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RESUMO

Essa tese reline alguns resultados relacionados a equacdo de Schrédinger n3o linear H*-
critica em R3, em especial, um resultado de controlabilidade nula onde, usando estimativas de
Strichartz, a controlabilidade do sistema linear (método HUM) e um argumento de perturba-
cao, obtemos a controlabilidade do sistema nao linear. Além disso, para a equacao supracitada
com um termo de perturbacdo, provamos decaimento exponencial para algumas solucdes li-
mitadas no espaco de energia, mas pequenas em uma norma especifica. Esse resultado é
consequéncia de uma decomposicdo de perfis obtida para solucdes lineares e ndo lineares
combinada com um resultado de propagacao que envolve argumentos de analise microlocal, a
saber, a teoria de medida de defeito. Apds mostrar que uma sequéncia de solucdes nao lineares
pode ser linearizada sob algumas condicdes, provamos uma estimativa de observabilidade que

implica o resultado de estabilizacao.

Palavras-chaves: estabilizacido; expoente critico; decomposicdo em perfis; observacdo; me-

dida microlocal; controle; estimativas de Strichartz; caso de desfocagem.



ABSTRACT

This thesis brings together some results related to the nonlinear H!-critical Schrédinger
equation in R?, in particular, a null controllability result where, using Strichartz estimates,
the controllability of the linear system (HUM method) and a perturbation argument, the con-
trollability for the nonlinear system is achieved. Furthermore, for the aforementioned equation
with a perturbation term, we prove exponential decay for some solutions that are bounded
in energy space but small at a lower norm. This result is a consequence of a profile decom-
position obtained for linear and nonlinear solutions combined with a propagation result that
involves arguments from microlocal analysis, namely the defect measure theory. After showing
that a sequence of nonlinear solutions can be linearized under some conditions, we prove an

observability estimate that implies the stabilization result.

Keywords: stabilization; critical exponent; profile decomposition; observability; microlocal

measures; control; Strichartz estimates; defocusing case.
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1 GENERAL INTRODUCTION

This thesis comprises the study of the nonlinear Schrodinger equation with a critical ex-
ponent in R3 defocusing case. Some mathematical aspects of the solutions to this equation
are systematically addressed, such as well-posedness, decomposition into profiles, stability and
control. Concerning the stabilization problem, we study the asymptotic behavior of solutions,
i.e., through an analysis of the energy associated with the system, the question is: Is it possible
to ensure that the solutions are asymptotically stable for arbitrarily large time ¢? To obtain an
exponential decay rate, we use a profile decomposition to describe how linear and nonlinear
solutions approach each other in some sense. To deal with the problem of exact controllability,
we verify under what circumstances it is possible to appropriately choose control functions in
order to direct the system to a desired state in a finite time.

To provide a minimum of the theory used in the course of the following chapters, we
present a small sample of the history of the nonlinear Schrédinger equation, as well as some

concepts which will be necessary for the development of this thesis.

1.1 ABOUT THE SCHRODINGER EQUATION

The Schrodinger equation was introduced by Erwin Schrodinger in 1925, an Austrian
physicist, as part of the fundamental developments in quantum theory that emerged in the
first half of the 20th century, for which he received the Nobel Prize in Physics in 1933. The
history behind Schrodinger’s equation is intrinsically linked to the period when physicists were
trying to understand the behavior of electrons in atoms. Schrddinger’s approach was based
on an effort to find a suitable mathematical description for the energy states of electrons in
atoms. At the time, Bohr's model for the atom, which described electrons in discrete orbits
around the nucleus, was already known, but it had some limitations, especially when it came
to more complex atoms.

After studying De Broglie's thesis in 1924, Schrodinger, inspired by De Broglie's ideas,
began working on a new quantum theory that would combine wave and corpuscular charac-
teristics. Schrodinger's central idea was to treat electrons as waves of matter. He proposed
that, instead of tracking the precise trajectories of electrons as particles, we should describe

their probabilistic distribution in terms of wave functions. The wave function, represented by
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U, contains information about the probability of finding an electron in a given position.
From a variational problem, Schrédinger deduced the wave equation for the hydrogen atom.
In this deduction, presented in Schrodinger’s first paper of 1926, his only "justification"is
that the wave equation leads to the correct energy levels for the hydrogen atom. In 1926,
Schrodinger published his fundamental equation, which describes the temporal evolution of
the wave function of a quantum particle. The form of the Schrodinger equation depends on
the system in question, but the general equation for a non-relativistic particle (i.e., particles

that do not move at speeds close to the speed of light) is

ov h?
h— = ——— AV + V.
! ot 2m *
In this equation, ¢ represents the imaginary unit (iQ = —1), his the reduced Planck constant

(h = % where h is the Planck constant), U is the wave function, ¢ is the time, m is the mass
of the particle, A is the Laplacian operator, which describes the divergence of the gradient,
V' is the potential. The solution of the Schrodinger equation is the wave function, which in
turn can be used to calculate various observable properties of the particle, such as position
and momentum. The Schrédinger equation is one of the cornerstones of quantum mechanics
and has profound implications for understanding the behavior of subatomic particles. It is
fundamental to describing the dual nature of particles, which can exhibit both particle and
wave properties, depending on the experimental context.

Simultaneously, other physicists, such as Werner Heisenberg with matrix mechanics, were
developing alternative mathematical formalisms to describe quantum systems. Schrodinger

and Heisenberg's formalisms were shown to be equivalent, consolidating the quantum theory.

1.2 THE NONLINEAR SCHRODINGER EQUATION

The nonlinear Schrodinger equation is a generalization of the standard Schrédinger equa-
tion of quantum mechanics. Nonlinear versions arise in contexts where significant interactions
between quantum particles are taken into account. In standard quantum mechanics, the in-
teraction between particles is often described by a linear equation. However, in some cases,
such as in extreme conditions of particle density or energy, interactions between particles can
become more intense and nonlinear. Introducing nonlinear terms into the Schrodinger equation
can lead to a variety of interesting and complex phenomena, often outside the scope of standard

linear quantum mechanics. Some significant results associated with the nonlinear Schrédinger
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equation include, for instance, solitons and pulsons. Solitons are localized waves that maintain
their shape and amplitude during propagation, even in the presence of nonlinearities. Pulsons
are versions of solitons that are localized pulses of light.

Furthermore, nonlinearity in the Schrédinger equation can lead to self-focusing phenomena,
where light pulses contract spatially due to nonlinear interaction. On the other hand, dispersion,
which tends to spread the pulses, can counterbalance this effect in certain conditions. These

are only two examples among others.

1.2.1 Critical exponent

The nonlinear Schrodinger equation with critical exponent is usually a specific form of
nonlinear equation that appears in contexts such as nonlinear optics, soliton theory, and other

physical phenomena. This equation can be written in the form

ou
.7 = — p_l
i Au =+ |ulP™ u, (1.1)

here |u[P~!u is the nonlinear term, where the exponent p is a real number. The term "critical
exponent"in a nonlinear equation refers to the crucial role that the value of the exponent
plays in the nature of the solutions and in the behavior of the associated system. The term
“critical"suggests that there is a specific value of this exponent that marks a transition or
critical point in the system'’s behavior.

For example, variations in the value of the exponent p can lead to different types of
nonlinear behavior, from integrable behavior to chaotic or turbulent behavior. Moreover, the
value of such exponent can also be related to the stability of the system’s solutions. For certain
critical values, solutions can become more or less stable, influencing the way the system evolves
over time.

The nonlinear Schrodinger equations with defocusing and focusing terms refer to different
types of nonlinearities present in the equation, which affect the behavior of the wave function.
When the sign at the nonlinear term of is positive, the nonlinear term is "defocusing",
which means that the nonlinearity acts to disperse the wave function over time. This is often
associated with solitons and stable spatial patterns. On the other hand, when the sign at
the nonlinear term of is negative, this indicates a "focusing"term, meaning that the
nonlinearity acts to focus the wave function over time. This can lead to the formation of

bright solitons.
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Throughout this thesis, we will study the behavior of the nonlinear Schrédinger equation

with critical exponent p = 5 in the defocusing case.

1.3 BASIC THEORY

In this section, we will address some definitions, concepts, and methods used in this thesis.
For more details, check (ADAMS; FOURNIER, 2003), (BREZIS, 2011)), (MEDEIROS; MIRANDA,
1989) and (SCHWARTZ, |1966)).

1.3.1 Theory of distributions and Sobolev spaces

Let 2 C R™ be an open set and f : 2 — R be a continuous function. The support of f is
denoted by supp(f) = {x € Q; f(x) # 0}. Thus, supp(f) is a closed subset of 2. A n-tuple

of non-negative integers & = (ay, ..., q,) is called a multi-index and its order is defined by
laf = a1+ -+ ay.
We denote by D the derivation operator of order o defined by

olel

DY = ————.
Ozt ... ax8n
For a = (0,0,---,0), we define

D% = .

Let C§°(€2) be the vector space of all the functions defined in © which are infinitely differen-
tiable and have compact support contained in 2. A classic example of a function in C§°(€2) is

given below.

Example 1.3.1. Let QQ C R" be an open set such that B1(0) = {x € R™;||z|| < 1} is

compactly contained in €. Let f : Q0 — R be a function such that

ellal>=1jf ||z|| < 1,
fz) =
0, if |lzfl > 1,

2

where ©x = (x1,...,2,) and ||z|| = (5, xi)% is the Euclidean norm of x. We have f €

C*(Q2) and supp(f) = B1(0) is compact, so f € C§°(£2).

Definition 1.3.1. A sequence (¢n)nen € C§°(2) is said to be convergent to ¢ € C3°(Q) if

the following conditions are satisfied.:
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(i) There exists a compact K C ) such that supp(p) C K and supp(¢,) C K, Vn € N;
(i) D*p,, — D¢ uniformly in K, for all multi-indexes .

The space C§°(S2) with this notion of convergence will be denoted by D(2). It is called the

space of test functions on ().

A distribution over ) is a continuous linear functional over D(2). More precisely, a

distribution over 2 is a functional T": D(£2) — R satisfying the following conditions:

(i) T(ap + ¢) = T () + BT (¢), Yo, 5 € R and Vo, € D();

(i) T is continuous in the sense of the convergence defined on D(Q2), that is, if (¥n)nen

converges to ¢ in D(L), then (T'(v,))nen converges to T'(p) in R.

It is common to denote the value of the distribution 7" in ¢ by (T, ¢). Moreover, the set of
all distributions over (2 with the usual operations is a vector space denoted by D’(2). The

following examples of scalar distributions play a key role in the theory.

Example 1.3.2. Let u € L} (). The functional T, : D(2) — R, defined by

(o) = [ ul@)o(@)de,

is a distribution over ) uniquely determined by w. For this reason, u is identified as the

distribution T, defined by it and L}, () is identified as a (proper) part of D'(Q).

loc

Definition 1.3.2. A sequence (T,,)nen in D'(2) is said to be convergent to T in D’ (2) when

the numeric sequence ((T,,, p))nen converges to (T, ) in R, for all ¢ € D(Q).

Lemma 1.3.1 (Du Bois Raymond). Let u € L},.(2). Then,

/ u(z)p(z)de =0, Yo € D(Q),
Q
if and only if, w = 0 almost everywhere in €).

Example 1.3.3. Consider 0 € Q2 and the functional &, : D(2) — R defined by

(60, ») = ¥(0).

It can be shown that & is a distribution over () called the Dirac distribution. Furthermore,

the distribution &y is not defined by a function in L}, .(S).
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Definition 1.3.3. Let T be a distribution over Q) and o be a multi-index. The derivative DT

(in the sense of distributions) of T is the functional defined in D(2) by
(DT, p) = (~1)*NT, D*¢), Yy € D(Q).

Remark 1.3.1. [t follows from Definition[1.3.3 that each distribution T' over € has derivatives

of all orders.

Remark 1.3.2. Let T' € D'(2). It is possible to show that D*T is a distribution over ). In
fact, it is easy to check that D*T is linear. For the continuity, consider (p,)n,en converging

to ¢ in D(2). One has
(DT o) = (DT, @) | < (T, D@n — Dp)| = 0

asn — Q.

Remark 1.3.3. The map D : D'(Q2) — D'(Q) such that T — DT is linear and continuous

in the sense of convergence in D'({2).

Let m > 0 be an integer. The Sobolev space of order m over €2 is the set denoted by
WmP(Q), 1 < p < oo, of (classes of) functions u € LP(§2) such that D*u € L?(£2), for every
multi-indexes «, with |a] < m. The space WP () is a vector space for all 1 < p < co. For

each u € W™P(Q)), the norm of u is defined by

lallomrgey (Z [ 1D°u(a \de)

|a|<m

3 =

if 1 <p<ooand

|wllwmee) = Z supessqeq|Du(z)|

laf<m

if p = 0o. The Sobolev space W?({)) endowed with the norm above is a Banach space.

Remark 1.3.4. When p = 2, the space W™?*(Q)) is denoted by H™ (), which endowed with

the inner product

(u, V) () = / D%u(x) D% (z)dz

la|<m

is a Hilbert space.

Denote by H{"(§2) the closure of D(2) in H™(2) with respect to the norm of the space
H™(§2). The set HJ'(2) endowed with the induced inner product of H™(2) is a vector
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subspace. Furthermore, it is possible to prove that the induced inner product of H™(£2) and
the induced norm of H™({)) are equivalent, respectively, to
(w0 iy = 3 /Da Dou(z)dx
la]=m

and

lullfmey = ¥ [ 1D°u(@)do.

|lal=m

We have the following results:

Lemma 1.3.2 (Poincaré-Friedrichs inequality). Let 2 be a bounded open subset of R". If

u € HJ(Q), there exists a constant C' > 0, depending only on 2, such that
lullZ2(@) < ClIVulZzq).

Lemma 1.3.3 (Gagliardo—Nirenberg inequality). Let I = (0,1), 1 < g < oo and1 < r < 0.
Then,
[ullzee(ry < Cllullinrplullalry, Yu € WH(I)
. . 1 1 1
for some constant C' = C(q,r), where 0 < a < 1 is defined bya | —+1——| = —.
q r q
Lemma 1.3.4 (Sobolev embedding). Suppose 1 < p < n and consider

For each ¢ € D(R"), there exists C' = C(p,n) > 0 such that

@l zany < C Y |1 Dol ogeny.-

=1
Lemma 1.3.5 (Sobolev embedding in a bounded open set). Let 2 be a bounded open set of

R™, € of class C™ and 1 < p < <.
2
(i) Ifn > 2m, then H™(Q) — LP(X2), where p € [1, ”} :
n—2m
(ii) If n = 2m, then H™(Q)) — LP(2), where p € [1,+0o0[;
(i) Ifn =1 and m > 1, then H™(Q)) — L*>().

Here the symbol — denotes a continuous embedding.

Lemma 1.3.6 (Rellich-Kondrachov). Let €2 be a bounded open set of R™, §) of class C"™.
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2
(i) If n > 2m, then H™(Q) is compactly embedding in LP(SY), where p € {1, 712 {
n—2m
(ii) If n = 2m, then H™(Q)) is compactly embedding in L*(Q2), where p € [1,400].

(ii) 1f 2m > n and m > 1, then H™(Q)) is compactly embedding in C*(Q), where k is a

n
non-negative integer such that k < m — 5 <k+1.

We denote by LP(0,7T; X), with 1 < p < oo, the Banach space of (classes of) functions
u defined in |0, T with values in X that are strongly measurable and |ju(t)|/% is Lebesgue

integrable on |0, 7'[. The norm of LP(0,T; X) is defined by

. ;
(@l = (| Tutolfr)”

Additionally, L>(0,7"; X) represents the Banach space of (classes of) functions u defined in
10, T'[ with values in X that are strongly measurable and ||u(t)||x has essential supremum

finite on |0, T'[. The norm of L>°(0,T; X) is defined by

lu@)llz=0.msx) = supessierillu(®)lx.

Remark 1.3.5. Ifp = 2 and X is a Hilbert space, the space L*(0,T; X) is a Hilbert space

with respect to the ineer product

(1, ) p2(0.73x) = /0 " (u(t), () xdt.

Consider the space LP(0,7;X), 1 < p < oo, where X is a separable Hilbert space. We
identify
[LP(0,T; X)) =~ L0, T; X),

where % + % = 1. When p = 1, we identify
(L0, T; X)) ~ L*(0,T; X').

Let X be a Banach space. The vector space of linear and continuous maps of D(0,7") on X is

called the space of vector distributions on |0, 7| with values in X. It is denoted by D'(0,7"; X).

Example 1.3.4. Given u € L*(0,7;X),1 < p < oo, and ¢ € D(0,T), the application
Tu:D(0,T) — X, defined by
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and usually called Bochner's integral on X, is linear and continuous in the sense of the con-
vergence in D(0,T). Thus, T is a distribution. The map u — T'u is injective, so we identify

w with Tw and, in this sense,
LP(0,T; X) Cc D'(0,T; X).

Definition 1.3.4. Given S € D'(0,T; X). The derivative of order n of S is the vector distri-

bution over |0, T with values in X given by

ars " d"y
<dtna§0> =(-1) <S, g >, VYo € D(0,T).

Consider the space
WmP(0,T; X) = {u e LP(0,T; X);u% € LP(0,T,X),j =1,...,m},

where ul7) represents the j—th derivative of u in the sense of vector distributions endowed

with the norm
13

HUHWmvP(O,T;X) = (Z ||u(j)||§p(0,T;X))
5=0
The space (Wm’p(O,T;X), Il - HWnL,p(QT;X)) is a Banach space.

Remark 1.3.6. When p = 2 and X is a Hilbert space, the space W™ (0,T; X) will be
denoted by H™(0,T'; X). Endowed with the inner product

(u, 0)mo 70 = D (W, 09) 1201, x),
=0
it is a Hilbert space. We denote by H\"(0,T; X) the closure of D(0,T;X) in H™(0,T; X)
and denote by H="(0,T'; X) the topological dual of HJ"(0,T'; X).
The following lemma can be found in (AUBIN, 1963).

Lemma 1.3.7 (Aubin-Lions lemma). Let X, X and X; be Banach spaces with Xq C X C
X1. Suppose that X is compactly embedded in X and that X is continuously embedded in

Xi. For1 <p,q <o, let
W ={ue LP(]0,T], Xo);u' € LU0, T); X1)}.
(1) If p < oo, then the embedding of W into LP([0,T)], X) is compact.

(13) If p =00 and q > 1, then the embedding of W into C([0,T]; X) is compact.
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1.3.2 Interpolation of Sobolev spaces

The results that we will state from now on, as well as their demonstrations, can be found
in (LIONS; MAGENES, [1968) and (TAYLOR, [2011)).

Let X and Y be two separable Hilbert spaces with a continuous and dense embedding
X < Y. Let (-,+)x and (-, )y be the inner products of X and Y, respectively. We denote by
D(S) the set of all functions u defined in X such that the application v — (u,v)x,v € X,
is continuous in the topology induced by Y. Moreover, the identification (u,v)x = (Su,v)y
defines S as an unbounded operator on Y with domain D(S) dense in Y. Since S is a self-
adjoint and strictly positive operator, using the spectral decomposition of self-adjoint operators,
we define S, # € R. In particular, we use A = S3. The operator A is self-adjoint, positive

and defined on Y with domain X and
(u,v)x = (Au, Av)y,Yu,v € X.
Definition 1.3.5. With the previous assumptions, we define the intermediate space
[X,Y]y = D (domain of A*™%), 0 <0 <1,

with norm

_ 1
lullix,vi, = (lully + A u]3)>.
Note that

. X > [X,)Y]p—=Y;

N

Nl < lullillll$

3. 10 < 6y < 6) < 1, then [X, Y]y, — [X,Y]s,:

4. [[X,Y]gy, [X, Yoy g = [X, Y] (1-0)80+00,
Theorem 1.3.1. Let s1,50 €R, 51> s9. If s = (1 —0)s1 + Osy, then
[H* (R?), H(R?)]p = H*(R?)

and

pageen [

[wll e @), w2 @y, < vl Sroa (B3
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1.3.3 Some Important Inequalities

Let us present a series of inequalities that will be used throughout this thesis. The results
are classical and the proofs will be omitted. For more details see, e.g., (ADAMS; FOURNIER,
2003) and (BREZIS, 2011)).

Lemma 1.3.8 (Young's Inequality). Let a and b be positive constants. If 1 < p < oo and

1 1
1 < g < o0 are such that — + — =1, then
p q

alP b
ab < — + —.
p q

Lemma 1.3.9 (Generalized Young's Inequality). Let a and b be positive constants, 1 < p <

1 1
00, and 1 < q < oo such that — + — = 1. For all ¢ > 0, there exists C(¢) > 0 such that
p q

ab < ea? 4+ C(e)b1.

Lemma 1.3.10 (Cauchy-Schwarz's Inequality). Let (E, (-,-)) be a vector space with an inner

product and || - || be its induced norm. One has
[z, )| < llzllllyll, Yo,y € E.
Furthermore, the equality holds if, and only if, x and y are linearly dependent.

Lemma 1.3.11 (Holder's Inequality). Let f € LP(2) e g € LI(Q) with 1 < p < oo and

1 1
—+ - =1. Then, fg € LY(Q) and
P q

1f9llrre) = /Q [fal <N fllzo@ N9l Lo

1.3.4 Semigroup theory
We state some results on semigroup theory. The results can be found in (PAZY| 2012)). In
what follows, we denote by (X, || - ||x) a Banach space.

Definition 1.3.6. Let £(X) be the algebra of bounded linear operators over X. The appli-

cation S : RT — L(X) is a Cy-semigroup of bounded operators on X if
(i) S(0) = I, where I is the identity operator on X,

(i) S(t+s)=5S(t)S(s), for all t,s € RY;
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(i) lim; o+ |[(S(t) — I)z||x =0, for all x € X.

Proposition 1.3.1. /f S : R — L(X) is a Cy-semigroup, then

tim 5Olec) _ e IS Olle _

t—00 t t>0 t

Furthermore, for every w > wy, there exists a constant M > 1 such that

1S()]lex) < Me*, for all t > 0. (1.2)
Remark 1.3.7. Ifwy < 0, it follows by that there exists M > 1 such that
1Sl exy < M, forallt > 0.
Moreover, when M < 1, we call S : RT — L(X) a Cy-semigroup of contractions.

Definition 1.3.7. Let S : Rt — L(X) be a Cy-semigroup. The operator
A:D(A)c X =X

with domain D(A) and value in = defined, respectively, by

D(A) = {x € X:3 lim (‘5%4) x}

h—0+
and

Az = lim <S<”L)‘I> ,

h—0 h

is called the infinitesimal generator of the Cy-semigroup S(t).

Remark 1.3.8. It is easy to see that if D(A) C X is a nonempty subset, then D(A) is a

subspace of X and A is a linear operator.

Proposition 1.3.2. Let S : Rt — L(X) be a Cy-semigroup and A : D(A) C X — X its

infinitesimal generator.
(i) If x € D(A), then S(t)x € D(A), for allt > 0, and

jtS(t)x = AS(t)x = S(t)Az, Vit > 0.

(ii) If x € D(A), then

Sty —S(sye = | " AS(€)wde = / " S(€) Awde, 0< s <t
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(iii) If v € X, then [3 S(&)xdé € D(A) and
A/ &xdé = S(t)r — x.

Definition 1.3.8. Let A: D(A) C X — X be a linear operator. The resolvent set p(A) of
A is the set of all complex numbers \ for which A\I — A is invertible, that is, (\[ — A)™!
a bounded linear operator in X. The family R(\ : A) = (A — A)~', X\ € p(A), of bounded

linear operators is called the resolvent of A.

1.3.4.1 The Hille-Yosida and Lumer-Phillips theorems

This subsection presents two theorems that establish necessary and sufficient conditions

for a linear operator A : D(A) C X — X to generate a Cy-semigroup.

Theorem 1.3.2. (Hille-Yosida) A linear operator A : D(A) C X — X s the infinitesimal

generator of a Cy-semigroup of contractions T'(t), t > 0 if, and only if,
(i) A is closed and D(A) = X;
(ii) The resolvent set p(A) of A contains R, and, for all A\ > 0, one has

[IR(A: Al <

> =

Before presenting the next result, we need another concept. Let X be a Banach space and
let X* be its dual space. We denote the value of 2* € X* at x € X by (x*,x). For every
x € X, define the duality set F'(x) C X* by

F(z)={2" 2" € X" and (2",3) = [|z]|} = [|2"|

2
X* (-

Remark 1.3.9. From the Hahn-Banach theorem, it follows that F(x) # 0, for all x € X.

Definition 1.3.9. A linear operator A : D(A) C X — X is dissipative if, for all z € D(A),

there exists x* € F(X) such that (Ax,z*) < 0.

Theorem 1.3.3. (Lumer-Phillips) Let A : D(A) C X — X be a linear operator with
D(A) = X.
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(a) If A is dissipative and there is Ao > 0 such that the range Ran(\oI — A) of \gI — A is

X, then A is the infinitesimal generator of a Cy-semigroup of contractions on X .

(b) If A is the infinitesimal generator of a Cy-semigroup of contractions on X, then Ran(\I—

A) = X for all A\ > 0 and A is dissipative. Moreover,

(Ax,z*) <0, for all x € D(A) and z* € F(x).

Corolary 1.3.1. Let A: D(A) C X — X be a linear closed operator with D(A) = X. If
both A and its adjoint A* are dissipative, A is a generator of a Cyy-semigroup of contractions

on X.

Definition 1.3.10. A semigroup S of linear and bounded operators on a Hilbert space H
is said to be a unitary semigroup if, for each t > 0, S(t) is a unitary operator, that is,

S(t)* = S(t)"! forallt > 0.

1.3.4.2 The abstract Cauchy problem: The linear case

Let A : D(A) C X — X be a linear operator. Given uy € X, the abstract Cauchy
problem for A with initial data wy consists of finding a solution wu(t) to the homogeneous

Cauchy problem

du(t) "
e Au(t), t >0, (13)
u(0) = uo.

Let us introduce a notion of solution to the problem ([1.3]).

Definition 1.3.11. (Classical solution) A function u : R* — X s a classical solution of
problem (1.3)) for all t > 0 if u is continuous for all t > 0, continuously differentiable on R,
u(t) € D(A) for all t € RY, u(0) = ug and the equation in (1.3) is satisfied for all t > 0.

Remark 1.3.10. Let S : Rt — X be a Cy-semigroup. Due to Proposition ifup € D(A)
and A is its infinitesimal generator, u(-) = S(-)ug : Rt — D(A) is a classical solution of

problem ([1.3|). Moreover, S(-)uq is the unique solution of problem (|1.3)).
Consider the inhomogeneous Cauchy problem

du(t) "
= Au(t) + f(t), t >0, (1.4)

u(0) = uo,
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where f :T— X is a continuous function. Let A be the infinitesimal generator of a semigroup
S of class (. Similarly to Definition [1.3.11} we have the following definition for the classical

solution of the problem (|1.4) with 7" > 0 a fixed constant.

Definition 1.3.12. (Classical solution) A function w : [0, T[— X is a classical solution of
problem for all t € [0,T[ if u is continuous on [0,T|, continuously differentiable on
10,7, u(t) € D(A) for all t €]0,T[, u(0) = uy and the equation in (1.4) is satisfied for all
te(0,7).

Suppose that A is an infinitesimal generator of a Cy- semigroup S and u(t) is a classical
solution of problem (1.4). Then, v(s) = S(t — s)u(s) is differentiable for 0 < s < ¢ and
d
ﬁzswﬂﬁ@. (1.5)
Hence, if f € L'(0,T; X), S(t—s)f(s) is integrable on [0, t], integrating equation ([L.5]) from
0 to t yields
t
Mﬂ:S@m+/S@—@ﬂQ@. (1.6)
0
As a consequence, the equation ([1.6)) has at most one solution u € C([0,77]; X). Moreover,

it is natural to define a generalized solution of problem (|1.4)).

Definition 1.3.13. Let up € X and f € L'([0,T]; X). The function u € C([0,T]; X) given

by
mw:swm+4%u—@ﬂmmogtgﬂ

is called the mild (generalized) solution of the inhomogeneous Cauchy problem (|1.4) on [0, T.

Remark 1.3.11. In general, the homogeneous Cauchy problem does not have a classical
solution, since, in general, ug ¢ D(A). Taking f = 0 in Definition[L.3.13] u(-) = S(-)ug is the
mild solution of problem since uy € X. It is therefore clear that not every mild solution
of problem is a classical solution even in the case f = 0.

Let us present another notion of solution to the Cauchy problem ([1.4)):

Definition 1.3.14. (Strong solution): Let u be an almost everywhere differentiable function

on [0,T] such that % € L'([0,T); X). We say that u is a strong solution of the Cauchy

problem ({1.4)) if u(0) = uy and

du
= A

almost everywhere on [0, T.



