 ‖𝐿3‖𝑢(𝑡)‖𝐿2

)︂
‖𝑢(𝑡)‖𝐿2 𝑑𝑡+ 1

2‖𝑢(0)‖2
𝐿2

≤ 𝐶
∫︁ 𝑡

0

(︂
1 + ‖𝑉 ‖𝐿3

)︂
‖𝑢(𝑡)‖2

𝐿2 𝑑𝑡+ 1
2‖𝑢(0)‖2

𝐿2

≤ ‖𝑢‖2
𝐿∞([0,𝑡];𝐿2)𝐶

∫︁ 𝑡

0
(1 + ‖𝑉 ‖𝐿3) 𝑑𝑡+ 1

2‖𝑢(0)‖2
𝐿2 .

Consequently,

‖𝑢‖2
𝐿∞([0,𝑡];𝐿2) ≤ 2𝐶(𝑡+ ‖𝑉 ‖𝐿1([0,𝑡];𝐿3))‖𝑢‖2

𝐿∞([0,𝑡];𝐿2) + ‖𝑢(0)‖2
𝐿2 .

We can divide the interval [0, 𝑇 ] into a finite number of intervals [𝑎𝑖, 𝑎𝑖+1], 𝑖 = 1, ..., 𝑁 , such

that 2𝐶(𝑡+ ‖𝑉 ‖𝐿1([𝑎𝑖,𝑎𝑖+1];𝐿3)) < 1/4. In each of these intervals, we have

‖𝑢‖2
𝐿∞([𝑎𝑖,𝑎𝑖+1];𝐿2) ≤ 𝐶‖𝑢(𝑎𝑖)‖2

𝐿2 .

The desired result is obtained by iteration. The final constant 𝐶 only depends on 𝜆0 and

𝑇 .

As a consequence of the previous result, we have the following corollary.

Corolary 4.4.1. Let 𝑇 > 0. For all 𝜀 > 0, there exists 𝛿 > 0 such that any solution 𝑢

satisfying system (4.94) and
‖𝑢0‖𝐻−1 ≤ 𝛿

satisfies
‖𝑢(𝑇 )‖𝐻−1 ≤ 𝜀.

Demonstração. By Lemma 4.4.1, we have

‖𝑢(𝑇 )‖𝐻−1 ≤ 𝐶‖𝑢(𝑇 )‖𝐿2 ≤ 𝐶‖𝑢(0)‖𝐿2 .

However, by an interpolation argument between 𝐻𝑠(R3) spaces, 𝑠 ∈ R, one has

‖𝑢(0)‖𝐿2 ≤ ‖𝑢(0)‖
1
2
𝐻−1‖𝑢(0)‖

1
2
𝐻1

≤ 𝜆
1
2
0 ‖𝑢(0)‖

1
2
𝐻−1 .
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Then,

‖𝑢(𝑇 )‖𝐻−1 ≤ 𝐶‖𝑢(0)‖𝐿2 ≤ 𝐶𝜆
1
2
0 ‖𝑢(0)‖

1
2
𝐻−1 .

Taking 𝛿 = 𝜀2

𝐶2𝜆0
, we conclude that

‖𝑢(𝑇 )‖𝐻−1 ≤ 𝜀.

The next lemma ensures an approximation between sequences of solutions under some condi-

tions.

Lemma 4.4.2. Let 𝑢𝑛, 𝑢̃𝑛 be two sequences of solutions for⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑢𝑛 + Δ𝑢𝑛 − 𝑢𝑛 − |𝑢𝑛|4𝑢𝑛 = 𝑎(1 − Δ)−1𝑎𝜕𝑡𝑢𝑛 on [0, 𝑇 ] × R3,

𝑢𝑛(0) = 𝑢0,𝑛 bounded in 𝐻1(R3), with ‖𝑢0,𝑛‖𝐻1 < 𝜆0

and ⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑢̃𝑛 + Δ𝑢̃𝑛 − 𝑢̃𝑛 − |𝑢̃𝑛|4𝑢̃𝑛 = 0 on [0, 𝑇 ] × R3,

𝑢̃𝑛(0) = 𝑢̃0,𝑛 bounded in 𝐻1(R3), with ‖𝑢̃0,𝑛‖𝐻1 < 𝜆0,

respectively, with ‖𝑢𝑛,0 − 𝑢̃𝑛,0‖𝐻1 → 0 and ‖(1−Δ)− 1
2𝑎𝜕𝑡𝑢𝑛‖𝐿2([0,𝑇 ];𝐿2(R3)) −→ 0 as 𝑛 → ∞.

Then,

‖𝑢𝑛−𝑢̃𝑛‖𝐿10([0,𝑇 ]×R3)+‖∇(𝑢𝑛−𝑢̃𝑛)‖
𝐿

10
3

𝑡 𝐿
10
3

𝑥

+ sup
𝑡∈[0,𝑇 ]

‖∇(𝑢𝑛−𝑢̃𝑛)‖𝐿2 + sup
𝑡∈[0,𝑇 ]

‖𝑢𝑛−𝑢̃𝑛‖𝐿2 −→ 0

as 𝑛 → ∞.

Demonstração. Let 𝑟𝑛 = 𝑢𝑛 − 𝑢̃𝑛. It satisfies the system⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑟𝑛 + Δ𝑟𝑛 − 𝑟𝑛 − |𝑢𝑛|4𝑢𝑛 + |𝑢̃𝑛|4𝑢̃𝑛 = 𝑎(1 − Δ)−1𝑎𝜕𝑡𝑢𝑛 on [0, 𝑇 ] × R3,

𝑟𝑛(0) = 𝑢0,𝑛 − 𝑢̃0,𝑛.

Denote

|||.|||[0,𝑇 ] = ‖.‖𝐿10([0,𝑇 ]×R3) + ‖∇.‖
𝐿

10
3

𝑡 𝐿
10
3

𝑥

+ ‖∇.‖
𝐿10

𝑡 𝐿
30
13
𝑥

.
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Strichartz’s estimates give us

|||𝑟𝑛|||[0,𝑇 ] + sup
𝑡∈[0,𝑇 ]

‖∇𝑟𝑛(𝑡)‖𝐿2 + sup
𝑡∈[0,𝑇 ]

‖𝑟𝑛(𝑡)‖𝐿2 ≤ ‖𝑟𝑛(0)‖𝐻1 +
⃦⃦⃦⃦ ∫︁ 𝑡

0
∇𝑒𝑖(𝑡−𝜏)Δ(𝑢5

𝑛 − ̃︀𝑢5
𝑛) 𝑑𝜏

⃦⃦⃦⃦
𝐿10

𝑡 𝐿
30
13
𝑥

+
⃦⃦⃦⃦ ∫︁ 𝑡

0
∇𝑒𝑖(𝑡−𝜏)Δ𝑎(1 − Δ)−1𝑎𝜕𝑡𝑢𝑛 𝑑𝜏

⃦⃦⃦⃦
𝐿10

𝑡 𝐿
30
13
𝑥

≤ ‖𝑟𝑛(0)‖𝐻1 + ‖∇(𝑢5
𝑛 − 𝑢̃5

𝑛)‖
𝐿2

𝑡 𝐿
6
5
𝑥

+ ‖𝑎(1 − Δ)−1𝑎𝜕𝑡𝑢𝑛‖𝐿1
𝑡 𝐻1

𝑥

+ ‖𝑢5
𝑛 − 𝑢̃5

𝑛‖𝐿1
𝑡 𝐿2

𝑥
. (4.95)

Observe that

‖𝑎(1 − Δ)−1𝑎𝜕𝑡𝑢𝑛‖𝐿1
𝑡 𝐻1

𝑥
≤ 𝐶‖𝑎(1 − Δ)−1𝑎𝜕𝑡𝑢𝑛‖𝐿2

𝑡 𝐻1
𝑥

= ‖𝑎(1 − Δ)− 1
2 (1 − Δ)− 1

2𝑎𝜕𝑡𝑢𝑛‖𝐿2
𝑡 𝐻1

𝑥

≤ 𝐶‖(1 − Δ)− 1
2𝑎𝜕𝑡𝑢𝑛‖𝐿2

𝑡 𝐿2
𝑥

−→ 0 (4.96)

as 𝑛 → ∞. On the other hand,

‖∇(𝑢5
𝑛 − 𝑢̃5

𝑛)‖
𝐿2

𝑡 𝐿
6
5
𝑥

≤ ‖𝑢𝑛‖4
𝐿10

𝑡 𝐿10
𝑥

‖∇𝑢𝑛 − ∇̃︀𝑢𝑛‖
𝐿10

𝑡 𝐿
30
13
𝑥

+ ‖𝑢𝑛 − ̃︀𝑢𝑛‖𝐿10
𝑡 𝐿10

𝑥
‖∇̃︀𝑢𝑛‖

𝐿10
𝑡 𝐿

30
13
𝑥

‖𝑢𝑛‖3
𝐿10

𝑡 𝐿10
𝑥

+

+ ‖𝑢𝑛 − ̃︀𝑢𝑛‖𝐿10
𝑡 𝐿10

𝑥
‖∇̃︀𝑢𝑛‖

𝐿10
𝑡 𝐿

30
13
𝑥

‖̃︀𝑢𝑛‖3
𝐿10

𝑡 𝐿10
𝑥

≤ 𝐶‖∇𝑢𝑛 − ∇̃︀𝑢𝑛‖
𝐿10

𝑡 𝐿
30
13
𝑥

‖∇𝑢𝑛‖4
𝐿10

𝑡 𝐿
30
13
𝑥

+ 𝐶‖∇𝑢𝑛 − ∇̃︀𝑢𝑛‖
𝐿10

𝑡 𝐿
30
13
𝑥

(︂
‖∇̃︀𝑢𝑛‖4

𝐿10
𝑡 𝐿

30
13
𝑥

+ ‖∇̃︀𝑢𝑛‖
𝐿10

𝑡 𝐿
30
13
𝑥

‖∇𝑢𝑛‖3
𝐿10

𝑡 𝐿
30
13
𝑥

)︂
≤ 𝐶‖∇𝑢𝑛 − ∇̃︀𝑢𝑛‖

𝐿10
𝑡 𝐿

30
13
𝑥

(︂
‖∇̃︀𝑢𝑛‖4

𝐿10
𝑡 𝐿

30
13
𝑥

+ ‖∇𝑢𝑛‖4
𝐿10

𝑡 𝐿
30
13
𝑥

+ ‖∇̃︀𝑢𝑛‖
𝐿10

𝑡 𝐿
30
13
𝑥

‖∇𝑢𝑛‖3
𝐿10

𝑡 𝐿
30
13
𝑥

)︂
≤ 𝐶‖∇𝑟𝑛‖

𝐿10
𝑡 𝐿

30
13
𝑥

(︂
‖∇̃︀𝑢𝑛‖4

𝐿10
𝑡 𝐿

30
13
𝑥

+ ‖∇𝑢𝑛‖4
𝐿10

𝑡 𝐿
30
13
𝑥

+ ‖∇̃︀𝑢𝑛‖
𝐿10

𝑡 𝐿
30
13
𝑥

‖∇𝑢𝑛‖3
𝐿10

𝑡 𝐿
30
13
𝑥

)︂

and

‖𝑢5
𝑛 − 𝑢̃5

𝑛‖𝐿1
𝑡 𝐿2

𝑥
≤ ‖𝑢𝑛 − 𝑢̃𝑛‖𝐿5

𝑡 𝐿10
𝑥

(︂
‖𝑢𝑛‖4

𝐿5
𝑡 𝐿10

𝑥
+ ‖𝑢̃𝑛‖4

𝐿5
𝑡 𝐿10

𝑥

)︂
≤ 𝐶‖𝑢𝑛 − 𝑢̃𝑛‖𝐿10

𝑡 𝐿10
𝑥

(︂
‖𝑢𝑛‖4

𝐿10
𝑡 𝐿10

𝑥
+ ‖𝑢̃𝑛‖4

𝐿10
𝑡 𝐿10

𝑥

)︂
≤ 𝐶‖∇𝑟𝑛‖

𝐿10
𝑡 𝐿

30
13
𝑥

(︂
‖∇̃︀𝑢𝑛‖4

𝐿10
𝑡 𝐿

30
13
𝑥

+ ‖∇𝑢𝑛‖4
𝐿10

𝑡 𝐿
30
13
𝑥

)︂
.

So, dividing the interval [0, 𝑇 ] in a finite number of intervals 𝐼𝑖,𝑛 = [𝑎𝑖,𝑛, 𝑎𝑖+1,𝑛], 1 ≤ 𝑖 ≤ 𝑁

such that 𝐶
(︂

‖∇𝑢𝑛‖4
𝐿10

𝑡 𝐿
30
13
𝑥

+ ‖∇̃︀𝑢𝑛‖4
𝐿10

𝑡 𝐿
30
13
𝑥

+ ‖∇̃︀𝑢𝑛‖
𝐿10

𝑡 𝐿
30
13
𝑥

‖∇𝑢𝑛‖3
𝐿10

𝑡 𝐿
30
13
𝑥

)︂
≤ 1

2 , the terms of

inequality (4.95) can be absorbed. We iterate this estimate 𝑁 times, which gives the result.
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4.4.2 Profile decomposition of the limit energy

Let 𝑢 be a solution of the nonlinear Schrödinger equation (4.97). Denote its nonlinear

energy density by

𝑒(𝑡)(𝑡, 𝑥) = 1
2 |∇𝑢(𝑡, 𝑥)|2 + 1

6 |𝑢(𝑡, 𝑥)|6.

For a sequence 𝑢𝑛 of solutions with bounded initial data in 𝐻̇1(R3), the corresponding nonlinear

energy density is bounded in 𝐿∞([0, 𝑇 ], 𝐿1) and so, by Sobolev embedding, in the space of

bounded measures on [0, 𝑇 ] ×R3. This allows one to consider, up to a subsequence, its weak*

limit. The following theorem proves that the energy limit can be decomposed into profiles as

𝑢𝑛. It will be a crucial argument that will allow the use of a microlocal defect measure on each

profile and then apply a linearization argument.

Theorem 4.12. Let 𝑢𝑛 be a sequence of solutions to

𝑖𝜕𝑡𝑢𝑛 + Δ𝑢𝑛 − |𝑢𝑛|4𝑢𝑛 = 0, (4.97)

with 𝑢𝑛(0) convergent to 0 in 𝐿2(R3). The nonlinear energy density limit of 𝑢𝑛 (up to a
subsequence) is

𝑒(𝑡, 𝑥) =
∞∑︁

𝑗=1
𝑒(𝑗)(𝑡, 𝑥) + 𝑒𝑓 (𝑡, 𝑥),

where 𝑒(𝑗) is the limit energy limit density of 𝑞(𝑗)
𝑛 (following the notation of Theorem 4.10)

and
𝑒𝑓 = lim

𝑙→∞
lim

𝑛→∞
𝑒(𝑤(𝑙)

𝑛 ),

where the two limits are considered up to a subsequence and in the weak* sense. In particular,
𝑒𝑓 can be written as

𝑒𝑓 (𝑡, 𝑥) =
∫︁

𝜉∈𝑆2
𝜇(𝑡, 𝑥, 𝑑𝜉).

Moreover, 𝑒 is also the limit of the linear energy density

𝑒𝑙𝑖𝑚(𝑢𝑛)(𝑡, 𝑥) = 1
2 |∇𝑢𝑛(𝑡, 𝑥)|2.

Demonstração. The proof of this result is a direct consequence of Theorem 4.10. Indeed, since

‖𝑢𝑛‖𝐿10([0,𝑇 ]×R3) ≤ 𝐶, it follows, by an interpolation argument, that

‖𝑢𝑛‖𝐿2([0,𝑇 ]×R3) → 0 =⇒ ‖𝑢𝑛‖𝐿6([0,𝑇 ]×R3) → 0 as 𝑛 → ∞.

Therefore, 𝑒 is the limit of 𝑏(𝑢𝑛, 𝑢𝑛), with

𝑏(𝑓, 𝑔) = ∇𝑓(𝑡, 𝑥) · ∇𝑔(𝑡, 𝑥).
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Now, we have to compute the limit of 𝑏(𝑢𝑛, 𝑢𝑛) using the decomposition of Theorem 4.10.

We set, for each 𝑙 ∈ N,

𝑠(𝑙)
𝑛 =

𝑙∑︁
𝑗=1

𝑞(𝑗)
𝑛

and so

𝑏(𝑢𝑛, 𝑢𝑛) = 𝑏(𝑠(𝑙)
𝑛 , 𝑠

(𝑙)
𝑛 ) + 𝑏(𝑤(𝑙)

𝑛 , 𝑤
(𝑙)
𝑛 ) + 2𝑏(𝑠(𝑙)

𝑛 , 𝑤
(𝑙)
𝑛 ) + 2𝑏(𝑢𝑛, 𝑟

(𝑙)
𝑛 ) − 𝑏(𝑟(𝑙)

𝑛 , 𝑟
(𝑙)
𝑛 ).

The convergence (4.55) gives

lim sup
𝑛→∞

‖2𝑏(𝑢𝑛, 𝑟
(𝑙)
𝑛 ) − 𝑏(𝑟(𝑙)

𝑛 , 𝑟
(𝑙)
𝑛 )‖𝐿1([0,𝑇 ]×R3) → 0

as 𝑙 → ∞. So, if we define 𝑒(𝑙)
𝑟 = 𝑤 * lim𝑛→∞(2𝑏(𝑢𝑛, 𝑟

(𝑙)
𝑛 ) − 𝑏(𝑟(𝑙)

𝑛 , 𝑟
(𝑙)
𝑛 )), the weak* limit, we

have

𝑒(𝑙)
𝑟 −→ 0 as 𝑙 → ∞.

Let 𝜙(𝑡, 𝑥) = 𝜙1(𝑡) · 𝜙2(𝑥) ∈ 𝐶∞
0 ((0, 𝑇 ) × R3). It remains to estimate∫︁ 𝑇

0

∫︁
R3
𝜙𝑏(𝑠(𝑙)

𝑛 , 𝑤
(𝑙)
𝑛 ) =

𝑙∑︁
𝑗=1

∫︁ 𝑇

0
𝜙1

∫︁
R3
𝜙2𝑏(𝑞(𝑗)

𝑛 , 𝑤(𝑙)
𝑛 ),

for each fixed 𝑙. To this end, first note that, since 𝑏(𝑞(𝑗)
𝑛 , 𝑤(𝑙)

𝑛 ) is bounded in 𝐿∞((0, 𝑇 ), 𝐿1(R3)),

we can assume, up to an arbitrary small error, that 𝜙1 is supported in {𝑡 < 𝑡(𝑗)
∞ } or {𝑡 > 𝑡(𝑗)

∞ }

(replace 𝜙1 by (1−Ψ)(𝑡)𝜙1 with Ψ(𝑡(𝑗)
∞ ) = 1 and ‖Ψ‖𝐿1(0,𝑇 ) small). On each interval, Theorem

4.11 allows to replace 𝑞(𝑗)
𝑛 by a linear concentrating solution. Then, by Lemma 4.2.5, we

get the weak convergence to zero of 𝑏(𝑠(𝑙)
𝑛 , 𝑤

(𝑙)
𝑛 ), for each fixed 𝑙. Indeed, by Lemma 4.2.5,

𝐷
(𝑗)
ℎ𝑛
𝑤(𝑙)

𝑛 ⇀ 0, 1 ≤ 𝑗 ≤ 𝑙, which means,√︁
ℎ

(𝑗)
𝑛 𝑤(𝑙)

𝑛 (𝑡(𝑗)
𝑛 + (ℎ(𝑗)

𝑛 )2𝑠, 𝑥(𝑗)
𝑛 + ℎ(𝑗)

𝑛 𝑦) ⇀ 0 in 𝐻̇1(R3) as 𝑛 → ∞.

It is enough to compute
∫︀
R3 ∇𝑥𝑤

(𝑙)
𝑛 (𝑡, 𝑥) · ∇𝑥𝑝

(𝑗)
𝑛 (𝑡, 𝑥) 𝑑𝑥. We have∫︁

R3
∇𝑥𝑤

(𝑙)
𝑛 (𝑡, 𝑥) · ∇𝑥𝑝

(𝑗)
𝑛 (𝑡, 𝑥) 𝑑𝑥

=
∫︁
R3

∇𝑥𝑤
(𝑙)
𝑛 (𝑡, 𝑥) · ∇𝑥

1√︁
ℎ

(𝑗)
𝑛

𝜙(𝑗)
(︂
𝑡− 𝑡(𝑗)

𝑛

(ℎ(𝑗)
𝑛 )2

,
𝑥− 𝑥(𝑗)

𝑛

ℎ
(𝑗)
𝑛

)︂
𝑑𝑥

=
∫︁
R3

∇𝑥𝑤
(𝑙)
𝑛 (𝑡(𝑗)

𝑛 + (ℎ(𝑗)
𝑛 )2𝑠, 𝑥(𝑗)

𝑛 + ℎ(𝑗)
𝑛 𝑦) · ∇𝑥

1√︁
ℎ

(𝑗)
𝑛

𝜙(𝑗)(𝑠, 𝑦) (ℎ(𝑗)
𝑛 )3𝑑𝑦

=
∫︁
R3

∇𝑦

√︁
ℎ

(𝑗)
𝑛 𝑤(𝑙)

𝑛 (𝑡(𝑗)
𝑛 + (ℎ(𝑗)

𝑛 )2𝑠, 𝑥(𝑗)
𝑛 + ℎ(𝑗)

𝑛 𝑦) · ∇𝑦𝜙
(𝑗)(𝑠, 𝑦) 𝑑𝑦 −→ 0

as 𝑛 → ∞. Lemma 4.2.2 and the orthogonality of the cores of concentration yields

𝐷
(𝑗)
ℎ𝑛
𝑝(𝑗′)

𝑛 ⇀ 0,
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for 𝑗 ̸= 𝑗′ and 𝑝(𝑗′)
𝑛 a concentrating solution at rate [ℎ(𝑗′), 𝑥(𝑗′), 𝑡(𝑗

′)]. Then, the same argument

as before gives

𝑏(𝑠(𝑙)
𝑛 , 𝑠

(𝑙)
𝑛 ) ⇀*

𝑙∑︁
𝑗=1

𝑒(𝑗).

So we have proved that, for any 𝑙 ∈ N,

𝑏(𝑢𝑛, 𝑢𝑛) ⇀* 𝑒 =
𝑙∑︁

𝑗=1
𝑒(𝑗) + 𝑒(𝑙)

𝑤 + 𝑒(𝑙)
𝑟 as 𝑛 → ∞,

where 𝑒(𝑙)
𝑤 is the weak* limit of 𝑏(𝑤(𝑙)

𝑛 , 𝑤
(𝑙)
𝑛 ) and 𝑒(𝑙)

𝑟 satisfies 𝑒(𝑙)
𝑟 → 0 as 𝑙 → ∞. Since 𝑒(𝑙)

𝑤 is

the weak* limit of a sequence of solutions of the linear Schrödinger equation with initial data

convergent to zero in 𝐿2, we can use Proposition .2 (Appendix) to conclude that 𝑏(𝑤(𝑙)
𝑛 , 𝑤

(𝑙)
𝑛 )

converges (locally) to a positive measure 𝑒𝑓 . Hence,

𝑒 =
∞∑︁

𝑗=1
𝑒(𝑗) + 𝑒𝑓

and the result is proven.

Remark 4.4.2. The previous result only holds locally, since the Proposition .2 is valid only in
compact sets. The reader will note later that this will be enough to achieve our purpose.