25

Remark 1.3.12. Observe that if A = 0 and f € L'([0,T]; X), then the Cauchy problem
(1.4)) has usually no solution unless f € C([0,T]; X). However, problem ({L.4) has always a

strong solution given by
t
mo=m+4f@@.

Moreover, it is easy to show that if u is a strong solution of problem ([L.4)) and f € L'([0,T]; X),

then u is a mild solution as well.

1.3.4.3 The abstract Cauchy problem: The nonlinear case

Let (X, ||.||x) be a reflexive Banach space. Consider the initial value problem

du(t) " "
o = Au(t) + F(u(t)), t >0, 7)
u(0) = uo,

where F' : X — X is a continuous function and A : D(A) C X — X is an infinitesimal
generator of a C-semigroup S : RY — L£(X) such that ||S(¢)|zx) < M,Vt > 0. If uis
either a classical solution or a strong solution of problem ([1.7)), it is not difficult to see that u

satisfies the integral equation
mw:sumwggsu—@Fw@»@,
and u is a mild solution.
Theorem 1.3.4. Let F : X — X be a Lipschitz function, i.e., there exists L > 0 such that
|F(u) — F(v)||x < L||lu—vl|x, Yu,v € X.
For all uy € X, there exists an unique mild solution of problem u € C(R*"; X). Moreover,

(i) If ug,v9 € X are initial data and u,v are their respective mild solutions of problem

(1.7)), then

lu(t) = v(t)llx < Me " |luo — vollx.

(ii) If ug € D(A), then u is a strong solution of problem (1.7)) on [0,T].
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1.4 PSEUDODIFFERENTIAL OPERATORS AND MICROLOCAL ANALYSIS
1.4.1 Tempered distributions and the Schwartz space

Definition 1.4.1. A function ¢ € C*(R") is said to be rapidly decreasing at infinity if for

each k € N we have

pr(p) = max sup (1 + ||z)|)*| D¥p(x)| < oo, for all a € N.
QISR zeR™

This is equivalent to

Jim_p() D%p(z) =0
for any polynomial p of n real variables and for all o« € N". Let S(R") be the vector space of
rapidly decreasing functions at infinity. Define the following notion of convergence in S(R"™): a
sequence (y,) of functions of S(R™) converges to zero if, for all k € N, the sequence (pi(¢.))
converges to zero in R (or C). The sequence (y,) converges to ¢ in S(R™) if (pr(vn — ¢))
converges to zero in R (or C), for all k € N.
The linear forms defined in S(R™) which are continuous in the sense of the convergence de-

fined in S(R™) are called tempered distributions. The vector space of all tempered distributions

will be represented by S'(R™).
Remark 1.4.1. e /f1 <p < o0, then S(R") C LP(R");
o If1<p< oo, then S(R") is dense in LP(R™);

o CP(R") C S(R).

1.4.2 Fourier transform

Definition 1.4.2. Given a function u € L*(R™), its Fourier transform is function Fu defined
in R" by
(Fu)(€) = () = [ e u(a) dr,

where T - £ = 11& + T2€o + ... + ,&,. The application (F~1u)(€) = (2m)~ 2 (Fu) (=€), for
all £ € R, is called the inverse Fourier transform of u. One has Fu = F'u, where u the

complex conjugate of u. The Fourier’s inversion formula is

u(z) = (2r)"3 / GTEG(E) dE.

n
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Since S(R™) C LY(R") for every ¢ € S(R™), Fp and F ' are well defined and it is possible
to show that they are rapidly decreasing at infinity. In addition, 7 : S(R") — S(R") and
F : S(R") — S(R™) are continuous isomorphisms. For all o, € S(R™), we have

F(Dp) =i"aFp,  D*(Fe) = F((=i)"a"p)

(]'_%}_@D)L?(R”) = (%@/))LQ(RH) = (~7:_1<Pa]:_1¢)L2(Rn)-

Theorem 1.4.1. (Plancherel’s Theorem) The applications F : L*(R") — L*(R") and F~* :

L?(R™) — L*(R™) are isomorphisms of Hilbert spaces such that
(Fu, Fv)2mny = (4, ) L2mny = (Ftu, f_lv)Lz(Rn),
for every pair u,v € L*(R").

The notations 7 and % will also be used to denote Fu and F~lu, respectively.

1.4.3 Differential operators

From here we will follow the content explored in (BURQ; GERARD, 2002)) and (CAVALCANTI;

CAVALCANTI, 2014). In what follows, €2 is an open and nonempty subset of R".

Definition 1.4.3. A differential operator on € is a linear map P : D(2) — D(Q2) of the form

Pu(z) == Y aa(z)00u(z), (1.8)
jal<m

where 0 1= 031...03" and the complex valued functions a, are C* in §). The greatest integer

m for such that the functions a,, || = m, are not all zero is called the order of P.

As mentioned before, considering the Fourier inversion formula, we obtain

ulw) = (2m)7F [ e Salg) de,

n

—

since (09)u(§) = (:€)*u(§). Observing that 0Su € S(R™), we get

ru@) = (2m)7F [ eSau(E) d
= (2m)E [ leneeae) de
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which implies that expression in ([1.8) can be rewritten as

Pu(z) = > ao(z)00u(z)

la<m

= Y aalilen) s [ enenae) dg

lal<m R

_ (27)*%/n emf( 3 aa(:c)io‘|fo‘>ﬁ(§) d€.

laj<m

The map p: Q x R" — C defined by
p(r,€) = Y aq(x)(i€)”
|a|<m

is called symbol of P. In other words, differential operators with C'* coefficients on () are the

operators of the form

Pu(e) = (2m)7F [ e, 0a(e) de, (19)

where p(x, &) is a polynomial in £ with coefficients that are C'™ functions of z € () so that

the above integral makes sense.

Remark 1.4.2. Adopting the notation

1 1 1
D= —,a,Dj = *aj and D% = ﬁaa,
7 7 1

and introducing the symbolic multi-index D = (Dy, ..., D,,), where D; = %%, the operator
J

P can be written as

P = Iz: a0 (2)0% = Y a,(2)il*'D* = p(x, D).
la]<m

laf<m

Now, we list some results that help to characterize the differential operators.

Proposition 1.4.1. If P = p(x, D) and QQ = q(x, D) are differential operators on ) of order
m and n, respectively, then the composition P() is a differential operator of order at most

m +n and its symbol is given by

p#a(,€) = 3~ 08p(w, D (. ©),

where the sum is finite.
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Proposition 1.4.2. If P = p(x, D) is a differential operator of order m on €, then there

exists a differential operator P* of order m on ) such that, for all u,v € D(Q),
(Pu,v)r20) = (u, P*v) 2.

The symbol of P* is given by the finite sum

* —1 o aQo—
am
Definition 1.4.4. If P is a differential operator of order at most m and symbol p, we call the
principal symbol of P, which we will denote by o,,(P), the homogeneous part of degree m in
¢ of the polynomial function p(x,&), namely
om(P)(2,6) = Y aa(2)(i€)*, ifP= ) an(x)ds.

|a|=m || <m
Remark 1.4.3. Note that o,,(P) is a homogeneous polynomial of degree m in &, ie., a
polynomial such that o,,,(P)(xz, \) = N0, (P)(z,§), YA € R. As a result, we can reconstruct
the principal symbol from its value at |{| = 1. Indeed, note that

m £
O'm(P)(JZ,€> = ‘€| O-m<P) (‘Ia m ) fOf all (x7§>7 5# 0.

Therefore, it is enough to consider £ € S"~!, where n is the space dimension.
Definition 1.4.5. If f, g are C*™ functions defined in an open set of R, x R{, the Poisson

bracket of the functions f and g is defined by

{f,g}<x,s>=i(af 99 _ 9] 59).

=1

0¢; 0x;  d; 9,

Propositions [1.4.1] and [1.4.2] lead us to the following corollary.

Corolary 1.4.1. If P is of order m and () of order n, then

(Z) Um-i-n(PQ) = Om(P)Un(Q)§

(i) O ([P.QD) = Hom(P)on( Q)

(171) om(P*) = om(P),

where [P, ()] means the commutator of operators, i.e, [P,Q] = PQ — QP and {f, g} is the

Poisson bracket.
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1.4.4 Pseudodifferential calculus

Definition 1.4.6. Let m € R. A symbol of order at most m in ) is a function a : A xR — C
of class C'™° verifying the following estimates: for all « € N", 3 € N", there exists a constant
Cup such that

0707 a(w,€)] < Cap(1+ |57

We denote by S™(€2 x R™) the vector space of symbols of order at most m in 2.

Definition 1.4.7. Ifa € S™(Q2 x R"), the formula

1

Au(z) = 2r)

[, e tala )a(e) d

defines, for all u € D(2), an element Au of D(Y). The linear application A is called a
pseudodifferential operator on ) of symbol a. The set of all pseudodifferential operators of

order m on ) will be denoted by W™ ().

Definition 1.4.8. An operator A € U™(Q)) is essentially homogeneous if there exists a
function a,, = an(z,§), homogeneous of order m in £, smooth except at { = 0, and a

function x € C*>°(R™) being zero near 0 and 1 in the infinity such that

a(x, &) = am(z,£)x(§) + (2, ),
for some r € S™1(Q).

Proposition 1.4.3. Let A € U™(Q) essentially homogeneous. Then, for all u € D(S2), for all
¢ € R"\{0}, and for all = € Q,

tme O Aluese ) (@) — am(z, E)u(r), ast — +oo, (1.10)
where eg = €.

Definition 1.4.9. Under the conditions of Proposition|1.4.3, we say that A admits a principal
symbol of order m; the function a,, characterized by (|1.10)) is called the principal symbol of
order m of A, and it is denoted by c,,(A).

We state some theorems of symbolic calculus.
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Theorem 1.4.2. Let A be a pseudodifferential operator of symbol a € S™(2) and let x €
C3°(QY) such that x(x) = 1 for the values close to the projection of x of the support of a.

There exists a pseudodifferential operator A} on () such that

(A(xu), U)L?(Q) = (u, A;U)B(Q),
for all u,v € D(R2). In addition, A}, admits a symbol a}, € S™(Q2) verifying
1
ay— Yy, —Diogae SN,

jof<N
for all N € N. In particular, if A admits a principal symbol of order m, then it is the same of
A* and

om(A%) = om(A).

Theorem 1.4.3. Let A and B be pseudodifferential operators with symbols a € S™({2),
b € S™(R2), respectively. The composition AB is a pseudodifferential operator which admits a
symbol S™™(Q) verifying
a#b— > i'@?ang c SmrnN=lQ),
la|<N T
for all N € N. In particular, if A admits a principal symbol of order m and B admits a principal
symbol of order n, then AB admits a principal symbol of order m + n and [A, B] admits a

principal symbol of order m +n — 1 given by

Um+n(AB) = Um(A>Um(B)a

Tmins([A B)) = +{om(A), 0u(B)}

1.4.5 Microlocal defect measures

Let 2 be an open set of R%. Let (u,),cn be a bounded sequence in L2 (), i.e.,

loc

sup | |un(z)]? dr < +oo,

neN J K

for all compact set K C €. We say that u,, converges weakly to u € L2 () if

loc
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asn — +oo, for all f € L2 () = Ug L%(Q2) (when K ranges over all compact subsets

comp

2

(), then (u,)en converges in the distri-

of ©2). Once (u,)nen converges weakly to u in L
butional sense to u, namely, u,, — u in D’'(£2). We are interested in a description of the loss
of strong compactness in L? (Q) for the set {u} U {u,;n € N}. To address this subject we

loc

need the notion of defect measure.

Proposition 1.4.4. The sequence
Vp = |un - u|27

converges weakly to a positive Radon measure v called the defect measure of (u,)nen-

Remark 1.4.4. The support of v is the set of points in §2 near which w,, does not converge
to u in the strong topology of L?. This notion provides the first tool for the classification of

defects of compactness. Thus v is defined by

(o(tn — u), un — u)r2(0) — /go dv, Yy € C3°(2) (1.11)

2
loc

as n — 400, and, consequently, u,, — u as n — +oo, strongly in L; . if, and only if, v = 0.

It is natural to look for a generalization of the formula ([1.11)) in which the multiplication
by test functions ¢ is replaced by the testing operators, bounded on L2, which are able to
select the possible frequencies of the sequence (u,). This can be achieved by using the class
of pseudodifferential operators of order zero and the corresponding object is then a positive
Radon measure iz on T := Q2 x S9!, whose concept is introduced in Gérard (GERARD, 1991))

and Tartar (TARTAR, [1990). This type of measure is called microlocal defect measure, since

it provides microlocal quantitative information on the sequence (u,,).

1.5 OBSERVABILITY INEQUALITIES

The results of this subsection can be seen in (LIONS, 1988). To obtain the stabilization in
which we are interested in this thesis, it will be necessary to use an observability inequality.
We introduce this concept below.

Let (X, || ||) be a Banach space, X’ the dual space of X, where ({ , }) indicates the duality
between X’ and X, and let A: D(A) C X — X be a linear operator. Define

D(A*) = {u* € X';30* € X’ such that ((u*, Au)) = ((v*,u)),Vu € D(A)}.
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When D(A) is dense in X, the vector v* corresponding to u* is unique. This allows us to

define the adjoint operator A* as
A*: DA Cc X' — X'
u* —  A*u* =0t

If (X,(, ))is a Hilbert space, its dual can be identified with the space X itself. In this case,

the inner product on X represents this identification, i.e.,
{{u”,0)) = (u",v).
So, the adjoint of the operator A is the operator A* with domain
D(A") ={z € X : 3C e R™;[{Ay, 2)x| < Cllyllx, Yy € D(A)}
which is defined by
(Ay,z)x = (y, A"2)x, Yy € D(A), Vz € D(A").

Furthermore, if A generates a continuous semigroup (e'4);o, then A* also generates a con-

tinuous semigroup (e1");>( satisfying
e = (S(t)*, vt > 0.

If A* = A (respectively A* = —A), then the operator A is said to be self-adjoint (respectively
skew—adjointﬂ
Consider the abstract system
y'(t) = Ay(t) + Bu(t), 0<t<T,
Yy (O) = Yo,

where A generates a strongly continuous group on a Hilbert space X (state space) and B €

L(X, X). Consider the adjoint system

O'(t) = —A*p(t), 0<t<T, (1.12)

¥ (T) = @r-

1 A skew-adjoint operator generates a continuous group of isometries (e.g. (PAZY, [2012)).
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Definition 1.5.1. The system (|1.12)) is said to be observable in time T > 0 if there exists
C > 0 such that
T
| 1B ¢lldt > Clierll, ver € X, (113)

where ¢ is the solution of problem ([L.12). The inequality (1.13)) is called the observability
inequality of system (|1.12)).

Remark 1.5.1. Inequality (1.13)) is equivalent to the following unique continuation principle:
B*p(t) =0,Vt € [0,T] = ¢r =0.

We finish this chapter with a subsection about Homogeneous Sobolev spaces, which will

be much used in this work.

1.5.1 Homogeneous Sobolev spaces

Definition 1.5.2. Let s € R. The homogeneous Sobolev space H*(R?) is the space of
tempered distributions u defined over R? whose Fourier transform belongs to L} (RY) and

satisfies

[l

b= [Pl dg < oc.

Remark 1.5.2. The spaces H* and HS’, where H®' denotes the dual space of HS, cannot be

compared for the inclusion. Moreover, by the Fourier-Plancherel formula, one has L? = HO.
Proposition 1.5.1. /f sy < s < s1, then, (HSO N Hsl) C H*® and

21517 with s = (1 — 9)80 + 681.

leell e < Null g llul

Proposition 1.5.2. The homogeneous Sobolev space Hs(Rd) is a Hilbert space if, and only

. d .
If,8<§

Proposition 1.5.3. If s < £, then the space Sy(R?) of functions of S(R?) whose Fourier

transform vanishes near the origin is dense in H?.
The next proposition characterizes the dual space of H*.
Proposition 1.5.4. If |s| < 2, then the bilinear functional

B: 80 X 80 — C
(@, 0) = | od(x)p(z) du

Rd
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can be extended to a continuous bilinear functional on H = x H®. Moreover, if L is a continuous

linear functional on H*, then there exists a unique tempered distribution u € H~* such that
V(b S HSJ <L7 ¢> = B(“u ¢) and ||L||(H5)’ = HUHH*S

Denote the dual space of *(R%) by H—*(R?). Now we state the embedding of H*(R%) spaces
in LP(IR?) spaces.

Theorem 1.5.1. Ifs € [0, d/2[, then the space H*(R?) is continuously embedded in L%(Rd).

Corolary 1.5.1. If p €]1,2], then LP(R?) is continuously embedded in H*(RY) with s =
d_d .

2 p



36

2 PROBLEMS AND MAIN RESULTS OBTAINED

In this chapter, we present the well-posedness, stabilization and control problems for the
quintic defocusing Schrodinger equation we are interested in. We summarize the main results

obtained in this work and we clarify in which order these results appear in the text.

2.1 WELL-POSEDNESS AND STABILIZATION FOR THE NONLINEAR SCHRODINGER
EQUATION

The first part of this thesis presents results of well-posedness and stability for the quintic

defocusing Schrédinger equation in R3*!

i0u + Au = |ul|*u, (t,x) € [0,+00) x R3,
(2.1)
u(0) = o,

where u(t,z) is a complex-valued field in spacetime [0, +0c) x R3. We also consider the

following system

l'atu +Au—u— ’u|4u = Ov (tv I) < [07 +OO> x Rg’ (2 2)
u(0) = up € H'(R?)

in H'(IR3) which presents an energy identity that involves the full norm in H'(IR3). We are
mainly concerned with the following stabilization problem for system ([2.2)).
Stabilization problem: Can one find a feedback control law f(z,t) = KCu so that the resulting

closedloop system
10w+ Au — u — |u|*u = Ku, (t,r) € [0, +00) x R?

is asymptotically stable as ¢ — +o0 ?

Consider a € C*°(R?; [0, 1]) an almost everywhere non-negative satisfying

0 if |z| <R,
1 if jz| > R+1,

for some R > 0 and 1 > 0 such that

a(x) >n>0, for |z|]>R.
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The stabilization system we consider is

10+ Au —u — |ul*u — a(z)(1 — A)a(z)du =0, (t,z) € [0,+00) x R3, 24
A

u(0) = up € H'(R?).
First, we prove the well-posedness of system ([2.4)), using some Strichartz estimates.

Theorem 2.1. Let uy € H(R?) and a(x) € C=(R?) be a non-negative real valued function
satisfying (2.3). There exists an unique u € C(R, H'(R®)), solution of the system (2.4)
satisfying

lullroqo.pseros) < oo, [Vl <o

F(0,7]);LF (R3)

for all T < 0.

Our main theorem states that it is possible to obtain exponential decay for some solutions
of the perturbed system ([2.4) which are bounded in the energy space but small in a lower

norm.

Theorem 2.2. Let \y > 0. There exist C,y > 0 and 6 > 0 such that for all ug in H'(R?)
satisfying

[uol| 1r1.zsy < Ao and [Jug || r-1msy < 6,

the unique strong solution of problem ([2.4) satisfies
E(u)(t) < Ce " E(u)(0), Vt>0.

To prove the exponential decay for the energy of system ([2.4)), it is necessary to show an
observability estimate obtained through propagation results for a microlocal defect measure,
using the same strategy used by Dehman in (DEHMAN; LEBEAU; ZUAZUA, 2003)). Before that,
we need to prove that the solutions for the nonlinear system behave similarly to the solutions
for the associated linear system. In this part of the work, we introduce a decomposition into
profiles for both linear and nonlinear solutions, as in Keraani (KERAANI, |2001)). Furthermore,
we also use a scattering property of the system ([2.1)).

Even with a perturbation term, our approach will not undergo any significant modification

since, with the change of variables w = e'u, w is a solution of

10w = —Aw + |w|'w, (t,z) € R x R3,

w(0) = uy € H'(R?)
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and we get the original system back. Therefore, it is possible to use the entire profile decompo-
sition theory developed by Keraani in (KERAANI, 2001) for our new system and the scattering

property through this change of variables.

2.2 CONTROL OF SCHRODINGER EQUATION IN R3: THE CRITICAL CASE

The second part of this thesis deals with the H'-level null controllability for the defocusing

critical nonlinear Schrédinger equation on R3. Consider the system

i0u+ Au — |ul*u = f(t,z), (t,z) €[0,T] x R3, 25)

u(0) = ug € H(R?),
where u = u(t, z) is a complex-valued function of two real variables z € R3 and ¢t € R, where
the function f(t, ) is a control input. We are interested in answering the following question:
Control problem: Let T > 0 be given. For any given uy € H'(R?), can one find a con-
trol f(t,x) such that the system admits a solution u in C([O,T];Hl(RS)) satisfying
w(T,z) =0 in R3?
Firstly, we show the problem under consideration to be well-posed using Strichartz estimates

and considering f € Lo, (R, H'(R?)) resulting in the following theorem.

loc

Theorem 2.3. Let ug € H'(R3), with ||ug|/zn small enough. There exist T > 0 and an

unique u € C(R,, H'(R?)) solution of the system (2.5) satisfying

< oo and ||Vull < 00.

||| oo, )10 m3) < 00, [[Vul| 1 £19([0,77);2 18 (r3)

L¥ (1)L % (B3)

Through the Hilbert uniqueness method, we show the linear Schrodinger equation to be
controllable. Finally, we use a perturbation argument and show local null controllability for the
critical nonlinear Schrédinger equation obtaining a first answer to the control problem above.

More specifically, consider the control system
i0u + Au — |u|*u = p(x)h(t,x), (t,z) € [0,T] x R3,
u(0) = up € HY(R?),

where the function ¢ satisfies the condition . Our result is as follows.

Theorem 2.4. Let T > 0 be given. There exists § > 0 such that for any uy in H'(R?)
satisfying ||ug||gn < 0, one can find h(t,z) € C(R; H'(R?)) such that problem (2.6)) admits
a solution u € C([0,T); H'(R3)) satisfying u(T) = 0.
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The reader may have noticed that the controllability result is obtained for the original
system, without adding a perturbation. Since these are two different systems, we prove the
well-posedness of each of them. In Chapter [3| we prove the well-posedness for the perturbed
system and, since these demonstrations will be similar, the proof of the Theorem is

given in the Appendix.
Remark 2.2.1. The following observations are worth mentioning:

i. Theorem completes the analysis begun in (SILVA et al), ), where local controllability

was shown.

ii. Note that a € C*°(R?®) satisfying (2.3) act in w := (R?’\BR(O)). Thus, as opposed to
(LAURENT, |20104), the function w satisfies a unique geometrical assumption:  There

exists Ty > 0 such that every geodesic travelling at speed 1 meets w in a timet < Tj.

iii. As mentioned in (LAURENT, 2010b), the most physically relevant damping term for
system (2.4) would be ia(x)u instead of a(x)(1 — A)ta(x)0u, as used in the one-

dimensional case (LAURENT, |2011)). For this damping term, the analysis remains open.
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3 WELL-POSEDNESS FOR THE NONLINEAR SCHRODINGER EQUATION

3.1 INTRODUCTION

The theory of the Cauchy problem for the equation has been extensively investigated,
see, for instance, (CAZENAVE; WEISSLER, (1990; |GRILLAKIS/ [2000; BOURGAIN|, {1999a; BOURGAIN,
1999b; |GINIBRE; VELO, (1985; IBRAHIM, [1987). In (CAZENAVE; WEISSLER, |1990)), the authors
showed that when the initial data ug(z) possesses finite energy, the Cauchy problem is locally
well-posed. This implies the existence of a local-in-time solution to belonging to the
space CYH} N L. Moreover, such a solution is unique within this class and the mapping
taking initial data to its corresponding solution exhibits local Lipschitz continuity in these
norms. In cases where the energy is small, the solution exists globally in time and scatters to
a solution u () of the free Schrodinger equation (i0; + A) ux = 0. This scattering behavior
is characterized by [[u(t) — us(t)|| 1 sy — 0 as t — £oo.

For large finite energy data, particularly for those assumed to be radially symmetric, Bour-
gain (BOURGAIN, |1999a)) proved global existence and scattering for in H' (R?). Sub-
sequently, Grillakis (GRILLAKIS, 2000) presented an alternative argument that partially reco-
vered the results of (BOURGAIN, [1999a)), focusing on global existence from smooth, radial,
finite energy data. Recently, Colliander et al. (COLLIANDER et al., |2008) obtained global well-
posedness, scattering, and global L!'° space-time bounds for energy class solutions to the
quintic defocusing Schrédinger equation in R!*3, which is energy critical. In our case, we
study the Schrodinger equation with p =5

i0u = —Au + |ultu, (t,7) € R x R3,
(3.1)

u(0) = up € H'(R?)
in H'(R?). The solution of problem (3.1]) satisfies some integrability properties and Strichartz
estimates (more details will be given later). Furthermore, equation ([3.1) has a hamiltonian

structure, namely
1 2 1 6
E(u(t)) := §/Rg Vu(t)] dx+6/R3 u(t)[¢ de (3.2)
which is preserved by the flow ({3.1)). We shall often refer to it as the energy and write E(u)

for E(u(t)). Our interest here in the defocusing quintic equation ({3.1f) is motivated mainly by

the fact that the problem concerning the energy norm is critical.
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The first term of the right-hand side of energy ([3.2)) of the originally proposed equation
(3.1)) presents the norm of the homogeneous Sobolev space H', a space in which there are
not many known immersions and inclusions. For this reason, we replaced the equation by a

perturbed formulation ([2.2)) presenting the complete energy

E(u(t)) = ;/R u(t)? de +;/R IVu(t)]? dz +é/R u(t)[ da, (3.3)

which we call H'-energy, involving now the L*-mass defined as ||u(t)||32, which is also preser-
ved by the flow. In this case, we can use, for instance, the immersion of H'(R?) in H!(R?),
which is not available for the space Hl(R?’), to complete the proof of the observability estimate
giving the exponential decay of energy.

From here onwards, the stabilization system we consider is

10w+ Au —u — |ul*u — a(x)(1 — A)ta(z)du =0, (¢t,x) € [0,+00) x R3, (3.4

u(0) = ug € H'(R?),
where a(z) satisfies (2.3)). A solution u = u(t, z) to problem (3.4) satisfies the energy identity
2

dt, (3.5)

L2

E(u)(ts) - B(u)(ty) = ~2 [

t1

‘(1 — A) Fa(2)ou

where E(u)(t) is decreasing and, therefore, system ([3.4)) is dissipative. The well-posedness of
systems ([2.2)) and ([3.4)) are the content of this chapter. We follow the approach from (KENIG;

MERLE, 2006) for the case N = 3.

3.2 NOTATION AND AUXILIARY RESULTS

Before presenting the main results of the chapter, we give some definitions, notations,
and auxiliary results, which can be seen in more details in (CAZENAVE, 2003). We begin by

introducing the notion of an admissible pair.

Definition 3.2.1.

i) A pair (q,r) is called L?-admissible if r € [2,6] and q satisfies

2 3 3

ii) A pair (q,7) is called H'-admissible if r € [6,400) and q satisfies

+i=3 (3.7)

2 § 1
r 2



42

Remark 3.2.1. If (q,r) is a L?-admissible pair, then 2 < q < oo. The pair (00,2) is always

L?-admissible. The pair (2, 2~5) is L*- admissible if N > 3.

The following estimates are essential for solving nonlinear Schrédinger equations and they
are derived thoroughly in (CAZENAVE, 2003). The first estimates of this type were obtained by
Strichartz (STRICHARTZ, 1977)) as a Fourier restriction theorem. Strichartz's estimates were
generalized by Ginibre and Velo (GINIBRE; VELO, [1985)), who gave a remarkable elementary
proof. Strichartz's estimates for the nonhomogeneous problem were obtained by Yajima ([YA-

JIMA|, [1987)) and by Cazenave and Weissler (CAZENAVE; WEISSLER, (1990).

Lemma 3.2.1. (Strichartz estimates) Let (q,r) be a L?-admissible pair. We have

le" Al gy < cllhllzz, (3.8)
o
M2y dr + / =2 dr <cllgll, o (3.9)
LiLr 0 LiLr, o
and
BTN
[ ey dr| < Cllgllyyy (3.10)
—0oQ L% t x
Additionally, we have
H 1A g(7) dr < CHgHLgn’Lg’ (3.11)
LiLy

where (q,r), (m,n) are any pair of L*-admissible indices and ¢',r', m’,n’ are the conjugate

exponents of q,r, m,n, respectively.

Lemma 3.2.2. (Sobolev embedding) For v € C3°(R x R?), we have
ol < IVl 0
Define the S(I), W(I), Z(I) norms for an interval I by

lullseny = llullwo@oos)), lullzay = llull 3 oy AN Nullweny = [lull 4

L10(1;L 13 (r9)) L (LS (&9))

Remark 3.2.2. Note that (10, i’g) and (%, 1—3?) are L?-admissible pairs.
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3.3 CAUCHY PROBLEM

In this section, we will study the well-posedness of the system

10+ Au—u— |ulfu=g, (t,z)€l0,T]xR3
(3.12)

w(0) = up € H'(R?),

where g € L2 (R, H'(R?)), i.e., the H' critical defocusing Cauchy problem for the nonlinear

loc

Schrodinger equation with a perturbation term. Then, we replace the function g by the dam-
ping term a(1 — A)~'adyu, where a satisfies (2.3)), resulting in the system (3.4). Finally, we

investigate the existence of solutions for this case as well.

Theorem 3.3.1. Let uy € H'(R?), with ||ugl|| ;1 small enough. There exist an interval I and

an unique u € C(R,, H'(R?)) solution of problem (3.12)) with
lullsy <00, [Vullwa) < oo and [[Vulza) < oo.

Demonstracdo. Assume, without loss of generality, that I = [0,7], T > 0. The Cauchy

problem is equivalent to the integral equation
u(t) = e™Puy — /Ot DAy 4 |ulfu + g dr
by Duhamel’s formula. Consider the set X; of functions with norm
Jullv, = sup [Va(t) |2 + sup u(®)] 2 + ullsi + [ Vullwin, + [Vl 2

finite. Let R > 0, which will be chosen later and denote By = {u € X lullx, < R}. Let

A > 0 fixed, to be chosen later and assume ||ug||z1 < A. Consider the operator
. t
Dy, (1) = Py — / DAy 4 Jultu + g] dr. (3.13)
0

We will show that it is possible to choose R, A so that &, satisfies ®,,, : B — Bpg and it
is a contraction there. First, note that, by (3.13)),

. t .
[Pu(@)llzz < e uallz + | [ 2+ ul'u+ gl dr|

< Nluollze + Clllul*ull iz + Cligllpire + Cllullpire
1

< CA+CT?|Jullgy + CT gl ooz + CTull poor2

< 20A+CR’+ CTR,
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. 3 .
V0w @)lz < IV uolliz + | [ Ve 2+ u® 4+ g] dr
0 L2
< |Vuolle + ClIVIul*ull 10 s +ClIVallizes + ClIVullzs
+ T
< CA+ CllullsiyIVullw + CT gl ey + CT||Vul| oo 2

< 2C0A+CR’+ CTR.

Choosing T such that T' < min {1, i, (2% C¥||gl| eesr2) '} and [Juo|lm < A with A < £

we have

R
[Pus (W22 + IV Ou (W)l < 5+ CR.

Secondly, by identity ([3.13)),

. t .
V@ (W)l < ||Ve“fAu0HW(I)—|—H / Vet 44 + g] dr

w(1)
< [Vuollzz + CIV|ul*ull s +ClIVyllriz + CliVullp gz

7

Using Hélder’s inequality with p = 7, =3, p = 12, q= 1—3 and p = %, q = 5, we have

I9lul*ull,, . < Cllullsn IVullz and [VJulull s, 9 < Cllullyin IVelwo.
Indeed,
7
T 10 10
IVul*e] 0 0 = //\V|u\4u|7 dxdt
L," L, 0 JRrs
1
T
= / |u|%|Vu|$ dmdt)
0 JR3
7
< ([ Lt ac) ([avu®ia) @)
~ 0 - Uu X s U X
e
T 10
< /( |u|10d:p> (/ |Vu| dm) t)
0 R3
l
10
< ([ Tl 17l %y dt)
4 3 %
T 40 5 T 10 =
< ([ Qi ae) " ([ avulyp)? dt)7)
0 x 0 Lz3
7
10
< (el o - IVl )
<

HUHL}OL;OHVUHL%L:?O'
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Additionally,
1
T 2
il g = ([ ||u4.wu26)
218 0 L3
T 5.9 %
- ([ ( <|u|4>?-|w|?dx)6)
0 \.Jrs
5 1
e 5 . 3 3
= / / ¥ - |Vul? da:) dt)
0 R3
125 135 1
T 24 25 s 6.25 28 2
< / /|u|*E dx /|Vu|5 13 dx dt
0
13 1
T 15
< / / Ju|™ dm) (/ V|75 dx) dt)
0
1
T 2
S / ||U||L1o dx - ||VUH230 dt)
4 101
5 5 2
8.10
< (/ [l 126 dt) (/ ||Vu| 2 dx) ) :
ie.,
3
HV|U!4UHL§L§ < (HUHLwLw'HV ”iwus)
< ullzzopplVu o8
So

IVw @l < C(IVulze + lullbn I Vallwa + 19905z + [ 9ulzy22 )

With the same choice of 7" and A as made previously, we have

R
qu)uo(u)HW(I) < §+CR5.

On the other hand, by (3.8), (8.9), and by (B.11)), with ¢, satisfying ¢ = 10,7 = 33 and
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m' =2,n' = ¢ and Hélder's inequality,

V@, ()| (1)

IN

. t .
Ve ugllzy + | [ T2t + g

Z(I)
CllVuollzz + CIVIul'ull , ¢ +ClIVllzizs + ClIVull Lz
t

IN

IN

ClIVuollzz + ClIVull za el sy + ClIVlliez + ClliVull ez

IN

IN

20A+ CR’ + CT|\glleoms + CTR.

Choosing T such that T < min {1, .1, (2% C%||gl| o) '} and uoll s < A with A < &,

we have

R
||VCI>uO(u)HZ(1) S §+CR5

Finally, by Sobolev's embedding,

[Pug (W)l sy < [V P (u)]] 201

< 2CA+CR°+CT||g|l1om + CTR,

and, with the same choice of 7" and A as before, we have

R
||CI>UO(U)||5([) < 5 +CR°.

Adding up all the estimates above,

R
0wy, < 5+CR <R

as long as R < ——.
20)}

Next, to show that @, is a contraction, denote f(u) = |u|*u. By the definition of ®,,

B13),

|y (1) = @y ()12 < Clf() = F@) 2z + Cllu—vlliz
< OT3|u—vllse (lullsa + loll5e) + CTllu = vllzpers
< CT%R4Hu—’UHS(1)+CTH“_UHL?°L%
< (2CT*R'+CT)|u — vl x,,
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IV ®ug (1) = Vo (v)llzz < ClIVF(w) = V@I 3 1

+ CIVu = Vol e

¢ La
< QWHVu—vm R R
i ird 7 L 7
+ [lu = v|[v?|Vol|| 1 ) + CT||[Vu — Vol per2
L7L7
< C(Ilull‘émllvu — Vollw + llu = ollsiy [Vollwnllulléo +
+ |lu — v||s<z>IIVvllwu)IIvII%m) + CT||Vu — V|| o2
< CRYu—|sa + CRY|Vu = Vollw + CT||Vu — Vvl| 2
< (2CR4+CT)HU—U”XI

and

IV ®ug (1) = VOu (V)llwary < CIVI(w) = V) 3 s

+ CI\Vu = Vol e

¢ La
< QWHVu—vm R N
7 7 7L7
+H|u—v||v| Vol ¥ 70) + CT||Vu — Vv per2
L
< C<||U||§<I)||VU = Vollwa + lu = vllsen I Vollwe lulléq, +
+llu— UHS(I)HVUHW(UHU||?§(1)> +CT||Vu = Vol rera
< CRYu—vllsq) + CRY|Vu — Vollwn + CT||Vu — Vol per2
< CR*+CT)|u—v|x,.

Following the same reasoning,

[V @y (1) = VP (0) [l 21y < C(IIUII‘ég)IIVU Vollza + llu = vlls IVollza lullsa) +

+ [Ju — UHS(I)HVUHZU)HUH?é(f)) + CT[|Vu = Vvl| o2
< CRY|Vu— Vol zn + CRYu—v|sm + CT||Vu — Vv peor2

< (CR*+CT)|u—v|x,.

Moreover, by Sobolev's embedding,

1Puq (1) = Py (V) |51y < [V Puy () = Vo (v) [l 21y < (2CR* + CT)||u = v]|x,.
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Adding up,

[P (1) = P (0)lx, < C(R'+T2R* +T)u—v|x,.

Thus, choosing R and T such that C(R* + T2R* + T) < 1, we conclude that ®,, is a

contraction. Therefore, there exists u € By satisfying ®,,(u) = u. O

Remark 3.3.1. Observe that the solution v = u(t,x) of problem (3.12) is globally well-
defined in time. To verify this, first consider the energy defined by (3.3) which is conserved if
g = 0. Multiplying equation (3.12)) by O,u, integrating and taking the real part, we have

t
E(t) < E(0)— Re / / goyu dudt

0o Jr

t
< E(0) - Re/ /3g(iAH—iﬂ—i|u|4ﬂ—i§) drdt
0 JR

IN

B(0) +C [ IVe) I a(r)lzz dr -+ C [ gl ()l dr

+C [N usllutr?l g dr+ [ gl dr

B(0)+C [ Ng@llmy/BE@) dr+C [ Ng@)las (BN dr + lgagomeas
B(0)+C [ Ng@lm/B@) dr +¢ [ o)l (BN dr + lgagomea

IN

IN

Bt) < BO)+C [ ol (BE)HEE) dr+C [ lg@)llm B dr +glsgomeas
< BO)+C [ o)l (BE)F dr + 19l ooy

t 5
< ﬂ®+CAHMﬂM%H%MﬂF%h+MMwmmw

Therefore,

5
max F(r) < FE(0)+ C<1 + maX(E(T))6> 91l 21 o2y o)) + 91172 (0,17 xm3)-

0<r<t 0<r<t

Denoting F(t) := maxo<,<¢ F(7), a 1= ||g||%2([O,T}><]R3) and B := C||g|L1(jo,r7;11 (r3)), we have

Ft)° < F(0)° +a®+ B°F(t)> + T+ I1,
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where I and I are two extremely long terms that belong to the calculation of the sixth power.

We omit their explicit expression for simplicity. Then,

F(t) < F(0)° + ol + %+ AOE I+ F(lt)5 1. (3.14)

F(t)® F(t)?
Assuming that g € L°.(R, H'(R?)) and suposing that there exists M > 0 such that F(t) >

loc
M, this implies , 0 <t <T. Hence, the last two terms of (3.14)) are bounded. So,

F(t) = M

ggﬁéE(T) <C(1+E(0 ) + ||g||L2(0T]><R3 + ||g||%1([0,T};H1(]R3)))

and finally
E(t) < 0(1 + E(0)° + gl oy xms) + H9H6L1([0,T};H1(R3)))-

This implies that the energy is bounded if g € L°.(R, H*(R?)).

loc

To finish this section, we prove the existence of solutions for the H! critical nonlinear Schro-
dinger equation with a modified damping term, that is, changing g by a(z)(1 — A) ta(z)dsu
in the system ([3.12). The local result is the following.

Theorem 3.3.2. Let T > 0, ug € H*(R®) with |Jug||z» small enough and a(x) € C*°(R?) a
non-negative real valued function. There exists an unique u € C'(R,, H'(R3)) solution of the
system

i0u+ Au —u — |ul*u — a(z)(1 — A)ta(z)du =0, (t,x) € [0,T] x R?, (315)

U(O) = Uy, T E Rg,
with

HUHS([QT]) < 00, ||Vu||W([07TD < oo and ||Vu||z([0,T]) < 0

for all T < oo.

Demonstracdo. We claim that the operator Jv = (1 —ia(z)(1 — A)"'a(x))v is a pseudo-
differential operator of order 0 which defines an isomorphism in HS(R?’), for s € R, and
also in LP(R?). Indeed, note that we can write J as J = I + J;, where J; is an anti-self-
adjoint operator in L?(R3). Thus, J is an isomorphism in L?(R3) and, due to the ellipticity,
in H*(R3), for s > 0. Moreover, J~! (considered, for example, acting in L*([0,7] x R?)) is a
pseudodifferential operator of order 0 and satisfies J~! =1 — J;J L.

Denote v = Ju and write system ([3.15]) as
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O —iAv — Rov + iful*u =0, (t,2)€[0,T] x R,

v=Ju, (3.16)

U(O) =19 =Juy, =€ Rg,
where Ry = —iAJ,J 1 +iJ 1 is a pseudodifferential operator of order 0. The Cauchy problem

(3.16)) is equivalent to the integral equation
o(t) = oy + | LA Ry — ilul ] dr (3.17)
Let 7 = [0, 7] and consider the set X; of functions having the norm
ol = sup I90(6) 2+ sup o0) 22 + olscr + [V ellwary

finite. Let R > 0, which will be chosen later and denote Br = {v € X |vlx, < R}. Let
llvo|lgr < A, with A > 0 small enough fixed (which will be chosen later as well). Define the

functional

. t t
D, (0)(t) = vy + / ¢ t=DA Ry dr — / D84y dr. (3.18)
0 0

Our goal is to show that this functional, defined in a suitable ball Bg, has a fixed point. We

show that R may be chosen in such a way that ®(v) : B — Bp is a contraction. First,

. 3 . t .
V@ (0)|lrz < [[Ve™ uollr2 + H/ Vet~ )|y dr / Velt="ARw dr
0 0

|
L

L2

x

< [Voollr2 + CI|V|U!4UI|L;70Lj0 + C[VRovl| 12

< [IVuollze + Cllullsen Vullwa + CIIV, RoJvllzyzz + CllRo Vol 2

On the other hand,

IVulway = IV 0llway
= [[[V,J v+ J'Vollway

< Clvllway + ClIVollw-
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Then,

IV®us ()llz < I1Voollzz + Cllollse (lollway + [Vellwa ) + CIV, Rololl iz + [1RoVoll 1y 12
< |[Vuollaz + Cllollsen (lollwan + 1Vollwa ) + Cllvllzizz + ClIVolLi
< ool + Cllollsmllvllwa + Cllvllsn I Volwa

+ CT sup ||v(t)]|r2 + CT'sup [|[Vo(t) | 2.
tel tel

By interpolation,

2 3
@)l 22 < lle@Iz2llv@)] Zs-

Then,
T 10 T 4 9
[ %y at < [ @k o) d
0 L3 0
4 T 9
< suwpllo()l [ 0@l at
tel 0
4
< Tsup|u(t)|| 2 sup [o(t)|Zs
tel tel
4
< Tloll%, llvl%,
1[70
< Tlvllx,
3
= |vllway < Trllvlx,-
Hence,
3
V@i ()l < [IVoollzz + CTH ol llvllx, + Cllvllsn IVollwa
+ CT sup ||v(t)||zz + CT sup | Vo(t)| 2
tel tel
3
< Cllollm + CTw %, + Cllolk, + CT v,
. o : : : 10 10 ,
where, for these inequalities, we are using estimate ((3.8) with (¢,7) = <3, 3> and estimate

10 1
(3.11) with (q,r) = (;,;) and (m,n) = (oo, 2). Again,

1@ (@)lz < [l ogllze + H / =By g ) +‘ / "IAR Y dr )
< Nwollz> + Clllul*ullir2 + CllRov| prr2
< fleolse + OT i + CTsup (o)
< Cllvollgr + CT|v|%, + CT vl x,-
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Moreover,
. t t
VO, (0)lway < IV vollwa + H/ Vel D3 ultu dr +’ / Ve A Row dr
0 w(I) 0 w(I)
< IVl + CIlulul p s+ CIV Rl iz
< IVoollzz + Cllulls o [Vullway + ClIV, Rololl iz + CllRoVoll 2
Consequently,
3
IV@u()llway < [IVoollzz + CTH o5 llvllx, + Cllvlls IVollwa
+ CTsup ||[v(t)|| 2 + CT sup ||Vu(t)|| 2
tel tel
3
< Cllollm + CTw %, + Cllolk, + CT vl x,-
Finally,
[Pus (V) ls) - < IV Pug (0) [ 201
. t t
< |IVe vl zer) + / Vel ylru dr|  + ' / Vel'"MARw dr
0 Z(I) 0 Z(I)
< IVoollzz + Cllulls IVullwy + ClIIV, Rolvllyzz + ClRoVollLis
3
< [Vwollzz + CT|vllgp l0llx, + Cllollsa IVollwa

+ CTsup [|v(t)|| 2 + CT sup [V (t)]|2
tel tel

3
< Cllolla +CTo|v|%, + Cllollk, + CTvllx,,

30
where, in the third inequality, we used estimate ({3.8]) with (¢,7) = (10,13
(3.11) with (¢, 7) = (10, ‘I’g) (m,n) = (1??, 13?> and again (m,n) = (co,2). Adding up, we

have

) and estimate

3
100 ()llx, < Cllvollm + CT ol + Cllvlk, + CT vl

Choosing T' < min {1, %} A< % and R < (4;)% we conclude that ®,,, takes elements of

Bp, to elements of Bg. To prove that ®g is a contraction, consider the two systems
i0u+ Au—u — |ul'u —a(l — A)tadu =0, (t,x) €[0,T] x R3,
u(0) = upg, = € R3,

and
10z + Az — 2z —|2|*2 —a(l = A)tadiz =0, (t,z) €[0,T] x R3,

2(0) = uy, € R3,
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performing the transformation v = Ju and w = Jz, we have
O —iAv — Rov + iful*u =0, (t,2) € [0,T] x R,

’U(O) =1y = Juy, =€ Rg,

and
ow — iAw — Row +1i|z|*2 =0, (t,x) € [0,T] x R?,

w=Jz, (3.20)

w(0) = wy = vy = Jug, = € R3.

Using Duhamel’s formula, the difference between the systems - ) and ( - is

t t
By (1) — o, (1) = /0 GEDAR (1 — w) dr — /0 Ry (]u\4 \z\4z) dr.

Bound,

t )
980, (0) = Vo w)lz < | [ V2 fultu - 121%2) dr
0 12
Z‘(t_T)ARO(v —w) dr
LE
< C||V(|UI4U—|Z|4 M 0,0+ CIVEs(0 = w)llzys
< ClIV(Jul*u— 2%l L OV, Bol(v = w)llnyre
+ Cl[RoV (v = w)l|zyr2
< ClIV(ul'u — |2|*2)ll oo Ol =l + CIVE = W)l
< IV (ulu a2l + CTsupll(o — w)o)]

L’ L
+ CTsup [|[V(v —w)(t)| Lz
tel

We have

IN

IV (ul*u = [21"2)]| 2 o

LB C(HUH‘&I)HW Vallwa + lu = 2ls@lIVzllw lulsa
t x

+lu— ZHs(f)HVZIIWmHZ”%U))

IA

C<\|UH§(1)IIVU = Vzllwa + v = wllsa IValwallvlsa +

+ o - w||S(I)HVZ||W(I)Hw”?é(l))'
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But
IV(u—2)lwey = VI (v—w)|lwa
< NIV, I (v = wllwa + 1TV (0 = w)l|lw
< COllv —wllway + ClIIV(v — w)|lw).-
So,
IV (u) e — |Z|4Z)||L$L$ < C(H”Hé(z)”vu — Vzllwa + v = wllsolI Vallwn llvléa +

+ v — w||5(1)||VZ||W(1)||7~U||?9(I))v

IV (jul*u = [2*2)]]

- ~5
h
“~B
IA

O(HvHémHv — wllwa + o150 V(0 = 0)llwa

+ v = wlls lwlwn oIy + [l = wlso [ Vwlwo vl
+ llv = wlls lwllwllwlEe + o - wusmHunwmuwH%m)
< c(T%R‘*Hv —w|lx, + R'llv = wl|x,

+ TR o —wlx, + R'[lv - wl|x,

+ IO R0 —wl[x, + R'||o —wux,)

< CTORYv—w|x, + CRYlv — wl|x,.

Hence,

V@0 (0) = VO ()12 < CTORlv —w|x, + CR*|lv = w|[x, + CTjv = w]x,.
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Secondly,

[V®y,(v) —

Moreover,

[Py (v) —

Dy (w) ]l 2

V@ (w)]lwry

IN

IN IN INIA A

IN

t .
< H/ V=2 (Ju|*u — |2[*2) dr
0

w(I)

i )
/ V=2 Ry (v — w) dr
w(I)
ClIV(Jul'v = [2[*2)]l 1w 1 +CIVER(v —w)|l1re
)

IA

7

IN

ClIV(Jul*u — |2|*2)]

7

10
7
LA + C[V, Rol(v — w)|| 1112
+ C[RoV (v — w)l[ 122

< OIv(ul*u = |2*2)Il 4 ¥y B +Cllv—wlpz + ClIVv —w
< ClV(Julu = J21"2)]l y + CTsup (v —w)(#)]

L, L
+CTsup [V (v —w)(t)]| 2
tel

3
CTER4H1} —w|x, + CR4HU —wl|lx, + CT||v — w||x,-

IN

H/ i(t—T) ’u|4 ‘Z|4 )

+ H/ AR (v — w) dr
0 L2

Clllul*u — |2*2)| 122 + ClIRo(v — w)l| 1 2

Clllul*u — |2*2ll g2 + Cllv — wll g1z

Cllfultu = |21 ;2 + CTsup [ (w = w)(O)]1»
1
CTHu = =l (Nulls + 2115 ) + €T sup (0 = w) (0

1
e o =wilson (1ol + Il ) +CTsup e = w)(O).s

CTzRY|lv — wl|x, + CT|jv — w||x,.
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Finally,
() = Cu(llsin < | [t = o ar
—l—‘/ =DAR(v — w) dr
0 Z(I)
< @WMM%—VPNW$;+%WV%@—wMg@
S<MVWMu—M%W%z$+0vaﬂv—wm@;
+ C||[RoV (v — w)][ 1112
< mwwwu—m%m%z#+om—wmgyumvw—wm@@
s<mvwﬁu—VP>u#E;+chwa—wxmuz
+ CTsup |[V(v — w)(t)]| 2
tel
< CTORYv—w|x, + CRYlv—wl|lx, + CT|lv — w||x,-
Therefore,

@y (v) — oy (w)]|x, < CTERYv —w|x, + CT® R v — w||x,
+ CRYJv — w||x, + CT|v — w| x,,

which provides the local existence if we take constants T, R satisfying C'(T2 R* + Ti0 R* +
R*+T) < 1. O

To prove global existence, notice that, since
E(t) < E(0), Vtel.

Thus, the energy is bounded for every ¢ > 0. We use this property and the finite blow-up
criterion below to prove that the maximal interval where the solution of system (|3.15) is

defined can not be finite.

Lemma 3.3.1 (Finite blow-up criterion). Let T'(uy) > 0 and Iy = [0,T(uo)] be the maximal
interval for which the solution u for system ([3.15)) is defined on Iy. If T'(uy) < 400, then

]l 50,70y = 400

Demonstracdo. We argue by contradiction. Assume that T'(ug) < +oo and |[u|s(o, 7)) <
+00. Let ||ul|s(o,r(ue)) = M and, for € > 0 which will be chosen below, we choose N = N (¢)

intervals I; such that

Jj=1
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with [[ul[s(7,) < e. The first step is to show that

el £oo 0,7 (a0 s (r2) F 11l Loo 0.1 (uo ) L2 3y [Vl lw (0,0 o))y I VUl 20, 7o)y < +00- (3.21)
We write the integral equation ([3.17]) on each interval I; (or apply Proposition to system
(3.15) on each interval [;) to obtain

sup [[u(t)]] g ey + sup [[u(@) | 2@y + 1Vullwy) + [Vullzay)

tel; tel;

Cllult)llin@s) + Cllulls I Vull za, + Cllulls, lullsa,)

IN

VAN

Clluti)llmes) + Cllullse, IVl za,)

IN

Cllut)ll mes) + Ce'IVullza,),

where ¢; is a fixed point in [;. The desired estimate follows if we choose € > 0 such
that Ce* < 3. For the second step, we choose a sequence (t,)en such that ¢, — T'(ug) as
n — o0. Let T, be the length of the existence interval given by Theorem Let n be large
enough but fixed such that

T(up) — t, = €o

with g9 > 0 satisfying eg = %. Since E(t,) < E(0) for all ¢, > 0, Theorem may
be applied for the interval [0,7(ug) + €] whose length is T.. However, this contradicts the

maximality of T'(uy) and concludes the proof. O

Remark 3.3.2. We have proved that for all uy, g with ||uo|| g1+ /9|l o< (jo,7;11) small enough,

the solution u of system (|3.12|) satisfies

lullx, < C(llollr + llgllze oy + llull%, ).

Hence,

lullx, < C(lluollmr + llgle o)
< C(T,A)),

applying a classical bootstrap argument (Lemma .
Remark 3.3.3. Ifu is a solution of system , then, using Proposition one has
lullx, < C(llul@)m + lullk, )-
So, for ||ug||g: small enough, one has
[ullx, < C(T, [Juo||m) (3.22)

by a classical bootstrap argument (Lemma .



58

3.4 SCATTERING RESULT

In this section, we bring the scattering result obtained as a consequence of the existence of
solutions in the Strichartz space, proven by Cazenave and Weissler in (CAZENAVE; WEISSLER,
1990).

Proposition 3.4.1. Let u be a solution of
i0u+ Au — |ul*u =0 (t,z) € R x R?,
U(to) = Uy,

where uy € H'(R3) and supposed to be small enough, u € L'(R) and u € L'(R; L1 (R3)).

There exist uy,u_ € H'(R?) such that

tggrnoo |u(t) — e uy ||z = 0 and Jim u(t) — e u_|| .

Demonstracdo. Note that

+oo .
H / Ve”(t_T)A|u|4u dr
t

A

ClIV]ulu]

P L2(t,+00) L3 (R?)

IN

Cllull 1o o0y pioges [Vl 3 0(3.23)

L0t 400y L3S r3)

as t — +oo. Then, since
. t
u(t) = el tt0) Ay 4 / ez(t_T)A|u|4u dr,
to

taking
. +oo )
Uy = e 0By, +/ e A ul u dr
to
and
itoA 0 Ay 14
u_ = e "%y —/ e T2 ul u dr,
—0o0

uy and u_ have the desired property. Indeed,

. o
ez(tfto)Auo + ez(tf‘r)A‘u’4u dr
to

lu(t) = e usllpn =

) ) too . )
. e'LtAefztoAuO _/ eztAeszAlurlu dr
to

j2a!

t . +oo |
= / el(t’T)A\u|4u dr —/ el(t’T)A\u|4u dr

to 0

H1

— 0
Hl

= /+OO ei(t_T)A|u|4u dr
t
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as t — +00, by (3.23). Moreover,

) o
ez(t—to)Auo + ez(t—T)A|u|4u dr
to

lut) = e*Sulljn =

. . to . .
_62tA6—ztoAu0 +/ eztAe—m‘A|u|4u dr
—o0

H1

t . to |
_ / 6z(t—7)A|u|4u dr + / ez(t—r)A|u|4u dr
to —00 .

H!

3 .
= / DAt dr|| =0

H1

as n — —oo, by ([3.23)), concluding the proof. O
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4 PROFILE DECOMPOSITION

4.1 INTRODUCTION

In this chapter, we consider the linear Schrodinger equation

i0u+ Au=0, (t,z)€[0,T]x R3,
(4.1)
uw(0,7) = ¢(z), =€ R3,

For p € H'(R?), the solution of problem ([4.1]) is given explicitly by v = "2y € C(R,, H'(R3))

and we have the conservation law

Ey(u)(t) = [ | IVo()]* dz = Eo(p). (42)

The nonlinear H'-critical Schrédinger equation in three space dimensions associated to (14.1)
is
i0u+ Au — |ul'u =0, (t,x) € [0,T] x R3,
(4.3)
u(0,2) = p(z) = € R
The Cauchy problem (4.3) has the following properties: (see, e.g., (CAZENAVE; WEISSLER,

1990)).

i) For all o € H'(R®), there exists a unique maximal solution u(t,z) of problem (4.3)
satisfying
u e C((T,,T*); HY(R?)), and Vu € LL_((T,, T*); L" (R?)),
for every L2-admissible pair(q,r).
ii) The solution u satisfies the conservation law

By(w)(t) = 5 [ IVa@P de+ ¢ [ u()l° dz = Bi(e).

iii) If either T, or T* is finite, then ||Vul| (1, 7+);17®s)) = oo for all L?-admissible pair

(q,7) with r > 2.

Furthermore, the theory of small data explored in (CAZENAVE; WEISSLER, (1990) ensures
that for ||| 1 (gs) small enough there exists a unique maximal solution u(t, ) of the initial

value problem (IVP) (|4.3)) satisfying

we C(R; HY(R?), we L'RY), and Vu € L5 (RY). (4.4)
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We prove that every sequence of solutions to the linear Schrédinger equation with bounded

datain HI(R?’) can be written, up to a subsequence, as an almost orthogonal sum of sequences

of the type h;%gv(t;%t”, I;:"> where ¢ is a solution of the linear Schrodinger equation with a
small remainder term in Strichartz norms. Using this decomposition, we prove a similar one for
the defocusing H'-critical nonlinear Schrédinger equation (&.3]), assuming that the initial data
belong to a ball in the energy space where the equation is solvable. This implies, in particular,

the existence of an estimate for the Strichartz norms in terms of the energy.