4.5 CONCLUSION

In this chapter, we closely followed the work from in (KERAANI, 2001) and (LAURENT,

2011), combining the methods used in both. We followed the decompositions carried out by

Keraani in (KERAANI, 2001), but with the significant difference that in this thesis we consider

ℎ𝑛 as a scale of positive numbers converging to zero, in the spirit of Laurent in (LAURENT,

2011), since Keraani considers ℎ𝑛 to be a constant sequence equals to 1. This combination of

techniques produces some new results such as, for example, Lemma 4.9, Theorem 4.11, and

the results from the previous section.
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5 STABILIZABILITY OF NONLINEAR PERTURBED SCHRÖDINGER EQUA-

TION

This chapter is devoted to the proof of Theorem 2.2. To show the desired stability result,

we need to obtain the following observability estimate

𝐸(𝑢)(𝑡) ≤ 𝐶
∫︁ 𝑇

0

∫︁
R3

|(1 − Δ)− 1
2𝑎𝜕𝑡𝑢|2 𝑑𝑥𝑑𝑡. (5.1)

The proof of Stabilizability consists in the analysis of possible sequences contradicting this

observability estimate or, more precisely, a weak version of this estimate. In our case, specifi-

cally, to obtain (5.1) we need a weaker observability involving the initial data in a lower norm.

Then, considering this small enough data, we obtain the desired strong observability. The first

step is to prove that such sequences are linearizable in the sense that their behavior is close

to the behavior of solutions of the linear equation.

5.1 LINEARIZATION

From now on, we consider 𝑎 ∈ 𝐶∞(R3) satisfying (2.3). So, denoting 𝜔 :=
(︁
R3∖𝐵𝑅(0)

)︁
,

𝜔 satisfies the following geometric control condition. There exists 𝑇0 > 0 such that every

geodesic travelling at speed 1 meets 𝜔 in a time 𝑡 < 𝑇0; Let us present now the following

linearization lemma.

Lemma 5.1.1. Let 𝑇 > 𝑇0 and 𝑢𝑛 be a sequence of solutions to⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑢𝑛 + Δ𝑢𝑛 − 𝑢𝑛 − |𝑢𝑛|4𝑢𝑛 − 𝑎(1 − Δ)−1𝑎𝜕𝑡𝑢𝑛 = 0, on [0, 𝑇 ] × R3,

𝑢𝑛(0) = 𝑢0,𝑛 in 𝐻1(R3)
(5.2)

satisfying
𝑢0,𝑛 → 0 in 𝐿2(R3) as 𝑛 → ∞ (5.3)

and ∫︁ 𝑇

0

∫︁
R3

|(1 − Δ)− 1
2𝑎𝜕𝑡𝑢𝑛|2 𝑑𝑥𝑑𝑡 −→ 0 as 𝑛 → ∞. (5.4)

Consider the profile decomposition according to Theorem 4.10 of 𝑢𝑛 in a subinterval [𝑡0, 𝑡0 +

𝐿] ⊂ [0, 𝑇 ] with 𝑇0 < 𝐿. Then, for any 0 < 𝜀 < 𝐿− 𝑇0, this decomposition does not contain
any nonlinear concentrating solution with 𝑡(𝑗)

∞ ∈ [𝑡0, 𝑡0 + 𝜀] and 𝑢𝑛 is linearizable in [𝑡0, 𝑡0 + 𝜀],

i.e.,
‖𝑢𝑛 − 𝑣𝑛‖𝐿10([𝑡0,𝑡0+𝜀]×R3) + ‖𝑢𝑛 − 𝑣𝑛‖𝐿∞([𝑡0,𝑡0+𝜀];𝐻1(R3)) −→ 0 as 𝑛 → ∞,
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where 𝑣𝑛 is the solution of⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑣𝑛 + Δ𝑣𝑛 − 𝑣𝑛 = 0 on [0, 𝑇 ] × R3,

𝑣𝑛(0) = 𝑢0,𝑛 in 𝐻1(R3).
(5.5)

Demonstração. With no loss of generality, we consider the interval [0, 𝐿] instead of [𝑡0, 𝑡0 +𝐿]

to keep the notation simple.

Claim 1: The sequence 𝑢𝑛 is convergent to 0 in 𝐿2([0, 𝑇 ] × R3).

Indeed, multiplying the first equation of (5.2) by 𝑢𝑛 and taking its imaginary part, we

obtain the estimate

1
2‖𝑢𝑛(𝑡)‖𝐿2 ≤ 1

2‖𝑢𝑛(0)‖𝐿2 +
∫︁ 𝑡

0
‖𝑎(1 − Δ)−1𝑎𝜕𝑡𝑢𝑛‖𝐿2‖𝑢𝑛‖𝐿2 𝑑𝑠.

Since (1 − Δ)− 1
2𝑎(𝑥)𝜕𝑡𝑢𝑛 tends to 0 in 𝐿2(R3) and ‖𝑢𝑛(𝑡)‖𝐿2 is bounded, by convergence

(5.3), we obtain Claim 1.

Claim 2: The sequence 𝑢𝑛 is convergent to 0 in 𝐿2
𝑙𝑜𝑐((0, 𝐿); 𝐻̇1

𝑙𝑜𝑐(𝜔)).

Since, by hypothesis,

‖(1 − Δ)− 1
2𝑎𝜕𝑡𝑢𝑛‖𝐿2(([0,𝐿];R3) → 0 as 𝑛 → ∞

one has

‖(1 − Δ)− 1
2𝑎(−𝑖𝐽−1(𝐼 − Δ)𝑢𝑛 − 𝑖𝐽−1|𝑢𝑛|4𝑢𝑛)‖𝐿2([0,𝐿];R3) → 0 as 𝑛 → ∞.

Observe that,

‖(1 − Δ)− 1
2𝑎𝑖𝐽−1(𝐼 − Δ)𝑢𝑛‖𝐿2((0,𝐿);R3)

= ‖(1 − Δ)− 1
2𝑎(𝑖𝐽−1(𝐼 − Δ)𝑢𝑛 − 𝑖𝐽−1|𝑢𝑛|4𝑢𝑛 + 𝑖𝐽−1|𝑢𝑛|4𝑢𝑛)‖𝐿2

≤ ‖(1 − Δ)− 1
2𝑎(𝑖𝐽−1(𝐼 − Δ)𝑢𝑛 + 𝑖𝐽−1|𝑢𝑛|4𝑢𝑛)‖𝐿2([0,𝐿];R3)

+ ‖(1 − Δ)− 1
2𝑎𝑖𝐽−1|𝑢𝑛|4𝑢𝑛)‖𝐿2([0,𝐿];R3)

≤ ‖(1 − Δ)− 1
2𝑎(𝑖𝐽−1(𝐼 − Δ)𝑢𝑛 + 𝑖𝐽−1|𝑢𝑛|4𝑢𝑛)‖𝐿2([0,𝐿];R3)

+ ‖𝑢5
𝑛‖𝐿2([0,𝐿];𝐻−1(R3)) → 0 as 𝑛 → ∞,
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due to the convergence

‖𝑢5
𝑛‖2

𝐿2((0,𝐿);𝐻−1(R3)) ≤ 𝑐‖𝑢5
𝑛‖2

𝐿2((0,𝐿);𝐿
6
5 (R3))

≤ 𝑐
∫︁ 𝐿

0
‖𝑢𝑛(𝑡)‖10

𝐿6(R3) 𝑑𝑡

≤
∫︁ 𝐿

0
‖𝑢𝑛(𝑡)‖

5
3
𝐿2‖𝑢𝑛(𝑡)‖

25
3

𝐿10 𝑑𝑡

≤ sup
𝑡∈[0,𝐿]

‖𝑢𝑛(𝑡)‖
5
3
𝐿2

∫︁ 𝐿

0
‖𝑢𝑛(𝑡)‖

25
3

𝐿10 𝑑𝑡

≤ sup
𝑡∈[0,𝐿]

‖𝑢𝑛(𝑡)‖
5
3
𝐿2‖𝑢𝑛‖

3
25

𝐿
25
3

𝑡 𝐿10
𝑥

≤ sup
𝑡∈[0,𝐿]

‖𝑢𝑛(𝑡)‖
5
3
𝐿2‖𝑢𝑛‖

3
25
𝐿10

𝑡 𝐿10
𝑥

→ 0

as 𝑛 → ∞ and using the interpolation

‖𝑢𝑛(𝑡)‖𝐿6 ≤ ‖𝑢𝑛(𝑡)‖
1
6
𝐿2‖𝑢𝑛(𝑡)‖

5
6
𝐿10 .

Hence, for every 𝜒 ∈ 𝐶∞
0 ((0, 𝐿) × R3), we have

‖(1 − Δ)− 1
2𝑎𝐽−1(𝐼 − Δ)𝜒𝑢𝑛‖𝐿2(0,𝐿)×R3) → 0

as 𝑛 → ∞, which is equivalent to⟨
(1 − Δ)− 1

2𝑎𝐽−1(𝐼 − Δ)𝜒𝑢𝑛, (1 − Δ)− 1
2𝑎𝐽−1(𝐼 − Δ)𝜒𝑢𝑛

⟩
𝐿2((0,𝐿)×R3)

→ 0

⇒
⟨

(1 − Δ)−1𝑎𝐽−1(𝐼 − Δ)𝜒𝑢𝑛, 𝑎𝐽
−1(𝐼 − Δ)𝜒𝑢𝑛

⟩
𝐿2((0,𝐿)×R3)

→ 0

⇒
⟨
𝑎(1 − Δ)−1𝑎𝐽−1(𝐼 − Δ)𝜒𝑢𝑛, 𝐽

−1(𝐼 − Δ)𝜒𝑢𝑛

⟩
𝐿2((0,𝐿)×R3)

→ 0

⇒
⟨

(𝐽−1)*𝑎(1 − Δ)−1𝑎𝐽−1(𝐼 − Δ)𝜒𝑢𝑛, (𝐼 − Δ)𝜒𝑢𝑛

⟩
𝐿2((0,𝐿)×R3)

→ 0

⇒
⟨

(𝐼 − Δ)(𝐽−1)*𝑎(1 − Δ)−1𝑎𝐽−1(𝐼 − Δ)𝜒𝑢𝑛, 𝜒𝑢𝑛

⟩
𝐿2((0,𝐿)×R3)

→ 0

as 𝑛 → ∞. This means, using Proposition .2 (Appendix), that
∫︁

(0,𝐿)×R3×𝑆3

(1 + |𝜉|2)𝑎2

1 + |𝜉|2
(1 + |𝜉|2) 𝑑𝜇(𝑡, 𝑥, 𝜉) = 0.

Thus ∫︁
(0,𝐿)×𝜔×𝑆3

1 + |𝜉|2 𝑑𝜇(𝑡, 𝑥, 𝜉) = 0,

i.e.,

𝑢𝑛 −→ 0 in 𝐿2
𝑙𝑜𝑐((0, 𝐿); 𝐻̇1

𝑙𝑜𝑐(𝜔)) as 𝑛 → ∞,
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showing Claim 2.

Now, let ̃︀𝑢𝑛 be a solution to⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡̃︀𝑢𝑛 + Δ̃︀𝑢𝑛 − ̃︀𝑢𝑛 − |̃︀𝑢𝑛|4̃︀𝑢𝑛 = 0 on [0, 𝑇 ] × R3,

̃︀𝑢𝑛(0) = 𝑢0,𝑛 ∈ 𝐻1(R3).

By the convergence (5.4) and Lemma 4.4.2 we get

̃︀𝑢𝑛 −→ 0 in 𝐿2
𝑙𝑜𝑐((0, 𝐿); 𝐻̇1

𝑙𝑜𝑐(𝜔)) as 𝑛 → ∞.

Let 𝑤𝑛 = 𝑒𝑖𝑡̃︀𝑢𝑛. It satisfies⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑤𝑛 + Δ𝑤𝑛 − |𝑤𝑛|4𝑤𝑛 = 0 on [0, 𝑇 ] × R3,

𝑤𝑛(0) = 𝑢0,𝑛

and

𝑤𝑛 −→ 0 in 𝐿2
𝑙𝑜𝑐((0, 𝐿); 𝐻̇1

𝑙𝑜𝑐(𝜔)) as 𝑛 → ∞

and, consequently,

|∇𝑤𝑛(𝑡)|2 −→ 0 in 𝐿1𝐿1 as 𝑛 → ∞.

Using the notation of Theorem 4.12, this gives 𝑒 = 0 in (0, 𝐿) × 𝜔 (locally). Since all the

measures in the decomposition of 𝑒 are positive, we get the same result for any nonlinear

concentrating solution in the decomposition of 𝑤𝑛, that is, 𝑒𝑗 = 0 in (0, 𝐿) ×𝜔 (locally), and

|∇𝑞(𝑗)
𝑛 |2 ⇀ 0 in 𝐿1

𝑙𝑜𝑐((0, 𝐿) × 𝜔) as 𝑛 → ∞

which give us ∫︁ 𝐿

0

∫︁
𝜔
𝜙|∇𝑞(𝑗)

𝑛 |2 −→ 0 as 𝑛 → ∞,

for all 𝜙 ∈ 𝐶∞
0 . Therefore,

𝑞(𝑗)
𝑛 −→ 0 in 𝐿2

𝑙𝑜𝑐((0, 𝐿); 𝐻̇1
𝑙𝑜𝑐(𝜔)) as 𝑛 → ∞

and if 𝜇(𝑗) is the microlocal defect measure of 𝑞(𝑗)
𝑛 , we have

𝜇(𝑗) ≡ 0 in (0, 𝐿) × 𝜔 × 𝑆3. (5.6)

Assume that 𝑡(𝑗)
∞ ∈ [0, 𝜀] for some 𝑗 ∈ N, so that the interval (𝑡(𝑗)

∞ , 𝐿] has lenght greater

than 𝑇0. Denote by 𝑝(𝑗)
𝑛 the linear concentrating solution approaching 𝑞(𝑗)

𝑛 in the interval
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𝐼3,Λ
𝑛 = (𝑡(𝑗)

𝑛 + Λ(ℎ(𝑗)
𝑛 )2, 𝐿], according to the notation of Theorem 4.11, so that, for any

𝑡(𝑗)
∞ < 𝑡 < 𝐿, we have

‖𝑞(𝑗)
𝑛 − 𝑝(𝑗)

𝑛 ‖𝐿10([𝑡,𝐿]×R3) + ‖𝑞(𝑗)
𝑛 − 𝑝(𝑗)

𝑛 ‖𝐿∞([𝑡,𝐿];𝐻̇1(R3)) −→ 0 as 𝑛 → ∞.

In particular, 𝜇(𝑗) is also attached to 𝑝(𝑗)
𝑛 on the time interval (𝑡(𝑗)

∞ , 𝐿].

Claim 3: 𝑝(𝑗)
𝑛 is bounded in 𝐻̇1(R3) and ‖𝑝(𝑗)

𝑛 (𝑡)‖𝐿2 → 0 as 𝑛 → ∞.

In fact, remember that 𝑝(𝑗)
𝑛 is a solution of the linear Schrödinger equation. If 𝑝(𝑗)

𝑛 is a

linear concentrating solution, we may consider

𝑝(𝑗)
𝑛 (𝑡, 𝑥) = 1√︁

ℎ
(𝑗)
𝑛

𝜙(𝑗)
(︂
𝑡− 𝑡(𝑗)

𝑛

(ℎ(𝑗)
𝑛 )2

,
𝑥− 𝑥(𝑗)

𝑛

ℎ
(𝑗)
𝑛

)︂
,

and so, with the change of variables 𝑥−𝑥𝑛

ℎ𝑛
= 𝑦,

‖𝑝(𝑗)
𝑛 (𝑡)‖𝐿2 = 1√︁

ℎ
(𝑗)
𝑛

(︂ ∫︁
R3

|𝜙(𝑗)(𝑠, 𝑦)|2(ℎ(𝑗)
𝑛 )3 𝑑𝑦

)︂ 1
2

= ℎ(𝑗)
𝑛 ‖𝜙(𝑗)(𝑠)‖𝐿2

≤ 𝐶ℎ(𝑗)
𝑛 ‖𝜙(𝑗)(𝑠)‖𝐿6 → 0

as 𝑛 → ∞, since we can consider 𝜙(𝑗)(𝑠) ∈ 𝐶∞
0 (R3). Thus, 𝑝(𝑗)

𝑛 ’s measure propagates along

the geodesics of R3 and we have

𝜇(𝑗) ≡ 0 in (𝑡(𝑗)
∞ , 𝐿) × R3 × 𝑆3,

since |𝐿− 𝑡(𝑗)
∞ | > 𝑇0 ensure that the geometric control condition is still verified in the interval

[𝑡(𝑗)
∞ , 𝐿] when combined with (5.6). This means that

𝑝(𝑗)
𝑛 → 0 in 𝐿2

𝑙𝑜𝑐((𝑡(𝑗)
∞ , 𝐿);𝐻1

𝑙𝑜𝑐(R3)) as 𝑛 → ∞,

showing Claim 3.

Finally, solving the equation satisfied by 𝑝(𝑗)
𝑛 with initial data 𝑝(𝑗)

𝑛 (𝑡0), where 𝑡0 ∈ (𝑡(𝑗)
∞ , 𝐿)

is such that ‖𝑝(𝑗)
𝑛 (𝑡0)‖𝐻1 → 0 as 𝑛 → ∞, one has the strong convergence 𝑝(𝑗)

𝑛 → 0 in the

space 𝐿∞([𝑡(𝑗)
∞ , 𝐿], 𝐻1

𝑙𝑜𝑐(R3)) as 𝑛 → ∞.

In particular, 𝑝(𝑗)
𝑛 (𝑡(𝑗)

∞ ) → 0 in 𝐻̇1
𝑙𝑜𝑐(R3) as 𝑛 → ∞, so the measure 𝜇(𝑗,∞) associated to

𝑝(𝑗)
𝑛 (𝑡(𝑗)

∞ ) satisfies 𝜇(𝑗,∞) ≡ 0 in R3×𝑆2. On the other hand, since 𝑝(𝑗)
𝑛 (𝑡(𝑗)

∞ ) = 1√
ℎ𝑛
𝜙(𝑗)

(︂
𝑥−𝑥

(𝑗)
∞

ℎ𝑛

)︂
,
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we can calculate 𝜇(𝑗,∞) directly. To this end, note that

⟨𝐴(𝑥,𝐷𝑥)∇𝑝(𝑗)
𝑛 (𝑡(𝑗)

∞ ),∇𝑝(𝑗)
𝑛 (𝑡(𝑗)

∞ )⟩𝐿2

= 1
(2𝜋)3

∫︁
R3

∫︁
R3

∫︁
R3
𝑎(𝑥, 𝜉)𝑒𝑖(𝑥−𝑦)𝜉|𝜉|2𝑝(𝑗)

𝑛 (𝑡(𝑗)
∞ )(𝑦)𝑝(𝑗)

𝑛 (𝑡(𝑗)
∞ )(𝑥) 𝑑𝑦𝑑𝑥𝑑𝜉

= 1
(2𝜋)3

1
ℎ𝑛

∫︁
R3

∫︁
R3

∫︁
R3
𝑎(𝑥, 𝜉)𝑒𝑖(𝑥−𝑦)𝜉|𝜉|2𝜙(𝑗)

(︂
𝑦 − 𝑥(𝑗)

∞
ℎ𝑛

)︂
𝜙(𝑗)

(︂
𝑦 − 𝑥

(𝑗)
∞

ℎ𝑛

)︂
𝑑𝑦𝑑𝑥𝑑𝜉

= ℎ5
𝑛

(2𝜋)3

∫︁
R3

∫︁
R3

∫︁
R3
𝑎(ℎ𝑛𝑥̃+ 𝑥(𝑗)

∞ , 𝜉)𝑒𝑖ℎ𝑛(𝑥̃−𝑦)𝜉|𝜉|2𝜙(𝑗)(𝑦)𝜙(𝑗)(𝑥̃) 𝑑𝑦𝑑𝑥̃𝑑𝜉

= ℎ2
𝑛

(2𝜋)3

∫︁
R3

∫︁
R3

∫︁
R3
𝑎(ℎ𝑛𝑥̃+ 𝑥(𝑗)

∞ ,
𝜉

ℎ𝑛

)𝑒𝑖(𝑥̃−𝑦)𝜉
⃒⃒⃒⃒
𝜉

ℎ𝑛

⃒⃒⃒⃒2
𝜙(𝑗)(𝑦)𝜙(𝑗)(𝑥̃) 𝑑𝑦𝑑𝑥̃𝑑𝜉

= 1
(2𝜋)3

∫︁
R3

∫︁
R3

∫︁
R3
𝑎(ℎ𝑛𝑥̃+ 𝑥(𝑗)

∞ , 𝜉)𝑒𝑖(𝑥̃−𝑦)𝜉|𝜉|2𝜙(𝑗)(𝑦)𝜙(𝑗)(𝑥̃) 𝑑𝑦𝑑𝑥̃𝑑𝜉

= 1
(2𝜋)3

∫︁
R3
𝑎(ℎ𝑛𝑥̃+ 𝑥(𝑗)

∞ , 𝜉)|𝜉|2|̂︂𝜙(𝑗)(𝜉)|2 𝑑𝜉 → 1
(2𝜋)3

∫︁
R3
𝑎(𝑥(𝑗)

∞ , 𝜉)|𝜉|2|̂︂𝜙(𝑗)(𝜉)|2 𝑑𝜉

as 𝑛 → ∞. Using polar coordinates, we get

𝜇(𝑗,∞) = 𝛿
𝑥−𝑥

(𝑗)
∞

⊗ Φ(𝜃) 𝑑𝜃,

where Φ(𝜃) = 1
(2𝜋)3

∫︀∞
−∞ |𝑟𝜃|2|̂︂𝜙(𝑗)(𝑟𝜃)|2𝑟2 𝑑𝑟. Therefore, 𝑝(𝑗)

𝑛 (𝑡(𝑗)
∞ ) ≡ 0, and the conservation

of the energy yields

‖𝑝(𝑗)
𝑛 (𝑡)‖𝐻̇1(R3) = ‖𝑝(𝑗)

𝑛 (𝑡(𝑗)
∞ )‖𝐻̇1(R3) = 0,

for all 𝑡 ∈ (𝑡(𝑗)
∞ , 𝐿]. Moreover,

‖𝑞(𝑗)
𝑛 (𝑡)‖𝐻̇1(R3) → 0 as 𝑛 → ∞,

for all 𝑡 ∈ (𝑡(𝑗)
∞ , 𝐿]. Arguing in the same way as before, one obtains 𝑞(𝑗)

𝑛 ≡ 0 in (𝑡(𝑗)
∞ , 𝐿] as

expected, since 𝑞(𝑗)
𝑛 (𝑡(𝑗)

∞ ) = 1√
ℎ𝑛
𝜓(𝑗)

(︂
𝑥−𝑥

(𝑗)
∞

ℎ𝑛

)︂
. Then, for the profile decomposition of 𝑤𝑛 in the

interval [0, 𝐿], namely,

𝑤𝑛 =
𝑙∑︁

𝑗=1
𝑞(𝑗)

𝑛 + 𝑤(𝑙)
𝑛 + 𝑟(𝑙)

𝑛 ,

we have proved that 𝑡(𝑗)
𝑛 ∈ (𝜀, 𝐿], since assuming 𝑡(𝑗)

𝑛 ∈ [0, 𝜀] implies 𝑞(𝑗)
𝑛 ≡ 0. Thus, Theorem

4.11 provides a linear concentrating solution 𝑝(𝑗)
𝑛 such that

lim sup
𝑛→∞

(︂
‖𝑞(𝑗)

𝑛 − 𝑝(𝑗)
𝑛 ‖𝐿10([0,𝜀]×R3) + ‖𝑞(𝑗)

𝑛 − 𝑝(𝑗)
𝑛 ‖𝐿∞([0,𝜀];𝐻̇1(R3))

)︂
= 0

while Lemma 4.9 gives

lim sup
𝑛→∞

‖𝑝(𝑗)
𝑛 ‖𝐿10([0,𝜀]×R3) = 0.