4.1.1 Notations

Throughout this chapter, C' denotes a numerical constant that can be different from one

step to another in the demonstrations. u, (or v,) denotes a sequence (u,)nen (OF (Vn)nen)-

Definition 4.1. Let p ¢ H'(R?) with ||¢|/;;1 < X for A > 0 small enough such that the
global existence for the problem (&.3) holds with u € C(R; H'(R3) N L°(RY), Vu € L3 (RY).

We define g as the supremum of these \.

Remark 4.2. If ||90HH1(R3) < Ao, then system (4.3) admits a complete scattering theory
relative to its associated linear problem. However, it is an open problem to prove that Ay = oo,

i.e., to prove global well-posedness for the IVP ([4.3)) for any initial data in Hl(R3).

The following definition will be useful in the first part of the proof of the linear profile

decomposition, which consists of the extraction of the scales of oscillation h,,.

Definition 4.3.

i) We call scale every sequence h = (h,),>o of positive numbers converging to 0 and

core every sequence [z,t] = (x,,t,)n>0 C R? x R. We denote a scale-core by [k, z, t].

ii) We say that two sequences of scale-core [h(l), 21 W] and [h@),g(g), t®)] are orthogonal

if either
hg) h7(12)
w#—w—)jtooasn—)oo, (4.5)

or bt = h?) = h,, and

t’gll) _ tng)
h2

n

— +00 as n — 00. (4.6)

1 Bourgain solved this problem in the particular case of radially symmetric data (BOURGAIN, /1999al).
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We denote [ﬁ(1)7£(l)7§(1)] 1 [b@),z@),t(?)] and (i(l)i(l)) L, ($(2)’t(2))7 if ﬁ(l) _

4.1.2 Concentrating solutions

Now, we introduce the concept of concentration solution, which will be extremely important

for the study of the asymptotic behavior of systems (4.1]) and (|4.3]).

Definition 4.4.
i) Let f € LR;H'(R®), h = h, € RY, 2 = 2, € R® and t = t, € R such

that lim,(h,, z,,t,) = (0,Z,%s). A linear concentrating solution associated to

[f,h,x,t] is a sequence (v, )nen Of solutions to

i0yvn + Av, =0, (t,7) € R x R, (4.7)
of the form
1 t—t, r—=x
n t? - n? = ; 4'8
i) = = (s ) (438)
ii) The associated nonlinear concentrating solution is a sequence (uy,),en of solutions
to
10t + Aty — |up)tu, =0, (t,2) € R x R3,
(4.9)
u,(0) = v,(0), € R3,
of the form

" (t $)_ 1 f(t—tn x—xn>
n 9 - \/h_n hi 9 hn 9
The next definition is the tool that will be used to “track back” the concentrations.

Definition 4.5. Let 7., € R? t,, € R, h=h, € R*, 2 =2, € R® t = t, € R and
f e L=(R; Hl(Rg)) such that lim, (hy, z,,t,) = (0,Zc,ts). Given a bounded sequence
(f)nen in L=(R; HY(R?)), we write

Dhnfn - f

1 .
R2 folt, + h2t, 2, + hox) — f(t,z) weakly in H'(R?)

asn — oo, for all t € R.
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Of course, this definition depends on the core of concentration h,,, x,, and t,,. When several
rates of concentration [ﬁ(j),g(j),ﬂj)], j € N, are used in a proof, we use the notation D,(Lj) to
distinguish them.

Now, we state a series of results related to the concept of concentration solutions.
Lemma 4.1.1. D, f, — f is equivalent to

/3 Vafulty + h2s) - Vu,(t, + h2s) dv — /3 Vyf(s) - Vye(s) dy asn — oo, Vs € R,
R R

where w,, is of the form u,(t,z) = — gp(tgﬁ", m;:") with ¢ € L=(R; H'(R?)).

Demonstracdo. Assume ¢ € C5°(R x R?). We denote
Lo =\l [ bt 4 B, 0 + huy) - V,y0(s,) dy.
So, with the change of variables z,, + h,y = =,
L, = +/h, /R3 Vyfaltn +his,z) - VygzD(s, T

1 _
= /]R3 Vifn(tn + his,x) . Vx\/h_n90<s, * hnxn) dx

= / Vofn(tn +h2s) - Vou,(t, + hs) dv
R3

Therefore, L,, tends to /3 V,f(s) - Vsp(s) dy for all s € R if, and only if, [gs V., fo(t, +
R
h%s) -V u,(t, + h2s) dx has the same limit. O

The previous lemma is directly linked to the concept of concentrating solutions.
Lemma 4.1.2. If f,, is a linear concentrating solution associated to [f, h, x,t|, then

Demonstracdo. Since f, has the form

) = o= f (St )

the change of variables
Vo fn(tn + B35, 2, + hoy) = f(s,y)
yields that
L, = +/h, /}R3 Vo fultn + hZs,x, + hny) - Vye(s,y) dx

= [ Vuf(8) - Vy(s) dy.
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Thus, the same computation of Lemma [4.1.1] yields

/RS Vofn(tn +h2s) - Vou,(t, + h2s) do = /R3 V., f(s) - Vye(s) dy,
which gives Dy, f, — f. O]

Lemma 4.1.3. /fu, is a concentrating solution associated to [y, h, z,t], then

lotull e = Il smis Netnllzgorss = Il sy and [Vuall 39 39 = V0l 3 y.
t x t x
(4.10)

Demonstracdo. Using Definition and the change of variables t;ﬁn = sand T =y, we

get

N |=

IVu,(t)||zz = (/RS IV o (t, 7)|? dx)

- (L
- jh_( [ 1Vap(s. ) hs’;dy)

= (/w Vye(s,y)l* dy)

t—t, r—x,
VJ?SO( h2 I h/n )

= [[Ve(s)llz2-
Second, through the same change of variables t;ﬁ" = s and L =y, one has
lwnlSope = /R/R ln (£, 2)[1° dvdt

10
dxdt

t—1t, x—a:n)

1

- /R/]R \/hn¢< R2 0 hy
| ,

— o [ els )l hdyhids

— el G0
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Finally,

IVtnl| 0 10 = // IV un(t, )| % dedt
R JR3

B // v 1 <t—tn x—xn>
e R\ hy
1 )
= — [ [ Waplsy)l¥ nldyndas
hﬁ R JR3

5

10
3

1
L3 L.

iﬂw‘

10
3

? dadt

1 e Thx
- hg/R/]Rs |vm(p(8,y)|3 hndyhn hii ds

1 0 3 _4
= — [ [ 1Vels )l ¥ Kidyhads
h% RJR
1370
= ”VSOHL:TOL:TO'

4.1.3 Scales

On the Hilbert space H'(IR?®),we define the self-adjoint operator A by

D(A) = H*(R?)

The next definition and remarks can be found in (LAURENT, [2011)).

Definition 4.6. Let A be a self-adjoint (unbounded) operator on a Hilbert space H. Let h,
be a sequence of positive numbers converging to 0. A bounded sequence (u,) in H is said to
be h,-oscillatory with respect to A if

lim sup

L i tn
n—00 n

— 0 as R — oo, (4.11)
H

and (u,,) is said to be strictly h,-oscillatory with respect to A if it satisfies (4.11]) and

lim sup ‘

Ljgj< e un
n—o0 n

—> 0ase—0. (4.12)
H

Moreover, (u,) is said to be h,-singular with respect to A if

H1ha<|A|<}bUn — 0 as n — oo, for all a,b > 0. (4.13)
n —hn H

Remark 4.1.1.
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i) Let (h,) be a scale. Let (f,,) and (g,) be two bounded sequences in L?(IR?) such that
(fn) is hy-oscillatory and (g,,) is hy-singular. Then, via Plancherel’s inversion formula

and Cauchy-Schwartz inequality,
\ fn(2)gn(x) dz — 0 asn — oo.
R

Hence, it follows that
1o+ 9ol T2y = lgnlliz@s) + [ full72@s) + 0(1), asn — .

i) Let (h,) be a scale and (f,) a bounded sequence in L?*(R?), such that (f,) is h,-

oscillatory. Then (f,) is h-singular for every scale h! orthogonal to h,,.

iii) We remark that a sequence is (strictly) h,-oscillatory with respect to A if and only if it

is (strictly) h2-oscillatory with respect to A?. So we can replace A by —A.

The next result ensures that the Schrodinger equation conserves h,,-oscillation.

Proposition 4.1.1. Let T > 0. Let ¢,, be a bounded sequence of H'(R?) that is (strictly)
h.,- oscillatory with respect to A. If u,, is the solution of

i0pun + Au, =0, (t,7) € [0,T] x R3,
(4.14)

u,(0) = ¢, = €R?,
then, (u,(t)) is (strictly) hy-oscillatory with respect to A, uniformly on [0,T]. If () is hy,-

singular with respect to A, then (u,(t)) is h,-singular with respect to A, uniformly on [0,T].

Demonstracdo. Consider the cut-off function xy € C{°(R) such that 0 < x(s) < 1 and
X(s) =1 for |s| < 1. The h,-oscillation (respectively strict oscillation) is equivalent to
h2 A

R —0as B — o

L2

lim sup HV(l —x)(

n—oo

)t

(resp. limsup,,_, . [|VX(R*h2A)u,||p2 — 0 as R — o). Note that v, = (1 — X)(héf)un

is a solution of

10w, + Av, =0,

0(0) = (L= (%2 )n.

and the conservation of energy gives

IVon(®)ll2 = [[Von(0)|z2
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Therefore, taking the limsup in n we get the expected result uniformly in ¢ for 0 <t < T'. The
results for strict oscillation are proved similarly. Regarding the case of singularity, note that
if u,, is a solution of (4.14)) then v, (t) = 0,(D)u,(t) is also solution to the same equation,

where 0,(§) = I%SK\S%(S)' Then, since
IVonllz2 = [[Von(0)| 2,
we get the result. O

Definition 4.7. The Besov space BY  (R?®) is defined by
20 3y . . 12 _ SN2
B (®) = {u=u(a) : [ullyy_oy=sup [ 5O d < +oc).

The following result gives us an estimation of Besov spaces.

Proposition 4.1.2. For every (¢,) bounded sequence of H*(R?), there exists Cr > (0 such

that

lim sup ||VUnHLoo([O,T];B(2) R3)) < CT lim sup ||V907LHBQ oo (R3)
n— 00 n—00 '

ool

where u,, is the solution of system (4.14)).

Demonstracdo. Since u,, is the solution of system (4.14)), the function oy (D)u,, is also a solu-
tion to the same system, where 0, (&) = 1or<|¢j<or+1. The conservation law for all o, (D)u,(t),
k € Z, gives

Hvun(t)|’Bg7w(R3) = ”Van(O)”Bg’w(H@) = HV%”BQW(R%

showing the result. O]

4.2 LINEAR PROFILE DECOMPOSITION

The main result of this section is a combination of theories developed by Bahouri and
Gerard (BAHOURI, [2011), Keraani (KERAANI, [2001) and Laurent (LAURENT, [2011) and is

given by the following theorem.

Theorem 4.8. Let (v,,) be a sequence of solutions to the Schrédinger equation (4.14)) on [0, T
with initial data ,,, at time t = 0, bounded in H'(R?) and such that limsup,, . ||€nllm <

Ao, where Ny was given in Definition . Then, up to extraction, there exists a sequence
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of linear concentrating solutions (p\¥)) associated to [, k') x() t!] such that, for any
[ € N*,
= zl:pglj)(t, z) +wd(t, z) (4.15)
j=1
satisfies
liinﬁsol.}p ||w7(.bl)||L;>oLgmLt10Lglgo — 0 asl — oo, (4.16)

for all T > 0 and

!
Vo,|[32 = Z HVp?({')H%Q + Hng)H%z +0(1) as n — oo. (4.17)
j=1

Moreover, we have (hY), 2@ t0)) L (K™ 2™ t®)) for any j # k, according to Definition

4.3,

Our goal in this section is to prove Theorem [4.8] We split its proof into four steps: the first
one is the extraction of the scales h/), where we decompose v,, in an infinite sum of sequences

v,(f) which are respectively h,&j)-oscillatory.

Demonstracdo. Step 1. (Extraction of scales): In this first step, we present the determination
of the family of scales, where we perform the first decomposition we need. Before that, we

establish the next result which will be necessary to obtain this decomposition.

Proposition 4.2.1. Let (f,) be a bounded sequence in L*(R?). Then, up to an extraction,
there exists a family (h?) of pairwise orthogonal scales and a family (g?) of bounded sequences

in L*(R3) such that
i) for every j, gJ is hi-oscillatory;
ii) foreveryl > 1 and x € R3,
I
= Z g (x) + Ry,
where (R?) is hi-singular for every j € 1,...,1, and

limsup || R, |50 — 0 asl — oo;
n—00 2,00
i) for every 1 > 1,

!
1fallze =D llgnllze + [ Bylliz + o(1) as n — oo.
j=1
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The proof of Proposition is found in (BAHOURI, 2011). With this in mind, let us present

the following proposition.

Proposition 4.2.2. Let T > 0. Let (p,) be a bounded sequence of H'(R?) and v, the

solution of

i0yv, + Av, =0 (t,7) € [0,T] x R,
(4.18)

v, (0) = .

Then, up to an extraction, v, can be decomposed in the following way: for any | € N*,
l
valt,z) = o (t,2) + o0 (8, 2), (4.19)
j=1

where v9) is a strictly (h\9))-oscillatory solution of the linear Schrédinger equation ( on

R®. The scales h\Y) satisfy hU) — 0 as n — oo and are pairwise orthogonal. Additionally, we

have
hmjup Hpg) HL°°([O,T];LG(R3))OL10([U,T];L10(R3)) — 0 (4.20)
asl — oo and
Vo, ()32 = Z ||Vv ()32 + ||Vp ( W32 +o(1) as n — oo. (4.21)

Proof of Proposition[4.2.2, First, we prove this decomposition for the initial data through the
Proposition [£.2.1] Then, using the propagation of h,-oscillation, proved in Proposition [4.1.1]
we extend it for all time.

Applying Proposition m to the sequence (V,,),, we obtain a family of scales h{/) and
a family (¢9)) of bounded sequences in H'(R?) such that

nga) q;(l)( ),

7=1
where ¢J) is hi-oscillatory with respect to A for every j > 1. Moreover, ®®) is h()-singular

with respect to A for every j € 1,2, ...,1, and
lim sup ||Vd>ﬁl||3(2) — 0 as | — oo. (4.22)
n— 00 e
Furthermore, the following almost orthogonality identity

IVenlz = ZIIVsD 172 + IVeP72 + o(1)
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holds for all I > 1, and the hf{) are pairwise orthogonal. This decomposition for the initial

data can be extended to the solution by

I
=" 0@ (t,2) + pV(t, ),
7=1

where each v{) is a solution of

10w + Avd) =0 on [0,7] x R,

v (0) = ¢,

n

and p{) is a solution to the same system with initial data equal to .
Due to Proposition , each vV)(t) is strictly hV)-oscillatory and p{(t) is h7)-singular
for 1 < j <. So,
(VoD (1), Vo (1)) 2 — 0
as n — oo, uniformly in [0, T]. This also holds for the product between v\) and v¥, j # k by

the orthogonality of the scales, i.e.,
<vaf)(t), VUT(L’“) (t))2 — 0,
as n — 00. Then, we get

Vo ()72 = ZIIW“ Z: + 1Vo ()17 + o(1)

which is the desired equation (4.21)).

Let us now prove convergence for the remaining term in L>°LS. The convergence
(4.22)) gives the convergence to zero of V! (0) = V&Y in BO . We extend this convergence
for all time with Proposition to get

sup limsup |[VpP (t)||ge  — 0asl — oo.
te[0,T] n—roo 2,00
The proof of the smallness of the remainder term is based on the following refined Sobolev

inequality which can be found in (BAHOURI, 2011, Lemma 3.5).

Proposition 4.2.3. For all f € H'(R?), there exists C' > 0 such that

1oy < CIV S faqun I VI (4.23)
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Using inequality (4.23)), one has

1 2
limsup [|p) (8) 20 < Climsup [V (8)] 72 limsup [ Vo7 (1)1 3, -
n—00 n—o00 n—00 2,00
Observe that
VoD (@)l[7: < [Voa(®)Z2 < [IVepnllze < C.
Therefore,
limsup Hpg)”L?ch — 0 as ! — o0.
n—oo
By an interpolation inequality, we obtain
o zora0 < 10120 16 190117 s (4.24)
But, since <7, ‘11?) is a L2-admissible pair and by Sobolev's embedding,
6Pz < V200
< |IveRl . s
LIL
< CIveylz
which means
lim sup ||p,(f)||L%oleco — 0 as ! — oo.
n—oo
This shows (4.20]) and completes the proof of Proposition |4.2.2 O

Step 2. (Description of linear concentrating solutions): Now we describe the “non-reconcentration”

property for linear concentrating solutions.

Lemma 4.9. Let v = [p, h, x,t] be a linear concentrating solution. Consider the interval I =

[T, T) of R containing t.,. Then, if we set I}* = [T, t, — Ah,] and I3* = (t,, + Ah,, T},

we have
lim sup HUHHLOO(ILAU[&A pomsy — 0 as A — o0 (4.25)
n—o00 n n bl
and
lim_)sup ||Un||L10(I711,AU12,A7L10(]R3)) — 0 as A — oo. (4.26)

Proof of Lemmal4.9. We show the convergence (4.25)) and get (4.26)) through an interpola-
tion argument, similarly to what was done in (4.24). In order to prove (4.25)), we argue by
contradiction: Suppose that (4.25)) is not valid. In this case, there exist a constant C' > 0,
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a real subsequence (A;); tending to +o0 and a subsequence (t,,); of (t,), convergent to 7

such that
|tn]. — too| > Ajhnj and lim ||vn].(tnj, .)HLG(Rs) — C. (4.27)
J

Let us consider separately the cases 7 # to, and 7 = t.. If 7 # t,,, we have

Then,

and so

(4 T
Un]' (th ’ .ZC) - ¢ ’ Mw(hnj )
5 i Jy—al? y
- tn - too T2 / 2(tnj o) (> d

|hn .271\2

= (tay — o) BhA, [ €T 0(2) d

R3
i h%j\z\z 7ihn].<z,z) L‘.L|2
3,2 i L =
=y, — 1) Qh%j/ ¢ T ) T —) | B ) ()
R3
. h%j\zlz 7ihnj<z,z>

IN
Q

5
(tn, = too) 20, [ €T T () da|.

Therefore

[

2 2 .
i hnj\z\ —zhnj(z,m)

5
(tn, = toe) 2R, [ €7 T (2) de
R

17,2 /
5 R'S
1
6

~ (tnj—tooﬂhij(/m |&(w)|° dw) — 0 as j — oo,

6
d:v)

6 3
dw)

i.e., the right side of this inequality converges to 0 as j goes to 0o, which contradicts (4.27)).

anj(tnwm)HLG < C(/R?’
72|22
J

/ o T =t e () dz
R3

IA
—~
~

3

|
~

8
~—
|
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. 7 hn,- .
Now, if 7 = t,,, we set 5]2. = |too — tn,|, hj = —* and define the sequence
J

1

fj(s, Y) = €3 Un, (too + 8?8, £;Y).
Note that, since [to —t,,;| > Ajh,; and lim; A; = +oo, then lim; h; = 0. The sequence (f;)
is the solution of the system
i0.f; + 0y f; =0

£;(0) = \};w(fj)

To conclude the proof, it remains to show that lim; || f;(1, )|l 263y = 0. Note that

sz(lay) = em\/lfz@(%) = \/}7/ i Il @(i) dx

Then

1509l < ( /

VAN
A

12

1
&
(/ |o(x ]6d1:) — 0 as j — oo.

Hence, || f;(1,9)|/zs — 0 as j — co. Therefore, since

175 )l zs = N[ (tngs )l s,
this contradicts what was stated in (4.27)) again, which finishes the proof of this lemma. [

Step 3. (Extraction of times and cores of concentration):

Let h, be a fixed sequence in R’ converging to 0. This step focuses on demonstrating
the next proposition, which gives us the profile decomposition for h,,-oscillatory sequences. By
merging this decomposition with the one presented in Proposition [4.2.2 we obtain Theorem
4,5l
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Before presenting the main result of this step, we state and prove two auxiliary lemmas

that will be important for the orthogonality of the cores.

Lemma 4.2.1. Let (M, tMW) (2 t®). Let v, be an (strictly) h,-oscillatory sequence

of solutions to the linear Schrédinger equation such that
D}(Lln)vn — M) (4.28)

as n — 0o. There exists 0 such that,

D, — o (4.29)
as n — 0o. Moreover,
o™ N oo i1 = 6@ poe i1 (4.30)

Demonstracio. Let 2(2) = z(1) + (B + 0(1))hn, D € R? constant, and t@ =M 4 (8 +
o(1))h2, C' constant. We have

Vv, D 4+ h2s, 21 + hy) — oW (s,y) as n — 0o, Vs € R.
Then,

\/IT Wt 4 h2s 2@ 4 hy) = \//TUR( W4 8—1—0 )h2+h2sx B—i—o Vhn + hyy)
= Vvt + (C + 52,20 + (D + y)h

— 90(1)(8 + s,B +1), (s+ 8) eR.
Taking go(l)(a + s, D+ y) = ©@(s,y), one has
D,(li)vn — @ seR.
Moreover,
IV ®(s)ll22 = VD5 + C)llze < sup [V (s) 2 = 1V (8) 1
and

IVeD(s+ Oz = [V (s)]]12
< sup || V@ (s)] 12
sER

= Ve (8)|| o2

This finishes the proof of Lemma (4.2.1] O]
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The second lemma is the following, where we keep the notation of the construction that

allowed us to extract the scales and cores.

Lemma 4.2.2. Let {j,j'} € {1, ..., K}* be such that

(l(j),t(j)) L. @(KH)’t(KH)) and (i(j%t(j)) L. (x(jl),t(j/)).

If thﬂ wlE+) 0, then D(j)w(KJrl — 0. Moreover, D(]) ") —~ 0 for any concentrating

solution p") associated with [pU") h, 20" tU"].

Demonstracdo. The first result is a particular case of Lemma [£.2.1] So, it only remains to
show that

D,(ljn)pg/) — 0 asn — o0

or, equivalently,
VP () + h2s, a0 + hay) = 0 in H'Y(R?)

as n — 0o. Since pU") is a concentrating solution associated with [©U") b, 20" tU")], we have

pg,)(t, :L‘) =

P10 g :c()>

1 (/)
oV ( 7
Vhn h2 h,,

and

) " G) _ 2"
VEnpY) (h2s, 29 + hyy) = 30(3)(” h2n —i—S,x" hzn —i—y).

Suposing that (z),t9)) L, (20" tU)), we assume, without loss of generality, that ") is
continuous and compactly supported. Thus,

N . o (G — 4G zl) — (")
/RB Vi hap (tD+h2s, 29+ h,y)-Vib(y) dy = /RS vVl )< s, +y>-V¢(y) dy

hn,

(J) ("

—Xy;

hn

1) 46

which tends to 0 as n tends to oo if | — 00 as n — 00, since go(j')

— 00 or

is compactly supported. This proves the lemma. O

Now we prove the main result of this step. Precisely, the following proposition will ensure

the profile decomposition for h,,-oscillatory sequences.

Proposition 4.2.4. Let (v,),en be an (strictly) h,-oscillatory sequence of solutions to the
linear Schrédinger equation (4.18]). Then, up to extraction, there exist linear concentrating
solutions p,’j, as defined in Definition associated to [go(k),ﬁ, g(’“),z(k)] such that, for any

[ € N* and up to a subsequence,

an (t,2) + w(t,z), (4.31)
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hHLSHp HwS)HL“’([O,T};LG(R:’) —0asl— oo, (432)
for all T' > 0 and
Vo, ()72 = Z IV () DN172 + [ Vwn () P[72 + 0(1) as n — oo, (4.33)

fort € [0, T]. Moreover, for any j # k, we have (z®) t(®)) | (209 ¢00)),

Proof of Proposition [#24, Using the notation of Definition [4.5] if v, € L>([0, T], H'(R?)),
consider ¥, its extension in R by zero outside [0, 7] and denote

0(v) = sup {HV@(O)H%Q; Dy, U, — @, up to a subsequence, ¢ € L®(R; Hl(Rg))},

tn,Tn

1.

where (t,,,) are sequences in [0, 7] x R3. This means that h,.20,(t, + h2t, z, + h,z) —
o(t,x) in H'(R?) as n — co. In this scenario, we consider ¢ the weak limit of the translated

sequence ¥,. Taking a linear concentrating solution associated to ¢ such that p,(t,z) =

rgp( e ”;:"> and let p, be its extension on R by zero outside [0, 7], we have p,(t,z) =

on
If 6(v) = 0, we take pl¥) = p\) =0, for all j =1,..., L.

F(p( Rz I ) Let V(v,,) be the set of such functions ¢.

If 6(v) > 0, we choose p!) € V(v,,) such that
M) 1
IV 0)z2 > 260) > 0.
This means that there exists (z1), 1)) € [0, T] x R? — (z(}),t(})) such that

oo 7

Dy, v, — gp(l) as n — oo,

equivalently,

VO (tD + B2s, 2 + hyy) — oW (s, y) as n — oo, s € R.
Now, choose p{!) as the linear concentrating solution associated with [0, h, (") ()] and let
ptl) be its extension on R by zero outside [0, T']. Note that the assumption ¢! € [0, T ensures

(1) € [0, 7], which will always be the case for all the concentrating solutions we consider. To

proceed, we first state a lemma that will be used for the orthogonality of energies.

Lemma 4.2.3. Let w() =, — pV). One has

IVE.OlZ2 = VB B)1Z2 + [Vwil (@)][72 + o(1) asn — oo, (4.34)
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Proof of Lemmal[4.2.3. Observe that
\/IT WD 4 p2s 2W 4 hy) = \/h> Wt 4 R2s M) b)) — \/hTLﬁ V() + h2s, 2!
= \/hi Wt 1+ h2s 2 4 hy) — oW (s,y) =0
as n — oo, which means that D, w(" — 0. Then,
IV3. (1)1 72 = VP (@)][7: + 2(VwD (1), VB (1) + VB (6)] 2

The change of variables ht" = s and 55 =y yields

(Vo) Ve (1) = [ VowD(tx) V.p(tx) de

R3

1 t—t) g — 2
_ (1) . (1) n n
= |, V,w,(t,x) -V, —\/h_go < o > dx

= / VoD (W + h2s, 2+ hy) -V

1
M hid

=% (5, y) hndy

TP )

= /RS \/7w D+ h2s, 2D 4 hy) - VoW (s,y) dy

which tends to 0 as n — oo, proving Lemma [4.2.3] O

The previous lemma ensures that we get the expansion of v, announced in Proposition

by induction iterating the same process. To this end, let us assume that
an (t,z) l) (t,z).

Hence,
!
j=1

and

IVon(®)lIZ = Z VP ()17 + IV (1)1 + o(1) as n — oo, (4.35)

where pl) is a linear concentrating solution associated with [¢\7), b, 2(9), )], which are mu-
tually orthogonal due to Lemma |4.2.3|
We now argue as before: if §(w()) = 0, we just choose p+Y) = 0. If §(w”) > 0, choose

(WD 24D ¢0+1D) sych that
1
VD0 2 36() (4:30)

and

Dy, w? — oY as n — oo,

n

)+ hoy)
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Define p{*1) as a linear concentrating solution associated with [+ h, 2(+D ¢(+D)] Again,

Lemma applied to w! and pU*Y) gives estimates (#.33) with w(*1) = w® — 1),
Let us now show the convergence ({4.32)). Using Lemma and energy estimates, we

have
IV (0))172 = [V (t9)[[72 = IVPS(0)]|72.

Using ((4.33)), we have, for some C' > 0 depending only on T,

ZHVsﬁ )7 = ZHVpn ()72

hm sup || Vv, (0) ||?:2
n—oo

IN

< C.
So, the series with general term || VW) (0)||2, converges and
Ve (0)]|2, — 0 as I — co.
Using estimate , one obtains
(5(@”) —0as ! — oo.
To get the first part of Proposition [4.2.4} it remains to show
liinﬁs;ip qug)HL?oLg — 0 as ! — oo.

We begin by introducing a family of functions xr(t,z) = xk(t) - x%(z) € CP(R x R?)
satisfying the following properties:

xRl + IRl < 2:

supp(0)  { oy < I < 31
=1 for {ah <l < £
E%(W) =1 on supp(xr);

supp(xg) C [—T,0],

where ~ and ~ denote de Fourier transform in time and space, respectively. One has

WP || oo o,mzsmey) < xr * WP || Lo omzsmey) + 10 — Xr) * WP || Lo,y 20Rey),  (4.37)

where x denotes the convolution in (¢, ) and ¢ denotes the Dirac distribution.
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1. Bound for || x g * wg)HLoo([o,T];LG(RZ‘))

Note that

1 2
xR * wg)||L°°([0,T];L6(R3)) < lIxr * wg)Hzoo([QT];m(Rf%)) xr = wr(zl)Hzoo([o,T}xm)-

(4.38)

The function xz *w? is a solution to the first equation of (4.18)) on R and, in particular, the

L?-conservation law gives

xR * WP qorpr2@ey = I(xa*wP)(0)]7

= Bene(t ) 0D

(27)

On the other hand, we write

(e s w)(0,2) = [ Xh(=s) [ xh(e = y)u(s.y) dyds.

By the Plancherel inversion formula, we get

(4.39)

v = w)0.0) = sz [ (=) [ (e =) [ el () (e e deayds
= G JXk) [ ) [l )€ ey

o —

h(=9) [ (Ol (5) (€)™ deds.

— —

Since wi (s)(€) = €€ w (0)(¢), we obtain

(xr* w?)(0.2) =

- (2711)3 /]1@3%0&2)%(5)1@(\0)(5)6”5 d

—

= 5k k(168 ) el 0)©

Consequently

—

Fome(cr + w)(0)(©O) = Xk (167 xR O 0)©).

Using the properties of xg, and - we get

1 . - —_ 2
I« 0 eomyaoesy = g X (16 ) xR @)
3
1 5 ey D)
< O |y g PO OOP
< RO
SN QL7

W) [ O (0)(€) " e deds

(4.40)

(4.41)
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where C(R) is a R-dependent constant. Now, observe that

lim sup xR * WP || 20 (0,71xR2) = (Sup)hm_fup (xr * W) (tn, ).
tn,Ln) N—00

Let ¢ € V(w®) be such that

\/hnw,(f)(tn + his,xn + h,y) — @(s,y) as n — oo

and let p,, be the rescaled function p,(t,z) = \ﬁﬁp(hQ , hﬂ) We have that p,, satisfies the

linear Schrodinger equation and

wﬁf)(tn +t, 2, +x) — pu(t,z) as n — oc.

Hence,
(xR * wg))(tn +t, 2, +x) = (XRr * Pn)(t,x) as n — 00
and
(xr * W) (tn, 20) = (xR * Pn)(0,0) as n — oo.
Thus,

lim sup xR * WP || Lo rxrey < sup {’(XR * Pn) (0, 0)‘}

< sup{|/ L, Xr(—=t, —2)p,(t, x) dxdt

}

Therefore, by Holder's inequality, it follows that

hHLSUP xR * wg)HL‘”([U,T]XR?’) < Cy(R)sup {Hﬁn”Lg%g}a

where Cy(R) = . Since

IRl o8 oy
152 ()l e < N1Ba (Dl = 1520|712 = (O]l g1 < CH(wl),

it follows that

Ik * W || oo (o) xrsy < Co(R)S(w),

n

for every [ > 1. Putting these estimates together, we conclude that

1 1 2
Ixr * WP e qorprs@sy < Cr(R)RE|Vw? |3, - Co(R)5(w)

n

< C(R)hid(wD)3, (4.42)
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which is the desired bound.
2. Bound for ||(6 — xr) * wg)|’Lao([07T];L6(R3))

The function (6 — xg) * wY is a solution to linear Schrédinger equation in R. Therefore,

100 = xr) * WP |2 o125y < CIVO = xr) ¥ w0 ()]|Z2 < CIV(3 — xr) * w (0)]|2:.

By Plancherel’s theorem and identity 1) one has

— ,\ 2
V6= xe) = w0l = 55 [P0 1 = Xk (1) 6] |
Observe that,
1= xh(16) 3] =0, for s <l < 57
f i R hy,
and it is bounded. Consequently,
hmsu 0 — s w2 < Climsu / 2w (0)]? d ,
p||( XR) ||L ([0,T); LS (R3)) n_mp Hel< Uil 22 ) €] (0)[” dg
(4.43)

which is the desired bound for the second term on the right-hand side of inequality (4.37)).
With these bounds in hand, let us analyze inequality (4.37)). From estimates (4.42) and

(4.43)), one has

€2l O)f de|

n—oo

1
lim sup wg) reeorromsy < C(R)limsup |hdd(w? +/
m Sup [leon” = oseeqmey < O(F) (t02) {el<in ullel> 2}

So, taking [ tending to infinity, then R tending to infinity, using the fact that 5(w§f)) — 0

as | — oo and w is (strictly) hy,-oscillatory (Remark |4.2.1)), it follows that
ligl_}s;ip [P || oo (o.17.8m3)) — 0 as 1 — oo.
Therefore, by interpolation, one gets
lim sup lw || rogo,ryzi0@sy — 0 as I — oo,

since va(zl)HLZL}D“ < C|lwn(0)]| g1- This completes the proof of the first part of Proposition
[4.2.4) It remains only to show the orthogonality of cores. We show it by contradiction. To this

end, assume that the index
e = max {j € (L K3 (82, 2) L, (54,240}

exists. The following are consequences of the construction at the beginning of the demonstra-

tion of Proposition |4.2.4;

D p® o with oD £ 0if [ < K, (4.44)

n
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W) = e +uff®,

and
K+1
wqng) _ Z pﬁf) + wELK“).
J=ik+1

Moreover, the definition of p{") and Lemma implies

n

Then, we get from (4.44)) and (4.45) that

DD+

hn n
Applying this to [ + 1 = jx give us

Dy Vi) — o,

(4.45)

(4.46)

due to the first part of Lemma and the definition of jg, since (tUx) zbx)) y,-

(tE+D 1 (K+1)) The definition of jx and the second part of Lemma give

n n

DFEIPO 0 for ji +1 <1< K.

“Applying"D}fH) to equality (4.46)) one gets

DI = 3 D<) 4 D
J=ik+1
K .
_ Z DELI:H)pg)_i_Dgl:H)p?(lKH)+D}(Li<+1)w7(LK+1)
J=ik+1

Therefore,
Dy ) — o £ o,
while we have just proved
D 0,

which is a contradiction and completes the proof of the Proposition [4.2.4]

Remark 4.2.1. Observe that w() is (strictly) h,-oscillatory.

Indeed, being w'V) = v, — ptV) for | = 1, we apply the operator or(D) to equation ([4.31]),

where op = l{hnIE\S%}U{hnlﬁlzR}' for R > 0. We get

IVor(D)oallz2 = IVor(D)B |72 + IVor(D)wP|Z: + of1).
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Iterating, we obtain
IVor(D)on|7: = Z IVor(D)FY |72 + |[Vor(D)w |72 + o(1),
which means

limsup/ 2117,(1” LR d glimsup/ 210, (.,6)|? de.
n—00  J{hn|¢|<£}U{hn|¢|>R} P17 ) de n—oo J{hnl¢|<%}U{hnl|¢|>R} P10 ) de

Since ¥, is a (strictly) h,-oscillatory sequence, so it is w!).

For the sake of completeness, before presenting the proof of the Theorem [4.8] let us revisit
the result showed in (KERAANI, 2001, Lemma 2.7), which will be important in the proof of the

aforementioned theorem.

Lemma 4.2.4. Let (b, 29 t0)) be a family of pairwise orthogonal scales-cores and (V1))

a family of functions in L'*(R, L'°(R?)). Then

10
! — @ 20 !
1 .=t L —x .
Jj=1 \/ h»slj) hnj hn L%OLQIDO Jj=1

for every | > 1.

Demonstracdo. Denote

VOt a) = —— vm(t_tg) ‘”_‘.’“"53))

Note that it is enough to show that
I, = / V Gy (G2)/(G3)y/ (Ga) 7 Gs) 17 Ge) 1/ (7)1 (s) 17 (o )V 710) dodt — 0 as n —s 0,
]R4 n n n n n n n n n

where 1 < 7, < [ and at least two j;'s different. Assume, for example, that j; # j,. By

Holder's inequality, we estimate
[l < CIVIIV | pis,
where C' = T2, [|V,9%)|| 11o10. Now, let us compute ||V,00V,02)| 515

IV;IDIV9D 55 o

- [ [ woor Pt v = ad) ) gy (P )
(h§VR§)3 Jo Jes TR R G2 7 R

n n

The orthogonality of [hUV), 201 ¢6V)] [pl2) £02) $(2)] means that

h 1) h(]z) 1) _ ¢(2) (J1) — 5(52)
either ——~+——~ — 400 or h i) — h(”) and | 2—>1 i . i — 400 as n — 00.
hgz) h;ﬂ) h(]l)Q h%]l)

Without loss of generality, we assume that V71, /72 are continuous and compactly supported.
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(41) (432) pU1) (42)
hy; hy; kS hy
o If Py + P +00, then either e +o0 or e +oo. We assume
h(]l) . ’
— 400 (the other case is symmetrical).
h(]z)

The change of variables x = h(2)y + 202) ¢ = (h(32))2s + tU2) gives
||V(j1)V(j2)||i5L5
h(i2) — t(]l hl2)\2 p2) 2l2) — (1) ,
_ (j1)|5 n n n n (J2) 5
= () e (M o) e ™ v

Since V1) 1/(2) are assumed to be continuous and compactly supported, we obtain

VIOV 5 s — 0 as n — oo
o If A1) = hU2) with the same change of variables as above, we get

||V(j1)Vn(j2)| 5

L3LS

— ¢l) (32) _ 1.(41) .
/ v ( sy ) VO (s, )| dyds.
R¢

Thus, the previous integral tends to 0 as n tends to co. This finishes the proof of Lemma

4.2.4]

Remark 4.2.2. (KERAANI, |2001)) Using the inequality

‘)—‘
“lo

)

Z|a3|3

<O Y lagljanl?
J#k

and arguing in the same way as in the proof of Lemma we prove that

10
l ; ' 3 l
1 o —t0) —p0) 10
V(Z , v@( L )) SV 5, 4 asn oo

Now we have what we need to establish the proof of the Theorem [4.8
Step 4. (Proof of Theorem[4.8): The idea is to combine the two decompositions we made.

Denote by v\) (and the rest (p"))) the h{/)-oscillatory component obtained by decomposition

n

and p"® the concentrating solutions obtained from decomposition (4.31]) (and the rest

wr(L’ ) ). Adding everything up, one has

l

tx:2<ipmt@+M%Wx0+M@@.

]:
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Rewrite this equation as
Aj
’Un(t,l') = Z <Zp ) +w(lA1 ..... Al)(t,l‘),
j=1 “a=1
where

!
wbAsAD (¢ 1) = 3wl (¢, ) + pO(t, 2),

n
J=1

for [ and A; fixed, 1 < j <. We enumerate this pairs by the bijection ¢ : N> — N defined by
o(j,a) <o(k,p) ifj+a<k+porj+a=k+ [ andj<k.

The almost orthogonality identity (4.17) is satisfied. Indeed, combining (4.21)) and (4.33)), we

obtain

IVuallze = Do IVo Nz + VD22 + o(1)

<.
—

A;
= 2 (Z VP77 + HVwS#AJ‘)H%z) IV 25 + o(1)

!
!
j=1 Ya=1

!

Aj '
= 3 (ST + X IV + ITA 1 + o),

j=1 Ya=1 7=1
but
z 2
[Fude g, = Hv(zwﬁzﬂﬂ + p;”)
Jj=1 L2
l A
2
= > IVud|5 + VD12,
j:
since w7 is h? -oscillatory and p{ is h7-singular for all 1 < j < I. Therefore,
1 A ‘
Vo, |22 = 3" S VU |22 + Vw440 )12, 4 o(1) as n — 0. (4.47)
j=1a=1
The last point that remains to be checked is the convergence of the remainder w414 to

zero in the Strichartz norm. To this end, let € > 0 be a small arbitrary number. To get the

result, it suffices to prove that for [, large enough,

||w(l AL l)||L§°Lg S 9 (448)

for all (I, Ay, ..., A;) satisfying | > Iy and o(j, A;) > o(ly,1). To prove this, first choose [
such that, for every [ > [,

hm_}sup ||pg)\|L?oLg <e. (4.49)
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Note that the existence of such [ is ensured by (4.20]). Moreover, by (4.32)), for every [ > I,
there exists B; such that A; > B, for every j € {1,...,1} and

lim sup [[w§)|| e s < = (4.50)
n—00 t e l

Furthermore, the expression ({4.47]) implies that the series with general term

> limsup [Vp{) (0)]3
(o) "

is convergent. In particular, we may also assume, increasing [, if necessary, that [ is such that

ST limsup [|[VpY (0)]2: < e. (4.51)

o(ja)>a(lo,l) "7

Now, the remainder term can be rewritten in the form

(lA17 LAY pn + Z ]max AJ,BZ)_|_‘S«(lA17 ,Al)

1<5<1
where
lvAlv“'7Al — _77A ijl
SAtnd) =Y ) (),
1<j<l,A;<B,
However, one has
JsAj J,B _ j,a
w4 @B = ZP( ) _ ZP
=T e
A<a<Bl
Hence,
(lvAlrnzAl) R (j,()é)
S = > > o
1§jSZ,AJ‘ <B; AJ' <a<B
Therefore,
limsup w440 g < hHlSUPHPn lrgors +11mSUPZHmeaX B e g
%

j=1
+ lim sup ||S,(LZ’A1 """ A1) ||L°°Lg

< 2+ hmsup ||S (1AL, AL ||Lf°L2‘
Since 57(1”’417""“1) is a solution of the linear Schrodinger equation, we have

ISEA A gy < CVSEAA

< O vsgArA(0)] e

< Cc ) > 1VpY0)]]
1<j<l,A;<B; A;<a<B,

< Ck,
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because the sum is restricted to some o (j, ) satisfying o(j, o) > o(j, ;) > o(lp, 1) and it is

indeed smaller than Ce due to inequality (4.51)). Therefore, limsup,,_, | AL

smaller than (2 + C)e for all (I, Ay, ..., A;) satisfying [ > Iy and o(j, A;) > o(lp,1). Through

A1) HLtooLg is

the same procedure, we get the same estimates for the L1°(L1?) norm, that is,

(1,Aq,... (j,max(A;,

AZ)HL,}OL;_O < 11mSUP||P£L)||L10L10+thUPZ||w Bl)HLthL;O
n—oo ST

+ lim sup HSﬁLI’Al""’Al) ”L10L10
n—00 L

hm 15Up | w]!

< 2¢ + limsup ||S£Ll7A17m7Al)||L%0L;O.
n—oo

Moreover,

hmsup || SGAL-AL HLIOLlo = lim sup H Z pY

N—00 Lor10

and, rescaling,

1 =t g pGe)
(@) (¢ ) = (J@)( n n )
pn ( 7‘7;) \/Ew h% Y hn Y

where )0 € L>(R; H'(R?)). So, by Lemma [4.2.4]

zpzj’a = z 1990 10-

(J:e)
Furthermore, through Strichartz estimates and Lemma m one gets

Z ‘W(Ja ”L10L10 = Z ||p(j a) L10L10

(@) (4,a)

< ¥ (Ivo0l3) (452)

(J:a)

On the other hand, by (#.47), ;o) [IVPY*(0)[|3: is convergent, and so the right-hand side

of (4.52)) is finite. Thus

lim sup
n—oo

LlO 10

L

Z Hw]a HL10L10> S E.

o(j,a)>0(lo,1)

Hence,

(1,Aq,..

lim sup [|wAv-A0) rrope < 26+ lim 15Up || SbAL- AL [ L1oz10
n—o0

1

< 2+ ( 5 vt oz )

= 3e.

Since ¢ is an arbitrary small number, we conclude that

(1, A1,...,

lim sup [Jw,, Al)||Lt10L31:o — 0 as n — oo, (4.53)
n—oo

which proves Theorem [4.8] O
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To finish this section, we establish the following lemma, which is a consequence of the

construction we made during the proof of Proposition [4.2.4]

Lemma 4.2.5. Consider the notation and assumptions of Theorem[4.8 For any | € N and
1 <5 <, we have

D,(i)wg) — 0.

Demonstracdo. Assuming that D,(ngwg) — , we can directly use the decomposition of The-

orem [4.8] to write, for L > [,
L
ul = 35 0+ )
i=l+1

In case of scale orthogonality of h) and h{)), for [+1 < i < L, we have Dh )p( — 0. Indeed,

n

by hypothesis, p{) is a concentrating solution and so

, 1 N Q)
() (4 o) — (,)( n T, )
Py (t, ) h(i)(p hg)z ) hg) )

which means that

D a0 0 pON2 20— g )
VD (D +(hD)?s, 29 +hDy) = 90“)< +5< n) Tom TG )

" " 3 B i i

Without loss of generality, we may assume that () is continuous and compactly supported.

Thus, for a compactly supported function ), one has

L TVRD A0 + (1), + 1Dy) - Tuy) d

R DD RN o) —a) R
/R3 ( Z)Q +s( .), "G +y .).Vz/;(y)dy

Jh h) h)

and the orthogonality of A1) and h{Y) means that

h(j h(Z
+

h(l h%) — +400.

If i

h“) — 400, we have

JRY $6) — 400 1) m_x() hj
/ O o)

)2 h(l hg) h(l ) Vip(y) dy — 0

. )
as n — 00, as done in Lemma|4.2.4| If Z“) — 400, we make the change of variables

W) 2l )
MOEER O
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to get

RY) L7t — (@) AU\ 2 h (@) () — 2@\ RO

y /R3 VSO(z)(WzJFS(Z)) x) .vw( s — ) ns da.

h! his fin hai /i
Hence,
VAW Lt @ RN 2 B (@) — @) RN 3

/ V<p(z)<w+s<@) ’x> -W( n x—xn ,x" ) dr = O ( n )2 — 0
JpG) Jrs B h 2 he i

as n — 00, since ¢ is assumed to be compactly supported, which gives the desired result
DY)p® — 0.

Otherwise, in case hY) = h() and (z), 1)) 1, (2, t®), the second part of Lemma
gives the same result. Therefore, in both cases one has

D,Sj)w(L) — .

n n

Since, by Theorem limsup,,_, o || || z2ers — 0, we have ¢ = 0, proving the lemma. [J

4.3 NONLINEAR PROFILE DECOMPOSITION

In this section, we establish a decomposition into profiles, similar to the one carried out
in the previous section, but this time for the sequence of nonlinear solutions to system (4.3]).
The main objective of this subsection is to prove the following theorem. We follow in detail

what was done by Keraani in (KERAANI, 2001)).

Theorem 4.10. Let u,, be the sequence of solutions to nonlinear Schrédinger equation ({4.3))
with initial data o, bounded in H'(R®) and satisfying limsup, .. |[¢nllg1 < Ao. Let pid)
be the linear concentrating solution given by Theorem and q\) the associated nonlinear

concentrating solution. Then, up to extraction, we have

!
un(t, ) = > g9 (t, x) + wd(t, x) +r{(t, x) (4.54)
j=1

and

hm Sup(Hv,rg)HL%([O,T};L%(RS))—FHT'ELZ) HLlo([O,T];LIO(RB))+|’r7(’Ll)HL“’([O,T];Hl(RS))) — O as l — Q.

n—o0
(4.55)

The following notations will be often used in this section

B(z) = |2I*,
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W = i ¢

j=1

and
l l
10 =356 — () + w4510,
j=1 j=1

Before getting such decomposition, we make sure that nonlinear concentration solutions behave

similarly to linear concentration solutions, at least in a specific type of interval.

4.3.1 Behavior of nonlinear concentrating solutions

As we saw at the beginning of Section , in the ball [ug||z1gs) < Ao, the evolution

problem
10w+ Au — |u|*u =0 on R x R3,
u(0) =uy € H'(R?)
admits a complete scattering theory with respect to the linear problem. The main theorem of

this subsection is a consequence of this scattering property. In order to obtain it, we use the

following two lemmas from Keraani (KERAANI, [2001)).

Lemma 4.3.1. Let I = [a,b]. The solution v € C([a,b]; H'(R?)) of the equation
iOv+Av=f, IxR>
with Vf € L7 (I x R?), satisfies
el +sup (Vo012 < C(IV0(@) 12 + 9512 )

Lemma 4.3.2. Let M = M(t) be a positive continuous function on [0, T'] such that M (0) = 0
and, for all t € [0,T], we have

M(t) < c<a+ 25: Ma(t)>

a=2
with 0 < a < ap = ag(c). One has
M(t) < 2ca,

for all t € [0,T].

The next theorem is a consequence of the scattering property from Proposition [3.4.1]
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Theorem 4.11. Let u,, be a nonlinear concentrating solution. There exist two linear concen-
trating solutions denoted by [p;, h,z,t], i = 1,2, such that for all interval [—T,T] containing

ts, one has

hm sup <||un - [@17&7 xZ, z]HLlO([}l’Ax]R;") + HUTL - [@17&7 xZ, t]HLoo(I}l»A;Hl(RZS))) — 07 (456)

n—oo

and

lim sup (”U/n - [9027ﬁ7 Z, é]HLw(Ig’AxRQ’) + Hun - [8027h7 Z, t]HL"o(If’L‘A;Hl(RS))> — 0 (457)

n—oo

as A — oo. Here, I = [=T,t, — Ah2] and I3* = (t,, + A2, T).

Demonstracao. We consider the case 27 — 00. The other cases are analogous. First, let us
show (4.56)). The proof is based on Strichartz's inequalities and the absorption Lemma (4.3.2,

For the sake of simplicity, we take I* = [0, ., — Ah2]. We know that u,, is a solution to
10ty + Aty — |tp|*u, =0 on [0,T] x R3,
u,(0) = ¢ € H'(R?).

Since u,(t, x) is a nonlinear concentrating solution, one has

1 t—1t, — Tn
up(t,x) = u( S ),

Vin \ B2 h,

where u satisfies

i0su + Au — |u|*u =0 on R x R®.

Using the scattering theory of Proposition [3.4.1} there exists v, solution of the linear system

i0sv +Av =0 on R x R3,

v(0) = ¢,
such that
|Vu(s) — Vou(s)||pz — 0 as s — —o0.
Let
on(t,z) = 1 U(t—tn x—a:n>
n\% - /—hn h% ) hn
satisfying

i0pv, + Av, =0 on [0,T] x R3,
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We should prove that
lim sup (Hun — vnHLmU}L,AXM) + ||un — /UnHLOO(LrlL,A;Hl(R:;))) —0
n—0o0
when A — oo. To this end, define w,, := u,, — v,,. Thus, w,, satisfies the system
10w, + Aw,, = |w, + v, (w, + vy,),

(4.58)
Wy (0) = u, (0) — v,(0).

Y

Using Lemma |4.3. we get

and denoting [[|.[[[r := |-l p1o(j1. gy HV'”L?(I“xR“*)'

lalll g + 1900l oy < {1V O) 52 + 19 0 + v) (w0 + v 2 )

On the other hand, one has

Vwa(0)l[z2 = [[V(un(0) = 0a(0))]| 22

- oo )-wo(- )

n

— 0

L2

as n — 00. T herefore

|||wn|||l7ll;/\‘I'HVw"HL‘X’(I}L‘A;LQ(RS)) < C(van(o)”Lz
—|— Hwn + vnHLlo(IlA R3)HV(wn + UTL)“L13O(IT1L,AXR3)>

= C(van( Mz + 1wl o 1.4 s | Venl

|V,

10
L3 (IVAxR3)

+ HwTLHLlo 1A><R3)’ L%O(LIL’AXRZS)

+ ”UnHLlo ILA R3) va"HL%(I}L’AXH@)
L A R A [ |
Using Lemma [4.9] one gets

lim sup ||Un||L10(Il,A — 0as A — oo.
n—r00 n

xR3)
Hence,
lim sup (|wan<0)|yL2 4 anHLm(I}L,Ast)) v 0as A - oc.

Given 0 > 0, there exists a real number A such that for all A > Ay and for any integer
n = no(A), one has [[Vw,(0)|z2 + |[vall 1014 gs) < 0. Therefore, choosing ¢ such that

5 < i one has
Il + 190y < € (1T s+ Dl + [

F 0nl a1 )
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In order to use Lemma [£.3.2, we denote

Mn< ) - HwnHLw ([0,¢]xR3) + vanHL 3 ([0,¢] xR3) + van|‘L°°([0,t];L2(R3))'

Then

5
M(t) < C(IVunOllz + ol iz + 3 M),

a=2

for all t € I, The bootstrap Lemma enables us to deduce that, for any A > Aj and

n > no(A), we have

M, (t) < 20<||an( Wiz + floall* ) v 0asn - o0, Vi€ M,

L10(11A X R3)
Hence,
lim sup (Hun - U””Llo(l};AXRf‘i) + ||V(un - Un)”Loo([TlLvA;L2(R3))> — 0 as A — oo,
n—oo

showing the convergence (4.56)). Now, we prove ({4.57)) following the same procedure. We know

that wu,, is a solution to

10y + Ay, — |ug|*u, =0 on (¢, + A2, T x R3,

u,(0) = ¢ € H'(R?).

Since u, (T, x) is a nonlinear concentrating solution, one has u, (t, z) = =u R :
n

n
where u satisfies

i0su 4+ Au — |u|*u =0 on R x R

However, using again the scattering theory we know that there exists a solution v of the linear
problem

i0sv +Av =0 on R x R3,

v(0) = ¢
such that

IVu(s) = Vou(s)||pz2 — 0 as s — +o0.

Let v,(t,x) = \/271)(7?’ m;?) It satisfies

10y, + Av, =0 on I3 x R3,

un(tn) = =9
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We must show now that
liflnﬁsogp <||un — vn||L10(IS,AxR3) + ||un — vn||Lm(IS,A;H1(R3))> — 0as A — oo.
We will do the same procedure using
IV (n = va) (tn + Bo A 12 = [Vu(A) = Vo(A)||2 — 0 as A — oo,
Define w,, := u,, — v,. So, w, is a solution of the system

10w, + Aw,, = |w, + v, | (w, + vy,),
(4.59)
Wy (ty + h2A) = up,(t, + h2A) — v, (t, + h2A).

Using Lemma |4.3.1} one has
lalllgn + V0l gty S c(ITwnltn+ BEA) |22
1V (i + o) (w0 + 0] 20 USAXW))-

Therefore,

|Hwn|HIgvA + vannLoo([gﬁA;m(RB)) < C(van(tn + h M)z + [Jwnll] [Vw,||

L10( ISAXR3 |

+ HwnHLlo 130 < R3) HVU"“L%(IS*AxR%

+ ||Un||L10 I3AXR3) ||an|| 10([3A xR3)

el 170002 30 )

By Lemma [4.9) we have
lim sup ||UnHL10([3,AXR3) —» 0 as A — oc.
n—00 n
Hence,

n—0o0

lim sup (van(tn + h?zA)HL2 + ||UHHLIO(]27A><]R3)> — 0 as A — oo.

Moreover, given 6 > 0, there exists a real number Ag such that for all A > Aq and for
any integer n > ng(A) the quantity |Vw,(t, + h2A)|| 2 + [0nll 1030 sy < 6. Therefore,

choosing § such that §* < 2% one has

lalllgn + 1900l gty < C (1T 0) 52 + Hwallgn + Il

0l gz, )

10
L3 (I3"xR3)



95

Denote

My (t) := [[wnll Lo, +n2..0xm3) + ||an||L%( ) + [[Vwn || oot +82 A,0;22(®3))

[tn+h2 At]xR3
with ¢ € I3*, we have
5
Mo(6) < e IV wntn + BN 22 + ol o asy + 3 Malt)").
a=2
t € I>*. The bootstrap Lemma enables us to deduce that, for any A > Ay and n > ng(A)
M,(t) < 20<||an(tn +h2A) |2 + ||Un||L10(13,AXR3)> — 0asn — oo, Vt € I[P,
Hence,
limﬁsup (Hun = Unl| 1oz gy T IV (U — (Un>HLOO(I?L,A;L2(R3))> — 0 as A — 0.

showing (|4.57)). O

4.3.2 Auxiliary results

From now on, we state and prove several results that will be paramount for the proof of

Theorem Let us begin with the following lemma.

Lemma 4.3.3. There exists 6y > 0 such that, if v is a solution of linear Schrédinger equation
satisfying

I

and u is a solution of the nonlinear Schrédinger equation satisfying v(T',z) = u(T,x), for
some T € [—00, +0o0], then

ullle < 3[[[v]]|e.