127

Moreover, Theorems 4.8 and 4.10 ensure

lim sup
𝑛→∞

‖𝑤(𝑙)
𝑛 + 𝑟(𝑙)

𝑛 ‖𝐿10([0,𝜀]×R3) −→ 0 as 𝑙 → ∞.

Therefore,

lim sup
𝑛→∞

‖𝑤𝑛‖𝐿10([0,𝜀]×R3) = 0

and, hence,

lim sup
𝑛→∞

‖̃︀𝑢𝑛‖𝐿10([0,𝜀]×R3) = 0.

Thus,

‖∇|̃︀𝑢𝑛|4̃︀𝑢𝑛‖
𝐿

10
7 ([0,𝜀];𝐿

10
7 (R3))

−→ 0 as 𝑛 → ∞.

Since

‖∇|̃︀𝑢𝑛|4̃︀𝑢𝑛‖
𝐿

10
7 ([0,𝜀];𝐿

10
7 (R3))

≤ ‖̃︀𝑢𝑛‖4
𝐿10([0,𝜀]×R3)‖∇̃︀𝑢𝑛‖

𝐿
10
3 ([0,𝜀];𝐿

10
3 (R3))

, (5.7)

we have that ̃︀𝑢𝑛 is linearizable on [0, 𝜀]. Indeed, using Remark 4.4.1 and Remark 3.3.2 (or

Proposition 4.4.1), note that

‖̃︀𝑢𝑛 − 𝑣𝑛‖𝐿10([0,𝜀]×R3) + ‖̃︀𝑢𝑛 − 𝑣𝑛‖𝐿∞([0,𝜀];𝐻1(R3)) ≤ ‖∇|̃︀𝑢𝑛|4̃︀𝑢𝑛‖
𝐿

10
7 ([0,𝜀];𝐿

10
7 (R3))

+ ‖̃︀𝑢5
𝑛‖𝐿1([0,𝜀];𝐿2(R3))

≤ 𝐶‖̃︀𝑢𝑛‖4
𝐿10([0,𝜀]×R3)‖∇̃︀𝑢𝑛‖

𝐿
10
3 ([0,𝜀];𝐿

10
3 (R3))

+ 𝐶‖̃︀𝑢𝑛‖5
𝐿10([0,𝜀]×R3)

→ 0, (5.8)

as 𝑛 → ∞, where 𝑣𝑛 is a sequence of solution to system (5.5). It follows that,

‖𝑢𝑛 − 𝑣𝑛‖𝐿10([0,𝜀]×R3) + ‖𝑢𝑛 − 𝑣𝑛‖𝐿∞([0,𝜀];𝐻1(R3)) ≤ ‖𝑢𝑛 − ̃︀𝑢𝑛‖𝐿10([0,𝜀]×R3) + ‖𝑢𝑛 − ̃︀𝑢𝑛‖𝐿∞([0,𝜀];𝐻1(R3))

+ ‖̃︀𝑢𝑛 − 𝑣𝑛‖𝐿10([0,𝜀]×R3)

+ ‖̃︀𝑢𝑛 − 𝑣𝑛‖𝐿∞([0,𝜀];𝐻1(R3))

→ 0,

as 𝑛 → ∞, due to (5.8), (5.4) and Lemma 4.4.2.

The next proposition assures that a sequence of solutions of the nonlinear system is close

to the solutions of the linear system.

Proposition 5.1.1. Under the assumptions of Lemma 5.1.1, we have that 𝑢𝑛 is linearizable
on [0, 𝑡], for any 𝑡 < 𝑇 − 𝑇0, that is

‖𝑢𝑛 − 𝑣𝑛‖𝐿10([0,𝑡]×R3) + ‖𝑢𝑛 − 𝑣𝑛‖𝐿∞([0,𝑡];𝐻1(R3)) −→ 0 as 𝑛 → ∞,
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where 𝑣𝑛 is the solution of⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑣𝑛 + Δ𝑣𝑛 − 𝑣𝑛 = 0 on [0, 𝑇 ] × R3,

𝑣𝑛(0) = 𝑢0,𝑛 in 𝐻1(R3).
(5.9)

Demonstração. Let

𝑡* = sup{𝑠 ∈ [0, 𝑇 ]; lim
𝑛

‖𝑢𝑛 − 𝑣𝑛‖𝐿10([0,𝑠]×R3) + ‖𝑢𝑛 − 𝑣𝑛‖𝐿∞([0,𝑠];𝐻1(R3)) = 0}.

We claim that 𝑡* ≥ 𝑇 − 𝑇0. Indeed, suppose, by contradiction, that this does not hold, so we

can find an interval [𝑡*−𝜀, 𝑡*−𝜀+𝐿] ⊂ [0, 𝑇 ] with 𝑇0 < 𝐿 and 0 < 2𝜀 < 𝐿−𝑇0 (if 𝑡* = 0, take

the interval [0, 𝐿] ⊂ [0, 𝑇 ]). It follows from Lemma 5.1.1 that 𝑢𝑛 is linearizable in [𝑡*−𝜀, 𝑡*+𝜀].

The definition of 𝑡* gives lim𝑛 ‖𝑢𝑛−𝑣𝑛‖𝐿10([0,𝑡*−𝜀]×R3)+‖𝑢𝑛−𝑣𝑛‖𝐿∞([0,𝑡*−𝜀];𝐻1(R3)) = 0 and we

have proved that lim𝑛 ‖𝑢𝑛 − 𝑣𝑛‖𝐿10([𝑡*−𝜀,𝑡*+𝜀]×R3) + ‖𝑢𝑛 − 𝑣𝑛‖𝐿∞([𝑡*−𝜀,𝑡*+𝜀];𝐻1(R3)) = 0 where

𝑣𝑛 is a solution of

𝑖𝜕𝑡𝑣𝑛 + Δ𝑣𝑛 − 𝑣𝑛 = 0, 𝑣𝑛(𝑡* − 𝜀) = 𝑢𝑛(𝑡* − 𝜀).

This yields lim𝑛 ‖𝑢𝑛 − 𝑣𝑛‖𝐿10([0,𝑡*+𝜀]×R3) + ‖𝑢𝑛 − 𝑣𝑛‖𝐿∞([0,𝑡*+𝜀];𝐻1(R3)) = 0. Indeed, we have

sup
𝑡∈[0,𝑡*+𝜀]

‖𝑢𝑛(𝑡) − 𝑣𝑛(𝑡)‖𝐻1(R3) ≤ sup
𝑡∈[0,𝑡*−𝜀]

‖𝑢𝑛(𝑡) − 𝑣𝑛(𝑡)‖𝐻1(R3) + sup
𝑡∈[𝑡*−𝜀,𝑡*+𝜀]

‖𝑢𝑛(𝑡) − 𝑣𝑛(𝑡)‖𝐻1(R3),

where the first term on the right-hand side converges to 0 as 𝑛 tends to ∞. For the second

term, we have

sup
𝑡∈[𝑡*−𝜀,𝑡*+𝜀]

‖𝑢𝑛(𝑡) − 𝑣𝑛(𝑡)‖𝐻1(R3)

≤ sup
𝑡∈[𝑡*−𝜀,𝑡*+𝜀]

‖𝑢𝑛(𝑡) − ̃︀𝑣𝑛(𝑡)‖𝐻1(R3) + sup
𝑡∈[𝑡*−𝜀,𝑡*+𝜀]

‖̃︀𝑣𝑛(𝑡) − 𝑣𝑛(𝑡)‖𝐻1(R3)

≤ sup
𝑡∈[𝑡*−𝜀,𝑡*+𝜀]

‖𝑢𝑛(𝑡) − ̃︀𝑣𝑛(𝑡)‖𝐻1(R3) + ‖̃︀𝑣𝑛(𝑡* − 𝜀) − 𝑣𝑛(𝑡* − 𝜀)‖𝐻1(R3)

≤ sup
𝑡∈[𝑡*−𝜀,𝑡*+𝜀]

‖𝑢𝑛(𝑡) − ̃︀𝑣𝑛(𝑡)‖𝐻1(R3) + ‖𝑢𝑛(𝑡* − 𝜀) − 𝑣𝑛(𝑡* − 𝜀)‖𝐻1(R3)

≤ sup
𝑡∈[𝑡*−𝜀,𝑡*+𝜀]

‖𝑢𝑛(𝑡) − ̃︀𝑣𝑛(𝑡)‖𝐻1(R3) + sup
𝑡∈[0,𝑡*−𝜀]

‖𝑢𝑛(𝑡) − 𝑣𝑛(𝑡)‖𝐻1(R3) → 0

as 𝑛 → ∞. Now, we estimate the 𝐿10 norm as

‖𝑢𝑛 − 𝑣𝑛‖10
𝐿10([0,𝑡*+𝜀]×R3) =

∫︁ 𝑡*+𝜀

0
‖𝑢𝑛 − 𝑣𝑛‖10

𝐿10(R3) 𝑑𝑡

≤
∫︁ 𝑡*−𝜀

0
‖𝑢𝑛 − 𝑣𝑛‖10

𝐿10(R3) 𝑑𝑡+
∫︁ 𝑡*+𝜀

𝑡*−𝜀
‖𝑢𝑛 − 𝑣𝑛‖10

𝐿10(R3) 𝑑𝑡,
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where the first term on the right-hand side converges to 0 as 𝑛 tends to ∞. For the second

term, we have

‖𝑢𝑛 − 𝑣𝑛‖𝐿10([𝑡*−𝜀,𝑡*+𝜀]×R3) ≤ ‖𝑢𝑛 − ̃︀𝑣𝑛‖𝐿10([𝑡*−𝜀,𝑡*+𝜀]×R3) + ‖̃︀𝑣𝑛 − 𝑣𝑛‖𝐿10([𝑡*−𝜀,𝑡*+𝜀]×R3)

≤ ‖𝑢𝑛 − ̃︀𝑣𝑛‖𝐿10([𝑡*−𝜀,𝑡*+𝜀]×R3) + ‖̃︀𝑣𝑛(𝑡* − 𝜀) − 𝑣𝑛(𝑡* − 𝜀)‖𝐻1(R3)

≤ ‖𝑢𝑛 − ̃︀𝑣𝑛‖𝐿10([𝑡*−𝜀,𝑡*+𝜀]×R3) + ‖𝑢𝑛(𝑡* − 𝜀) − 𝑣𝑛(𝑡* − 𝜀)‖𝐻1(R3)

≤ ‖𝑢𝑛 − ̃︀𝑣𝑛‖𝐿10([𝑡*−𝜀,𝑡*+𝜀]×R3) + sup
𝑡∈[0,𝑡*−𝜀]

‖𝑢𝑛(𝑡) − 𝑣𝑛(𝑡)‖𝐻1(R3)

→ 0

as 𝑛 → ∞, using Strichartz estimates, which contradicts the definition of 𝑡*.

5.2 WEAK OBSERVABILITY ESTIMATE

In order to show that the observability estimate (5.1) holds in some sense, we need the

following weak observability estimate.

Theorem 5.2.1. Let 𝑇 > 𝑇0 and 𝜆0 > 0 from Definition 4.1. There exists 𝐶 > 0 such that
any solution 𝑢 of the system⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑖𝜕𝑡𝑢+ Δ𝑢− 𝑢− |𝑢|4𝑢− 𝑎(1 − Δ)−1𝑎𝜕𝑡𝑢 = 0, on [0, 𝑇 ] × R3,

𝑢(0) = 𝑢0 ∈ 𝐻1(R3),

‖𝑢0‖𝐻1 ≤ 𝜆0,

(5.10)

satisfies

𝐸(𝑢)(0) ≤ 𝐶
(︂ ∫︁ 𝑇

0

∫︁
R3

|(1 − Δ)− 1
2𝑎𝜕𝑡𝑢|2 𝑑𝑥𝑑𝑡+ ‖𝑢0‖𝐻−1(R3)𝐸(𝑢)(0)

)︂
. (5.11)

Demonstração. Remember that

𝐸(𝑢)(𝑡) = 1
2‖𝑢(𝑡)‖2

𝐿2 + 1
2‖∇𝑢(𝑡)‖2

𝐿2 + 1
6‖𝑢(𝑡)‖6

𝐿6 .

We argue by contradiction. Suppose that (5.11) does not hold. So, there exists a sequence

(𝑢𝑛)𝑛∈N of solutions to system (5.10) does not satisfying inequality (5.11), that is,(︂ ∫︁ 𝑇

0

∫︁
R3

|(1 − Δ)− 1
2𝑎𝜕𝑡𝑢𝑛|2 𝑑𝑥𝑑𝑡+ ‖𝑢0,𝑛‖𝐻−1(R3)𝐸(𝑢𝑛)(0)

)︂
≤ 1
𝑛
𝐸(𝑢𝑛)(0). (5.12)

Let 𝛼𝑛 =
(︁
𝐸(𝑢𝑛)(0)

)︁ 1
2 . Sobolev’s embedding for the 𝐿6 norm ensures that 𝛼𝑛 ≤ 𝐶(𝜆0). So,

up to a subsequence, we may assume that 𝛼𝑛 → 𝛼 ≥ 0 as 𝑛 → ∞. We divide the analysis

into two possible cases 𝛼 > 0 and 𝛼 = 0.
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∙ Case 1: 𝛼𝑛 → 𝛼 > 0

Note that ‖𝑢0,𝑛‖𝐻−1(R3) → 0 as 𝑛 → ∞, by the second part of estimate (5.12). Hence,

using the inequality

‖𝑢0,𝑛‖𝐿2(R3) ≤ ‖𝑢0,𝑛‖
1
2
𝐻−1(R3)‖𝑢0,𝑛‖

1
2
𝐻1(R3),

one obtains ‖𝑢0,𝑛‖𝐿2(R3) → 0 as 𝑛 → ∞. Therefore, taking into account the first part of the

estimate (5.12) as well, we are in a position to apply Proposition 5.1.1 and conclude that 𝑢𝑛

is linearizable in an interval [0, 𝐿] with 𝐿 > 𝑇0, i.e.,

‖𝑢𝑛 − 𝑣𝑛‖𝐿10([0,𝐿]×R3) + ‖𝑢𝑛 − 𝑣𝑛‖𝐿∞([0,𝐿];𝐻1(R3)) → 0 as 𝑛 → ∞,

where 𝑣𝑛 is a solution to⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑣𝑛 + Δ𝑣𝑛 − 𝑣𝑛 = 0 on [0, 𝑇 ] × R3,

𝑣𝑛(0) = 𝑢0,𝑛.

Since 𝑢0,𝑛 → 0 in 𝐿2(R3), we get ‖𝑢𝑛(𝑡)‖𝐿2 → 0, ∀𝑡 ∈ [0, 𝑇 ]. Hence, ‖𝑣𝑛(𝑡)‖𝐿2 → 0 as

𝑛 → ∞, ∀𝑡 ∈ [0, 𝐿].

Claim 1: The sequence 𝑢𝑛 converges to zero in 𝐿2
𝑙𝑜𝑐

(︁
(0, 𝐿);𝐻1

𝑙𝑜𝑐(𝜔)
)︁
.

Indeed, note that

𝜕𝑡𝑢𝑛 = −𝑖𝐽−1
(︂

(1 − Δ)𝑢𝑛 + |𝑢𝑛|4𝑢𝑛

)︂
= −𝑖𝐽−1(𝐼 − Δ)𝑢𝑛 − 𝑖𝐽−1(|𝑢𝑛|4𝑢𝑛),

where 𝐽 given as in the proof of Theorem 3.3.2. By hypothesis,

‖(1 − Δ)− 1
2𝑎𝜕𝑡𝑢𝑛‖𝐿2((0,𝐿);R3) → 0 as 𝑛 → ∞,

which means that

‖(1 − Δ)− 1
2𝑎(−𝑖𝐽−1(𝐼 − Δ)𝑢𝑛 − 𝑖𝐽−1(|𝑢𝑛|4𝑢𝑛))‖𝐿2((0,𝐿);R3) → 0 as 𝑛 → ∞.

So, similarly to Claim 2 in the proof of Lemma 5.1.1, we have

‖(1 − Δ)− 1
2𝑎𝐽−1(𝐼 − Δ)𝑢𝑛‖𝐿2((0,𝐿);R3)

= ‖(1 − Δ)− 1
2𝑎(𝐽−1(𝐼 − Δ)𝑢𝑛 − 𝐽−1|𝑢𝑛|4𝑢𝑛 + 𝐽−1|𝑢𝑛|4𝑢𝑛)‖𝐿2((0,𝐿);R3)

≤ ‖(1 − Δ)− 1
2𝑎(𝐽−1(𝐼 − Δ)𝑢𝑛 + 𝐽−1|𝑢𝑛|4𝑢𝑛)‖𝐿2((0,𝐿);R3)

+ ‖(1 − Δ)− 1
2𝑎𝐽−1|𝑢𝑛|4𝑢𝑛)‖𝐿2((0,𝐿);R3)

≤ ‖(1 − Δ)− 1
2𝑎(𝐽−1(𝐼 − Δ)𝑢𝑛 + 𝐽−1|𝑢𝑛|4𝑢𝑛)‖𝐿2((0,𝐿);R3)

+ ‖𝑢5
𝑛‖𝐿2((0,𝐿);𝐻−1(R3)) → 0
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as 𝑛 → ∞, due to the convergence

‖𝑢5
𝑛‖𝐿2((0,𝐿);𝐻−1(R3)) ≤ 𝑐‖𝑢5

𝑛‖
𝐿2((0,𝐿);𝐿

6
5 (R3))

≤ 𝑐
∫︁ 𝐿

0
‖𝑢𝑛(𝑡)‖10

𝐿6(R3) 𝑑𝑡

≤
∫︁ 𝐿

0
‖𝑢𝑛(𝑡)‖

5
3
𝐿2‖𝑢𝑛(𝑡)‖

25
3

𝐿10 𝑑𝑡

≤ sup
𝑡∈[0,𝐿]

‖𝑢𝑛(𝑡)‖
5
3
𝐿2

∫︁ 𝐿

0
‖𝑢𝑛(𝑡)‖

25
3

𝐿10 𝑑𝑡

≤ sup
𝑡∈[0,𝐿]

‖𝑢𝑛(𝑡)‖
5
3
𝐿2‖𝑢𝑛‖

3
25

𝐿
25
3

𝑡 𝐿10
𝑥

≤ sup
𝑡∈[0,𝐿]

‖𝑢𝑛(𝑡)‖
5
3
𝐿2‖𝑢𝑛‖

3
25
𝐿10

𝑡 𝐿10
𝑥

→ 0 as 𝑛 → ∞,

where we used the interpolation

‖𝑢𝑛(𝑡)‖𝐿6 ≤ ‖𝑢𝑛(𝑡)‖
1
6
𝐿2‖𝑢𝑛(𝑡)‖

5
6
𝐿10 .

Hence, for every 𝜒 ∈ 𝐶∞
0 ((0, 𝐿) × R3),

‖(1 − Δ)− 1
2𝑎𝐽−1(𝐼 − Δ)𝜒𝑢𝑛‖𝐿2((0,𝐿)×R3) → 0

as 𝑛 → ∞, which means that⟨
(1 − Δ)− 1

2𝑎𝐽−1(𝐼 − Δ)𝜒𝑢𝑛, (1 − Δ)− 1
2𝑎𝐽−1(𝐼 − Δ)𝜒𝑢𝑛

⟩
𝐿2((0,𝐿)×R3)

→ 0

⇒
⟨

(1 − Δ)−1𝑎𝐽−1(𝐼 − Δ)𝜒𝑢𝑛, 𝑎𝐽
−1(𝐼 − Δ)𝜒𝑢𝑛

⟩
𝐿2((0,𝐿)×R3)

→ 0

⇒
⟨
𝑎(1 − Δ)−1𝑎𝐽−1(𝐼 − Δ)𝜒𝑢𝑛, 𝐽

−1(𝐼 − Δ)𝜒𝑢𝑛

⟩
𝐿2((0,𝐿)×R3)

→ 0

⇒
⟨

(𝐽−1)*𝑎(1 − Δ)−1𝑎𝐽−1(𝐼 − Δ)𝜒𝑢𝑛, (𝐼 − Δ)𝜒𝑢𝑛

⟩
𝐿2((0,𝐿)×R3)

→ 0

⇒
⟨

(𝐼 − Δ)(𝐽−1)*𝑎(1 − Δ)−1𝑎𝐽−1(𝐼 − Δ)𝜒𝑢𝑛, 𝜒𝑢𝑛

⟩
𝐿2((0,𝐿)×R3)

→ 0

as 𝑛 → ∞. By Proposition .2 (Appendix), we get
∫︁

(0,𝐿)×R3×𝑆3

(1 + |𝜉|2)𝑎2

1 + |𝜉|2
(1 + |𝜉|2) 𝑑𝜇(𝑡, 𝑥, 𝜉) = 0,

or equivalently, ∫︁
(0,𝐿)×𝜔×𝑆3

1 + |𝜉|2 𝑑𝜇(𝑡, 𝑥, 𝜉) = 0,

i.e.,

𝑢𝑛 −→ 0 in 𝐿2
𝑙𝑜𝑐((0, 𝐿);𝐻1

𝑙𝑜𝑐(𝜔)) as 𝑛 → ∞,
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concluding the proof of Claim 1.

As a consequence of the previous statement, one has

𝑣𝑛 −→ 0 in 𝐿2
𝑙𝑜𝑐((0, 𝐿);𝐻1

𝑙𝑜𝑐(𝜔)) as 𝑛 → ∞.

Summarizing everything we know about the sequence 𝑣𝑛, we have

1. 𝑣𝑛 is bounded in 𝐿∞([0, 𝐿];𝐻1(R3));

2. 𝑣𝑛 satisfies 𝑖𝜕𝑡𝑣𝑛 + Δ𝑣𝑛 − 𝑣𝑛 = 0;

3. sup𝑡∈[0,𝐿] ‖𝑣𝑛(𝑡)‖𝐿2 → 0 as 𝑛 → ∞;

4. 𝑣𝑛 → 0 in 𝐿2
𝑙𝑜𝑐

(︂
(0, 𝐿);𝐻1

𝑙𝑜𝑐(R3∖𝐵𝑅+1(0))
)︂

as 𝑛 → ∞.

Therefore, we are able to use Corollary .3 (Appendix), to get

𝑣𝑛 → 0 in 𝐿2
𝑙𝑜𝑐((0, 𝐿);𝐻1

𝑙𝑜𝑐(R3)) as 𝑛 → ∞. (5.13)

For the second part, note that

‖𝑣𝑛‖𝐿2([0,𝑇 ];𝐻1(R3∖𝐵𝑅+1(0))) ≤ ‖𝑣𝑛 − 𝑢𝑛‖𝐿2([0,𝑇 ];𝐻1(R3∖𝐵𝑅+1(0))) + ‖𝑢𝑛‖𝐿2([0,𝑇 ];𝐻1(R3∖𝐵𝑅+1(0))).

On the other hand,

‖𝑢𝑛‖𝐿2([0,𝑇 ];𝐻1(R3∖𝐵𝑅+1(0)))

= ‖𝑎𝑢𝑛‖𝐿2([0,𝑇 ];𝐻1(R3∖𝐵𝑅+1(0)))

≤ ‖𝑎𝑢𝑛‖𝐿2([0,𝑇 ];𝐻1(R3))

≤ ‖𝑎(1 − Δ)−1𝐽𝐽−1(1 − Δ)𝑢𝑛‖𝐿2([0,𝑇 ];𝐻1(R3))

≤
⃦⃦⃦⃦
[𝑎, (1 − Δ)−1𝐽 ]𝐽−1(1 − Δ)𝑢𝑛 + (1 − Δ)−1𝐽𝑎𝐽−1(1 − Δ)𝑢𝑛

⃦⃦⃦⃦
𝐿2([0,𝑇 ];𝐻1(R3))

≤
⃦⃦⃦⃦
[𝑎, (1 − Δ)−1𝐽 ]𝐽−1(1 − Δ)𝑢𝑛

⃦⃦⃦⃦
𝐿2([0,𝑇 ];𝐻1(R3))

+
⃦⃦⃦⃦
(1 − Δ)−1𝐽𝑎𝐽−1(1 − Δ)𝑢𝑛

⃦⃦⃦⃦
𝐿2([0,𝑇 ];𝐻1(R3))

≤ 𝐶‖𝑢𝑛‖𝐿2([0,𝑇 ]×R3) +
⃦⃦⃦⃦
(1 − Δ)−1𝐽𝑎𝐽−1(1 − Δ)𝑢𝑛

⃦⃦⃦⃦
𝐿2([0,𝑇 ];𝐻1(R3))

.
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Additionally, ⃦⃦⃦⃦
(1 − Δ)−1𝐽𝑎𝐽−1(1 − Δ)𝑢𝑛

⃦⃦⃦⃦
𝐿2([0,𝑇 ];𝐻1(R3))

≤
⃦⃦⃦⃦
(1 − Δ)−1𝐽𝑎

(︂
𝑖𝜕𝑡𝑢𝑛 − 𝐽−1|𝑢𝑛|4𝑢𝑛

)︂⃦⃦⃦⃦
𝐿2([0,𝑇 ];𝐻1(R3))

≤ ‖(1 − Δ)−1𝐽𝑎𝜕𝑡𝑢𝑛‖𝐿2([0,𝑇 ];𝐻1(R3))

+ ‖(1 − Δ)−1𝐽𝑎𝐽−1|𝑢𝑛|4𝑢𝑛‖𝐿2([0,𝑇 ];𝐻1(R3))

≤ ‖(1 − Δ)−1𝐽(1 − Δ) 1
2 (1 − Δ)− 1

2𝑎𝜕𝑡𝑢𝑛‖𝐿2([0,𝑇 ];𝐻1(R3))

+ 𝐶‖𝑢5
𝑛‖𝐿2([0,𝑇 ];𝐻−1(R3)).

So,

‖𝑢𝑛‖𝐿2([0,𝑇 ];𝐻1(R3∖𝐵𝑅+1(0)))

≤ ‖(1 − Δ)−1𝐽(1 − Δ) 1
2 (1 − Δ)− 1

2𝑎𝜕𝑡𝑢𝑛‖𝐿2([0,𝑇 ];𝐻1(R3)) + 𝐶‖𝑢𝑛‖𝐿2([0,𝑇 ]×R3)

+ 𝐶‖𝑢5
𝑛‖𝐿2([0,𝑇 ];𝐻−1(R3))

≤ 𝐶‖(1 − Δ)− 1
2𝑎𝜕𝑡𝑢𝑛‖𝐿2([0,𝑇 ]×R3) + 𝐶‖𝑢𝑛‖𝐿2([0,𝑇 ]×R3)

+ 𝐶‖𝑢5
𝑛‖𝐿2([0,𝑇 ];𝐻−1(R3))

≤ 𝐶‖(1 − Δ)− 1
2𝑎𝜕𝑡𝑢𝑛‖𝐿2([0,𝑇 ]×R3) + 𝐶‖𝑢𝑛‖𝐿2([0,𝑇 ]×R3)

+ 𝐶‖𝑢𝑛‖5
𝐿10([0,𝑇 ];𝐿6(R3))

and we get ∫︁ 𝐿

0
‖𝑢𝑛(𝑡)‖2

𝐻1(R3∖𝐵𝑅+1(0)) 𝑑𝑡 −→ 0

as 𝑛 → ∞, using the interpolation

‖𝑢𝑛(𝑡)‖𝐿6 ≤ ‖𝑢𝑛(𝑡)‖
1
6
𝐿2‖𝑢𝑛(𝑡)‖

5
6
𝐿10

and the convergence∫︁ 𝐿

0
‖𝑢𝑛(𝑡)‖10

𝐿6 𝑑𝑡 ≤
∫︁ 𝐿

0
‖𝑢𝑛(𝑡)‖

5
3
𝐿2‖𝑢𝑛(𝑡)‖

25
3

𝐿10 𝑑𝑡

≤ sup
𝑡∈[0,𝐿]

‖𝑢𝑛(𝑡)‖
5
3
𝐿2

∫︁ 𝐿

0
‖𝑢𝑛(𝑡)‖

25
3

𝐿10 𝑑𝑡

≤ sup
𝑡∈[0,𝐿]

‖𝑢𝑛(𝑡)‖
5
3
𝐿2‖𝑢𝑛‖

3
25

𝐿
25
3

𝑡 𝐿10
𝑥

≤ sup
𝑡∈[0,𝐿]

‖𝑢𝑛(𝑡)‖
5
3
𝐿2‖𝑢𝑛‖

3
25
𝐿10

𝑡 𝐿10
𝑥

→ 0 as 𝑛 → ∞.
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Therefore,

𝑣𝑛 → 0 in 𝐿2((0, 𝐿);𝐻1(R3∖𝐵𝑅+1(0))) as 𝑛 → ∞. (5.14)

Hence, by convergences (5.13) and (5.14), one has

𝑣𝑛 → 0 in 𝐿2
𝑙𝑜𝑐((0, 𝐿);𝐻1(R3)) as 𝑛 → ∞.

Finally, choosing 𝑡0 ∈ (0, 𝐿) such that ‖𝑣𝑛(𝑡0)‖𝐻1(R3) → 0 as 𝑛 → ∞ and solving the equation

satisfied by 𝑣𝑛, we obtain

‖𝑣𝑛(𝑡)‖𝐻1(R3) = ‖𝑣𝑛(𝑡0)‖𝐻1(R3) → 0 as 𝑛 → ∞,

for all 𝑡 ∈ [0, 𝐿]. So

𝑣𝑛 → 0 in 𝐿∞([0, 𝐿];𝐻1(R3)) as 𝑛 → ∞

which implies that

𝑣𝑛(0) → 0 in 𝐻1(R3) as 𝑛 → ∞.

But this means that 𝑢𝑛,0 converges to zero in 𝐻1(R3), in other words, 𝛼𝑛 =
(︁
𝐸(𝑢𝑛)(0)

)︁ 1
2 → 0

as 𝑛 → ∞, a contradiction.

∙ Case 2: 𝛼𝑛 → 0

The first part of estimate (5.12) ensures that
∫︁ 𝑇

0

∫︁
R3

|(1 − Δ)− 1
2𝑎𝜕𝑡𝑢𝑛|2 𝑑𝑥𝑑𝑡 ≤ 1

𝑛
𝐸(𝑢𝑛)(0).

Define 𝑤𝑛 = 𝑢𝑛

𝛼𝑛
, where the sequence (𝑤𝑛)𝑛∈N satisfies

𝑖𝜕𝑡𝑤𝑛 + Δ𝑤𝑛 − 𝑤𝑛 − 𝛼4
𝑛|𝑤𝑛|4𝑤𝑛 − 𝑎(1 − Δ)−1𝑎𝜕𝑡𝑤𝑛 = 0 (5.15)

and ∫︁ 𝑇

0

∫︁
R3

|(1 − Δ)− 1
2𝑎𝜕𝑡𝑤𝑛|2 𝑑𝑥𝑑𝑡 ≤ 1

𝑛
. (5.16)

For a large enough constant 𝐶 > 0 and for all 𝑡 ∈ [0, 𝑇 ], we have

1
𝐶

‖𝑢𝑛(𝑡)‖2
𝐻1 ≤ 𝐸(𝑢𝑛)(𝑡) ≤ 𝐶‖𝑢𝑛(𝑡)‖2

𝐻1 .

Consequently, we get

‖𝑤𝑛(𝑡)‖𝐻1 = ‖𝑢𝑛(𝑡)‖𝐻1√︁
𝐸(𝑢𝑛)(0)

≤ 𝐶

√︁
𝐸(𝑢𝑛)(𝑡)√︁
𝐸(𝑢𝑛)(0)

≤ 𝐶
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and

‖𝑤𝑛(0)‖𝐻1 = ‖𝑢𝑛(0)‖𝐻1√︁
𝐸(𝑢𝑛)(0)

≥ 1√
𝐶

‖𝑢𝑛(0)‖𝐻1

‖𝑢𝑛(0)‖𝐻1
≥ 1√

𝐶
. (5.17)

So,

‖𝑤𝑛(0)‖𝐻1 ≈ 1 (5.18)

and 𝑤𝑛 is bounded in 𝐿∞([0, 𝑇 ];𝐻1(R3)). Applying Strichartz estimates (Proposition 4.4.2)

to equation (5.15), there exists 𝐶 > 0 such that

‖∇𝑤𝑛‖
𝐿10([0,𝑇 ];𝐿

30
13 (R3))

≤ 𝐶
(︂

‖𝑤𝑛(0)‖𝐻1 + 𝛼4
𝑛‖∇𝑤𝑛‖

𝐿10([0,𝑇 ];𝐿
30
13 (R3))

‖𝑤𝑛‖4
𝐿10([0,𝑇 ];𝐿10(R3))

+ 𝛼4
𝑛‖𝑤𝑛‖5

𝐿10([0,𝑇 ];𝐿10(R3))

)︂
≤ 𝐶

(︂
1 + 𝛼4

𝑛‖∇𝑤𝑛‖5
𝐿10([0,𝑇 ];𝐿

30
13 (R3))

)︂
.

Using a bootstrap argument, we deduce that ‖∇𝑤𝑛‖
𝐿10([0,𝑇 ];𝐿

30
13 (R3))

is bounded and, thus,

‖𝑤𝑛‖𝐿10([0,𝑇 ];𝐿10(R3)) is bounded, due to Sobolev’s embedding. Additionally, if we consider the

sequence (𝑤𝑛)𝑛∈N satisfying the Cauchy problem⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑤̃𝑛 + Δ𝑤̃𝑛 − 𝑤̃𝑛 − 𝑎(1 − Δ)−1𝑎𝜕𝑡𝑤̃𝑛 = 0 on [0, 𝑇 ] × R3,

𝑤̃𝑛(0) = 𝑤𝑛(0),
(5.19)

an application of Proposition 4.4.2 gives

‖𝑤𝑛 − 𝑤̃𝑛‖𝐿10([0,𝑇 ];𝐿10(R3)) + ‖𝑤𝑛 − 𝑤̃𝑛‖𝐿∞([0,𝑇 ];𝐻1(R3))

≤ 𝐶
(︂
𝛼4

𝑛‖∇|𝑤𝑛|4𝑤𝑛‖
𝐿2([0,𝑇 ];𝐿

6
5 (R3))

+ 𝛼4
𝑛‖|𝑤𝑛|4𝑤𝑛‖𝐿1([0,𝑇 ];𝐿2(R3))

)︂
≤ 𝐶

(︂
𝛼4

𝑛‖∇𝑤𝑛‖
𝐿10([0,𝑇 ];𝐿

30
13 (R3))

‖𝑤𝑛‖4
𝐿10([0,𝑇 ];𝐿10(R3))

+ 𝛼4
𝑛‖𝑤𝑛‖5

𝐿10([0,𝑇 ];𝐿10(R3))

)︂
≤ 𝐶

(︂
𝛼4

𝑛‖∇𝑤𝑛‖5
𝐿10([0,𝑇 ];𝐿

30
13 (R3))

)︂
→ 0

as 𝑛 → ∞.

Now, we need to prove that

‖(1 − Δ)− 1
2𝑎𝜕𝑡𝑤̃𝑛‖𝐿2([0,𝑇 ];𝐿2(R3)) → 0 as 𝑛 → ∞. (5.20)
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In fact,

‖(1 − Δ)− 1
2𝑎𝜕𝑡𝑤̃𝑛‖𝐿2([0,𝑇 ];𝐿2(R3)) ≤ ‖(1 − Δ)− 1

2𝑎𝜕𝑡𝑤̃𝑛 − (1 − Δ)− 1
2𝑎𝜕𝑡𝑤𝑛‖𝐿2([0,𝑇 ];𝐿2(R3))

+ ‖(1 − Δ)− 1
2𝑎𝜕𝑡𝑤𝑛‖𝐿2([0,𝑇 ];𝐿2(R3))

≤ ‖(1 − Δ)− 1
2𝑎(𝜕𝑡𝑤̃𝑛 − 𝜕𝑡𝑤𝑛)‖𝐿2([0,𝑇 ];𝐿2(R3))

+ ‖(1 − Δ)− 1
2𝑎𝜕𝑡𝑤𝑛‖𝐿2([0,𝑇 ];𝐿2(R3))

≤ ‖𝜕𝑡𝑤̃𝑛 − 𝜕𝑡𝑤𝑛‖𝐿2([0,𝑇 ];𝐻−1(R3)) + ‖(1 − Δ)− 1
2𝑎𝜕𝑡𝑤𝑛‖𝐿2([0,𝑇 ];𝐿2(R3))

and

‖𝜕𝑡𝑤̃𝑛 − 𝜕𝑡𝑤𝑛‖𝐿2([0,𝑇 ];𝐻−1(R3))

≤ ‖ − 𝑖𝐽−1(𝐼 − Δ)𝑤̃𝑛 + 𝑖𝐽−1(𝐼 − Δ)𝑤𝑛 + 𝑖𝐽−1𝛼4
𝑛|𝑤𝑛|4𝑤𝑛‖𝐿2([0,𝑇 ];𝐻−1(R3))

≤ ‖𝐽−1(𝐼 − Δ)(𝑤̃𝑛 − 𝑤𝑛)‖𝐿2([0,𝑇 ];𝐻−1(R3)) + 𝛼4
𝑛‖𝐽−1𝑤5

𝑛‖𝐿2([0,𝑇 ];𝐻−1(R3))

≤ 𝐶‖𝑤̃𝑛 − 𝑤𝑛‖𝐿2([0,𝑇 ];𝐻1(R3)) + 𝐶𝛼4
𝑛‖𝑤𝑛‖5

𝐿10([0,𝑇 ];𝐿6(R3))

→ 0

as 𝑛 → ∞, where 𝐽 is the same as in the proof of Theorem 3.3.2.

Now, since 𝑤̃𝑛 is bounded in 𝐿∞([0, 𝑇 ];𝐻1(R3)), we can extract a subsequence (still

denoted by 𝑤̃𝑛) such that 𝑤̃𝑛(𝑡) ⇀ 𝑤(𝑡) weakly. Passing to the limit in the system (5.19) and

taking into account the convergence (5.20), the function 𝑤 satisfies⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑤 + Δ𝑤 − 𝑤 = 0 on (0, 𝑇 ) × R3,

𝜕𝑡𝑤 = 0 on (0, 𝑇 ) × R3∖𝐵𝑅+1(0).

Let 𝑣 = 𝜕𝑡𝑤. Taking the derivative with respect to time in the first equation of the system

above, we have that 𝑣 satisfies⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑣 + Δ𝑣 − 𝑣 = 0 on (0, 𝑇 ) × R3,

𝑣 = 0 on (0, 𝑇 ) × R3∖𝐵𝑅+1(0).

By Proposition .4, 𝑣 ∈ 𝐶∞
(︁
(0, 𝑇 )×R4

)︁
. By an unique continuation property (see (MERCADO;

OSSES; ROSIER, 2008)), 𝑣 ≡ 0 in (0, 𝑇 ) × R3. Therefore, 𝜕𝑡𝑤 ≡ 0 in (0, 𝑇 ) × R3 and

Δ𝑤 − 𝑤 = 0.

Multiplying the equation above by 𝑤 and integrating by parts, we get∫︁
R3

|∇𝑤|2 𝑑𝑥+
∫︁
R3

|𝑤|2 𝑑𝑥 = 0,
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which implies 𝑤 ≡ 0. Therefore, 𝑤̃𝑛 ⇀ 0 in 𝐻1(R3) as 𝑛 → ∞.

Summarizing everything we know about the sequence 𝑤̃𝑛, we have

1. 𝑤̃𝑛 is bounded in 𝐿∞([0, 𝑇 ];𝐻1(R3));

2. 𝑤̃𝑛 satisfies 𝑖𝜕𝑡𝑤̃𝑛 + Δ𝑤̃𝑛 − 𝑤̃𝑛 → 0 in 𝐿2([0, 𝑇 ];𝐻1(R3)) as 𝑛 → ∞;

3. sup𝑡∈[0,𝑇 ] ‖𝜒𝑤̃𝑛(𝑡)‖𝐿2 → 0 as 𝑛 → ∞, for every 𝜒 ∈ 𝐶∞
0 (R3);

4. 𝑤̃𝑛 → 0 in 𝐿2
𝑙𝑜𝑐

(︁
(0, 𝑇 );𝐻1

𝑙𝑜𝑐(R3∖𝐵𝑅+1(0))
)︁

as 𝑛 → ∞.

Let us remember how item 4 above is proven. In fact, due to the convergence

‖(1 − Δ)− 1
2𝑎𝜕𝑡𝑤̃𝑛‖𝐿2([0,𝑇 ]×R3) −→ 0

we get

‖(1 − Δ)− 1
2𝑎𝐽−1(𝐼 − Δ)𝑤̃𝑛‖𝐿2([0,𝑇 ]×R3) −→ 0

or, equivalently,

‖𝜒(1 − Δ)− 1
2𝑎𝐽−1(𝐼 − Δ)𝑤̃𝑛‖𝐿2([0,𝑇 ]×R3) −→ 0 as 𝑛 → ∞,

for 𝜒 ∈ 𝐶∞
0 ([0, 𝑇 ] × R3) and 𝐽 given as in the proof of Theorem 3.3.2. Thus,

‖(1 − Δ)− 1
2𝑎𝐽−1(𝐼 − Δ)𝜒𝑤̃𝑛‖𝐿2([0,𝑇 ]×R3) −→ 0 as 𝑛 → ∞, (5.21)

since

‖(1 − Δ)− 1
2𝑎𝐽−1(𝐼 − Δ)𝜒𝑤̃𝑛‖𝐿2([0,𝑇 ]×R3)

= ‖[(1 − Δ)− 1
2𝑎𝐽−1(𝐼 − Δ), 𝜒]𝑤̃𝑛‖𝐿2([0,𝑇 ]×R3)

+ ‖𝜒(1 − Δ)− 1
2𝑎𝐽−1(𝐼 − Δ)𝑤̃𝑛‖𝐿2([0,𝑇 ]×R3)

≤ ‖𝜒𝐵𝑤̃𝑛‖𝐿2([0,𝑇 ]×R3) + ‖𝜒(1 − Δ)− 1
2𝑎𝐽−1(𝐼 − Δ)𝑤̃𝑛‖𝐿2([0,𝑇 ]×R3).

Therefore, by (5.21),⟨
(1 − Δ)(𝐽−1)*𝑎(1 − Δ)−1𝑎𝐽−1(1 − Δ)𝜒𝑤̃𝑛, 𝜒𝑤̃𝑛

⟩
𝐿2((0,𝑇 )×R3)

−→ 0 as 𝑛 → ∞.

Hence, Proposition .2 (Appendix) gives us
∫︁

(0,𝑇 )×R3×𝑆2

(1 + |𝜉|2)𝑎2

1 + |𝜉|2
(1 + |𝜉|2) 𝑑𝜇 = 0,
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which means that ∫︁
(0,𝑇 )×𝜔×𝑆2

1 + |𝜉|2 𝑑𝜇 = 0.

Thus, property 4 is verified.

Since the sequence 𝑤̃𝑛 satisfies the four conditions mentioned above, Corollary .3 (Appen-

dix) ensures that

𝑤̃𝑛 → 0 in 𝐿2
𝑙𝑜𝑐

(︁
(0, 𝑇 );𝐻1

𝑙𝑜𝑐(R3)
)︁

as 𝑛 → ∞. (5.22)

On the other hand, since ‖(1 − Δ)− 1
2𝑎𝜕𝑡𝑤̃𝑛‖𝐿2([0,𝑇 ]×R3) −→ 0 as 𝑛 → ∞, we get

‖𝑎𝜕𝑡𝑤̃𝑛‖𝐿2([0,𝑇 ];𝐻−1(R3)) −→ 0 as 𝑛 → ∞.

Let 𝜒𝜔 ∈ 𝐶∞(R3) such that 𝜒𝜔 = 1 on supp(𝑎). Then,

‖𝑎𝑖𝜕𝑡𝑤̃𝑛‖𝐿2([0,𝑇 ];𝐻−1(R3)) = ‖𝑎𝐽−1(1 − Δ)𝑤̃𝑛‖𝐿2([0,𝑇 ];𝐻−1(R3))

≥ 𝜂‖𝜒𝜔𝐽
−1(1 − Δ)𝑤̃𝑛‖𝐿2([0,𝑇 ];𝐻−1(R3))

≥ 𝜂‖𝐽−1𝜒𝜔(1 − Δ)𝑤̃𝑛‖𝐿2([0,𝑇 ];𝐻−1(R3))

≥ 𝐶‖𝜒𝜔(1 − Δ)𝑤̃𝑛‖𝐿2([0,𝑇 ];𝐻−1(R3))

≥ 𝐶‖(1 − Δ)𝜒𝜔𝑤̃𝑛 − [(1 − Δ), 𝜒𝜔]𝑤̃𝑛‖𝐿2([0,𝑇 ];𝐻−1(R3))

≥ 𝐶‖(1 − Δ)𝜒𝜔𝑤̃𝑛‖𝐿2([0,𝑇 ];𝐻−1(R3)) − 𝐶‖[(1 − Δ), 𝜒𝜔]𝑤̃𝑛‖𝐿2([0,𝑇 ];𝐻−1(R3)).

Note that

‖[(1 − Δ), 𝜒𝜔]𝑤̃𝑛‖𝐿2([0,𝑇 ];𝐻−1(R3)) = ‖[(1 − Δ), 𝜒𝜔]𝜒𝐵𝑤̃𝑛‖𝐿2([0,𝑇 ];𝐻−1(R3))

≤ 𝐶‖𝜒𝐵𝑤̃𝑛‖𝐿2([0,𝑇 ];𝐿2(R3))

→ 0

as 𝑛 → ∞, for 𝜒𝐵 ∈ 𝐶∞
0 (R3). Consequently,

‖(1 − Δ)𝜒𝜔𝑤̃𝑛‖𝐿2([0,𝑇 ];𝐻−1(R3)) ≤ 𝐶‖[(1 − Δ), 𝜒𝜔]𝑤̃𝑛‖𝐿2([0,𝑇 ];𝐻−1(R3)) + 𝐶‖𝑎𝑖𝜕𝑡𝑤̃𝑛‖𝐿2([0,𝑇 ];𝐻−1(R3))

→ 0

as 𝑛 → ∞. Then,

‖𝜒𝜔𝑤̃𝑛‖𝐿2([0,𝑇 ];𝐻1(R3)) = ‖(1 − Δ)−1(1 − Δ)𝜒𝜔𝑤̃𝑛‖𝐿2([0,𝑇 ];𝐻1(R3))

≤ ‖(1 − Δ)𝜒𝜔𝑤̃𝑛‖𝐿2([0,𝑇 ];𝐻−1(R3))

→ 0
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as 𝑛 → ∞. This means that

𝑤̃𝑛 −→ 0 in 𝐿2
(︁
[0, 𝑇 ];𝐻1(R3∖𝐵𝑅+1(0))

)︁
as 𝑛 → ∞. (5.23)

By convergences (5.22) and (5.23), we conclude that

𝑤̃𝑛 −→ 0 in 𝐿2
𝑙𝑜𝑐

(︁
(0, 𝑇 );𝐻1(R3)

)︁
as 𝑛 → ∞.