Proof of Lemmal4.3.3 Suppose that ||V(u — v)(x, —00)|[zz = 0 (the other cases can be

handled similarly). Let (75,),, be a sequence of numbers converging to +o0o as n — +00. Set
Jn = [-T,, T,].
The difference w = u — v satisfies

10w + Aw = |w + v|*(w + v) on R,

w(=T,) = (u—v)(=T,).
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From Lemma [4.3.1] it follows that

lolll, < (19— o)Ll + 1900 +0°l 8, )

< C(IV =0 Tllus + o + ol |V + )l
< C(HV(U — U)( )||L2 + (||w||L10(Jn><R3 + ”U“Llo (JnxR3) )HV(UJ + U)HL 3 (Jn ><]R3))
< C(|V(U—U)( )z + ||w||L10 (Jnx RB)HVMHL?,(J xR3)

+ [wllz10(, xps [Vl 2 + [0l 10 ) V0] 20

Ly (Jn XR3) (JnxR3)
ol 190030 e )
Now, let § > 0 such that §3 < 20, 0 < % and &g < 1 (ag is the small constant from Lemma
4.3.2)). Therefore,
el + IVl 20,y < 20(I9 0= o) (=To)llzs + w3,

oIVl 3.y + NI, )

< 20(IV( = o)(~To)llz= + \||w|uin

+ el sy + 1111, )

Using the fact that ||V (u — v)(x, —T,)||z2 — 0 as n tends to infinity, we get, for large n,
IV (u = v)(@, =)= + [[[0]][3, < ao.

Thus, for large n, the function M : s — |[|w]||_1, s satisfies the conditions of Lemma [4.3.2)
n [—T,,T,], so that

M(T,) = [|[wllls, < 4C(IV(u = v)(z, =T z2 + [l[0]]]3,)
for n large. Taking n — 400, we obtain
llwllle < 4C|[Jv] |5
Hence
lullle < [llwlllz +llle < @ACH[I& + DIlo]l].

Since 2063 < 1, we conclude the proof of this lemma. O]
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With the previous lemma in hand, the following result holds.
Proposition 4.3.1. There exists C' > 0 such that
hgl_}Solép WO +w||; < C, (4.60)
for alll > 1.
Proof of Proposition . First of all, observe that, using ,
lim sup [[[w[[|; < Climsup [V (0)] 2 < C'limsup [V, (0)]|2 < €
for all [ > 1. Thereby, to obtain , it suffices to prove that
tim sup [[[WW;7]||; < C,

for all [ > 1. By definition, p/) and ¢\/) satisfy

P ) = = (o T
h(j)

n
and

g (t,z) =

,/h (h“ ) hs
respectively, with ¢ and ¢ belonging to L®(R; H'(R?)). Lemma and Remark

ensure that, for all [,

WOl Bocrsms) — Z 19 Bo(gscrs) and VW] 310

L3 (IxR3) L% (RxR3)

l
= > IV 3, 3
j=1

L1
as n — 0o. So, we have to prove that the series 3,5, [|[¢/\?)|||¢ is convergent. To this end,

first note that (4.17) and Lemma imply
S @ = XN

j>1 j>1
. 10
< CY VPR 0)H < C (4.61)
j>1

A 10
where we have used the fact that the series Y;-, || Vpi)(0)|| 2 is convergent. Thus, if

119l < Cllle|l e (4.62)

10
for large enough j, then the series 3", |[|W]||¢ is convergent. But, from (4.61]), one has
that

eVl < do,
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for large enough j, since |||o")|||r is the general term of a convergent series, where d; is as

in Lemma Moreover,

IV (@9 = o) (P /()12 = IV (a7 = p)(0)]12 = 0.

Consequently, ) and ¢\ satisfy the conditions of Lemma for large j, then we get
(4.62) and, therefore, limsup,, ,. |||[W\V|||[r < C, for all I > 1. This finishes the proof of
Proposition |4.3.1] O

Let us present now a technical proposition.

Proposition 4.3.2. For every ¢ > 0, there exists an n-dependent finite partition of I = [0, T]

p .
0,7 =J I, (4.63)
i=1
such that
limsup [|W, + wP|| piogi xpsy < e, (4.64)
n—oo

foralll1 <i<p, [>1.
Proof of Proposition [4.3.2 Since

hinj;ip Hw,(f)HLw(lst) — 0 as | — oo,
given € > 0 be a small fixed number, there exists [; > 1 such that

lim sup ”'U},Ell) HL10(1><R3) S (465)
n—00

N ™

if [ > ;. Moreover, by Lemma [4.2.4} there exists [, > 1 such that

!
lim sup [|[Wi7 | prorxps) = limsup | > g
n—00 n—00 j—l L10(IxR3)
l
= hmsup Zq + Z qff)
o it L10(IxR3)

l L

. 10
< timsup W gy + (3 169 [Bogpa ) 14:66)

Jj=la+1

for all [ > I, > 1. Recall that the series }° ;-4 ||¢U)||1L%(RxR3) is convergent, so we may choose

{5 such that

1

(199 omn ) <

J2lo

(4.67)

me
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Putting together estimates and ( , it follows that

hmsup |W S 0 4+ w HLw (Ixr3) < hmsup HW( | L1o(rxmsy + hmsup Hw HLlo([XRa)

l L

. . 0 £
< 11m_>SUp||W7(Ll2)|’L10(1xR3)+( > ||7vz)(j)||}:010(IR><R3)> +§

j=la+1
< (15) 3e
< 1m_>sup W || Lo (rxmsy + T (4.68)

for every [ > I3 = sup(ly,ls). Considering the natural number [3, the idea is to construct I3
partial finite partitions of I for every 1 < j <3, and the global decomposition is obtained by
intersecting all the partial ones. Note that the partition is needed for n large. Therefore,
in the next construction, we take n large enough.

For j = 1, we split the interval [0, 7] = " U 12" U I3 according to Theorem [4.11]

i. For (I}*): Using Theorem and Lemma [4.9) there exists p{!) linear concentrating

solution such that

i (1) 7 < lg® — p» (1) <=
131_)5;1) 117 ||L10(1}LAX1R3) < llgn ”Llo 1M xR3) + ||Pn ||L10 11AX1R3) Al
i. For (I3*): Analogously,
. €
lim sup ||q7(11)HL10(1§L»AXug3) < ||qr(zl) (1)||L10 @A xr3) T “pn 10 (120 xR3) = Al
n—r00 3

ii. For (I2*): We have I2* = [t(D — (A(D)2A +(D 4 (h(D)2A]. Therefore,
Hqg)HLlo(ﬁ;AxRB) = Hw(l)HLIO([fA,A]xH@)-

Once A is fixed, we may divide the interval [—A, A] in a finite number of intervals 1@ such

that
€
Yﬂ(l) (0),A < —.
[l < 3
Therefore
€
Hqg)”Lw(Iff)’AxRS) = [[¥ M| progroa ms) < 415

This gives the decomposition for j = 1. Analogously, we construct a partial decomposition for

every 7 = 2, ...,13. Finally, the global decomposition is obtained by intersecting all the partial
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ones. Hence,
3¢
lim sup HWS) + wg) HLIO(Ii xR3) < lim sup HWéh) HLlo(p xRR3) + —
n—00 " n—00 " 4
s 3e
< limsu () + —
s - 3e
< limsup ||CI£LJ)||L10(1;;xR3) + 1
s ¢ 3e
< — 4+ — ==
= 4l3 4
The Proposition is proven. O

The next technical lemma will be important for the next proposition.

Lemma 4.3.4. Let B be a compact set of R x R3. For every ¢ > 0, there exists a constant
C'(e) such that
HVUHLQ(B) S C(é) HUHLIO(RXRS) —+ 2’:‘HV1}(0) HLZ(RS)7 (469)

for all solutions v of the linear Schrédinger equation.

Proof of Lemmal4.3.4 We argue by contradiction. Suppose that (4.69)) does not hold. Then,
there exist ¢ > 0 and a sequence (v,,) of solutions of the linear Schrédinger equation such

that

HV’UmHLQ(B) > mvaHLw(RxRa) + EHVUM<O)HL2(R3)'
Define ¥y, := Uy, /|| VU || L2(5)- One has
1> mHﬁmHLm(Rng) + é’:THVTJm(O)”Lz(Rs).
Note that ||V,,(0)|| z2(rs) is bounded and

m||1~)mHL10(RxR3) < —6||v1~)m(0>||L2(R3) + 17

thus

|V L10(RxRE) — 0 as m — oo. (4.70)

By Strichartz estimates,

198l 32 sy < OV (0) | 20e)-

10
3 (RxR3
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So, we conclude that ||V, 1 is also bounded. In view of (4.70)), there exists a

3 (RXR3)
subsequence of (,,), also denoted by (7,,), such that

Vi, — 0 weakly in L3 (R x R?) as m — oo. (4.71)

We need the following lemma (see Lemma 3.23 in (MERLE; VEGA, [1998) for two spatial

dimensions).

Lemma 4.3.5. Let (¢,,) and p be in L*(R3). The following statements are equivalent.
i) om — @ weakly in L*(R3);
i) B, — ey in L5 (R x R3).

Continuing with the proof of Lemma , we set 1, = V7,,(0,.). One has

e Yllizs = €2V 0,,(0)] 25)
VU (0) || 228)
VU ()]l L2(5)
= 1

But, up to a subsequence,
VYm — 0in L*(R?) as m — oc.

This fact contradicts the compactness of the operator ¢ +— U(t)y) from L*(R?) to L7 (R*).

loc

Therefore, holds. O

The previous lemma ensures the following proposition, which guarantees the smallness of

6T(f), for large n and [, where

5 = |V BV + w?) - 507

l

Ba?) - BVY))

A
L7 (IxR3) ;

10 :
j LT (IxR3)

1

Proposition 4.3.3. We have that

lim sup 6 — 0 as I — oo. (4.72)

n—0o0

Proof of Proposition[4.3.3 We split the proof into two parts. The first one is devoted to

proving that for every [ > 1, one has

HV(é}lB(QSZ)) - 5(W,§j))) —0asn — oo, (4.73)

10
LT (IXR3)
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In the second part, we shall prove that

limsup || V(B(WD 4+ w?) — 5<wg>>>||ﬁuxk3) — 0 as | — oo. (4.74)

n—oo

Part 1. Note that

< CDy,

10
LT (IxR3)

I
V(3869 - BOvI)
j=1
i.e., the left-hand side of (4.73)) is bounded by a sum of quantities

Dy = V(a0 0 a7V a0 g

with at least two differents ji, for k = 1,2,3,4,5. Arguing in the same way as in the proof of

Lemma [4.2.4] we want to prove that
D, — 0 as n — oo.

Assuming, for example, j; # 72, we have
D // Vg0l (g0 % dadt
/ . |V (41) (32))( (Jk)) +q (Jz)v( (Jk)>3‘170 dxdt
R
< C [ [ 1965045 ¥ 1q0 ¥ dodt

+c// 1490 ¢2) | ¥V (g3 % ddt. (4.75)

To bound the first integral on the right-hand side of the inequality above, use Holder's ine-

quality to get

3
/ |Vq7(1j1)q7(1j2)‘$’q7(1jk)’¥ dedt < C(/ ‘ngﬂqu)’%o dmdt) (// ’q(Jk )10 dxdt)
R JR3 R JR3
Cllg \|L10R4>( L[, 1va0qg dxdt)

4

7
< C(// Va2 dxdt)
R JR3

IS

IN

This last term can be written as

G (L=t x—l“%jl) G (L=t @ — )
Vi (0
h(“)h” P\ e | I (h)2 " B

5 4
2 7
dxdt) .
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The orthogonality of [R1), 200 t0V] and [RU2) £02) $(2)] means that

h(]l h(Jz)

either h(] D +

t(h) — ¢(2)

n

h’

— +o00 or h(ﬂ) = h j2) xgl) _ Igjé)

— +00,

h(]l) h7(lj1)

as n — 0o. Without loss of generality, we may assume 171, 172 to be continuous and compactly

supported and analyze the possible cases:

B (J1) hgljz) 'Ele) hglJ'Q)
o If h“?) + 01 — 400, then either 2 o — 400 or ey — +o00. We assume
h(Jl)

o T +0o (the other case is analogous).

Using the change of variables t = s(h(2))2 4 U2 x = yh(?2) + 22) we have

1 PpUv ty2) — v S(hgih))z v — af + hy w(h)(s )| dyds
(41) 3 (J2)\ & (F1)\2 J1)\2’ (41) (41) ’
(hIIR): R N R T T o
5 4
h2) 2 tG2) _ (1) h2)2  (2) _ (1) h2) 2 Y
_ (b >5 VARSI e i) : +y—r— | (s,y)| dyds
hff”)? R4 (h(Jl))Q (h%ﬂl)>2 h%]l) h%]l

— 0
as n — 00, since that 171,172 are continuous and compactly supported.

o |f hgl) = hﬁfé), with the same change of variables as above, we get

(L1

tSlLtS?)
h(j1)2

n

ensures that the first integral on the right-hand side of (4.75)) converges to 0.

(h’Sle))Q ts (h(jl)) h%jl) h‘

] $(2) _ (1) h(32) (42) _ .(41) hG
vyl/J(jl)( n ( ) Ly Ly

xSllzﬁfé)
h,(njl)

Since — 400 as n — o0, the previous integral tends to 0, which

Now, we examine the second integral on the right-hand side of (4.75]). Again, Holder's

inequality ensures that

/ 3|qT(Lj1)q£Lj2)|17O|V(qq(1jk)>3‘17()dxdt < C’// 101 q32)| 7 | (qUn) 2w qlw) | 7 dxdt
R JR
< C’/ /3 |qn ]2 ‘ u ’q(Jk ’7O|vq7(ljk)’170dxdt
< Cl o900 By ([ [ 10 )’
%
< (// gD g P dazdt)
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and

2
(// ’q(J1)qnj2)|5 da:dt>7

. , A 5 2
_ / / j1 t — t(h) T — xgljl) 77/)(1'2) t — t7(1j2) T — $7(i72) AN
h(]l h(m R3 h(]l)) R (h%h))g A

Analogously to the previous case, one concludes that the second integral on the right-hand

side of (4.75)) converges to 0 as well, which shows the convergence (4.73)).

Part 2. By Leibnitz formula and Holder's inequality, we get

VWY +wl) = W)l O Nl piogrxes) WA + w7

10 <
LT (IxR3) — (

HIWORIVOT00 ) 5, o)

Since that (4.16)) and (4.60|) hold, if we prove that

- RV
lim sup [[W,"Vwp'll g /s

— 0 as ! — oo, (4.76)
the proof of ( is complete. Indeed, the convergence of the series 3", [0 [|1%, (RxR?)
implies that, for every € > 0, there exists [(¢) such that
> 1P pey < €' (4.77)
32l(e)
In particular, using Holder's inequality with p =4 and ¢ = %,

10

l
lim su H( (j))Vw(l) = limsu lim sup || Vw® ||*%
naoop j:zl:(g) @ L2 (IxR3) n%oop L10(IXR3) naoopH " ‘LIO(I R3)
< Z Hd’ )||L10 RxR3) thUPHVU) ||10 2 xR
j2l(e)
< Ce",

Z)Hm

where the last inequality follows from the fact that |[Vw - is uniformly bounded,

by Strichartz estimates. Therefore,

!
o . 1)) 7o ®
hmsupHW V! Hm(foB) = hfln_)S;}p (jzlq” )an L3 (IxR3)
ORI
< limsup (Zq,(f)ﬂL > qfﬁ)ng) 5
oo NG ERED
I(e) '
< limsup ( qnj)>vw(l)
I
—|—hmsupH< Z qff))Vw(’)
00 IS L2 (IxR3)
< limsup WOVl 5 o+ Ce,
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for [ > I(g). Hence, our problem is reduced to prove that

liglﬁs;}p W 107! ||L2(I R 0as!— o0

for every fixed [y > 1. Since W,(LlO) = Z ) q( we have to show that

n

()
hmsup ¢V VD] Ly 0as ! — oo, (4.78)

forevery [ > j > 1, i.e.,

1 ot —1t0) e — @)
lim sup H w(j)( (.)” ) * (f” ) w . — 0 as | — oo.
n—oo ||\ /@) (hi”)2 " hai L3 (IxR3)
— 2 t — )
To this end, change variables to y = z (ﬁn : (h(j);Z to get

where
= VaP wO (D 1 (h9))2s, 20 + hDy).

Observe that, by Lemma |4.1.3]

||vw(’>

ng)HLlo(IxH@) = ||U~1§f)HL10(RxR3) and [Vl 1 n ||L%(RxR3)-

L% (IxR3)
By density, we can take ¢V) € C$°(R*). Using Hélder's inequality, one sees that it is enough
to prove that

hmsup VoD || 23 — 0 as 1 — oo, (4.79)

where B is a fixed compact of R x R3. Indeed, let I/fl be the function defined by

W (t,z), if (t,r) € B,
Dyt ) =

0, otherwise.

Then, v/} is a solution for the linear Schrédinger equation and we get, by Strichartz estimates,

hinjongw(j) w HLQ(Rng) < liflr;s;}p”@b(j)vwg)u%w)
< ligl_)Solip||¢(j)||L10(B)||Vwr(z,l)||L%(B)
< liflr:s;}p||1/f(j)!|uo(s)||Vﬁ1(f)HL%(B)
< timsup [0 [VEL]ap g
< lizrisgp||w(j)HL10(B)||VD7(LZ)HL2(R3)
< timsup [ pogs) V7 [ 20s)
<

lim sup [|¢p") | L10(5) [V IL2(5)
n—oo
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Applying Lemma m to u?,(f) gives
VB3P |2 < CEY [l p0@xrs) + el VR (0) 2(zs)-
The invariance of the L' and H' norms by the change of variables gives
HVUN)S)HLQ(B) < C(g)ng)HLlo(IxR?)) + 8var(11)(0)”L2(R3)-

So, it follows that

limsup | Vo || 125 < Ce.
l—o00

Since ¢ is arbitrary, (4.79)) holds. This concludes the proof of Proposition [4.3.3, O

4.3.3 Proof of the nonlinear decomposition

We finally prove Theorem foIIowing the ideas introduced in (KERAANI, |2001)). First of
all, note that the nonlinear profile ¢\7) is globally well-defined. Indeed, for a bounded sequence
(¢n) in H(R?) such that limsup, . ||@nllzn < Ao (where ) is given by Definition , and
(vn) (respectively (u,)) the sequence of solutions to the linear equation (respectively to the
nonlinear equation) with initial data ¢,,, Theorem provides a decomposition of v, for a

subsequence (still denoted as v,,) in the form
l .
va(t ) = 3 p(t,2) + w (@)
=1

where pl) is a family of linear concentrating solutions associated with [p"), h(), £() ¢()]and

the remainder term w() satisfies
- ()
hgl_)Sotip lwy [l Lo Lemrropro — 0 as I — oo,

for all T > 0 and (@(j),g(j),z(j)) 1 (ﬁ(k),g(k),z(k)), for any j # k. Also, the following almost

orthogonality identity holds

!
IVoalZe = 3 IVEP N7 + Vw22 + o(1) as n — co.
j=1

Let ¢) be the nonlinear concentrating solution associated to pl/) for every j > 1. Observe

that, given the almost orthogonality identity,
1945 (0)]3 = V65 (0) 32 < lim sup [V, (0) 32 < [Vipnllfs < 4,

and then the nonlinear profile ¢\/) is globally well defined.
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Proof of Theorem[4.10. Consider

rO(t, x) = u,(t,z) — > g (t,z) — w(t, x).
We need to prove the convergence
hgisol.fp(”vrg)HL%O([O,T};LI*?(R?’))JFHT?(%Z)HLm([O’T];Lm(W))HVS)||L°°([0,T];H1<R3>>) — 0 as{—oo.

To this end, recall the notation used before,

B(z) = |22,
l
WO =3¢,
j=1

and

j=1 j=1
The function () satisfies the equation

’iaﬂ‘g) + Arg) = f(l),
) (0) =25 (Y — )(0) = 0.

Introduce the norm
Mol = llglsocresy + IVl 3
Note that, by Strichartz estimates, for any v solution of linear Schrédinger equation with initial

data ¢ € H*, one has

ol = Tvllziore +1Vell 3 2 < ClIVe ol

< C|Vel:.
From now on, we use the notation

1(a) = 1VrP(a)llzz.

for every a € [0,T]. Applying Lemma Mto r®D on I = [0, T], we obtain

01l +sup 1970012 < C(IVE1, 9, ) (4.80)
We estimate the right-hand side of inequality ((4.80 m by
(l) @
Iy = [0
+|v [@(Wﬁ +u) - sov||
LT (IxR3)
Hv[ D 4 w® 4 r®) — GO + wg”)} (48
L7 (IxR3)
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Furthermore, a combination of Leibnitz formula and Holder's inequality gives that

[V [5V0 + 0l 4+ 10) = sV + ]| (+82)
L7 (IxR3)
< (WY + wDIWD + 0l lrOll
5
+ WO+ w1 ).
a=2
Denote
l
50 = [ v 8w+ u®) s )| V(s - s,
L7(I><R3) j=1 L7(1><R3)
(4.83)

Using (14.81)), (4.82) and (4.83) into (4.80)), it follows that

5
H\Tff)H!I+St1€1y|!wﬁf)(t)llm < C(5S>+ZHIW£Z)+w9!H?“IHT%”HI?

a=2

+ WA+ wP[[FIWAY + w | progre 170 11164-84)
In view of bound (4.84]) and Proposition (4.3.1, we get

2l +sup 900l < € (3@ +00+3 WD -HIVO s L1,

) o (4.85)
for all 1 > 1 and n > N(I). The Proposition [4.3.2 shows that under a suitable finite partition
of [0, T, one can absorb the linear term in |||r{"|||; in the right-hand side of (4.85]). Applying

(4.85)) on an interval I’ , provided by Proposition [4.3.2, one gets
I%)’

7]

5
1y 4 sup [[Vrd (1)]| 2 < C(’Yff)(ai) + 00+ 3 I l15 + 21|
tel} "

a=2

forall I > 1 and n > N(I). So, choosing ¢ so that Ce < i, we obtain

7]

5
i - sup Ve ()2 < C(’YS)(@;) +0) + > [11r]
teld a=2

;2). (4.86)
Now, we use an iterative process to achieve the result. For i = 1, (4.86]) reads
5
D11l + 50 (VA @)z < C(400) +60 + S Il ). (487)
tel} a=2

Recall that, in view of definition of ’y,(f), we have

=0, (4.88)

L2

200) = 1900l = [7( S04 - ) 0)
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for all [ > 1. Due to (4.72)) and ({4.88)), it follows that, for all large enough [, there exists N ()
such that, if n > N(I), then

YD) + 69 < ag(e). (4.89)

Denote by M the function defined on I! = [0, al] by

S
M, (s) = IrPMo.q + = sup [[Vr (0)]] -
a;, t€[o,s]

It is clear that ([4.86)) still holds if we replace I} = [0,a;] by [0, s] for all s € I} .Thus,

M) < C(500) + 60 + i(Mﬁ)"(s))-

a=2

Hence, the function M! satisfies the conditions of Lemma for large [ and n > N(1). So
My (ag) = [[lrP 5 +sup [[VrP (0)]]2 < 2¢(4P(0) + ), (4.90)
tell

for large [ and n > N(I). Using (4.72)), (4.88)) and (4.90)), one obtains
lim sup <|Hrff)|||1711 + sup |yvr§j>(t)”L2> L 0asl - .
n—00 tel}
On the other hand, we have

1 (an) < sup |[Vr) ()] 2,
ter}

which gives

limsupyY(al) — 0 as I — oc.

n—o0

This allows us to repeat the same argument on the interval 12 = [a}, a?

n’'n

]. We get, similarly,
Pz + sup [V (@) 2 < c(vP(ar) +00).
tel?

Thus

lim sup <|Hr7(f)\||1% + sup |]Vr,g)(t)HLz> L 0asl— .
n—o0 te[%

Iterating this process, we get
lim sup <|Hrff)|||1% +sup |yvr§j>(t)”L2> L 0asl - oo,
n—so0 teli
for all 1 < i < p. Since p does not depend on n and [, one has
lim sup (|||r§f>|\|[0,ﬂ + sup HVrg)(t)HLz> v 0asl - oo,
n—00 t€[0,T]

which concludes the proof. O]
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4.4 APPLICATIONS

In this section, we bring some properties satisfied by the solutions of the nonlinear equation.
Some of these results will be useful in demonstrating the Theorem [2.2] one of the two main

results obtained in this thesis.

4.4.1 Some estimates for the nonlinear evolution solution

Our first result is a consequence of Theorem [4.10)

Proposition 4.4.1. [Corollary 1.14, (KERAANI, |2001))] There exists a nondecreasing function
A [0, X0 = [0, +00] such that, for every solution u to system (4.3) with [|[Vu(0,.)| r2®s) <
Ao, we have

||Vu|| -+ HuHLlO([O,T]xRS) < A(HVU(O, -)||L2(IR{3))- (4.91)

L% ([0,7]xR3)

Demonstracdo. We argue by contradiction: Assume that the estimate (4.91)) fails. Then, there

exists a sequence (uy,)nen of solutions to system (4.3]) such that

Sup || Ve (0, )l 2y < Ao (4.92)
ne
and

VUl 32 o sy + 1anllioqo,rixmsy — 00 (4.93)

as n — oo. Applying Theorem to the sequence (u,(0,.))nen,wWe get that there exists a

subsequence (still denoted by (u,,),en) such that

!
un(t, ) = > ¢ (t, ) + wd(t,x) + r (¢, x),
with
hmsupmw +rn\|]0T <C,

for all I > 1. Hence,

tim sup [[[u/[[j0.7) < Tim sup [[[wf? + 77 HI[OT]+ZH|‘P Mr < +o0,
7=1

which contradicts (4.93]) and proves the existence of a function A satisfying ({4.91]). ]

The next proposition is a consequence of Strichartz estimates.
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Proposition 4.4.2. Let u € C([a,b]; H'(R3)) be a solution of the damped Schrédinger
equation

10w+ Av —v —a(l — A)radw = f
on I = [a,b] with Vf € L2(I; L5(R®)) and f € L*(I; L*(R®)). Thus, the following inequality
holds

Vol + Vo] ¥ gayy T SUP [[0(D)]|z2 + sup [Vo(t)]| 2
tel tel

(L5 (R3)) L1O(I;L T3 (R3))
< C(Io@ s + 195121 gy, + 1 sz )
Demonstracdo. The solution v satisfies
. t t
v(t) = e®v(a) ~|—/ A f dr +/ Ay 4 a(1 — A)tadw)] dr.

Applying Strichartz's estimates,

t t
lo(t)|| L2 /a eIAf dr /a Ay 4 a(1 — A)tadw] dr

IN

Cllv(a)ll

|

L2 L2
CHU(CL)HHl + C||f||L1(I;L2(R3)) + C||U||L1(I;L2(R3)) + ||CL(1 - A)_laatUHLl([;Lz(H@))

IA

IN

Cllv(@)[m + Cllfllerasrzme)) + Cr sup [o()[| 22 (re)
€
+ CHCL(l — A)ilaJilAUHLl(I;Lz(Rs)) + C’Ha(l — A)flajflful/l(I;LQ(Rs))

IN

Cllo@) s + Clllarzaesy + Corsup [0(8) |2
€

and

Vo)l 2

IN

CIVo(@)lz + | [ vty ar|
Cllv(@)lm + CI V]
Clio@llea +CIV AL 08 @)

+OVa(l = A)ra Al pirpesyy + CIVa(l = A) " ad " fll e ey
Cllv(@)lm + C V]

t .
/ Vel=Ay + a(1 — A)Ladyu] dr

IN

L2(1;L% (B3))

IN

+ Crsup ||V (t)| 2y + Crsup [|[v(t) | 222
tel tel

IN

@y T OrsUp IVo(Ollzzs) + Crsup o))

+ Ol fll o rc2msy)-

+ ||VUHL1 2wy + O Va(l - A)_laatv||L1(I;L2(R3))
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Additionally, we get

[ollzogxmsy < [Vl

LlO % (RS))

t )
[ vt ar
3 )
/ V=2 + a(1 — A)rad] dr
CHU( )HHl + C||vf“L2 IL5(R3
+ CHVCL(I — A) a/atU”Ll(I;LQ(RS))
Cllo(a)lm + CIV S]]

10 %
Lior]

< ClVo(a)llz2 +

10733
rior}

+ Cl Vvl L ;2 msy)

IN

IN

rerd ey T OTSWP VOOl + Crsuplo(t)l|zees)

+ C||Va(1 - A) CZJ 1AU||L1(I;L2(R3)) + CHVG(l — A)_laJ_1f||L1(I;L2(R3))
Cllo(@)lm + CIV L]

IN

L2(1;L8 (R?)) +C1 stg) IVo(t)| L2(re) + Ci Stlely [0(8) | 2(ra)

+ Ol fll a2 msy)-

Finally,

L3 Ly

t .
||VU|| T0 ?o < C”VU(@)HL“LH/aVez(t_T)Af dr

10

L3L3

t )
/ Vell=A [y + a(1 — A)Lad] dr
Cllv(a)|lm + CIV S]]

IN

+ Crsup [[Vo(t)]] 2 @)
R%) tel

L2(1L
+ C“VCL(]. — A) aatUHLl(I;L2(R3))
< Clo@lm + CIV I a8 gayy + Crsmp VU@ 2@ + Crsup o)l 2y
+ O Va(l — A) " ad T A e sy + O Va(l — A) " ad 7 |l e es)
< Cllo(@)lla + CIV L] + Crsup [[Vo(t)l|2es) + Crsup [|[v(t) | aee)
te €

L2(1;L% (B?))