So, choosing 𝑡0 ∈ (0, 𝑇 ) such that ‖𝑤̃𝑛(𝑡0)‖𝐻1 → 0 as 𝑛 → ∞, and solving the equation

satisfied by the sequence 𝑤̃𝑛 with 𝑤̃𝑛(𝑡0) as initial data, we have

𝑤̃𝑛(𝑡) = 𝑒𝑖(𝑡−𝑡0)(Δ−𝐼)𝑤̃𝑛(𝑡0) +
∫︁ 𝑡

𝑡0
𝑒𝑖(𝑡−𝜏)(Δ−𝐼)𝑎(1 − Δ)−1𝑎𝜕𝑡𝑤̃𝑛 𝑑𝜏.

Hence,

‖𝑤̃𝑛(𝑡)‖𝐻1 ≤ 𝑐‖𝑤̃𝑛(𝑡0)‖𝐻1 + 𝑐‖𝑎(1 − Δ)−1𝑎𝜕𝑡𝑤̃𝑛‖𝐿1([0,𝑇 ];𝐻1)

→ 0 as 𝑛 → ∞.

Therefore,

𝑤̃𝑛 −→ 0 in 𝐿∞
(︁
[0, 𝑇 ];𝐻1(R3)

)︁
as 𝑛 → ∞

and

‖𝑤𝑛(0)‖𝐻1 = ‖𝑤̃𝑛(0)‖𝐻1 → 0 as 𝑛 → ∞,

which is a contradiction with (5.18).

5.3 PROOF OF THEOREM 2.2

This subsection is devoted to the proof of the stabilizability of system (2.4), where we

get the observability estimate (5.1) for solutions with initial data satisfying a special condition

which we will make clear below.

First, by the decreasing of the energy and Sobolev’s embedding, there exists a constant

𝐶(𝜆0) such that the assumption ‖𝑢0‖𝐻1 ≤ 𝜆0 implies

𝐸(𝑢)(𝑡) ≤ 𝐶(𝜆0) and ‖𝑢(𝑡)‖𝐻1 ≤ 𝐶(𝜆0), (5.24)

for all 𝑡 ≥ 0. Fix 𝑇 > 0 such that Theorem 5.2.1 applies. Then, there exists 𝜀 > 0 such that,

for any 𝑢0 satisfying

‖𝑢0‖𝐻1 ≤ 𝜆0 and ‖𝑢0‖𝐻−1 ≤ 𝜀, (5.25)



140

the observability estimate

𝐸(𝑢)(0) ≤ 𝐶
∫︁ 𝑇

0

∫︁
R3

|(1 − Δ)− 1
2𝑎𝜕𝑡𝑢|2 𝑑𝑥𝑑𝑡

holds for any solution of the damped equation (2.4). This means that there exists 𝐵 > 0 such

that any solution of the damped equation satisfying (5.25) fulfills

𝐸(𝑢)(𝑇 ) ≤ (1 −𝐵)𝐸(𝑢)(0), (5.26)

since

𝐸(𝑢)(𝑇 ) = 𝐸(𝑢)(0) −
∫︁ 𝑇

0

∫︁
R3

|(1 − Δ)− 1
2𝑎𝜕𝑡𝑢|2 𝑑𝑥𝑑𝑡

≤ 𝐸(𝑢)(0) − 𝐶−1𝐸(𝑢)(0)

= 𝐸(𝑢)(0)(1 − 𝐶−1),

where 𝐶−1 = 𝐵, 0 ≤ 𝐵 ≤ 1.

Choose 𝑁 ∈ N large enough such that (1−𝐵)𝑁𝐶(𝜆0) ≤ 𝜀2. Lemma 4.4.1, Corollary 4.4.1

and (5.24) allow us to choose 𝛿 > 0 small enough such that the assumptions

‖𝑢0‖𝐻1 ≤ 𝑅0 and ‖𝑢0‖𝐻−1 ≤ 𝛿

imply

‖𝑢(𝑛𝑇 )‖𝐻−1 ≤ 𝜀, for 0 ≤ 𝑛 ≤ 𝑁. (5.27)

So, with that choice, we have 𝐸(𝑢)(𝑁𝑇 ) ≤ (1 −𝐵)𝑁𝐸(𝑢)(0). In fact,

𝐸(𝑢)(𝑁𝑇 ) = 𝐸(𝑢)((𝑁 − 1)𝑇 ) −
∫︁ 𝑁𝑇

(𝑁−1)𝑇

∫︁
R3

|(1 − Δ)− 1
2𝑎𝜕𝑡𝑢|2 𝑑𝑥𝑑𝑡

≤ 𝐸(𝑢)((𝑁 − 1)𝑇 ) −𝐵𝐸(𝑢)((𝑁 − 1)𝑇 )

≤ 𝐸(𝑢)(0)(1 −𝐵)𝑁 .

Then, by the decreasing of energy, for all 𝑡 ≥ 𝑁𝑇 , we have

‖𝑢(𝑡)‖2
𝐻−1 ≤ 𝐶‖𝑢(𝑡)‖2

𝐻1

≤ 𝐶𝐸(𝑢)(𝑡)

≤ 𝐶𝐸(𝑢)(𝑁𝑇 )

≤ 𝐶(1 −𝐵)𝑁𝐸(𝑢)(0)

≤ 𝐶(𝑅0)(1 −𝐵)𝑁

≤ 𝜀2.
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Therefore, the decay estimate (5.26) holds in each interval [𝑛𝑇, (𝑛 + 1)𝑇 ], 𝑛 ∈ N, and we

have

𝐸(𝑢)(𝑛𝑇 ) ≤ (1 −𝐵)𝑛𝐸(𝑢)(0).

If 𝑡 ∈ [𝑛𝑇, (𝑛+1)𝑇 ], taking 𝑡 = 𝑛𝑇 +𝑟 with 0 ≤ 𝑟 ≤ 𝑇 , we have, since 𝐸(𝑢)(𝑡) is decreasing,

𝐸(𝑢)(𝑡) ≤ 𝐸(𝑢)(𝑡− 𝑟) = 𝐸(𝑢)(𝑛𝑇 )

≤ (1 −𝐵)𝑛𝐸(𝑢)(0)

≤ 𝐴𝑛𝐸(𝑢)(0)

≤ 𝐴
𝑡−𝑟

𝑇 𝐸(𝑢)(0),

where 0 < 𝐴 < 1. Observe that

𝐴
𝑡−𝑟

𝑇 = 𝐴
𝑡
𝑇 𝐴

−𝑟
𝑇 = 𝑒𝑙𝑛[𝐴

𝑡
𝑇 ]𝑒𝑙𝑛[𝐴

−𝑟
𝑇 ] = 𝑒

𝑡
𝑇

𝑙𝑛𝐴𝑒− 𝑟
𝑇

𝑙𝑛𝐴

= 𝑒
𝑙𝑛𝐴

𝑇
𝑡𝑒− 𝑙𝑛𝐴

𝑇
𝑟.

Taking 𝛾 = − 𝑙𝑛𝐴
𝑇

and 𝐶 = 𝑒− 𝑙𝑛𝐴
𝑇

𝑟, we obtain

𝐸(𝑢)(𝑡) ≤ 𝐶𝑒−𝛾𝑡𝐸(𝑢)(0).

This completes the proof of the Theorem 2.2.

5.4 CONCLUSION

This chapter presented the stabilizability for the perturbed nonlinear quintic defocusing

Schrödinger equation, for solutions that are bounded in the energy space but small in a lower

norm. This perturbation term appears here to make it possible to work with an energy identity

that presents a norm in 𝐻1 and, thus, allows the use of Sobolev space embeddings.

Finally, we would like to point out that we do not know if this exponential decay is not

valid for the original equation (2.1) since there is no counter-example so far. Therefore, this

problem is still open and lies in our future research perspectives.
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6 CONTROLLABILITY OF THE NONLINEAR SCHRÖDINGER EQUATION

In this chapter, we turn our efforts to the problem of null controllability for the nonlinear

Schrödinger equation with critical exponent defocusing case, i.e., the original system (2.5).

Our purpose is to prove the second main theorem of this thesis, Theorem 2.4. To get this

result, we use a duality strategy, which reduces the controllability problem associated with

system (2.5) to prove an observability inequality by using the Hilbert Uniqueness Method

(LIONS, 1988) for solutions of the linear system⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑢+ Δ𝑢 = 𝜙(𝑥)ℎ(𝑡, 𝑥), 𝑥 ∈ R3, 𝑡 ∈ (0, 𝑇 ),

𝑢(0) = 𝑢0,

(6.1)

where 𝜙 satisfies

𝜙(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
0, 𝑖𝑓 |𝑥| ≤ 𝑅,

1, 𝑖𝑓 |𝑥| ≥ 𝑅 + 1,
(6.2)

for some 𝑅 > 0. Our first step is to prove exact controllability for the system (6.1), i.e., to

solve the following linear control problem.

Theorem 6.1. For every initial data 𝑢0 ∈ 𝐻1(R3) and every 𝑇 > 0, there exists 𝑅 > 0

and a control ℎ(𝑥, 𝑡) ∈ 𝐶(R;𝐻1(R3)) with support in R × (R3∖𝐵𝑅(0)) such that the unique
solution of the linear system associated to (2.6) satisfies 𝑢(𝑇, ·) = 0.

6.1 CONTROL OF THE LINEAR SCHRÖDINGER EQUATION

Our aim in this section is to prove Theorem 6.1. We proceed similarly to Rosier in (RO-

SIER; ZHANG, 2009). The exact controllability of system (6.1) follows from the observability

inequality

‖𝑣0‖2
𝐻−1 ≤ 𝑐

∫︁ 𝑇

0
‖𝜙𝑣(𝑡)‖2

𝐻−1 𝑑𝑡, (6.3)

where 𝑣(𝑡, 𝑥) is a solution to the adjoint system associated to (6.1), namely,⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑣 + Δ𝑣 = 0 𝑜𝑛 R × R3,

𝑣(0) = 𝑣0 ∈ 𝐻−1(R3).
(6.4)

The observability inequality (6.3) is given by the following result.
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Proposition 6.1.1. Let 𝜙 be a 𝐶∞ real function on R3 as in (6.2). Then, for every 𝑇 > 0,
there exists a constant 𝐶 = 𝐶(𝑇 ) > 0 such that inequality (6.3) holds for every solution
𝑣(𝑡, 𝑥) of system (6.4).

Demonstração. We split the proof into several steps.

First step: 𝐻1–observability.

Lemma 6.1.1. Consider the system⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑤 + Δ𝑤 = 0, 𝑥 ∈ R3, 𝑡 ∈ (0, 𝑇 ),

𝑤(0) = 𝑤0 ∈ 𝐻1(R3).
(6.5)

There exists a constant 𝐶 > 0 such that for each 𝑤0 ∈ 𝐻1(R3), the solution 𝑤(𝑡) to system
(6.5) satisfies

‖𝑤0‖2
𝐻1(R3) ≤ 𝐶

∫︁ 𝑇

0
‖𝜙𝑤(𝑡)‖2

𝐻1(R3) 𝑑𝑡. (6.6)

Proof of Lemma 6.1.1. Let 𝑞 ∈ 𝐶∞
0 (R3) such that

𝑞(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
𝑥, 𝑖𝑓 |𝑥| ≤ 𝑅 + 2,

0, 𝑖𝑓 |𝑥| ≥ 𝑅 + 3.

Multiplying the equation in (6.5) by 𝑞 · ∇𝑤+ 1
2𝑤(𝑑𝑖𝑣𝑥𝑞), taking the real part and integrating

by parts, the same computations as in (MACHTYNGIER, 1994) (Lemma 2.2) yield

1
2𝐼𝑚

∫︁
R3

(𝑤𝑞 · ∇𝑤) 𝑑𝑥

⎮⎮⎮⎮⎮⎮
𝑇

0

+ 1
2𝑅𝑒

∫︁ 𝑇

0

∫︁
R3
𝑤∇(𝑑𝑖𝑣𝑥𝑞) · ∇𝑤 𝑑𝑥𝑑𝑡

+𝑅𝑒
∫︁ 𝑇

0

∫︁
R3

3∑︁
𝑗,𝑘=1

(︂
𝜕𝑞𝑘

𝜕𝑥𝑗

𝜕𝑤

𝜕𝑥𝑘

𝜕𝑤

𝜕𝑥𝑗

)︂
𝑑𝑥𝑑𝑡 = 0,

(6.7)

where we have used the fact that the function 𝑞(𝑥) has a compact support. Notice that system

(6.5) is forward and backward well-posed in 𝐻1(R3), so, for any 𝑡0 ∈ [0, 𝑇 ], there exists a

constant 𝑐 > 0 such that

‖𝑤(𝑡0)‖2
𝐻1(R3) ≤ 𝑐

∫︁ 𝑇

0
‖𝑤(𝑡0)‖2

𝐻1(R3) 𝑑𝑡 = 𝑐
∫︁ 𝑇

0
‖𝑤(𝑡)‖2

𝐻1(R3) 𝑑𝑡. (6.8)

Thus, it follows from (6.7) and (6.8) that

∫︁ 𝑇

0

∫︁
𝐵𝑅+2(0)

|∇𝑤|2 𝑑𝑥𝑑𝑡 ≤ 𝐶𝜀

⎛⎝∫︁ 𝑇

0

∫︁
𝐵𝑅+3(0)∖𝐵𝑅+2(0)

|∇𝑤|2 𝑑𝑥𝑑𝑡+
∫︁ 𝑇

0
‖𝑤(𝑡)‖𝐿2(R3) 𝑑𝑡

⎞⎠
+ 𝜀

∫︁ 𝑇

0
‖𝑤(𝑡)‖2

𝐻1(R3) 𝑑𝑡,
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for any 𝜀 > 0 and some constant 𝐶𝜀 > 0. We also have

‖𝑤(𝑡)‖2
𝐻1(R3) ≤ 𝐶

⎛⎝∫︁
𝐵𝑅+2(0)

|∇𝑤|2 𝑑𝑥+ ‖𝜙𝑤(𝑡)‖2
𝐻1(R3)

⎞⎠.
Indeed, observe that

‖𝑤(𝑡)‖2
𝐻1(R3) = ‖𝑤(𝑡)‖2

𝐻1(𝐵𝑅+1(0)) + ‖𝑤(𝑡)‖2
𝐻1(R3∖𝐵𝑅+1(0))

= ‖𝑤(𝑡)‖2
𝐻1(𝐵𝑅+1(0)) + ‖𝜙𝑤(𝑡)‖2

𝐻1(R3∖𝐵𝑅+1(0))

≤ ‖𝑤(𝑡)‖2
𝐻1(𝐵𝑅+2(0)) + ‖𝜙𝑤(𝑡)‖2

𝐻1(R3)

≤ ‖∇𝑤(𝑡)‖2
𝐿2(𝐵𝑅+2(0)) + ‖𝜙𝑤(𝑡)‖2

𝐻1(R3),

showing the previous claim. Moreover, if 𝜀 is small enough, we obtain∫︁ 𝑇

0
‖𝑤(𝑡)‖2

𝐻1(R3) 𝑑𝑡 ≤ 𝐶

⎛⎝∫︁ 𝑇

0
‖𝜙𝑤(𝑡)‖2

𝐻1(R3) 𝑑𝑡+
∫︁ 𝑇

0
‖𝑤(𝑡)‖2

𝐿2(R3)

⎞⎠, (6.9)

since∫︁ 𝑇

0
‖𝑤(𝑡)‖2

𝐻1(R3) 𝑑𝑡 ≤ 𝐶

⎛⎝∫︁ 𝑇

0
‖∇𝑤(𝑡)‖2

𝐿2(𝐵𝑅+2(0)) 𝑑𝑡+
∫︁ 𝑇

0
‖𝜙𝑤(𝑡)‖2

𝐻1(R3) 𝑑𝑡

⎞⎠
≤ 𝐶𝜀

⎛⎝∫︁ 𝑇

0

∫︁
𝐵𝑅+3(0)∖𝐵𝑅+2(0)

|∇𝑤|2 𝑑𝑥𝑑𝑡+
∫︁ 𝑇

0
‖𝑤(𝑡)‖𝐿2(R3) 𝑑𝑡

+
∫︁ 𝑇

0
‖𝜙𝑤(𝑡)‖2

𝐻1(R3) 𝑑𝑡

⎞⎠+ 𝜀
∫︁ 𝑇

0
‖𝑤(𝑡)‖2

𝐻1(R3) 𝑑𝑡

≤ 𝐶𝜀

⎛⎝∫︁ 𝑇

0
‖𝜙𝑤(𝑡)‖2

𝐻1(R3)𝑑𝑡+
∫︁ 𝑇

0
‖𝑤(𝑡)‖𝐿2(R3) 𝑑𝑡

+
∫︁ 𝑇

0
‖𝜙𝑤(𝑡)‖2

𝐻1(R3) 𝑑𝑡

⎞⎠+ 𝜀
∫︁ 𝑇

0
‖𝑤(𝑡)‖2

𝐻1(R3) 𝑑𝑡

≤ 𝐶𝜀

⎛⎝∫︁ 𝑇

0
‖𝜙𝑤(𝑡)‖2

𝐻1(R3)𝑑𝑡+
∫︁ 𝑇

0
‖𝑤(𝑡)‖𝐿2(R3) 𝑑𝑡

⎞⎠
+ 𝜀

∫︁ 𝑇

0
‖𝑤(𝑡)‖2

𝐻1(R3) 𝑑𝑡.

So, it remains to show ∫︁ 𝑇

0
‖𝑤(𝑡)‖𝐿2(R3) 𝑑𝑡 ≤ 𝑐

∫︁ 𝑇

0
‖𝜙𝑤(𝑡)‖2

𝐻1(R3)𝑑𝑡 (6.10)

to achieve the proof of Lemma 6.1.1. To this end, let us argue by contradiction, that is,

suppose that (6.10) does not hold. If this is the case, there exists a sequence (𝑤𝑛,0)𝑛∈N in

𝐻1(R3) such that the corresponding sequence of solutions (𝑤𝑛)𝑛∈N to system (6.5) satisfies

1 =
∫︁ 𝑇

0
‖𝑤𝑛(𝑡)‖𝐿2(R3) 𝑑𝑡 ≥ 𝑛

∫︁ 𝑇

0
‖𝜙𝑤𝑛(𝑡)‖2

𝐻1(R3)𝑑𝑡, 𝑛 = 1, 2, ... (6.11)
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Due to inequalities (6.9) and (6.11), we get∫︁ 𝑇

0
‖𝑤𝑛(𝑡)‖2

𝐻1(R3) 𝑑𝑡 ≤ 𝐶

⎛⎝∫︁ 𝑇

0
‖𝜙𝑤𝑛(𝑡)‖2

𝐻1(R3) 𝑑𝑡+
∫︁ 𝑇

0
‖𝑤𝑛(𝑡)‖2

𝐿2(R3)

⎞⎠ ≤ 𝐶,

and so the sequence (𝑤𝑛)𝑛∈N is bounded in 𝐿2
(︁
(0, 𝑇 );𝐻1(R3)

)︁
. Hence, the sequence (𝑤𝑛(0) =

𝑤𝑛,0)𝑛∈N is bounded in 𝐻1(R3) by (6.8). Extracting a subsequence, still denoting it by

(𝑤𝑛,0)𝑛∈N, we may assume that

𝑤𝑛,0 ⇀ 𝑤0 weakly in 𝐻1(R3) as 𝑛 → ∞

and

𝑤𝑛 ⇀ 𝑤 weakly in 𝐿2
(︁
(0, 𝑇 );𝐻1(R3)

)︁
as 𝑛 → ∞,

where 𝑤 ∈ 𝐶
(︁
[0, 𝑇 ];𝐻1(R3)

)︁
is a solution to system (6.5). By inequality (6.11), 𝜙𝑤𝑛 → 0

in 𝐿2
(︁
(0, 𝑇 );𝐻1(R3)

)︁
strongly as 𝑛 → ∞. Since 𝜙𝑤𝑛 ⇀ 0 in 𝐿2

(︁
(0, 𝑇 );𝐻1(R3)

)︁
weakly

as 𝑛 → ∞, we conclude that 𝜙𝑤 ≡ 0 on (0, 𝑇 ) × R3. Therefore,

𝑤 ≡ 0, |𝑥| > 𝑅 + 1, ∀𝑡 ∈ (0, 𝑇 ).

According to Proposition .4 (Remark .5), one has 𝑤 ∈ 𝐶∞(R3 × (0, 𝑇 )). Now, we are in

a position to use the unique continuation property for the Schrödinger equation showed in

(MERCADO; OSSES; ROSIER, 2008) to conclude that

𝑤 ≡ 0 on R3 × (0, 𝑇 ).

Since 𝜙𝑤𝑛 → 0 strongly in 𝐿2
(︁
(0, 𝑇 );𝐻1(R3)

)︁
as 𝑛 → ∞, we get

𝑤𝑛 → 0 strongly in 𝐿2
(︁
(0, 𝑇 );𝐻1(R3∖𝐵𝑅+1(0))

)︁
as 𝑛 → ∞. (6.12)

On the other hand, taking into account (6.5) and (6.9), we obtain∫︁ 𝑇

0
‖𝑤𝑛(𝑡)‖2

𝐻1(𝐵𝑅+1(0)) 𝑑𝑡 ≤
∫︁ 𝑇

0
‖𝑤𝑛(𝑡)‖2

𝐻1(R3) 𝑑𝑡

≤ 𝐶
(︂ ∫︁ 𝑇

0
‖𝜙𝑤𝑛(𝑡)‖2

𝐻1(R3) 𝑑𝑡+
∫︁ 𝑇

0
‖𝑤𝑛(𝑡)‖2

𝐿2(R3) 𝑑𝑡
)︂
,

∫︁ 𝑇

0
‖𝜕𝑡𝑤𝑛(𝑡)‖2

𝐻−1(𝐵𝑅+1(0)) 𝑑𝑡 =
∫︁ 𝑇

0
‖ − Δ𝑤𝑛(𝑡)‖2

𝐻−1(𝐵𝑅+1(0)) 𝑑𝑡

=
∫︁ 𝑇

0
‖(1 − Δ)𝑤𝑛(𝑡) − 𝑤𝑛(𝑡)‖2

𝐻−1(𝐵𝑅+1(0)) 𝑑𝑡

≤
∫︁ 𝑇

0
‖(1 − Δ)𝑤𝑛(𝑡)‖2

𝐻−1(𝐵𝑅+1(0)) 𝑑𝑡

+
∫︁ 𝑇

0
‖(1 − Δ)𝑤𝑛(𝑡)‖𝐻−1(𝐵𝑅+1(0))‖𝑤𝑛(𝑡)‖𝐻−1(𝐵𝑅+1(0)) 𝑑𝑡

+
∫︁ 𝑇

0
‖𝑤𝑛(𝑡)‖2

𝐻−1(𝐵𝑅+1(0)) 𝑑𝑡

≤ 𝐶
∫︁ 𝑇

0
‖𝑤𝑛(𝑡)‖2

𝐻1(𝐵𝑅+1(0))
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and ∫︁ 𝑇

0
‖∇𝑤𝑛(𝑡)‖2

𝐻−1(𝐵𝑅+1(0)) 𝑑𝑡 ≤𝐶
∫︁ 𝑇

0
‖∇𝑤𝑛(𝑡)‖2

𝐿2(𝐵𝑅+1(0)) 𝑑𝑡

≤𝐶
∫︁ 𝑇

0
‖∇𝑤𝑛(𝑡)‖2

𝐿2(R3)) 𝑑𝑡

≤𝐶
∫︁ 𝑇

0
‖𝑤𝑛(𝑡)‖2

𝐻1(R3)) 𝑑𝑡.

Therefore, from the previous inequalities,

𝑤𝑛 is bounded in 𝐿2
(︁
(0, 𝑇 );𝐻1(𝐵𝑅+1(0))

)︁
∩𝐻1

(︁
(0, 𝑇 );𝐻−1(𝐵𝑅+1(0))

)︁
.

Due to Aubin’s lemma (see (SIMON, 1986)) and the convergence (6.12), we conclude that, for

a subsequence still denoted by (𝑤𝑛)𝑛∈N,

𝑤𝑛 → 𝑤 = 0 strongly in 𝐿2
(︁
(0, 𝑇 );𝐿2(R3)

)︁
as 𝑛 → ∞,

which contradicts (6.11). So, the estimate (6.6) follows from (6.8), (6.9) and (6.10) as

‖𝑤(0)‖2
𝐻1(R3) ≤𝐶

∫︁ 𝑇

0
‖𝑤(𝑡)‖2

𝐻1(R3) 𝑑𝑡

≤𝐶
(︂ ∫︁ 𝑇

0
‖𝜙𝑤(𝑡)‖2

𝐻1(R3) 𝑑𝑡+
∫︁ 𝑇

0
‖𝑤(𝑡)‖2

𝐿2(R3) 𝑑𝑡
)︂

≤𝐶
∫︁ 𝑇

0
‖𝜙𝑤(𝑡)‖2

𝐻1(R3) 𝑑𝑡,

showing the lemma.

Second step: Weak observability inequality.

We prove now a bound which is weaker than the observability inequality (6.3).

Lemma 6.1.2. Let 𝑣 be the solution of system (6.4) with 𝑣0 ∈ 𝐻−1(R3). Then,

‖𝑣0‖2
𝐻−1 ≤ 𝐶

⎛⎝∫︁ 𝑇

0
‖𝜙𝑣(𝑡)‖2

𝐻−1 𝑑𝑡+ ‖(1 − 𝜙(𝑥/2))𝑣0‖2
𝐻−2

⎞⎠. (6.13)

Proof of Lemma 6.1.2. Again, let us argue by contradiction. If inequality (6.13) is not verified,

there exists a sequence (𝑣𝑛)𝑛∈N of solutions to problem (6.4) in 𝐶([0, 𝑇 ];𝐻−1(R3)) such that

1 = ‖𝑣𝑛(0)‖2
𝐻−1 ≥ 𝑛

⎛⎝∫︁ 𝑇

0
‖𝜙𝑣𝑛(𝑡)‖2

𝐻−1 𝑑𝑡+ ‖(1 − 𝜙(𝑥/2))𝑣𝑛(0)‖2
𝐻−2

⎞⎠. (6.14)

Up to a subsequence, we may assume that

𝑣𝑛 ⇀ 𝑣 in 𝐿∞((0, 𝑇 );𝐻−1(R3)) weak* as 𝑛 → ∞
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and

𝑣𝑛(0) ⇀ 𝑣(0) in 𝐻−1(R3) weak as 𝑛 → ∞, (6.15)

where 𝑣 ∈ 𝐶([0, 𝑇 ];𝐻−1(R3)) is a solution of problem (6.4). By inequality (6.14), one has

𝜙𝑣𝑛 → 0 (strongly) in 𝐿2((0, 𝑇 );𝐻−1(R3)) as 𝑛 → ∞.

On the other hand, since

𝜙𝑣𝑛 ⇀ 𝜙𝑣 in 𝐿∞((0, 𝑇 );𝐻−1(R3)) weak* as 𝑛 → ∞,

we conclude that 𝜙𝑣 ≡ 0. Therefore, 𝑣(𝑡, 𝑥) = 0 for |𝑥| > 𝑅 + 1 and 𝑡 ∈ (0, 𝑇 ). So, using

the unique continuation property as in Step 1, we get that 𝑣 ≡ 0. In particular, 𝑣(0) = 0.

Now, we claim that

‖𝜙(𝑥/2)𝑣𝑛(0)‖2
𝐻−2 ≤ 𝐶

∫︁ 𝑇

0
‖𝜙𝑣𝑛(𝑡)‖2

𝐻−1 𝑑𝑡. (6.16)

To prove (6.16), introduce the sequence of functions 𝑣𝑛(𝑥, 𝑡) = 𝜙(𝑥/2)𝑣𝑛(𝑥, 𝑡). It satisfies

𝑖𝜕𝑡𝑣𝑛 + Δ𝑣𝑛 = 𝑓𝑛,

since

𝑖𝜕𝑡𝑣𝑛 = 𝑖𝜙(𝑥/2)𝜕𝑡𝑣𝑛,

Δ𝑣𝑛 = Δ
(︂
𝜙(𝑥/2)𝑣𝑛

)︂
= [Δ𝜙(𝑥/2)]𝑣𝑛 + 2∇𝜙(𝑥/2)∇𝑣𝑛 + 𝜙(𝑥/2)[Δ𝑣𝑛],

and

𝑖𝜕𝑡𝑣𝑛 + Δ𝑣𝑛 = 𝑓𝑛,

where 𝑓𝑛 = [Δ𝜙(𝑥/2)]𝑣𝑛 + 2∇𝜙(𝑥/2)∇𝑣𝑛. Thus, one has

‖𝑣𝑛(0)‖2
𝐻−2(R3) ≤𝑐

⎛⎝∫︁ 𝑇

0
‖𝑣𝑛(𝑡)‖2

𝐻−2(R3) 𝑑𝑡+
∫︁ 𝑇

0
‖𝑓𝑛(𝑡)‖2

𝐻−2(R3) 𝑑𝑡

⎞⎠.
Indeed, write the sequence 𝑣𝑛(𝑡) as

𝑒𝑖𝑡Δ𝑣𝑛(0) = 𝑣𝑛(𝑡) −
∫︁ 𝑡

0
𝑒𝑖(𝑡−𝜏)Δ𝑓𝑛 𝑑𝜏.

By the parallelogram law, we have
⃦⃦⃦⃦
𝑣𝑛(𝑡)+

∫︁ 𝑡

0
𝑒𝑖(𝑡−𝜏)Δ𝑓𝑛 𝑑𝜏

⃦⃦⃦⃦2

𝐻−2(R3)
+‖𝑒𝑖𝑡Δ𝑣𝑛(0)‖2

𝐻−2(R3) = 2‖𝑣𝑛(𝑡)‖2
𝐻−2(R3)+2

⃦⃦⃦⃦ ∫︁ 𝑡

0
𝑒𝑖(𝑡−𝜏)Δ𝑓𝑛 𝑑𝜏

⃦⃦⃦⃦2

𝐻−2(R3)
,
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which implies that

‖𝑒𝑖𝑡Δ𝑣𝑛(0)‖2
𝐻−2(R3) ≤ 2‖𝑣𝑛(𝑡)‖2

𝐻−2(R3) + 2
⃦⃦⃦⃦ ∫︁ 𝑡

0
𝑒𝑖(𝑡−𝜏)Δ𝑓𝑛 𝑑𝜏

⃦⃦⃦⃦2

𝐻−2(R3)

≤ 2‖𝑣𝑛(𝑡)‖2
𝐻−2(R3) + 𝐶‖𝑓𝑛‖2

𝐿1([0,𝑇 ];𝐻−2(R3))

≤ 𝐶
(︂

‖𝑣𝑛(𝑡)‖2
𝐻−2(R3) + ‖𝑓𝑛‖2

𝐿2([0,𝑇 ];𝐻−2(R3))

)︂
.

Since the semigroup is unitary, we have
⃦⃦⃦
𝑒𝑖𝑡Δ𝑣𝑛(0)

⃦⃦⃦2

𝐻−2(R3)
= ‖𝑣𝑛(0)‖2

𝐻−2(R3). The fact that

𝑠𝑢𝑝𝑝[𝜙(𝑥/2)] ⊂ {𝜙 = 1} yields

‖𝑣𝑛(0)‖2
𝐻−2(R3) ≤𝑐

⎛⎝∫︁ 𝑇

0
‖𝑣𝑛(𝑡)‖2

𝐻−2(R3) 𝑑𝑡+
∫︁ 𝑇

0
‖𝑓𝑛(𝑡)‖2

𝐻−2(R3) 𝑑𝑡

⎞⎠
≤𝑐

∫︁ 𝑇

0
‖𝜙𝑣𝑛(𝑡)‖2

𝐻−1(R3),

giving (6.16). Now, note that,

‖𝑣𝑛(0)‖2
𝐻−2+‖2𝜙(𝑥/2)𝑣𝑛(0)−𝑣𝑛(0)‖2

𝐻−2 = 2
(︂

‖𝜙(𝑥/2)𝑣𝑛(0)‖2
𝐻−2+‖(1−𝜙(𝑥/2))𝑣𝑛(0)‖2

𝐻−2

)︂
,

(6.17)

by parallelogram law again. So, using (6.18), (6.14) and (6.16), one has

‖𝑣𝑛(0)‖2
𝐻−2(R3) ≤ 2

(︂
‖𝜙(𝑥/2)𝑣𝑛(0)‖2

𝐻−2(R3) + ‖(1 − 𝜙(𝑥/2))𝑣𝑛(0)‖2
𝐻−2(R3)

)︂
≤ 𝑐

∫︁ 𝑇

0
‖𝜙𝑣𝑛(𝑡)‖2

𝐻−1(R3) 𝑑𝑡+ 2‖(1 − 𝜙(𝑥/2))𝑣𝑛(0)‖2
𝐻−2(R3) → 0

as 𝑛 → ∞, that is,

𝑣𝑛(0) → 0 strongly in 𝐻−2(R3) as 𝑛 → ∞. (6.18)

Let 𝑤𝑛 = (1 − Δ)−1𝑣𝑛. Then, 𝑤𝑛 ∈ 𝐶([0, 𝑇 ];𝐻1(R3)) is a solution of the equation (6.5). By

the convergences (6.15) and (6.18), we can ensure that

𝑤𝑛(0) ⇀ 0 in 𝐻1(R3) weakly as 𝑛 → ∞

and

𝑤𝑛 → 0 in 𝐶([0, 𝑇 ];𝐿2(R3)) strongly as 𝑛 → ∞. (6.19)

Now, split 𝜙𝑤𝑛 as

𝜙𝑤𝑛 = (1 − Δ)−1(𝜙𝑣𝑛) − (1 − Δ)−1[𝜙, (1 − Δ)]𝑤𝑛.

Observe that the operator [𝜙, (1 − Δ)] maps 𝐿2(R3) continuously into 𝐻−1(R3). So, due to

the convergence (6.19), we get that

(1 − Δ)−1[𝜙, (1 − Δ)]𝑤𝑛 → 0 in 𝐶([0, 𝑇 ];𝐻1(R3)) as 𝑛 → ∞. (6.20)
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On the other hand, by (6.14),

(1 − Δ)−1(𝜙𝑣𝑛) → 0 in 𝐿2((0, 𝑇 );𝐻1(R3)) as 𝑛 → ∞. (6.21)

Therefore, by the convergences (6.20) and (6.21), it follows that

𝜙𝑤𝑛 → 0 in 𝐿2((0, 𝑇 );𝐻1(R3)) as 𝑛 → ∞.

Since 𝑤𝑛 satisfies (6.5), using Lemma 6.1.1, more precisely, the observability inequality (6.6),

we conclude that

𝑤𝑛(0) → 0 in 𝐻1(R3) strongly as 𝑛 → ∞

and so

𝑣𝑛(0) → 0 in 𝐻−1(R3) strongly as 𝑛 → ∞,

which is a contradiction with the fact that ‖𝑣𝑛(0)‖2
𝐻−1 = 1, for all 𝑛. This finishes the

proof.

Third step: Proof of the observability inequality (6.3).

Now, to conclude the proof of Proposition 6.1.1, we argue by contradiction once more. If

(6.3) is false, then there exists a sequence (𝑣𝑛)𝑛∈N of solutions to (6.4) in 𝐶([0, 𝑇 ];𝐻−1(R3))

such that

1 = ‖𝑣𝑛(0)‖2
𝐻−1 ≥ 𝑛

∫︁ 𝑇

0
‖𝜙𝑣𝑛(𝑡)‖2

𝐻−1 𝑑𝑡, ∀𝑛 ≥ 0. (6.22)

Extracting a subsequence, still denoted by the same indexes, we have that

𝑣𝑛 ⇀ 𝑣 in 𝐿∞((0, 𝑇 );𝐻−1(R3)) weak* as 𝑛 → ∞

and

𝑣𝑛(0) ⇀ 𝑣(0) in 𝐻−1(R3) weak as 𝑛 → ∞,

for some solution 𝑣 ∈ 𝐶([0, 𝑇 ];𝐻−1(R3)) of the system (6.4). Note that

𝜙𝑣𝑛 ⇀ 𝜙𝑣 in 𝐿∞(0, 𝑇 ;𝐻−1(R3)) weak* as 𝑛 → ∞

and this, combined with (6.22) (𝜙𝑣𝑛 → 0 in 𝐿2
(︁
(0, 𝑇 );𝐻−1(R3)

)︁
), yields 𝜙𝑣 ≡ 0 and, hence,

𝑣 ≡ 0 for |𝑥| > 𝑅 + 1, 𝑡 ∈ (0, 𝑇 ). So, by the unique continuation property as in Step 2, we

deduce that 𝑣 ≡ 0 on R3 × (0, 𝑇 ). On the other hand, the sequence (1 − 𝜙(𝑥/2))𝑣𝑛(0) is

bounded in 𝐻−1(R3) and has compact support contained in 𝐵2𝑅+2(0). Therefore, extracting
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a subsequence, we may assume that it converges strongly in 𝐻−2(R3). Moreover, its limit is

necessarily 0 since

(1 − 𝜙(𝑥/2))𝑣𝑛(0) ⇀ 0 in 𝐻−2(R3) as 𝑛 → ∞.

Using (6.13), we conclude that ‖𝑣𝑛(0)‖𝐻−1 → 0 as 𝑛 → ∞, which contradicts (6.22). This

proves the desired observability inequality (6.3) and finishes the proof of Proposition 6.1.1.

Finally, we prove Theorem 6.1.

Proof of Theorem 6.1. We use Hilbert’s uniqueness method. First, note that, since the Schrö-

dinger equation (6.1) is backward well-posed, we may assume that 𝑢(𝑇 ) = 0 without loss of

generality. Now, consider the two systems⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑢+ Δ𝑢 = 𝜙(𝑥)ℎ(𝑥, 𝑡) 𝑜𝑛 [0, 𝑇 ] × R3,

𝑢(𝑇 ) = 0,
(6.23)

with 𝜙(𝑥) given by (6.2) and⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑣 + Δ𝑣 = 0 𝑜𝑛 [0, 𝑇 ] × R3,

𝑣(0) = 𝑣0 ∈ 𝐻−1(R3).

Multiplying the first equation of the first system by 𝑣 and integrating by parts, we obtain

𝑖
∫︁
R3

[︂
𝑣(𝑇 )𝑢(𝑇 ) − 𝑣0𝑢(0)

]︂
𝑑𝑥 =

∫︁ 𝑇

0

∫︁
R3
𝜙(𝑥)ℎ(𝑥, 𝑡)𝑣(𝑥, 𝑡) 𝑑𝑥𝑑𝑡.

Hence, taking 𝐿2(R3) as pivot space, one has

⟨𝑣0,−𝑖𝑢0⟩ =
∫︁ 𝑇

0
⟨𝜙(𝑥)𝑣, ℎ(𝑡)⟩ 𝑑𝑡, (6.24)

where ⟨·, ·⟩ denotes the duality pairing between 𝐻−1 (R3) and 𝐻1 (R3). Consider the con-

tinuous map Λ : 𝐻−1(R3) → 𝐻1(R3) defined by Λ𝑣 = ⟨𝑣, ·⟩1. Given any 𝑣0 ∈ 𝐻−1 (R3),

let ℎ(𝑡) = Λ−1(𝜙𝑣(𝑡)) (ℎ ∈ 𝐶 ([0, 𝑇 ];𝐻1 (R3))) and let 𝑢 be the corresponding solution of

system (6.23). Finally, set Γ (𝑣0) = −𝑖𝑢(·, 0). Then, we have

⟨𝑣0,Γ (𝑣0)⟩ =
∫︁ 𝑇

0
‖𝜙𝑣(𝑡)‖2

𝐻−1(R3)𝑑𝑡 ⩾ 𝑐 ‖𝑣0‖2
𝐻−1(R3) ,

in view of the observability inequality (6.3) and (6.24). It follows from the Lax-Milgram theorem

that Γ defines an isomorphism, and this concludes the proof of Theorem 6.1.
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6.2 NONLINEAR SYSTEM: PROOF OF THEOREM 2.4

We have gathered all the necessary information to demonstrate the Theorem 2.4. The

proof is based on a perturbation argument due to Zuazua (ZUAZUA, 1990). To use it, consider

the following two Schrödinger systems with initial data in 𝐻−1 and null initial data, namely⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡Φ + ΔΦ = 0 on [0, 𝑇 ] × R3,

Φ(0) = Φ0 ∈ 𝐻−1(R3)

and ⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑢+ Δ𝑢− |𝑢|4𝑢 = 𝐴Φ on [0, 𝑇 ] × R3,

𝑢(𝑇 ) = 0,
(6.25)

where 𝐴 is defined as in Theorem 6.1 by

𝐴Φ := Λ−1(𝜙(𝑥)Φ).

Now, define the operator

ℒ : 𝐻−1(R3) → 𝐻1(R3)

Φ0 ↦→ ℒΦ0 = 𝑢0 = 𝑢(0).

The purpose is to show that ℒ is onto in a small neighborhood of the origin of 𝐻1(R3). To

this end, split 𝑢 as 𝑢 = 𝑣 + Ψ, where is Ψ a solution of⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡Ψ + ΔΨ = 𝐴Φ on [0, 𝑇 ] × R3,

Ψ(𝑇 ) = 0

and 𝑣 is a solution of ⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑣 + Δ𝑣 = |𝑢|4𝑢 on [0, 𝑇 ] × R3,

𝑣(𝑇 ) = 0.
(6.26)

Clearly 𝑢, 𝑣 and Ψ belong to 𝐶([0, 𝑇 ], 𝐻1(R3))∩𝐿10([0, 𝑇 ];𝐿10(R3)) and 𝑢(0) = 𝑣(0)+Ψ(0).

We write

ℒΦ0 = 𝒥 Φ0 + ΓΦ0,

where 𝒥 Φ0 = 𝑣0. Observe that ℒΦ0 = 𝑢0, or equivalently, Φ0 = −Γ−1𝒥 Φ0 + Γ−1𝑢0. Now,

define the operator
ℬ : 𝐻−1(R3) → 𝐻−1(R3)

Φ0 → ℬΦ0 = Γ−1𝒥 Φ0 + Γ−1𝑢0,
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where we are taking into account that Γ is the linear control isomorphism between 𝐻−1 and

𝐻1, due to Theorem 6.1. The goal is to prove that ℬ has a fixed point near the origin of

𝐻−1(R3). More precisely, let us prove that if ‖𝑢0‖𝐻1 is small enough, then ℬ is a contraction

on a small ball 𝐵𝑅 of 𝐻−1(R3). We may assume 𝑇 < 1 and we denote by 𝐶 > 0 any constant

that may have its numerical value changed line by line. Since Γ is an isomorphism, we have

‖ℬΦ0‖𝐻−1 ≤‖Γ−1𝒥 Φ0‖𝐻−1 + ‖Γ−1𝑢0‖𝐻−1

≤𝐶 (‖𝒥 Φ0‖𝐻1 + ‖𝑢0‖𝐻1)

≤𝐶 (‖𝑣(0)‖𝐻1 + ‖𝑢0‖𝐻1) .

(6.27)

Claim 1: There exists 𝐶 > 0 such that

‖𝑣(0)‖𝐻1 ≤ 𝐶‖∇𝑢‖5
𝐿10

𝑡 𝐿
30
13
𝑥

. (6.28)

Indeed, note that due to the classical energy estimate for system (6.26), Strichartz esti-

mates (see Lemma 3.2.1) and a Sobolev embedding (see Lemma 3.2.2), we have

‖𝑣(0)‖𝐿2 ≤ ‖𝑣(𝑇 )‖𝐿2 +
⃦⃦⃦⃦ ∫︁ 𝑡

0
𝑒𝑖(𝑡−𝜏)Δ|𝑢|4𝑢 𝑑𝜏

⃦⃦⃦⃦
𝐿2

𝑥

≤ 𝐶‖𝑢5‖𝐿1
𝑡 𝐿2

𝑥

≤ 𝐶‖𝑢‖5
𝐿10

𝑡 𝐿10
𝑥

≤ 𝐶‖∇𝑢‖5
𝐿10

𝑡 𝐿
30
13
𝑥

and

‖∇𝑣(0)‖𝐿2 ≤ ‖∇𝑣(𝑇 )‖𝐿2 +
⃦⃦⃦⃦ ∫︁ 𝑡

0
𝑒𝑖(𝑡−𝜏)Δ∇|𝑢|4𝑢 𝑑𝜏

⃦⃦⃦⃦
𝐿2

𝑥

≤ 𝐶‖∇𝑢‖
𝐿10

𝑡 𝐿
30
13
𝑥

‖𝑢‖4
𝐿10

𝑡 𝐿10
𝑥

≤ ‖∇𝑢‖5
𝐿10

𝑡 𝐿
30
13
𝑥

.

Thus,

‖𝑣(0)‖2
𝐿2 ≤ 𝐶‖∇𝑢‖10

𝐿10
𝑡 𝐿

30
13
𝑥

and

‖∇𝑣(0)‖2
𝐿2 ≤ 𝐶‖∇𝑢‖10

𝐿10
𝑡 𝐿

30
13
𝑥

.

Adding up, we have (6.28), showing Claim 1.

Claim 2: There exists 𝐶 > 0 such that

‖∇𝑢‖
𝐿10

𝑡 𝐿
30
13
𝑥

≤ 𝐶‖Φ0‖𝐻−1 . (6.29)
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In fact, an application of Lemma 3.2.1 to system (6.25) ensures that

‖∇𝑢‖
𝐿10

𝑡 𝐿
30
13
𝑥

≤ ‖∇𝑢(𝑇 )‖𝐿2 + 𝐶‖∇𝑢‖
𝐿10

𝑡 𝐿
30
13
𝑥

‖𝑢‖4
𝐿10

𝑡 𝐿10
𝑥

+ 𝐶‖∇𝐴Φ‖𝐿1
𝑡 𝐿2

𝑥

≤ 𝐶

(︃
‖∇𝑢‖5

𝐿10
𝑡 𝐿

30
13
𝑥

+ ‖𝐴Φ‖𝐿2
𝑡 𝐻1

𝑥

)︃
.

Note that, using the fact that Λ is an isomorphism, we get

‖𝐴Φ‖𝐻1 = ‖Λ−1(𝜙Φ)‖𝐻1 ≤ 𝐶‖𝜙Φ‖𝐻−1

or, equivalently,

‖𝐴Φ‖𝐿2𝐻1 ≤
(︂ ∫︁ 𝑇

0
‖𝜙Φ‖2

𝐻−1 𝑑𝑡
)︂ 1

2
.