+ Cllf e g2 es))-
Putting together these inequalities, one obtains

IVl s + Vo

(L% (R3))

L10(1 (Rd)) + Stlel? ||'U(t)||L2 + StléP ||VU(t)||L2

< Cllv(a)l[a +ClIVf]]

12(5.L8 (R3)) + Ol fllzr 1,23y + Cr sup |v(t)]| 2 +stl€1§)C’IHVv(t)HLz.

Now, we absorb the additional terms to obtain the desired estimate for I with small enough

length. Reiterating the process, it is possible to get the result for large times. O]

Remark 4.4.1. Using the same reasoning it is possible to show a similar result.

Let u € C([a,b]; H(R?)) be a solution of the nohomogeneous Schrédinger equation

1w+ Av—v=f
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on I = [a,b], with Vf € L*(I;L5(R3)) and f € L*(I; L*(R®)). The following inequality
holds

Vol + Vol +sup ()22 + sup [[Vo(t)]| 2
tel tel

(L5 (R3)) 107,113 (r3))
< (@l + 1971,y oy + 1 lr250))

The next lemma guarantees the L2-norm dependence of the solution on the initial data.

Lemma 4.4.1. Let T > 0. There exists C' > 0 such that any solution u to

10+ Au —u — |ul*u = a(l — A)tadu on [0,T] x R3,
u(0) = o, (4.94)

lluoll 1 < No, where \q is giving by Definition

satisfies

|| oo (o2 ®3)) < Clluo|| 2rs).-

Demonstracdo. First, notice that u € L7([0, T]; L*(IR?)). Indeed, write
) o
u(t) = e ug + / DAy 4 |ul*u 4 a(1 — A)radyu] dr.
0
Through Sobolev embedding and Strichartz estimates, one has

s < 19l

< ClIVu(O)llzz + CIV[ultull 1 + OVl o o722y

L7 ([0,T]xR3)
+ CHV(L(l — A) a@tuHLl([QT];Lz(Rs))

< OVl 2 + Cllul| 710 20| V]| B +CT sup, V()|
tef0,T
+ CT sup |[Ju(t)||rz + HUHLW([O,T};LW(R3))
te[0,T
< C,

since (7, 1‘3) is a L2~ admissible pair. By interpolation, we get
lu@®)llz < llu(t)| Follu(t) | .

So,

5 7
lu(®)[[212 < ()l 0/l 2



114

Thereafter,
T A T 3 z
| e®lbe e < [ @il £ dt

(£, v ‘“)%(/ o )

<
S

(®3) Ls([om ®))
< C||“||L10<[0,T};L10<R3>>||“||L7<[0,T];L14<R3>>
< C

Thus, u € L*([0, T); L*?(R?)). Multiplying the first equation of system (4.94)) by , integrating

in x and taking its imaginary part, one has

2 = 1—A -1 U )
th/ lu(t)|” dz Im(/ a( ) adwu - T dx
< / la(1 — A)adu - 1| da.

Integrating from O to ¢,

1 1 t _ _
S = SOl < [ [ Ja( = A) a0 u duds
0 JR3

t
< /0 la(1 — A) " adyul| 2 |[u(t)|| 2 dt.
On one hand,
la(l = A)adule = |la(l —A)ra(—iJ 1 — A)u —iJ  Hul*u)]| 2
< la(l =AY tad N1 = A2 + [|la(l — A)rad Hul*ul| 2
< Cllu(®)|rz + ul*ull g-1.

Observe that taking V' = |ul*, since u € L*([0, T]; L'*(R?)), we have V' € L'([0, T]; L*(R?)).

Also, using Sobolev's embedding and Holder's inequality,

lal*ullzs < CIVuls

< ClVllzsllulla-
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Therefore,
1 9 1 1 9
Sluze < / la(L = &) adullpallu(®)| 2 dt + 5 u(O)]
< 0 [ (el + Natullg ) o)z de+ 5 o)
<c / (Ilutt HL2+HVHL3HU()Hm)”u()HLQ dt + ()]s
< ¢ [ (1 IVl ) ha®)l3s e+ 3 ()]s
< Nelldmosyan C [ (1 IV3) de -+ 5lhu(0) e,

Consequently,
lullZeeogsz2) < 20 + IV Iz o.g:9) ullFoe o522y + [0 (0)]I72-

We can divide the interval [0, 7] into a finite number of intervals [a;, a;41], ¢ =1, ..., N, such

that 2C(t + | V|| 11 (as,a:.0):1%)) < 1/4. In each of these intervals, we have

[l o (s api01z2) < Cllula) |72

The desired result is obtained by iteration. The final constant C' only depends on )\ and

T. O
As a consequence of the previous result, we have the following corollary.

Corolary 4.4.1. Let T > 0. For all ¢ > 0, there exists 6 > 0 such that any solution u

satisfying system ({4.94)) and

uollz— <6

satisfies

[u(T) [ < e

Demonstracdo. By Lemma |4.4.1, we have
[u(T)[ =+ < Cllu(T)|z2 < Clluf0)]] 2

However, by an interpolation argument between HS(R3) spaces, s € R, one has

lu ()2 < [ [lu(O)] 2
)

< AG (O 17+
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Then,
(T -+ < Cllu(0)||z: < CAGlJu(0)]I 7+

Taking 6 = we conclude that

52
C2)\'’

[u(T) [ < e
[l

The next lemma ensures an approximation between sequences of solutions under some condi-

tions.

Lemma 4.4.2. Let u,, 1, be two sequences of solutions for

10Uy, + Aty — Uy — ||y, = a(l — A)"radu, on [0,T] x R3,
u,(0) = ug,, bounded in H*(R?), with |[ug.,|/m < Ao

and

10yl + Adiyy — T, — |Tin|*in = 0 on [0,7] x R3,
ﬂn(0> = aovn bounded in H*! (R3>, with ||1207n||H1 < )\0,
respectively, with ||u, o — n ol g1 — 0 and ||(1 — A)*%aatun\|Lz([07T];L2(R3)) — 0 asn — 0.

Then,

||un_an||L10([0,T]XR3)+Hv(un_an)n 10 10+ sup |V (un—Tp)|| L2+ sup |Jun —Tn|[z2 — 0
Ly L teo,T) te[0,7]

asn — oo.

Demonstracdo. Let r, = u, — t,. It satisfies the system
i0irn + A1y — 1y — |Un |y + || 0, = a(l — A)"radyu, on [0,T] x R3,
7 (0) = wgn — Ugn-

Denote

‘oa
(e}

1oz = Nl-llizoqozixrsy + V-l sp 30 + (V-]
t x

w

rorl
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Strichartz's estimates give us

t .

7ol o) + sup [[Vrn(t)|l2 + sup [[ro(®)]l2 < {|rn(0)||mr + H/ Vel(t”m(u;i—ﬁi) dr "
te[0,T] t€0,7] 0 LioLa?

=121 — A aduu, dr 30

LoLts

5 -5
< Ol + [V (wy, — Un)HL%LQg
=+ H(Z(l — A)_laatunHL%H%

+ [y, — @) prre- (4.95)

Observe that

la(l = A) " adun| gy < Clla(l — A) ™ adyun|| 121
= Jla(1 = A)"2(1 = A)"2ad,un| 22
< Cll(1 — A) Zadyun| 202 — 0 (4.96)

as n — o0. On the other hand,

30 ||un||L10L1o +

(]

L10L73

1905 =Tl 8 < el ponpll Vet = Vil g+ = Tl gonso V),
s = Tall oo 191y, 1o
< OV = Vil 5Vl
+ IV =Vl 3 (VT g + Il g1V, )
< ClIVun - Vunuwsg(uvw so+uwnu;%%
IV, IVl )
< IVl 0 (IVTE gy + IVl g+ IV 90l )
and

o~ gz < Ml — Tl (g + 1l 0
< Cllun = il (Iuall oz + gy

< CHVTnH 30 (Hvun||4 39 + Hvun”410 13>.

10 13

So, dividing the interval [0, 7] in a finite number of intervals I;,, = [ain, Giz10], 1 <1 < N

such that C<||Vun||4 a0 + IVt a0 + V] . 2 ||Vun|| > < 1, the terms of
rop B3 rop B3 LoLp

inequality (4.95)) can be absorbed. We iterate this estimate N times, whlch gives the result. [
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4.4.2 Profile decomposition of the limit energy

Let u be a solution of the nonlinear Schrodinger equation (4.97)). Denote its nonlinear
energy density by
1 1
e(t)(t,x) = 5| Vult, )" + Zlu(t,©)"

For a sequence w,, of solutions with bounded initial data in H'(RR?), the corresponding nonlinear
energy density is bounded in L>°([0, 7], L') and so, by Sobolev embedding, in the space of
bounded measures on [0, 7] x R?. This allows one to consider, up to a subsequence, its weak*
limit. The following theorem proves that the energy limit can be decomposed into profiles as
Uy,. It will be a crucial argument that will allow the use of a microlocal defect measure on each

profile and then apply a linearization argument.
Theorem 4.12. Let u,, be a sequence of solutions to
10ty + Aty — |t [*u, = 0, (4.97)

with u,(0) convergent to 0 in L*(R3). The nonlinear energy density limit of u, (up to a
subsequence) is
e(tr) = 3 Ot 2) + eg(t, ),

7j=1
where eV) is the limit energy limit density of ¢\ (following the notation of Theorem
and
1 . A
ey = lim lim e(w,’),

where the two limits are considered up to a subsequence and in the weak* sense. In particular,

ef can be written as
er(t,z) = / t,x,d§).
st = [ wlt.ade)
Moreover, e is also the limit of the linear energy density

1
Clim (U ) (t, ) = §|Vun(t,x)|2.

Demonstracdo. The proof of this result is a direct consequence of Theorem 4.10] Indeed, since

l|tn ]| 100, r1xr3) < C' it follows, by an interpolation argument, that
”unHLz([QT]XH@) — 0= HunHLe([QT}X]Rs) — 0 asn— oo.

Therefore, e is the limit of b(u,,u,), with

b(f,9) = VI(t,x) - Vg(t, ).
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Now, we have to compute the limit of b(u,,u,) using the decomposition of Theorem [4.10]

We set, for each [ € N,

=>4y

=1
and so

b(tn, tn) = b(sY, sV) + b(w®, wh) + 2b(sV, W) + 2b(uy,, rD) — b(rW, O,
The convergence ({4.55)) gives

lim sup ||26(up, 7)) — b(r l),T,(f))||L1([o,T}><R3) —0

n—o0

as | — oo. So, if we define () = w * lim,,_,00 (2b(tp, 7V) — b(r®, r1)), the weak* limit, we

n n

have

el) — 0 asl— oo.

Let (¢, ) = p1(t) - pa(x) € C((0,T) x R?). It remains to estimate

T ! T
b(s® w®) — / / bla@ w®
/0 RS 2 (Sn y Wy ) le 0 ¥1 R3 ¥2 (Qn y Wy )7

for each fixed 1. To this end, first note that, since b(¢\), w") is bounded in L>=((0,T), L'(R?)),
we can assume, up to an arbitrary small error, that ¢ is supported in {t <t} or {t > tU)}
(replace ¢; by (1—‘11)(t)<p1 with U(tQ)) = 1 and ||| 11(0.7) small). On each interval, Theorem
4.11 allows to replace ¢\ by a linear concentratmg solution. Then, by Lemma we
get the weak convergence to zero of b(s(), w(!), for each fixed I. Indeed, by Lemma m

D,(ln)wg) — 0, 1 <5 <[, which means,

w9 + (B9, 20) 4 hUy) — 0in HY(R?) as n — .
It is enough to compute [zs V,w (¢, x) - V,pW) (¢, z) dz. We have

/ VD (t, z) - Vop(t, z) do

1 ot — 10— )
= /]R3 V.wD(t x) -V, gpm( N 7x T > dx

p N2 Ry
. , 1
= [ V) + (05,0 + hPy) - Voo (s.y) (h)'dy
b

_ /RS R w® (D) 4+ (h9)2s, 29 + h0y) - V09 (s, y) dy — 0

n

as n — 0o. Lemma and the orthogonality of the cores of concentration yields

DYpy" — 0,
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for j # j/ and pY") a concentrating solution at rate [, ") ¢")]. Then, the same argument

as before gives

So we have proved that, for any [ € N,

T

I
b(un,up) =* 6= e + e + eV asn — oo,
j=1

where el!) is the weak* limit of b(w, w") and el satisfies e!) — 0 as [ — oo. Since () is
the weak* limit of a sequence of solutions of the linear Schrédinger equation with initial data
convergent to zero in L?, we can use Proposition [.2| (Appendix) to conclude that b(w®, w®)
converges (locally) to a positive measure e;. Hence,
e=> e te;
j=1

and the result is proven. O

Remark 4.4.2. The previous result only holds locally, since the Proposition[.2 is valid only in

compact sets. The reader will note later that this will be enough to achieve our purpose.

45 CONCLUSION

In this chapter, we closely followed the work from in (KERAANI, 2001) and (LAURENT,
2011)), combining the methods used in both. We followed the decompositions carried out by
Keraani in (KERAANI, [2001)), but with the significant difference that in this thesis we consider
h, as a scale of positive numbers converging to zero, in the spirit of Laurent in (LAURENT),
2011)), since Keraani considers h,, to be a constant sequence equals to 1. This combination of
techniques produces some new results such as, for example, Lemma , Theorem [4.11] and

the results from the previous section.
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5 STABILIZABILITY OF NONLINEAR PERTURBED SCHRODINGER EQUA-
TION

This chapter is devoted to the proof of Theorem [2.2 To show the desired stability result,

we need to obtain the following observability estimate
T 1
_mw@gcj“/Ju—Armwmth (5.1)
o Jr

The proof of Stabilizability consists in the analysis of possible sequences contradicting this
observability estimate or, more precisely, a weak version of this estimate. In our case, specifi-
cally, to obtain we need a weaker observability involving the initial data in a lower norm.
Then, considering this small enough data, we obtain the desired strong observability. The first
step is to prove that such sequences are linearizable in the sense that their behavior is close

to the behavior of solutions of the linear equation.

5.1 LINEARIZATION

From now on, we consider a € C*°(R3) satisfying (2.3)). So, denoting w := <R3\BR(O)),
w satisfies the following geometric control condition. There exists 7, > 0 such that every
geodesic travelling at speed 1 meets w in a time t < Tj; Let us present now the following

linearization lemma.
Lemma 5.1.1. Let T > Ty and u,, be a sequence of solutions to

10Uy + Aty — Uy — |tp|*u, —a(l — A)tadu, =0, on[0,T] x R3,

(5.2)
4n(0) = to, in H'(R?)
satisfying
up, — 0 in L*(R?) asn — oo (5.3)
and
T 1
/ (1= A) 2adyu|? dadt — 0 asn — oo. (5.4)
0o Jr

Consider the profile decomposition according to Theorem of u,, in a subinterval [ty,to +
L] C [0, T] with Ty < L. Then, for any 0 < e < L — Ty, this decomposition does not contain
any nonlinear concentrating solution with t{) € [to, o+ €] and u,, is linearizable in [ty,to + €],
ie.,

”un - UnHLIO([to,toJrs]xR3) =+ Hun - UnHLOO([to,to+€];H1(R3)) — 0 asn — oo,
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where v,, is the solution of

i0vy, + Av, —v, =0 on[0,T] x R3,
(5.5)
vn(0) = ugp in H'(R?).
Demonstracdo. With no loss of generality, we consider the interval [0, L] instead of [to, to+ L]
to keep the notation simple.
Claim 1: The sequence u, is convergent to 0 in L*([0,7] x R?).
Indeed, multiplying the first equation of (5.2) by u, and taking its imaginary part, we
obtain the estimate
1 1 t B
Slua®lizz < 5 llua(0)]]22 +/0 la(l = A)™ adyun |2 |[unl| L2 ds.
Since (1 — A)~za(z)d,u, tends to 0 in L2(R?) and ||, (t)||.2 is bounded, by convergence
(5.3), we obtain Claim 1.
Claim 2: The sequence u,, is convergent to 0 in L? ((0,L); HL (w)).

loc

Since, by hypothesis,
|(1 — A)’%aﬁtunHLz(([O,L];Rs) —0as n— o0
one has
(1= A)"Za(=id (I — A)uy — id ™ | *un) || 220,085 — 0 as n — oo,
Observe that,

11— A)2aid (I — A)u| 20,82
= (1= A) 2a(iJ (I = A)up — id [ un + 10 g *un)|| 12
< (1= A) Za( I I = A)uy + i )| 220,085
111 = A) 200 T | ) | 20,1y 2)
< (1= A Za(i T = Aty + i )| 220,085

+ HU§L||L2([0,L];H—1(R3)) — 0 as n — oo,
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due to the convergence

5112 2
lenllzz 0.0y = cllu "HLQ(OL)L5(R3))
L
< o lua(®)he) d
L 5 25
< [ Tl 5o de
5 L 25
< swp fun(®lf [ lua(®)] o dt
te[0,L] 0
< sup [ (t)]f2 3
te[0,L) Lo
< sup ||un(t)||1§42||un||z5101410
te[0,L] Lo
— 0

as n — oo and using the interpolation
1 5
[[n () l|ze < Mun O £ llun ()] £10-
Hence, for every x € C§°((0, L) x R?), we have
I
(1 —A) za (I — A)Xtn || £2(0,0)xr3) — 0

as n — oo, which is equivalent to

<<1 ~ A Bad NI = Ay, (1— A) Bag (T — A)Xun> -0
L2((0,L) xR3)
= <(1 — A ta NI = A)xt, a I — A)Xun> —0
L2((0,L) xR3)
= <a(1 —A)raJ NI = A)xuy,, JTHI — A)Xun> —0
L2((0,L) xR3)
N <(J_1)*a(1 ~ AT T = Ay, (T — A)Xun> =0
L2((0,L) xR3)
= <(I — A)(J Y a(l —A) raJ NI — A)xu, Xun> — 0
L2((0,L) xR3)

as n — oo. This means, using Proposition |.2 (Appendix), that

1 2\,,2
/(0 L)xR3x 53 <1++|§‘|§’)2a(1 +1€1%) du(t,z, &) = 0.

Thus
/(OVL)XUJXS3 |£‘ /1/( Ly é) )

2
n— 0in Lj,,

((0,L); H}

loc\W

(w)) as n — oo,
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showing Claim 2.

Now, let u,, be a solution to
10y + Aiy, — Ty, — |Tin|*i = 0 0n [0, T] x R,
Ui (0) = o, € HY(R?).
By the convergence (5.4)) and Lemma we get
U, — 0in L2 ((0,L); H. (w)) as n — oo.
Let w,, = eu,,. It satisfies
10wy, + Aw,, — |w,|*w, =0 on [0,T] x R3,
Wy (0) = ugp,

and
w, — 0 in LZQOC((O,L); H}Oc(w)) as n — 0o
and, consequently,
|Vw, (t)|> — 0in L'L' as n — oc.

Using the notation of Theorem |4.12} this gives ¢ = 0 in (0, L) x w (locally). Since all the
measures in the decomposition of e are positive, we get the same result for any nonlinear

concentrating solution in the decomposition of w,,, thatis, e; = 0 in (0, L) x w (locally), and
Vg2 = 0in L,.((0,L) x w) as n — oo

which give us
L )
/ / 0| VgV > — 0 as n — oo,
0 w

for all p € C§°. Therefore,

¢¥) — 0in L2 .((0, L); I}

loc loc

(w)) asn — oo
and if ) is the microlocal defect measure of ¢\), we have
p =0in (0,L) x w x S, (5.6)

Assume that t) € [0,¢] for some j € N, so that the interval (t{), L] has lenght greater

than Ty. Denote by pl) the linear concentrating solution approaching ¢%) in the interval
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A = (t9) + A(hY))?, L], according to the notation of Theorem [4.11} so that, for any

té{) <t < L, we have
15 — D 1o, ycms) + g — pg)HLoo([t,L];Hl(R?r)) — 0 asn — oo.

In particular, 4) is also attached to pl) on the time interval (t), L].
Claim 3: p{¥) is bounded in H'(R?) and |[p%)(t)||2 — 0 as n — oc.

In fact, remember that p{/) is a solution of the linear Schrédinger equation. If p¥) is a

linear concentrating solution, we may consider

POt 7) = SO(j)(“?ff),x—?ﬁg))’
" o Nt Y

and so, with the change of variables et =y,

n

. 1 . :
20l = ([ e vFo

= hPlleP(s)ll e

< ChPlleP ()]s — 0

3G
—
o
Q
<
~_

as n — 00, since we can consider ¢\ (s) € C5°(R?). Thus, pi/)'s measure propagates along

the geodesics of R? and we have
pP =0in (Y, L) x R x 53,

since |L —tU)| > T} ensure that the geometric control condition is still verified in the interval

[tY), L] when combined with (5.6)). This means that
P = 0in L (1), L); Hyy(RY)) s n — oo,

showing Claim 3.

Finally, solving the equation satisfied by p{/) with initial data p{/)(¢,), where to € (t9), L)
is such that ||p\Y)(to)||z1 — 0 as n — oo, one has the strong convergence p/) — 0 in the
space L>([tY), L], H. .(R?)) as n — oo.

In particular, p)(t¥)) — 0 in H}_(R?) as n — 0o, so the measure ;"> associated to

)

pi) (1)) satisfies 1) = 0 in R*x 5. On the other hand, since p{) (t{)) = ——¢!? (x_,f?)
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we can calculate 10> directly. To this end, note that

(A(z, Do) VP (t9)), VpP (t9))) 2

- (271T)3 /R /]R /R alx, €)' Ve (19) () (1) () dydadg

(4)

— Whi/ﬂx?) /R3 /11{3 a(x,f)e( y)£|€|2¢(3)<)¢(3)( ; > dydzd¢

- o i g @I+ 2 ) “|§| o (9) 0 (7) djddg

_ [ ath, 7+ 29, hé) i hn so(”(y)so”( ) dijdzdé

- [ L oyt + 28, )D€ ()00 (7) dgdzdg

- & /Rg ofhod + 2, DL dE > s [ o, DIELIDE o

as n — 00. Using polar coordinates, we get

p>) = § o © ®(9) db,

r—x

where ®(0) = 2773 I |ro)? 00 (1) |2r? dr. Therefore, pi)(t9)) = 0, and the conservation

of the energy vyields
1 Ol gy = 195 ) 1 sy = 0,

for all t € (tg)),L]. Moreover,
Hq7(7,j)<t)HH1(R3) — 0 asn — oo,

for all t € (t¥), L]. Arguing in the same way as before, one obtains ¢/) = 0in (t{), L] as
()

T—T 55

expected, since ¢) (t0)) = F¢ < > Then, for the profile decomposition of w,, in the

interval [0, L], namely,

l
wn= 3+l 00,
j=1

we have proved that t¥) € (e, L], since assuming t\) € [0, ¢] implies ¢/) = 0. Thus, Theorem

4.11| provides a linear concentrating solution p/) such that

1121%S£P (IIq,S?) _pg)HLlo([O,a}xR?’) + ||q( _pn)”Loo ([0,¢]; Hl(R3))> 0

while Lemma [4.9] gives

lim_>sup Hpg)HLlO([O’E]XRS) = O
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Moreover, Theorems [4.8] and ensure

limsup [|w® + r®|| Lo qxrsy — 0 as | — oc.
n—oo

Therefore,
hinjogp ||wn”L10([0,a]><R3) =0
and, hence,
lim sup [tn|| 10 0,61 xr) = 0.
Thus,
|\V\un\4un“L R ogrtey 0 asn — oc.
Since

IVt | ]| 3 < anllziogo.wzs) | Vil 2 (5.7)

L7 (0L ? @) = L (0,20 ®3))
we have that @, is linearizable on [0, ¢]. Indeed, using Remark and Remark (or

Proposition |4.4.1)), note that

i = vl 200y + Ntin = vnllzqoepem@sy < V[T "Tnll 20 o 30 o) + [Tl 2 0229
< COllnllZroqoeixm | Vil 3 .12 g,
+ C||un||L10([0,a]><R3)
— 0, (5.8)

as n — 00, where v, is a sequence of solution to system (55.5)). It follows that,
1t — Vnll L1002 xm3) + [t — Vnll oo ®eyy < |[tn — Unl[L10(0,xR3) + ||t — Un | Loo (0,27 (R3Y)
+ ||an - Un||L10([0,5]><R3)

+ ”an - Un||L°°([O,E];H1(R3))

— 0,

as n — 0o, due to (5.8), (5.4) and Lemma m O

The next proposition assures that a sequence of solutions of the nonlinear system is close

to the solutions of the linear system.

Proposition 5.1.1. Under the assumptions of Lemma we have that w,, is linearizable
on [0,t], for any t <T — Ty, that is

Hun — UnHLm([O,t]xR3) + Hun — ’UnHLoo([O’t];Hl(RB)) —> 0 asn — oo,
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where v,, is the solution of

i0yv, + Av, —v, =0 on[0,T] x R3,
vn(0) = ugp in H'(R?).

Demonstracido. Let
te = sup{s € [0, T]; lim [[us — vnl[£10(0,5)xr3) + [[tn — ValLoo((0,5); 11 (m2)) = O}

We claim that ¢, > T — Tj. Indeed, suppose, by contradiction, that this does not hold, so we
can find an interval [t,—¢,t,—e+ L] C [0, T with Ty < L and 0 < 2e < L—Tj (if t. = 0, take
the interval [0, L] C [0, T7). It follows from Lemma5.1.1|that u, is linearizable in [t,—¢, . +¢].
The definition of ¢, gives limy, ||, —vn || L10((0,t, -] x®3) + ||tn —Vn| oo ([0, —e)s 11 (r3)) = 0 and we
have proved that lim,, ||t — || £10([t, —e . +e]xR3) + || Un — Unl| Lo (jt—e,t. o)1 (R3)) = O where

U, is a solution of

1040y, + AUy — 0y, = 0, Up(te — €) = up(ts — ).
This yields limy, ||, — vn|[L10((0,¢, +2]xR3) + [|Un — Vn || oo (0,6, +¢]; 11 (R3)) = 0. Indeed, we have
) Ol € s ) Ol + s ) = e,

where the first term on the right-hand side converges to 0 as n tends to oo. For the second

term, we have

sup Hun( ) - Un(t)HHl R3)
tE[tx—e,txte]
< s ) =5l - swp [T = on®
tE[t«—e,txte] tE[tx—e txte]
< s Junlt) = Bl + [Tt — ) — valts — iy
tE[tx—e,txte]
< s fun(t) — )+ nlte — ) — vl — iy
tE€[tx—e,txte]
< s ) = Tl - S un(t) — valt) ety — 0
tE[ty —e,txte] te[0,tx—e]
as n — 0o. Now, we estimate the L' norm as
10 ot 10
[un = vnllzio(o 0. ejxms) = /0 1 = vallpros) dt

fee 10 fte 10
S A ||un - Un||L10(R3) dt + A Hun - Un||L10(R3) dt,
«—E
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where the first term on the right-hand side converges to 0 as n tends to oo. For the second

term, we have

1tn — Vn | L0t —estate xSy < [[Un — UnllL10([t,—c ta 42 xR3) + |00 — Unl| L10([t. —c b, 2] xR3)
< Hun - 77nHL10([t*—5,t*+5]><R3) + Hﬂn(t* - €) — Un<t* — €)HH1(R3)
S Hun - 6nHL10([t*—5,t*+a]><R3) + ”un(t* - 6) - Un(t* - €)||H1(]R3)
< lun — ﬁnHLw([t*—s,t*—i-a]XR?') + sup  (un(t) — Un(t)||H1(R3)
te(0,tx—e]
— 0
as n — 00, using Strichartz estimates, which contradicts the definition of t,. O

5.2 WEAK OBSERVABILITY ESTIMATE

In order to show that the observability estimate (5.1)) holds in some sense, we need the

following weak observability estimate.