Then, the duality (6.24) yields

‖∇𝑢‖
𝐿10

𝑡 𝐿
30
13
𝑥

≤ 𝐶‖∇𝑢‖5
𝐿10

𝑡 𝐿
30
13
𝑥

+ 𝐶
(︂ ∫︁ 𝑇

0
‖𝜙Φ‖2

𝐻−1 𝑑𝑡
)︂ 1

2

≤ 𝐶‖∇𝑢‖5
𝐿10

𝑡 𝐿
30
13
𝑥

+ 𝐶
(︂

⟨ΓΦ0,Φ0⟩
)︂ 1

2

≤ 𝐶‖∇𝑢‖5
𝐿10

𝑡 𝐿
30
13
𝑥

+ 𝐶
(︂

‖ΓΦ0‖𝐻1‖Φ0‖𝐻−1

)︂ 1
2

≤ 𝐶‖∇𝑢‖5
𝐿10

𝑡 𝐿
30
13
𝑥

+ 𝐶
(︂

‖Φ0‖2
𝐻−1

)︂ 1
2

≤ 𝐶‖∇𝑢‖5
𝐿10

𝑡 𝐿
30
13
𝑥

+ 𝐶‖Φ0‖𝐻−1 .

Using a bootstrap argument, taking ‖Φ0‖𝐻−1 ≤ 𝑅 with 𝑅 small enough, we get (6.29),

showing Claim 2.

Observe that, putting together (6.28) and (6.29) into (6.27), we conclude that

‖𝐵Φ0‖𝐻−1 ≤ 𝐶
(︂

‖𝑣(0)‖𝐻1 + ‖𝑢0‖𝐻1

)︂
≤ 𝐶

(︂
‖Φ0‖5

𝐻−1 + ‖𝑢0‖𝐻1

)︂
.

Then, choosing 𝑅 small enough and ‖𝑢0‖𝐻1 ≤ 𝑅
2𝐶

, we get

‖𝐵Φ0‖𝐻−1 ≤ 𝑅

and, therefore, ℬ reproduces the ball 𝐵𝑅 of 𝐻−1(R).

Finally, we prove that ℬ is a contraction map. To do this, let us study the systems⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡(𝑢1 − 𝑢2) + Δ(𝑢1 − 𝑢2) − |𝑢1|4𝑢1 + |𝑢2|4𝑢2 = 𝐴(Φ1 − Φ2),

(𝑢1 − 𝑢2)(𝑇 ) = 0
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and ⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡(𝑣1 − 𝑣2) + Δ(𝑣1 − 𝑣2) = |𝑢1|4𝑢1 − |𝑢2|4𝑢2,

(𝑣1 − 𝑣2)(𝑇 ) = 0.
(6.30)

As done before, we have

‖ℬΦ1
0 − ℬΦ2

0‖𝐻−1 ≤ 𝐶‖𝑣1(0) − 𝑣2(0)‖𝐻1 . (6.31)

We estimate 𝑣1(0)−𝑣2(0) in the 𝐻1-norm. First, applying the Strichatz estimates (see Lemma

3.2.1) to the system (6.30) yields that

‖𝑣1(0) − 𝑣2(0)‖𝐿2 ≤
⃦⃦⃦⃦ ∫︁ 𝑡

0
𝑒𝑖(𝑡−𝜏)Δ(|𝑢1|4𝑢1 − |𝑢2|4𝑢2) 𝑑𝜏

⃦⃦⃦⃦
𝐿2

𝑥

≤𝐶‖𝑢5
1 − 𝑢5

2‖𝐿1
𝑡 𝐿2

𝑥

≤𝐶‖𝑢1 − 𝑢2‖𝐿5
𝑡 𝐿10

𝑥

(︂
‖𝑢1‖4

𝐿5
𝑡 𝐿10

𝑥
+ ‖𝑢2‖4

𝐿5
𝑡 𝐿10

𝑥

)︂
≤𝐶‖𝑢1 − 𝑢2‖𝐿10

𝑡 𝐿10
𝑥

(︂
‖𝑢1‖4

𝐿10
𝑡 𝐿10

𝑥
+ ‖𝑢2‖4

𝐿10
𝑡 𝐿10

𝑥

)︂
≤𝐶‖∇𝑢1 − ∇𝑢2‖

𝐿10
𝑡 𝐿

30
13
𝑥

(︂
‖∇𝑢1‖4

𝐿10
𝑡 𝐿

30
13
𝑥

+ ‖∇𝑢2‖4
𝐿10

𝑡 𝐿
30
13
𝑥

)︂
≤𝐶𝑅4‖∇𝑢1 − ∇𝑢2‖

𝐿10
𝑡 𝐿

30
13
𝑥

and

‖∇𝑣1(0) − ∇𝑣2(0)‖𝐿2 ≤
⃦⃦⃦⃦ ∫︁ 𝑡

0
∇𝑒𝑖(𝑡−𝜏)Δ(|𝑢1|4𝑢1 − |𝑢2|4𝑢2) 𝑑𝜏

⃦⃦⃦⃦
𝐿2

𝑥

≤‖∇(|𝑢1|4𝑢1 − |𝑢2|4𝑢2)‖
𝐿2

𝑡 𝐿
6
5
𝑥

≤𝐶‖∇(𝑢1 − 𝑢2)‖
𝐿10

𝑡 𝐿
30
13
𝑥

‖𝑢1‖4
𝐿10

𝑡 𝐿10
𝑥

≤𝐶‖∇(𝑢1 − 𝑢2)‖
𝐿10

𝑡 𝐿
30
13
𝑥

‖∇𝑢1‖4
𝐿10

𝑡 𝐿
30
13
𝑥

+ 𝐶‖∇𝑢1 − ∇𝑢2‖
𝐿10

𝑡 𝐿
30
13
𝑥

(︃
‖∇𝑢1‖3

𝐿10
𝑡 𝐿

30
13
𝑥

‖∇𝑢2‖
𝐿10

𝑡 𝐿
30
13
𝑥

+‖∇𝑢2‖3
𝐿10

𝑡 𝐿
30
13
𝑥

‖∇𝑢2‖
𝐿10

𝑡 𝐿
30
13
𝑥

)︃

≤𝐶𝑅4‖∇(𝑢1 − 𝑢2)‖
𝐿10

𝑡 𝐿
30
13
𝑥

+ 𝐶𝑅4‖∇(𝑢1 − 𝑢2)‖
𝐿10

𝑡 𝐿
30
13
𝑥

≤𝐶𝑅4‖∇(𝑢1 − 𝑢2)‖
𝐿10

𝑡 𝐿
30
13
𝑥

.

Thus,

‖𝑣1(0) − 𝑣2(0)‖2
𝐿2 ≤ 𝐶𝑅8‖∇𝑢1 − ∇𝑢2‖2

𝐿10
𝑡 𝐿

30
13
𝑥

and

‖∇𝑣1(0) − ∇𝑣2(0)‖2
𝐿2 ≤ 𝐶𝑅8‖∇𝑢1 − ∇𝑢2‖2

𝐿10
𝑡 𝐿

30
13
𝑥

.
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These bounds together give us the 𝐻1-estimate

‖𝑣1(0) − 𝑣2(0)‖𝐻1 ≤ 𝐶𝑅4‖∇𝑢1 − ∇𝑢2‖
𝐿10

𝑡 𝐿
30
13
𝑥

.

Now, let us bound the right-hand side of this inequality. To this end, first notice that

‖∇(𝑢1 − 𝑢2)‖
𝐿10

𝑡 𝐿
30
13
𝑥

≤ ‖∇(|𝑢1|4𝑢1 − |𝑢2|4𝑢2)‖
𝐿2

𝑡 𝐿
6
5
𝑥

+ ‖∇𝐴(Φ1 − Φ2)‖𝐿1
𝑡 𝐿2

𝑥

≤ 𝐶𝑅4‖∇𝑢1 − ∇𝑢2‖
𝐿10

𝑡 𝐿
30
13
𝑥

+ 𝐶‖𝐴(Φ1 − Φ2)‖𝐿2
𝑡 𝐻1

𝑥

≤ 𝐶𝑅4‖∇𝑢1 − ∇𝑢2‖
𝐿10

𝑡 𝐿
30
13
𝑥

+ 𝐶‖Φ1
0 − Φ2

0‖𝐻−1 .

So, choosing 𝑅 > 0 small enough, we get

‖∇(𝑢1 − 𝑢2)‖
𝐿10

𝑡 𝐿
30
13
𝑥

≤ 𝐶‖Φ1
0 − Φ2

0‖𝐻−1 .

Therefore,

‖𝑣1(0) − 𝑣2(0)‖𝐻1 =
⎛⎝‖𝑣1(0) − 𝑣2(0)‖2

𝐿2 + ‖∇𝑣1(0) − ∇𝑣2(0)‖2
𝐿2

⎞⎠ 1
2

≤𝐶𝑅4‖Φ1
0 − Φ2

0‖𝐻−1 .

(6.32)

Finally, we get, by (6.31) and (6.32), that

‖ℬΦ1
0 − ℬΦ2

0‖𝐻−1 ≤ 𝐶‖𝑣1(0) − 𝑣2(0)‖𝐻1

≤ 𝐶𝑅4‖Φ1
0 − Φ2

0‖𝐻−1 ,

concluding that ℬ is a contraction on a small ball 𝐵𝑅 of 𝐻−1. This completes the proof of

Theorem 2.4.
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.1 PROPAGATION RESULTS FOR THE LINEAR SCHRÖDINGER EQUATION

We collect some results of propagation for solutions of the linear Schrödinger equation

which were used throughout this thesis (see, for instance, (DEHMAN; GÉRARD; LEBEAU, 2006)).

The main ingredient is basic pseudodifferential analysis.

Proposition .2. Let 𝐿 = 𝑖𝜕𝑡 + Δ +𝑅0, where 𝑅0(𝑡, 𝑥,𝐷𝑥) is a tangential pseudodifferential
operator of order 0 and (𝑢𝑛)𝑛∈N a sequence of functions satisfying, for every 𝜒 ∈ 𝐶∞

0 (R3),
with 𝜒(𝑥) = 1, 𝑥 ∈ 𝑠𝑢𝑝𝑝(𝜒) = 𝐾,

sup
𝑡∈[0,𝑇 ]

‖𝜒𝑢𝑛(𝑡)‖𝐻1(R3) ≤ 𝐶, sup
𝑡∈[0,𝑇 ]

‖𝜒𝑢𝑛(𝑡)‖𝐿2(R3) → 0 and
∫︁ 𝑇

0
‖𝐿𝑢𝑛(𝑡)‖2

𝐿2 𝑑𝑡 → 0. (33)

There exist a subsequence (𝑢𝑛′)𝑛′∈N of (𝑢𝑛)𝑛∈N and a positive measure 𝜇 on (0, 𝑇 ) ×R3 ×𝑆2

such that, for every tangential pseudodifferential operator 𝐴 = 𝐴(𝑡, 𝑥,𝐷𝑥) of order 2, with
principal symbol 𝜎(𝐴) = 𝑎2(𝑡, 𝑥, 𝜉), one has

⟨𝐴(𝑡, 𝑥,𝐷𝑥)𝜒𝑢𝑛′ , 𝜒𝑢𝑛′⟩𝐿2 −→
∫︁

(0,𝑇 )×R3×𝑆3
𝑎2(𝑡, 𝑥, 𝜉) 𝑑𝜇(𝑡, 𝑥, 𝜉). (34)

Moreover, if 𝐺𝑠 denotes the geodesic flow on R3 × 𝑆2, one has, for every 𝑠 ∈ R,

𝐺𝑠(𝜇) = 𝜇. (35)

In other words, 𝜇 is invariant by the geodesic flow "at fixed t."

Demonstração. The construction of the tangential microlocal defect measure 𝜇 satisfying (34)

is classical (see e.g. (GÉRARD, 1991)). The first estimate in (33) combined with a separability

argument allows to find a subsequence (𝑢𝑛′)𝑛′∈N such that the left-hand side of (34) converges

for all 𝐴. Then the second estimate in (33) and the Gårding inequality imply the existence of

some positive measure 𝜇 such that (34) holds.

For the propagation, i.e., property (35), we consider 𝜙 = 𝜙(𝑡) ∈ 𝐶∞
0 (0, 𝑇 ), 𝐵(𝑥,𝐷𝑥) a

pseudodifferential operator of order 1, with principal symbol 𝑏1, 𝐴(𝑡, 𝑥,𝐷𝑥) = 𝜙(𝑡)𝐵(𝑥,𝐷𝑥)

and for a given 𝜀 > 0, we write 𝐴𝜀 = 𝜙𝐵𝜀 = 𝐴𝑒𝜀Δ. Moreover, denote

𝛼𝜀
𝑛 =

(︁
𝐿𝑢𝑛, 𝐴

*
𝜀𝑢𝑛

)︁
𝐿2([0,𝑇 ]×R3)

−
(︁
𝐴𝜀𝑢𝑛, 𝐿𝑢𝑛

)︁
𝐿2([0,𝑇 ]×R3)

.
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By assumption (33), sup𝜀 𝛼
𝜀
𝑛 → 0 as 𝑛 → ∞. On the other hand,

𝛼𝜀
𝑛 =

(︁
𝑖𝜕𝑡𝑢𝑛 + Δ𝑢𝑛 +𝑅0𝑢𝑛, 𝐴

*
𝜀𝑢𝑛

)︁
𝐿2([0,𝑇 ]×R3)

−
(︁
𝐴𝜀𝑢𝑛, 𝑖𝜕𝑡𝑢𝑛 + Δ𝑢𝑛 +𝑅0𝑢𝑛

)︁
𝐿2([0,𝑇 ]×R3)

= 𝑖
(︁
𝜕𝑡𝑢𝑛, 𝐴

*
𝜀𝑢𝑛

)︁
𝐿2([0,𝑇 ]×R3)

+
(︁
Δ𝑢𝑛, 𝐴

*
𝜀𝑢𝑛

)︁
𝐿2([0,𝑇 ]×R3)

+
(︁
𝑅0𝑢𝑛, 𝐴

*
𝜀𝑢𝑛

)︁
𝐿2([0,𝑇 ]×R3)

−
(︁
𝐴𝜀𝑢𝑛, 𝑖𝜕𝑡𝑢𝑛

)︁
𝐿2([0,𝑇 ]×R3)

−
(︁
𝐴𝜀𝑢𝑛,Δ𝑢𝑛

)︁
𝐿2([0,𝑇 ]×R3)

−
(︁
𝐴𝜀𝑢𝑛, 𝑅0𝑢𝑛

)︁
𝐿2([0,𝑇 ]×R3)

= 𝑖
(︁
(𝜕𝑡𝐴𝜀)𝑢𝑛, 𝑢𝑛

)︁
𝐿2([0,𝑇 ]×R3)

+
(︁
𝐴𝜀Δ𝑢𝑛, 𝑢𝑛

)︁
𝐿2([0,𝑇 ]×R3)

+
(︁
𝐴𝜀𝑅0𝑢𝑛, 𝑢𝑛

)︁
𝐿2([0,𝑇 ]×R3)

− 𝑖
(︁
(𝜕𝑡𝐴𝜀)𝑢𝑛, 𝑢𝑛

)︁
𝐿2([0,𝑇 ]×R3)

−
(︁
Δ𝐴𝜀𝑢𝑛, 𝑢𝑛

)︁
𝐿2([0,𝑇 ]×R3)

−
(︁
𝑅*

0𝐴𝜀𝑢𝑛, 𝑢𝑛

)︁
𝐿2([0,𝑇 ]×R3)

=
(︁
[𝐴𝜀,Δ]𝑢𝑛, 𝑢𝑛

)︁
𝐿2([0,𝑇 ]×R3)

+
(︁
[𝐴𝜀𝑅0 −𝑅*

0𝐴𝜀]𝑢𝑛, 𝑢𝑛

)︁
𝐿2([0,𝑇 ]×R3)

=
(︁
[𝐴𝜀,Δ]𝑢𝑛 + [𝐴𝜀𝑅0 −𝑅*

0𝐴𝜀]𝑢𝑛, 𝑢𝑛

)︁
𝐿2([0,𝑇 ]×R3)

.

So

sup
𝜀

(︁
𝜒[𝐴𝜀,Δ]𝑢𝑛 + 𝜒[𝐴𝜀𝑅0 −𝑅*

0𝐴𝜀]𝑢𝑛, 𝜒𝑢𝑛

)︁
𝐿2([0,𝑇 ]×R3)

−→ 0 as 𝑛 → ∞.

Observe that, taking
(︁
𝜒[𝐴𝜀𝑅0 − 𝑅*

0𝐴𝜀]𝑢𝑛, 𝜒𝑢𝑛

)︁
𝐿2([0,𝑇 ]×R3)

= 𝛽𝜀
𝑛, we have sup𝜀 𝛽

𝜀
𝑛 → 0 as

𝑛 → ∞. Finally, passing to the limit as 𝜀 → 0, we obtain, for all 𝜒 ∈ 𝐶∞
0 (R3),

(︁
𝜒𝜙[𝐵,Δ]𝑢𝑛, 𝜒𝑢𝑛

)︁
𝐿2([0,𝑇 ]×R3)

→ 0 (36)

as 𝑛 → ∞. Denoting 𝐷 := 𝜙[𝐵,Δ], 𝐷 is a pseudodifferential operator of order 2 and we

have

(︁
𝜙[𝐵,Δ]𝜒𝑢𝑛, 𝜒𝑢𝑛

)︁
𝐿2([0,𝑇 ]×R3)

=
(︁
𝐷𝜒𝑢𝑛, 𝜒𝑢𝑛

)︁
𝐿2([0,𝑇 ]×R3)

=
(︁
[𝐷,𝜒]𝑢𝑛, 𝜒𝑢𝑛

)︁
𝐿2([0,𝑇 ]×R3)

+
(︁
𝜒𝐷𝑢𝑛, 𝜒𝑢𝑛

)︁
𝐿2([0,𝑇 ]×R3)

→ 0

as 𝑛 → ∞, using (36), and

(︁
[𝐷,𝜒]𝑢𝑛, 𝜒𝑢𝑛

)︁
𝐿2([0,𝑇 ]×R3)

≤ ‖[𝐷,𝜒]𝑢𝑛‖𝐿2‖𝜒𝑢𝑛‖𝐿2

≤ 𝐶‖𝑢𝑛‖𝐻1‖𝜒𝑢𝑛‖𝐿2 .

In view of (34), one has
∫︁

(0,𝑇 )×R3×𝑆3
𝜙{|𝜉|2𝑥, 𝑏1} 𝑑𝜇(𝑡, 𝑥, 𝜉) = 0.

This identity expresses property (35) and completes the proof.

Using this tool we obtain the following important corollary.
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Corollary .3. Assume that 𝜔 ⊂ R3 satisfies Assumption 5.1. Let (𝑢𝑛)𝑛∈N be a sequence of
functions bounded in 𝐿∞([0, 𝑇 ], 𝐻1(R3)), convergent to 0 in 𝐿2 and satisfying⎧⎪⎪⎨⎪⎪⎩

𝑖𝜕𝑡𝑢𝑛 + Δ𝑢𝑛 → 0 in 𝐿2([0, 𝑇 ], 𝐻1(R3)),

𝑢𝑛 → 0 in 𝐿2([0, 𝑇 ], 𝐻1
𝑙𝑜𝑐(𝜔)).

(37)

Then, (𝑢𝑛)𝑛∈N strongly converges to 0 in 𝐿∞([0, 𝑇 ], 𝐻1
𝑙𝑜𝑐(R3)).

Demonstração. By Proposition .2, we can attach to the sequence (𝑢𝑛)𝑛∈N a microlocal defect

measure in 𝐿2((0, 𝑇 ), 𝐻1(R3)) that propagates with infinite speed along the geodesics of R3.

Using the second equation of (37), we can deduce that

𝜇 = 0 on (0, 𝑇 ) × 𝜔 × 𝑆3,

which yields, by the propagation (36) and Assumption 5.1, 𝜇 = 0 on (0, 𝑇 ) × R3 × 𝑆3. This

means that 𝑢𝑛 → 0 in 𝐿2
𝑙𝑜𝑐((0, 𝑇 );𝐻1

𝑙𝑜𝑐(R3)) as 𝑛 → ∞. Finally, solving the first equation of

(37) with initial data 𝑢𝑛(𝑡0), where 𝑡0 ∈ (0, 𝑇 ) is such that ‖𝑢𝑛(𝑡0)‖𝐻1
𝑙𝑜𝑐

→ 0 as 𝑛 → ∞, this

implies the strong convergence 𝑢𝑛(𝑡) → 0 in the space 𝐿∞([0, 𝑇 ], 𝐻1
𝑙𝑜𝑐(R3)) as 𝑛 → ∞.

.2 SMOOTHING

For the sake of completeness, we discuss the smoothing properties of the linear Schrödinger

equation ⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑢− 𝑢+ Δ𝑢 = 0, 𝑥 ∈ R3, 𝑡 ∈ R,

𝑢(𝑥, 0) = 𝜓(𝑥), 𝑥 ∈ R3.

(38)

For 𝑗 ∈ {1, 2, 3}, let 𝑃𝑗 be the differential operator on R4 defined by

𝑃𝑗𝑣(𝑡, 𝑥) = (𝑥𝑗 + 2𝑖𝑡𝜕𝑗)𝑣(𝑡, 𝑥) = 𝑥𝑗𝑣(𝑡, 𝑥) + 2𝑖𝑡 𝜕
𝜕𝑥𝑗

𝑣(𝑡, 𝑥). (39)

For a multi-index 𝛼, define the differential operator 𝑃𝛼 on R4 by

𝑃𝛼 =
3∏︁

𝑗=1
𝑃

𝛼𝑗

𝑗 .

In addition, for 𝑥 ∈ R3, set

𝑥𝛼 =
3∏︁

𝑗=1
𝑥

𝛼𝑗

𝑗 .

For a given smooth function 𝑢(𝑡, 𝑥), one has

𝑃𝑗𝑢(𝑡, 𝑥) = 2𝑖𝑡𝑒𝑖
|𝑥|2
4𝑡

𝜕

𝜕𝑥𝑗

(︁
𝑒−𝑖

|𝑥|2
4𝑡 𝑢(𝑡, 𝑥)

)︁
.
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Indeed,

2𝑖𝑡𝑒𝑖
|𝑥|2
4𝑡

𝜕

𝜕𝑥𝑗

(︁
𝑒−𝑖

|𝑥|2
4𝑡 𝑢

)︁
= −2𝑖𝑡𝑒𝑖

|𝑥|2
4𝑡

2𝑖𝑥𝑗

4𝑡 𝑒
−𝑖

|𝑥|2
4𝑡 𝑢(𝑡, 𝑥) + 2𝑖𝑡𝑒𝑖

|𝑥|2
4𝑡 𝑒−𝑖

|𝑥|2
4𝑡

𝜕

𝜕𝑥𝑗

𝑢(𝑡, 𝑥)

= 𝑥𝑗𝑢(𝑡, 𝑥) + 2𝑖𝑡 𝜕
𝜕𝑥𝑗

𝑢(𝑡, 𝑥).

Hence,

𝑃𝛼𝑢(𝑡, 𝑥) = (2𝑖𝑡)|𝛼|𝑒𝑖
|𝑥|2
4𝑡 𝐷𝛼

(︁
𝑒−𝑖

|𝑥|2
4𝑡 𝑢(𝑡, 𝑥)

)︁
.

On the other hand, a calculation gives

[𝑃𝑗, 𝑖𝜕𝑡 + Δ] = 0.

Therefore, if 𝑢 ∈ 𝐶(R, 𝐻1(R3)) is any solution of the linear Schrödinger equation (38), then

so is 𝑃𝑗𝑢 and 𝑃𝛼𝑢.

Proposition .4. Let 𝛼 be a multi-index and 𝑇 > 0 be given. Let 𝜓 ∈ 𝐻1(R3) be such that
𝑥𝛼𝜓 ∈ 𝐻1(R3). The corresponding solution 𝑢 of the IVP⎧⎪⎪⎨⎪⎪⎩

𝑖𝜕𝑡𝑢+ Δ𝑢− 𝑢 = 0, (𝑡, 𝑥) ∈ R × R3,

𝑢(𝑥, 0) = 𝜓, 𝑥 ∈ R3,

(40)

satisfies
𝑃𝛼𝑢 ∈ 𝐶(R;𝐻1(R3)),

and there exists a constant 𝐶 depending only on 𝑇 and 𝛼 such that

‖𝑃𝛼𝑢‖𝐻1(R3) ≤ 𝐶‖𝑥𝛼𝜓‖𝐻1(R3)

holds for any 𝑡 ∈ [−𝑇, 𝑇 ]. In particular, if 𝜓 ∈ 𝐻1(R3) has compact support, then 𝑢 is
infinitely smooth everywhere except at 𝑡 = 0.

Demonstração. Using a standard density argument, it is sufficient to prove the result for

𝜓 ∈ 𝒮(R3). Assume first that |𝛼| = 1, so that 𝑃𝛼 = 𝑃𝑗 for some 𝑗 ∈ {1, 2, 3}. First, note

that

‖𝑢(𝑡)‖𝐻1(R3) = ‖𝜓‖𝐻1(R3),

for any 𝑡 ∈ [−𝑇, 𝑇 ]. Set 𝑢𝑗(𝑡, 𝑥) = 𝑃𝑗𝑢(𝑡, 𝑥). Applying the operator 𝑃𝑗 to (40) yields⎧⎪⎪⎨⎪⎪⎩
𝑖𝜕𝑡𝑢

𝑗 + Δ𝑢𝑗 − 𝑢𝑗 = 0,

𝑢𝑗(0, 𝑥) = 𝑥𝑗𝜓,
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since 𝑃𝑗𝑢(0, 𝑥) = 𝑥𝑗𝑢(0, 𝑥). Thus,

‖𝑢𝑗(𝑡)‖𝐻1(R3) = ‖𝑥𝑗𝜓‖𝐻1(R3).

The general case (|𝛼| > 1) is obtained by induction.

Remark .5. The Proposition .4 also holds for the traditional Schrödinger equation without

the perturbation term as we can see in (ROSIER; ZHANG, 2009).

.3 PROOF OF THEOREM 2.3

Demonstração. We follow the ideas from (KENIG; MERLE, 2006). Define 𝐼 = [0, 𝑇 ] and observe

that the Cauchy problem (2.5) is equivalent to the integral equation (by Duhamel’s formula)

𝑢(𝑡) = 𝑒𝑖𝑡Δ𝑢0 −
∫︁ 𝑡

0
𝑒𝑖(𝑡−𝜏)Δ[|𝑢|4𝑢+ 𝑓 ] 𝑑𝜏.

Define

|||𝑢||| = sup
𝑡∈𝐼

‖𝑢(𝑡)‖𝐿2 + sup
𝑡∈𝐼

‖∇𝑢(𝑡)‖𝐿2 + ‖𝑢‖𝑆(𝐼) + ‖∇𝑢‖𝑊 (𝐼) + ‖∇𝑢‖𝑍(𝐼).

For 𝑅 > 0 to be conveniently chosen later on, consider the set

𝐵𝑅 :=
{︂
𝑢(𝑡, 𝑥) on 𝐼 × R3 : |||𝑢||| ≤ 𝑅

}︂
.

We want to show that the operator Φ𝑢0 : 𝐵𝑅 −→ 𝐵𝑅 defined by

Φ𝑢0(𝑢) = 𝑒𝑖𝑡Δ𝑢0 −
∫︁ 𝑡

0
𝑒𝑖(𝑡−𝜏)Δ[|𝑢|4𝑢+ 𝑓 ] 𝑑𝜏

has a fixed point if 𝑅 small enough. To this end, first, observe that

‖Φ𝑢0(𝑢)‖𝐿2
𝑥

≤ ‖𝑒𝑖𝑡Δ𝑢0‖𝐿2
𝑥

+
⃦⃦⃦⃦ ∫︁ 𝑡

0
∇𝑒𝑖(𝑡−𝜏)Δ[|𝑢|4𝑢+ 𝑓 ] 𝑑𝜏

⃦⃦⃦⃦
𝐿2

𝑥

≤ ‖𝑢0‖𝐿2 + 𝐶‖|𝑢|4𝑢‖𝐿1
𝑡 𝐿2

𝑥
+ ‖𝑓‖𝐿1

𝑡 𝐿2
𝑥

≤ 𝐶‖𝑢0‖𝐻1 + 𝐶‖𝑢‖5
𝑆(𝐼) + 𝐶𝐼‖𝑓‖𝐿∞

𝑡 𝐻1
𝑥

and

‖∇Φ𝑢0(𝑢)‖𝐿2
𝑥

≤ ‖∇𝑒𝑖𝑡Δ𝑢0‖𝐿2
𝑥

+
⃦⃦⃦⃦ ∫︁ 𝑡

0
∇𝑒𝑖(𝑡−𝜏)Δ[𝑢5 + 𝑓 ] 𝑑𝜏

⃦⃦⃦⃦
𝐿2

𝑥

≤ ‖∇𝑢0‖𝐿2 + 𝐶‖∇|𝑢|4𝑢‖
𝐿

10
7

𝑡 𝐿
10
7

𝑥

+ ‖∇𝑓‖𝐿1
𝑡 𝐿2

𝑥

≤ 𝐶‖𝑢0‖𝐻1 + 𝐶‖𝑢‖4
𝑆(𝐼)‖∇𝑢‖𝑊 (𝐼) + 𝐶𝐼‖𝑓‖𝐿∞

𝑡 𝐻1
𝑥
.
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Choosing the length of 𝐼 small enough such that 𝐶𝐼‖𝑓‖𝐿∞
𝑡 𝐻1

𝑥
≤ 𝐶‖𝑢0‖𝐻1 , we have

‖Φ𝑢0(𝑢)‖𝐿2
𝑥

+ ‖∇Φ𝑢0(𝑢)‖𝐿2
𝑥

≤ 2𝐶‖𝑢0‖𝐻1 + 𝐶𝑅5.

Secondly, notice that

‖∇Φ𝑢0(𝑢)‖𝑊 (𝐼) ≤ ‖∇𝑒𝑖𝑡Δ𝑢0‖𝑊 (𝐼) +
⃦⃦⃦⃦ ∫︁ 𝑡

0
∇𝑒𝑖(𝑡−𝜏)Δ[𝑢5 + 𝑓 ] 𝑑𝜏

⃦⃦⃦⃦
𝑊 (𝐼)

≤ ‖∇𝑢0‖𝐿2 + 𝐶‖∇|𝑢|4𝑢‖
𝐿

10
7

𝑡 𝐿
10
7

𝑥

+ ‖∇𝑓‖𝐿1
𝑡 𝐿2

𝑥
.

So, due to Hölder’s inequality with 𝑝 = 7
4 and 𝑞 = 7

3 , we get

‖∇|𝑢|4𝑢‖
𝐿

10
7

𝑡 𝐿
10
7

𝑥

≤ 𝐶‖𝑢‖4
𝑆(𝐼)‖∇𝑢‖𝑊 (𝐼).

Thus,

‖∇Φ𝑢0(𝑢)‖𝑊 (𝐼) ≤ 𝐶
(︂

‖∇𝑢0‖𝐿2 + ‖𝑢‖4
𝑆(𝐼)‖∇𝑢‖𝑊 (𝐼) + ‖∇𝑔‖𝐿1

𝑡 𝐿2
𝑥

)︂
≤ 𝐶‖𝑢0‖𝐻1 + 𝐶𝑅5 + 𝐶𝐼‖𝑓‖𝐿∞

𝑡 𝐻1
𝑥
.

Choosing the length of 𝐼 small enough such that 𝐶𝐼‖𝑓‖𝐿∞
𝑡 𝐻1

𝑥
≤ 𝐶‖𝑢0‖𝐻1 , one gets

‖∇Φ𝑢0(𝑢)‖𝑊 (𝐼) ≤ 2𝐶‖𝑢0‖𝐻1 + 𝐶𝑅5.

On the other hand, using Lemma 3.2.1 with 𝑞 = 10 and 𝑟 = 30/13, inequality (3.11) with

𝑞 = 10 and 𝑟 = 30/13 and 𝑚′ = 2 and 𝑛′ = 6
5 and Hölder’s inequality, one has

‖∇Φ𝑢0(𝑢)‖𝑍(𝐼) ≤ ‖∇𝑒𝑖𝑡Δ𝑢0‖𝑍(𝐼) +
⃦⃦⃦⃦ ∫︁ 𝑡

0
∇𝑒𝑖(𝑡−𝜏)Δ[𝑢5 + 𝑓 ] 𝑑𝜏

⃦⃦⃦⃦
𝑍(𝐼)

≤ ‖∇𝑢0‖𝐿2 + 𝐶‖∇|𝑢|4𝑢‖
𝐿2

𝑡 𝐿
6
5
𝑥

+ 𝐶‖∇𝑓‖𝐿1
𝑡 𝐿2

𝑥

≤ ‖∇𝑢0‖𝐿2 + 𝐶‖∇𝑢‖𝑍(𝐼)‖𝑢‖4
𝑆(𝐼) + 𝐶‖∇𝑓‖𝐿1

𝑡 𝐿2
𝑥

≤ 𝐶‖𝑢0‖𝐻1 + 𝐶𝑅5 + 𝐶𝐼‖𝑓‖𝐿∞
𝑡 𝐻1

𝑥

≤ 2𝐶‖𝑢0‖𝐻1 + 𝐶𝑅5,

since 𝐶𝐼‖𝑓‖𝐿∞
𝑡 𝐻1

𝑥
≤ 𝐶‖𝑢0‖𝐻1 . Finally,

‖Φ𝑢0(𝑢)‖𝑆(𝐼) ≤ ‖∇Φ𝑢0(𝑢)‖𝑍(𝐼)

≤ ‖∇𝑒𝑖𝑡Δ𝑢0‖𝑍(𝐼) +
⃦⃦⃦⃦ ∫︁ 𝑡

0
∇𝑒𝑖(𝑡−𝜏)Δ[𝑢5 + 𝑓 ] 𝑑𝜏

⃦⃦⃦⃦
𝑍(𝐼)

≤ ‖∇𝑢0‖𝐿2 + 𝐶‖∇𝑢‖𝑍(𝐼)‖𝑢‖4
𝑆(𝐼) + 𝐶‖∇𝑓‖𝐿1

𝑡 𝐿2
𝑥

≤ 𝐶‖𝑢0‖𝐻1 + 𝐶𝑅5 + 𝐶‖∇𝑓‖𝐿1
𝑡 𝐿2

𝑥

≤ 𝐶‖𝑢0‖𝐻1 + 𝐶𝑅5 + 𝐶𝐼‖𝑓‖𝐿∞
𝑡 𝐻1

𝑥

≤ 2𝐶‖𝑢0‖𝐻1 + 𝐶𝑅5,
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since 𝐶𝐼‖𝑓‖𝐿∞
𝑡 𝐻1

𝑥
≤ 𝐶‖𝑢0‖𝐻1 . Adding up, we get

|||Φ𝑢0(𝑢)||| ≤ 2𝐶‖𝑢0‖𝐻1 + 𝐶𝑅5 ≤ 𝑅,

as long as ‖𝑢0‖𝐻1 ≤ 𝑅
2𝐶

− 𝑅5

2 . Next, denoting 𝑔(𝑢) = |𝑢|4𝑢, we get

‖Φ𝑢0(𝑢) − Φ𝑢0(𝑣)‖𝐿2
𝑥

≤ 𝐶‖𝑔(𝑢) − 𝑔(𝑣)‖𝐿1
𝑡 𝐿2

𝑥

≤ 𝐶‖𝑢− 𝑣‖𝑆(𝐼)
(︁
‖𝑢‖4

𝑆(𝐼) + ‖𝑣‖4
𝑆(𝐼)

)︁
,

‖∇Φ𝑢0(𝑢) − ∇Φ𝑢0(𝑣)‖𝐿2
𝑥

≤ 𝐶‖∇𝑔(𝑢) − ∇𝑔(𝑣)‖
𝐿

10
7

𝑡 𝐿
10
7

𝑥

≤ 𝐶

⎛⎝⃦⃦⃦⃦|𝑢|4|∇𝑢− ∇𝑣|
⃦⃦⃦⃦

𝐿
10
7

𝑡 𝐿
10
7

𝑥

+
⃦⃦⃦⃦
|𝑢− 𝑣||𝑢|3|∇𝑣|

⃦⃦⃦⃦
𝐿

10
7

𝑡 𝐿
10
7

𝑥

+
⃦⃦⃦⃦
|𝑢− 𝑣||𝑣|3|∇𝑣|

⃦⃦⃦⃦
𝐿

10
7

𝑡 𝐿
10
7

𝑥

⎞⎠
≤ 𝐶

⎛⎝‖𝑢‖4
𝑆(𝐼)‖∇𝑢− ∇𝑣‖𝑊 (𝐼) + ‖𝑢− 𝑣‖𝑆(𝐼)‖∇𝑣‖𝑊 (𝐼)‖𝑢‖3

𝑆(𝐼) +

+ ‖𝑢− 𝑣‖𝑆(𝐼)‖∇𝑣‖𝑊 (𝐼)‖𝑣‖3
𝑆(𝐼)

⎞⎠
≤ 𝐶𝑅4‖𝑢− 𝑣‖𝑆(𝐼) + 𝐶𝑅4‖∇𝑢− ∇𝑣‖𝑊 (𝐼),

and

‖∇Φ𝑢0(𝑢) − ∇Φ𝑢0(𝑣)‖𝑊 (𝐼) ≤ 𝐶‖∇𝑔(𝑢) − ∇𝑔(𝑣)‖
𝐿

10
7

𝑡 𝐿
10
7

𝑥

≤ 𝐶

⎛⎝⃦⃦⃦⃦|𝑢|4|∇𝑢− ∇𝑣|
⃦⃦⃦⃦

𝐿
10
7

𝑡 𝐿
10
7

𝑥

+
⃦⃦⃦⃦
|𝑢− 𝑣||𝑢|3|∇𝑣|

⃦⃦⃦⃦
𝐿

10
7

𝑡 𝐿
10
7

𝑥

+
⃦⃦⃦⃦
|𝑢− 𝑣||𝑣|3|∇𝑣|

⃦⃦⃦⃦
𝐿

10
7

𝑡 𝐿
10
7

𝑥

⎞⎠
≤ 𝐶

⎛⎝‖𝑢‖4
𝑆(𝐼)‖∇𝑢− ∇𝑣‖𝑊 (𝐼) + ‖𝑢− 𝑣‖𝑆(𝐼)‖∇𝑣‖𝑊 (𝐼)‖𝑢‖3

𝑆(𝐼) +

+ ‖𝑢− 𝑣‖𝑆(𝐼)‖∇𝑣‖𝑊 (𝐼)‖𝑣‖3
𝑆(𝐼)

⎞⎠
≤ 𝐶𝑅4‖𝑢− 𝑣‖𝑆(𝐼) + 𝐶𝑅4‖∇𝑢− ∇𝑣‖𝑊 (𝐼).

Following the same reasoning,

‖∇Φ𝑢0(𝑢) − ∇Φ𝑢0(𝑣)‖𝑍(𝐼) ≤ 𝐶

⎛⎝‖𝑢‖4
𝑆(𝐼)‖∇𝑢− ∇𝑣‖𝑍(𝐼) + ‖𝑢− 𝑣‖𝑆(𝐼)‖∇𝑣‖𝑍(𝐼)‖𝑢‖3

𝑆(𝐼) +

+ ‖𝑢− 𝑣‖𝑆(𝐼)‖∇𝑣‖𝑍(𝐼)‖𝑣‖3
𝑆(𝐼)

⎞⎠
≤ 𝐶𝑅4‖∇𝑢− ∇𝑣‖𝑍(𝐼) + 𝐶𝑅4‖𝑢− 𝑣‖𝑆(𝐼).
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Moreover, by Sobolev’s embedding,

‖Φ𝑢0(𝑢)−Φ𝑢0(𝑣)‖𝑆(𝐼) ≤ ‖∇Φ𝑢0(𝑢)−∇Φ𝑢0(𝑣)‖𝑍(𝐼) ≤ 𝐶𝑅4‖∇𝑢−∇𝑣‖𝑍(𝐼) +𝐶𝑅4‖𝑢−𝑣‖𝑆(𝐼).

Adding up, we get

|||Φ𝑢0(𝑢) − Φ𝑢0(𝑣)||| ≤ 𝐶𝑅4‖∇𝑢− ∇𝑣‖𝑍(𝐼) + 𝐶𝑅4‖𝑢− 𝑣‖𝑆(𝐼) + 𝐶𝑅4‖∇𝑢− ∇𝑣‖𝑊 (𝐼)

≤ 𝐶𝑅4‖∇𝑢− ∇𝑣‖𝑍(𝐼) + 𝐶𝑅4‖𝑢− 𝑣‖𝑆(𝐼) + 𝐶𝑅4‖∇𝑢− ∇𝑣‖𝑊 (𝐼)

+ 𝐶𝑅4 sup
𝑡∈𝐼

‖∇𝑢(𝑡) − ∇𝑣(𝑡)‖𝐿2
𝑥

+ 𝐶𝑅4 sup
𝑡∈𝐼

‖𝑢(𝑡) − 𝑣(𝑡)‖𝐿2

≤ 𝐶𝑅4|||𝑢− 𝑣|||.

Thus, if 𝑅 > 0 is such that 𝐶𝑅4 < 1, then Φ𝑢0 is a contraction in 𝐵𝑅 and, therefore, has

a unique fixed point, i.e., problem (2.5) has a local solution defined on a maximal interval

[0, 𝑇 ].

Remark .6. Observe that it is possible to use the energy estimates to get global existence,

that is, the solution 𝑢 = 𝑢(𝑥, 𝑡) of (2.5) is globally well-defined in time. To verify this, first

consider the energy defined by

𝐸(𝑡) = 1
2

∫︁
R3

|∇𝑢|2 + 1
6

∫︁
R3

|𝑢|6,

which is conserved if 𝑓 = 0. Multiplying equation (2.5) by 𝜕𝑡𝑢̄, we have

𝐸(𝑡) ≤𝐸(0) −𝑅𝑒
∫︁ 𝑡

0

∫︁
R3
𝑓𝜕𝑡𝑢 𝑑𝑥𝑑𝑡

≤𝐸(0) −𝑅𝑒
∫︁ 𝑡

0

∫︁
R3
𝑓(𝑖Δ𝑢− 𝑖|𝑢|4𝑢− 𝑖𝑓) 𝑑𝑥𝑑𝑡

≤𝐸(0) + 𝐶
∫︁ 𝑡

0
‖∇𝑓(𝜏)‖𝐿2‖∇𝑢(𝜏)‖𝐿2 𝑑𝜏

+ 𝐶
∫︁ 𝑡

0
‖𝑓(𝜏)‖𝐿6‖𝑢(𝜏)5‖

𝐿
6
5
𝑑𝜏 +

∫︁ 𝑡

0
‖𝑓(𝜏)‖2

𝐿2 𝑑𝜏

≤𝐸(0) + 𝐶
∫︁ 𝑡

0
‖∇𝑓(𝜏)‖𝐿2

√︁
𝐸(𝜏) 𝑑𝜏 + 𝐶

∫︁ 𝑡

0
‖𝑓(𝜏)‖𝐿6(𝐸(𝜏)) 5

6 𝑑𝜏 + ‖𝑓‖2
𝐿2([0,𝑇 ]×R3)

≤𝐸(0) + 𝐶
∫︁ 𝑡

0
‖𝑓(𝜏)‖𝐻1

√︁
𝐸(𝜏) 𝑑𝜏 + 𝐶

∫︁ 𝑡

0
‖𝑓(𝜏)‖𝐻1(𝐸(𝜏)) 5

6 𝑑𝜏 + ‖𝑓‖2
𝐿2([0,𝑇 ]×R3).

Then,

𝐸(𝑡) ≤𝐸(0) + 𝐶
∫︁ 𝑡

0
‖𝑓(𝜏)‖𝐻1(𝐸(𝜏))− 1

3 (𝐸(𝜏)) 5
6 𝑑𝜏

+ 𝐶
∫︁ 𝑡

0
‖𝑓(𝜏)‖𝐻1(𝐸(𝜏)) 5

6 𝑑𝜏 + ‖𝑓‖2
𝐿2([0,𝑇 ]×R3)

≤𝐸(0) + 𝐶
∫︁ 𝑡

0
‖𝑓(𝜏)‖𝐻1(𝐸(𝜏)) 5

6 𝑑𝜏 + ‖𝑓‖2
𝐿2([0,𝑇 ]×R3)

≤𝐸(0) + 𝐶
∫︁ 𝑡

0
‖𝑓(𝜏)‖𝐻1

(︁
1 + (𝐸(𝜏)) 5

6
)︁
𝑑𝜏 + ‖𝑓‖2

𝐿2([0,𝑇 ]×R3).
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Therefore,

max
0≤𝑡≤𝑇

𝐸(𝜏) ≤ 𝐸(0) + 𝐶
(︂

1 + max
0≤𝜏≤𝑡

(𝐸(𝜏)) 5
6

)︂
‖𝑓‖𝐿1([0,𝑇 ];𝐻1(R3)) + ‖𝑓‖2

𝐿2([0,𝑇 ]×R3).

So, finally, it follows that

𝐸(𝑡) ≤ 𝐶
(︂

1 + 𝐸(0)6 + ‖𝑓‖12
𝐿2([0,𝑇 ]×R3) + ‖𝑓‖6

𝐿1([0,𝑇 ];𝐻1(R3))

)︂
.

So, if 𝑓 ∈ 𝐿∞
𝑙𝑜𝑐(R, 𝐻1(R3)), then the energy is bounded. Now, for the 𝐿2–energy (or mass),

define the following quantity

𝐸(𝑡) = 1
2‖𝑢(𝑡)‖2

𝐿2 .

Multiplying equation (2.5) by 𝑢, taking its imaginary part and integrating by parts yields

1
2‖𝑢(𝑡)‖2

𝐿2 ≤ 1
2‖𝑢(0)‖2

𝐿2 + 𝐼𝑚
∫︁ 𝑡

0

∫︁
R3
𝑓 · 𝑢 𝑑𝑥𝑑𝑡

≤ 1
2‖𝑢(0)‖2

𝐿2 +
∫︁ 𝑡

0

∫︁
R3

|𝑓 · 𝑢| 𝑑𝑥𝑑𝑡

≤ 1
2‖𝑢(0)‖2

𝐿2 +
∫︁ 𝑡

0
‖𝑓(𝜏)‖𝐿2‖𝑢(𝜏)‖𝐿2𝑑𝑡.

So,

𝐸(𝑡) ≤ 𝐸(0) +
∫︁ 𝑡

0
‖𝑓(𝜏)‖𝐿2‖𝑢(𝜏)‖𝐿2𝑑𝑡

≤ 𝐸(0) + 𝐶
∫︁ 𝑡

0
‖𝑓(𝜏)‖𝐿2

√︁
𝐸(𝜏)𝑑𝑡.

This implies that the 𝐿2–energy is bounded if 𝑓 ∈ 𝐿∞
𝑙𝑜𝑐(R, 𝐻1(R3)).
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