Theorem 5.2.1. Let T > Ty and \g > 0 from Definition[4.1 There exists C' > 0 such that

any solution u of the system

10+ Au—u — |ul*v —a(1l — A)"tadu =0, on[0,T] x R?,

w(0) = uo € H(R?), (5.10)
|uo || e < Ao,
satisfies
T 1 9
E(u)(0) < c(/o [ 11— ) Fadul dedt + |]u0|\H_1(R3)E(u)(O)). (5.11)

Demonstracao. Remember that
1 9 1 9 1 6
E(u)(t) = 5llullz: + 5[Vu@®)lze + gllu)le.
We argue by contradiction. Suppose that (5.11)) does not hold. So, there exists a sequence
(U )nen of solutions to system ((5.10f) does not satisfying inequality (5.11)), that is,

</0T N (1 — A) " 2adyuy|? dedt + ||uo,n||H1(R3)E(un)(0)) < ;E(un)(o)_ (5.12)

1
Let o, = (E(un)(O)) *. Sobolev's embedding for the L5 norm ensures that a,, < C()). So,
up to a subsequence, we may assume that «,, — a > 0 as n — o0o. We divide the analysis

into two possible cases & > 0 and a = 0.
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e Case I: v, > >0
Note that ||ug . ||z-1(s) — 0 as n — oo, by the second part of estimate (5.12). Hence,
using the inequality
letonlzaces) < Mol a0l s ooy

one obtains |lug |/ z2®s) — 0 as n — oco. Therefore, taking into account the first part of the
estimate ((5.12]) as well, we are in a position to apply Proposition and conclude that w,

is linearizable in an interval [0, L] with L > Ty, i.e.,
l1n, — vn || 100,21 x®3) + ||t — Vn | oo (f0,2);11 (r3)) — 0 as 0 — o0,
where v,, is a solution to
i0yvy, + Av, — v, =0 on [0,T] x R3,

v, (0) = U p.

Since ug, — 0 in L*(R?), we get ||u,(t)|[z2 — 0, V¢ € [0,T]. Hence, ||v,(¢)||zz — O as

n — oo, Vt € [0, L].
Claim 1: The sequence u, converges to zero in L? ((O, L); H}Oc(w)).

loc

Indeed, note that
Oyt = —iJ ! ((1 — A)u, + |un|4un> = NI = Ay — i (),
where .J given as in the proof of Theorem [3.3.2] By hypothesis,
(1 = A)~Zadyun| 2(0.0)m5) — 0 as n — oo,
which means that
(1 — A)_%a(—iJ_l(I — Ay, — i 7 (Jun|*un)) | 220,002 — 0 as n — oco.
So, similarly to Claim 2 in the proof of Lemma [5.1.1] we have
I(1 = A) 20 T = AJunl 2o ym9)
= (1= A)2a(J T = Ay — w2+ T ) ) || 220008
< [[(1— A)_%@(J_l([ — Ay 4+ I un] un) | L2(0,2)25)

_1 _
+ (1 = A)"zad | wn)|| 20,02

1

< @ =2A)"2a(J 7T = A)uy + T ) ) || 12((0,0)m3)

+ [lup |l 20,081 ®3)) — O
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as n — oo, due to the convergence

lunllzzomymr@sy < ellunll o p08 ey,

L
< o[ Ol dt
L 5 25
< [ Ol a0 o
5 L 25
< sup fun(®)l5 [ lua(®)] o dt
te[0,L] 0
5 3
< sup fJua(t)|l 2 [lunll*%s
0,L] Ly L0
5 3
< sup un(®ll5: luall oo

t€[0,L]
— 0 asn — oo,

where we used the interpolation
1 5
[t ()] Lo < Nun (O 22 lun ()| 10
Hence, for every x € C5°((0, L) x R3),
(1 —A)2a] (I - A)Xtn || 2((0,0)xr3) — 0

as n — 00, which means that

<(1 ~ A Ba NI = Ay, (1— A) Bag (T — A)Xun> -0
L2((0,L)xR3)
= <(1 — A)taJ NI = A)xtn, a I — A)Xun> — 0
L2((0,L)xR3)
N <a(1 ~ A ad N = A)xun, TN — A)Xun> 0
L2((0,L)xR3)
N <(J—1)*a(1 — A ad T = Ay, (T — A)Xun> -0
L2((0,L)xR3)
= <(I — A)(J Y a(l —A) ra M — A)xu, Xun> — 0
L2((0,L) xR3)

as n — o0o. By Proposition [.2] (Appendix), we get

1 2,2
/(0 L)xR3x 53 (1++|§||§|1a(1 + [€1%) du(t,x, &) = 0,

or equivalently,

1 2 d t _ O
/(OﬁL)XwXS3 + ’5‘ /’L( 7$7£) )

u, — 0in L7 ((0,L); H}

loc loc

(w)) as n — oo,
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concluding the proof of Claim 1.

As a consequence of the previous statement, one has

v, — 0in L;, ((0,L); H} (w)) as n — oc.

loc
Summarizing everything we know about the sequence v,,, we have

1. v, is bounded in L>([0, L]; H'(R?));

2. v, satisfies i0,v,, + Av,, — v, = 0;

3. supeqo,r) lvn(t)|[z2 — 0 as n — oo;

4 v, —0in L§00<(o, L); H}OC(R?’\BRH(O))) as 1 — oo.
Therefore, we are able to use CoroIIary (Appendix), to get

v, — 0in L ((0,L); H..(R*)) as n — oo. (5.13)

loc

For the second part, note that

[vallzqomm @ \Brm©) < ve = tnllL2qommr @M\ Bro ) + [Unll L2075 ®3\BRas (0)))-

On the other hand,

[wnll L2 (0,77:5 3\ Brys (0)))

lawn || 20,17, &3\ Brys (0)))

< lawn ]| 20,171 (R3))

< la(l = A)TNTTTHL = A)unl| g2 om0 m2))

<l (= AT = A+ (1= A) a1 = A L2([0.T];H(R?))
< |a,(1=A)PTJTH1 = A)uy,

L2([0,T]; H' (R?))

+ H<1 —A) a1 = A,

L2([0,T}; H* (R?))

< COllunllzzomxrs) + H(l — A" a1 = A,

L2([0,T]; H' (R?))
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Additionally,
H(l — Ay a1 - A)u,
L2 ([0, H1(R?))
< H(l - A)1Ja<i8tun - J1|un|4un)
L2([0.T):H(R3))
S H(l — A)_lJa&gunHLz([oyT];Hl(Ra))
+ (1 = A) " Tad Ml 20,11 22))
1 _1
< A =2A)"1I1 = A)2 (1= A) 2 adyun | 2oy v5)
+ Cllup || 2oy 3))-
So,
[wn | 220,711 RS\ B y1 (0)))
_ 1 _1
< A =2)"1JA = A)2 (1= A) 2adyunl| 2o,y 7)) + Clluall 2o <rs)

+ Cllupll 2oy @)

< Cl(1- A)_%aatunHLQ([O,T]XR?’) + Cllun || L2(j0,71xR?)
+ Cllupl| 2oy (o))

< Cl(1- A)iéaatunHLQ([O,T]xRii) + Cllunl| 220,11 xR?)

+ C||Un||iw([o,T];L6(R3))

and we get

L
| Ol @y At — 0
as n — oo, using the interpolation
1 5
Jun(®)llze < [lun (@)l 22 lun ()] £10

and the convergence

L 10 L g z
L @I de < [ @l 0] de

5 L 25
< sup fun(®lf [ lua(®)] o dt
tel0,L] 0

5 3

< sup Jlun(®)l el %
L] L3 L0

5 3
< sup [un (el Fop0

te[0,L]
— 0 asn — oco.
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Therefore,

v, — 0 in L2((0, L); H (R*\ Bg41(0))) as n — oo. (5.14)

Hence, by convergences (|5.13|i and 1|5.14|t, one has

v, — 0 in L} _((0,L); H'(R?)) as n — oo.

loc

Finally, choosing ¢y € (0, L) such that ||v,(to)| g2 ®s) — 0 as n — oo and solving the equation

satisfied by v,,, we obtain
”Un(t)HHl(R?’) = an(tO)HHl(R3) —0asn— o0,

for all t € [0, L]. So
v, — 0in L>([0, L]; H'(R?)) as n — oo

which implies that

v,(0) — 0 in H'(R?) as n — oo.

N

But this means that u,, o converges to zero in H'(IR?), in other words, «,, = (E(un)(O)) — 0
as n — 00, a contradiction.
o Case 2: oy, — 0
The first part of estimate (5.12)) ensures that
T o , 1
/0 [ 11— &) Fadyu, ? dadt < = B(u,)(0).
Define w,, = o=, where the sequence (wp)nen satisfies
10wy, + Aw, — w, — ar|w,|*w, — a(l — A)"tadw, =0 (5.15)
and
T 1 , 1
/ (1= A) 2 adyw,|? dedt < —. (5.16)
0 Jrs n

For a large enough constant C' > 0 and for all ¢ € [0, T, we have

1
Sl < Bwn)(®) < Cllun(®)lI7:-
Consequently, we get
(1) = DO PO

= <C <C
VE@a)(0)  /E(un)(0)
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and
[wn Ol o 1 [un(O)[ar o 1
[[wn (0) || 1 = W NATRO Rk (5.17)
So,
[wn(0)]| 1 ~ 1 (5.18)

and w,, is bounded in L>([0, T|; H'(R?)). Applying Strichartz estimates (Proposition |4.4.2))
to equation ([5.15)), there exists C' > 0 such that

||vwn||L10(0T]L13(R3)) < C(HU)N( )HH1 —f-CYnHanHLm(OT 3—3(R3))||wn||[,10 ([0, T);L1O(R3))
+ O/TLL||wn||L10([0,T];L10(]R3)))

5
= O(”“”HWJ”HUWOT} 33<R3>>>

Using a bootstrap argument, we deduce that HanHL10 (o738 Eoy) 1S bounded and, thus,
l|wn || 100, 77;210(3)) is bounded, due to Sobolev's embedding. Additionally, if we consider the
sequence (w,)nen satisfying the Cauchy problem

10y, + AW, — W, — a(l — A)Laduw, =0 on [0,T] x R3,
(5.19)

W, (0) = w,(0),

an application of Proposition gives

l|w, — wnHLw([o,T];Lw(W)) + [Jwn, — wnHLW([O,T];Hl(W))

C(adliFhwnltun

IN

£2(10,7);L 8 (R3))

+ ||| wy ] wnHLl([o,T};L?(RS)))

IN

C (ai||an|le([07T];L§g(Rg)) lwnlZs0go,r310me))

+ Oéi||wn||310([0,T];L10(R3)))

4 5
< nllVe ”“Lw ([0,7):L 3(R3>>> =0

IN

as n — 00.

Now, we need to prove that

1(1 = A)~2ady®n| p2(o.13.02(3)) — 0 as n — 00, (5.20)
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In fact,

1 ~ _1 ~ _1
||(1 — A)_2a(9twn||L2([O,T];L2(R3)) < H(l — A) 2a8twn — (1 — A) 2a8twnHL2([0’T};L2(R3))
_1
+ (1 = &) 2adwa| 20112 r3))
_1 ~
< (= A)"Za(dn — Own) || 2o r1:22@3))

_1
+ [(L = A)~2a0wn || 20,17 2R3

IN

- _1
Hatwn - atwn||L2([0,T];H*1(R3)) + ||(1 - A) Qaatwn“L?([O,T];LQ(RS))

and

| Oy, — a1twn||L2([07T};1L1‘1(1R3))

< = id TN = Ay + i THT = A)wy 40T g fwn | w2051 m9))
< NI = A)(@n — wa)ll 2o, @2y + @l w2 o, o)

< Cllin — wall 2oy ) + Cogllwallzioo 1320 @)

— 0

as n — 00, where J is the same as in the proof of Theorem [3.3.2]

Now, since @, is bounded in L>°([0,T]; H'(R?)), we can extract a subsequence (still
denoted by w,,) such that @, () — w(t) weakly. Passing to the limit in the system ([5.19)) and
taking into account the convergence (|5.20)), the function w satisfies

10w+ Aw —w =0 on (0,T) x R3,
dw =0 on (0,T) x R\ Bry1(0).

Let v = Oyw. Taking the derivative with respect to time in the first equation of the system

above, we have that v satisfies

i+ Av—v=0 on (0,T) x R,
v=0 on (0,7) x R*\ Bry1(0).

By Proposition , v E C’OO((O, T) x R4>. By an unique continuation property (see (MERCADO;
OSSES; ROSIER, [2008))), v = 0 in (0,T) x R3. Therefore, d;w = 0 in (0,7) x R? and

Aw —w = 0.
Multiplying the equation above by w and integrating by parts, we get

/ Vuwl? d:z:+/ wl? dx = 0,
R3 R3
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which implies w = 0. Therefore, w,, — 0 in H*(R?) as n — oo.

Summarizing everything we know about the sequence w,,, we have

1. w, is bounded in L>([0, T]; H'(R?));

2. W, satisfies i0,w,, + Aw,, — w, — 0 in L*([0,T]; H'(R?)) as n — oo;
3. supycio ) [|XWn(t)ll2 — 0 as n — oo, for every x € C5°(R?);

4. 1By, — 0in L2,((0,T); HL(R*\BRy1(0))) as n — oo.

Let us remember how item 4 above is proven. In fact, due to the convergence
_1 ~
||(1 — A) 2a8twn||L2([07T]XR3) — 0

we get

11— A)2a (I — Ay | 20175z — 0

or, equivalently,

IX(L = A)2aT ™ (I = Ayl 2oriie) — 0 a5 n = oo,
for x € C3°([0,T] x R%) and J given as in the proof of Theorem [3.3.2] Thus,

11— A)2aT (T = A)xn| 2oriiey) — 0 a5 = oo, (5.21)
since

(1= A)"2aJ (I — A)Xn]| 12(0.11x83)
= [|[(1 = A)2ad T = A), Xl 2 0.17x89)

+ (1 = A) Zad " (I = Al 2o xme)

IN

- G -
IXB@nl z2qo,rixms) + [1X(1 = A)"2a] (T — A)in z2(o.yxze).

Therefore, by (5.21),

<(1 —A)(J a1 —A) rad N1 = A)xaby, Xﬁjn> — 0 as n— oo.

L2((0,T) xR3)
Hence, Proposition |.2| (Appendix) gives us

(1 + |¢[*)a?

2 —
/(O,T)XR3X52 14 |€|2 (1 + ‘f| ) dp =0,
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which means that

1+ |€)* du = 0.
/(O,T)XwX52 |£| a

Thus, property 4 is verified.
Since the sequence w,, satisfies the four conditions mentioned above, Corollary (Appen-

dix) ensures that

loc

Wy, = 0in L,.((0,7); Hjyo(R?)) as n — oo, (5.22)

On the other hand, since ||(1 — A)_%aﬁtw“hz([oj}mg) — 0 as n — oo, we get
||a8tU~]n||L2([07T};H—1(R3)) — 0 asn — oo.
Let x., € C*(R3) such that x,, = 1 on supp(a). Then,

Haiat’lj)nHL2([07T];H—1(]R3)) = ”G,J_l (1 - A)wnl‘LQ([O,T};H_l(R3))

v

NlXwd ™ (1 = D)@ | 20,79 11 (R2))

IV

T X (1 = A | 20,79 11 (R2))

v

CllXw(1 = A) || L2 (0,151 (R3))

v

Cll(1 = A)xow, — [(1 = A), Xw]wnHL?([O,T};H*l(Rf*))

v

Cll( = A)xwtnllL2qoyz-1@)) — CHIL = A), Xeo|@nl| L2 o731 3)) -
Note that

1[(T = A), xo]@nll 2oy = [[(1—A), Xolxp@nll L2051 (R3))
< ClixaWnllr2o,ryr2m3))

— 0
as n — oo, for yp € C5°(R?). Consequently,

(1 = A)XoWnll 2o m1@syy < Cl(1 = A), Xo|Wnll 20,1751 w3)) + CllaiOudn || L2(po,17,1-1 (r#))

— 0

as n — 00. Then,

Xl 2orrmr@sy = (1= A)7 1 = A) Xl 20,78 ®3))
< I = A)XewWnll 20,1501 (R3))

— 0
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as n — 00. This means that
by, — 0'in L2([0,7]; H'(R*\Br41(0))) as n — oo. (5.23)

By convergences (j5.22)) and (5.23)), we conclude that

loc

by, — 0'in L3, ((0,T); H'(R?)) as n — .

So, choosing ty € (0,T) such that ||w,(to)||;n — 0 asn — oo, and solving the equation

satisfied by the sequence w,, with @, (ty) as initial data, we have

) o
W, (t) = AN (1) + [ e EDEDg(1 — A tadb, dr.

to

Hence,
[ @)l < cllwalto)llan + clla(l — A) ™ adbn | Lo,y
— 0 asn — oo.
Therefore,
By — 0in L2([0,T); H'(R®)) as n — oo
and
|w, (0)|| g1 = ||@n(0)||gr — 0 as n — oo,
which is a contradiction with (5.18)). O

5.3 PROOF OF THEOREM

This subsection is devoted to the proof of the stabilizability of system ([2.4)), where we
get the observability estimate for solutions with initial data satisfying a special condition
which we will make clear below.

First, by the decreasing of the energy and Sobolev's embedding, there exists a constant

C'(Xo) such that the assumption [|ug|| g1 < Ap implies
E(u)(t) < C(Xo) and [lu(t)[m < C(Ao), (5.24)

for all t > 0. Fix T" > 0 such that Theorem 5.2.1| applies. Then, there exists ¢ > 0 such that,
for any wug satisfying

[uollmrr < Ao and [Jug|[g-1 < e, (5.25)
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the observability estimate
T 1
BE(u)(0) < c/ (1= A) bad,uf* dedt
o Jr

holds for any solution of the damped equation (2.4]). This means that there exists B > 0 such

that any solution of the damped equation satisfying (5.25)) fulfills

E()(T) < (1 - B)E()(0), (5.26)
E@)(T) = E(u)(0) / [ 11— 2) Fadjul? dadt
< E(u)(0) = C7'E(u)(0)

where C™' =B, 0< B < 1.
Choose N € N large enough such that (1 — B)NC()\g) < £. Lemma[4.4.1] Corollary

and ([5.24)) allow us to choose § > 0 small enough such that the assumptions
[ uoll i < Ro and [Jug||g— < 6

imply
|u(nT)||g- <e, for 0 <n < N. (5.27)

So, with that choice, we have E(u)(NT) < (1 — B)NE(u)(0). In fact,

E)(NT) = E(u)(N - /NT o[ = &) S adul? dedt

IN

B(w)((N — 1)T) — BE(u)((N — 1)T)
< B)(0)1-B).

Then, by the decreasing of energy, for all ¢ > NT', we have

A

lu@lE- < Cllu®)lin
CE(u)(t)

IN

IN

CE(u)(NT)

IN

C(1 — BN E(u)(0)
C(Ro)(1 - B)Y

IN

2.

IN
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Therefore, the decay estimate ((5.26]) holds in each interval [nT,(n + 1)T], n € N, and we
have

E(u)(nT) < (1 = B)"E(u)(0).

Ift € [nT,(n+1)T], taking t = nT +r with 0 < r < T', we have, since E(u)(t) is decreasing,

E(u)(t) < E(u)(t —7)

< (1-B)"E(u)(0)
< A"E(u)(0)
< AT Eu)(0),
where 0 < A < 1. Observe that
At;f — A%A% _ eln[A%]eln[A%] _ e%lnAef%lnA
A, _InA,
= e T e T .

InA

Taking v = ="+~ and C' = e~"F'" we obtain

BEu)(t) < Ce " E(u)(0).

This completes the proof of the Theorem 2.2]

5.4 CONCLUSION

This chapter presented the stabilizability for the perturbed nonlinear quintic defocusing
Schrodinger equation, for solutions that are bounded in the energy space but small in a lower
norm. This perturbation term appears here to make it possible to work with an energy identity
that presents a norm in H' and, thus, allows the use of Sobolev space embeddings.

Finally, we would like to point out that we do not know if this exponential decay is not
valid for the original equation ([2.1]) since there is no counter-example so far. Therefore, this

problem is still open and lies in our future research perspectives.



142

6 CONTROLLABILITY OF THE NONLINEAR SCHRODINGER EQUATION

In this chapter, we turn our efforts to the problem of null controllability for the nonlinear
Schrodinger equation with critical exponent defocusing case, i.e., the original system ([2.5]).
Our purpose is to prove the second main theorem of this thesis, Theorem [2.4] To get this
result, we use a duality strategy, which reduces the controllability problem associated with
system to prove an observability inequality by using the Hilbert Uniqueness Method

(LIONS, 1988) for solutions of the linear system

i0u + Au = (z)h(t,x), e R3 te(0,T),
u(0) = uo,

where ¢ satisfies

0, if 2] <R,
plr) = (6.2)
1 if lo] > R+1,
for some R > 0. Our first step is to prove exact controllability for the system (|6.1)), i.e., to

solve the following linear control problem.

Theorem 6.1. For every initial data ug € H'(R®) and every T > 0, there exists R > 0
and a control h(x,t) € C(R; H(R3)) with support in R x (R3*\ Bg(0)) such that the unique

solution of the linear system associated to ([2.6)) satisfies u(T,-) = 0.

6.1 CONTROL OF THE LINEAR SCHRODINGER EQUATION

Our aim in this section is to prove Theorem . We proceed similarly to Rosier in (RO-
SIER; ZHANG, 2009). The exact controllability of system (|6.1)) follows from the observability
inequality

T
leollf < e [ llev(®) - at (6:3)

where v(t, x) is a solution to the adjoint system associated to (6.1)), namely,

i0w + Av =0 on R x R3,
v(0) = vy € H™'(R?).

The observability inequality (6.3)) is given by the following result.
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Proposition 6.1.1. Let ¢ be a C™ real function on R3 as in (6.2). Then, for every T > 0,
there exists a constant C' = C(T) > 0 such that inequality (6.3) holds for every solution
v(t,x) of system (6.4)).

Demonstracdo. We split the proof into several steps.

First step: H'-observability.
Lemma 6.1.1. Consider the system

iOw+Aw =0, zeR te(0,7T), (6.5)

w(0) = wy € H'(R?).
There exists a constant C' > 0 such that for each wy € H'(R?), the solution w(t) to system

(6.5 satisfies
T
ol ey < C [ lpw(®) i e, . (6.6)

Proof of Lemmal6.11 Let q € C§°(R?) such that

z, if |z < R+2,
q(r) =
0, if || > R+ 3.
Multiplying the equation in (6.5]) by ¢ - Vo 4 Sw(div,q), taking the real part and integrating
by parts, the same computations as in (MACHTYNGIER, (1994) (Lemma 2.2) yield

T

1 T . _
+ §Re/0 /]RS wV (div,q) - Vw dzdt

0
T 3. /0q, 0w O
+Re/ / 3 (q’“ww) drdt = 0,
o Jrs 5= \Ox; Oz, Ox;
where we have used the fact that the function ¢(z) has a compact support. Notice that system

(6.5]) is forward and backward well-posed in H'(R3), so, for any t, € [0,7], there exists a

1
§Im/RS(wq-V@) dx

(6.7)

constant ¢ > 0 such that
2 r 2 r 2
o) sy < e [ wlto) ey dt = [ leo(t) Fngesy . (6.8)
Thus, it follows from (6.7) and that

T T T
[, vetaa <[] st 4 7 otOloe )
0 JBgry2(0) 0 JBr4+3(0)\Br42(0) 0

T
e [ Il s dt
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for any € > 0 and some constant C. > 0. We also have

o ®) s ey < c( [ Vel de+ usow<t>||%p(m)).
Br42(0)
Indeed, observe that

lw @ = Nw®)E B0 T 10O E B ©0)

)
= (w1 H B, 0) T 20O @B, 0)
< NwO i (Bras oy + w7 @

(t

< IVw)llZ2(8aya00) + 1w Ol @s),

showing the previous claim. Moreover, if € is small enough, we obtain

T T T
| el dtsc( | Iew®) ey de+ [ ||w<t>||%2<R3>), (69)

since

T T T
[ @l dt < c( IO oy 1+ [ ) e dt)

T T
< C. // Vaw)? dxdt+/ 1w (t)]| 2y dt
0 JBr43(0)\Br+2(0) 0

T T
+ [ lew®) o dt) e [ ) By aoy

IN

T T

T T
+/0 low(t) |3 (gs) dt) +5/0 Jw(t)|F1 sy dt

T T
CE( [ hew Ol oyt + [ ooz dt)

T

IN

So, it remains to show

T T
@)l dt < [ low(®) i gt (6.10)

to achieve the proof of Lemma [6.1.1] To this end, let us argue by contradiction, that is,
suppose that ((6.10) does not hold. If this is the case, there exists a sequence (W, 0)nen in

H'(R?) such that the corresponding sequence of solutions (w,, ),cn to system ([6.5]) satisfies

T T
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Due to inequalities and (6.11)), we get
T 2 r 2 r 2
L sy dt < €[ lewa® s dt+ [ loa® e | <C

and so the sequence (w,)nen is bounded in LZ((O, T); Hl(R3)). Hence, the sequence (w,,(0) =
Wy 0)nen is bounded in H'(R?) by (6.8)). Extracting a subsequence, still denoting it by

(Wn.0)nen, We may assume that
Wp,o — wo weakly in H'(R?) as n — oo

and

w, — w weakly in LQ((O, T); HI(R3)) as n — 00,

where w € C’([O,T];Hl(R3)) is a solution to system (|6.5)). By inequality (6.11)), pw, — 0
in L2<(O,T);H1(R3)) strongly as n — oo. Since pw, — 0 in L2((O,T);H1(R3)) weakly

as n — 0o, we conclude that pw = 0 on (0,T) x R3. Therefore,
w=0, |zg|>R+1, Vte (0,T).

According to Proposition [4] (Remark [5)), one has w € C®(R3 x (0,7)). Now, we are in
a position to use the unique continuation property for the Schrédinger equation showed in

(MERCADO; OSSES; ROSIER, 2008) to conclude that
w=0onR®x (0,T).
Since pw,, — 0 strongly in L2<(0,T); Hl(R3)) as n — 0o, we get
w, — 0 strongly in LQ((O,T); Hl(R?’\BRH(O))) as n — 00. (6.12)
On the other hand, taking into account and , we obtain
e sy @t < [ Toon6) e

T T
< C(/O lpwn ()17 es) dt+/0 1 ()12 2 g dt>,

/OT 10vwn (0121 3, o) A = /OT | = Awn () 518, 0))
_ /OT (1 = A)wn (t) = wn ()71 (8.0 0 1
< [ 10— DO
[0 = Ayl s o ()l oy e
100 B o

T
C/O Hwn<t)||§-]1(BR+1(0))

IA
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and
T 2 r 2
| IV0 @l 0 @ <C [ 1Y@ O (00
T
<C [ IVl F2qaoy dt
r 2
<C [ wn(®ll3n ey d.
Therefore, from the previous inequalities,

wy, is bounded in L?((0,T); H'(Br:1(0))) N H'((0,T); H™'(Bry1(0))).

Due to Aubin’s lemma (see (SIMON| [1986))) and the convergence (6.12)), we conclude that, for

a subsequence still denoted by (w,,)nen,
w, — w = 0 strongly in L2<(O,T); L2(R3)) as n — 0o,
which contradicts (6.11]). So, the estimate follows from (6.8)), and (6.10)) as
T
(Ol gy <C [ Il e, dt
T 2 T 2
<o [ low® e e+ [ Tl s d)

T
<C [ lpw®)lin )

showing the lemma. O]

Second step: Weak observability inequality.

We prove now a bound which is weaker than the observability inequality ((6.3]).

Lemma 6.1.2. Let v be the solution of system ([6.4)) with vy € H'(R?). Then,

Joollf-+ < c( [ ool a+ 111 - ¢<x/2>>vo||zz). (613)

Proof of Lemmal6.1.2 Again, let us argue by contradiction. If inequality (6.13]) is not verified,
there exists a sequence (v, )nen Of solutions to problem (6.4]) in C([0,T]; H'(R?)) such that

T
L= [0, (07— = n(/o lpva ()l dt + (1 — so(x/2))vn(0)!|§z—2>- (6.14)
Up to a subsequence, we may assume that

v, — v in L®((0,T); H'(R?)) weak* as n — oo
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and

v,(0) = v(0) in H~'(R?) weak asn — oo, (6.15)

where v € C([0,T]; H*(R?)) is a solution of problem ([6.4)). By inequality (6.14)), one has
©v, — 0 (strongly) in L*((0,T); H *(R*)) as n — oo.

On the other hand, since
v, — v in L=((0,T); H ' (R?)) weak* as n — oo,

we conclude that v = 0. Therefore, v(t,2) = 0 for |z| > R+ 1 and ¢t € (0,T). So, using
the unique continuation property as in Step 1, we get that v = 0. In particular, v(0) = 0.

Now, we claim that

ot/ 202 < C [ lovalt) s . (6.16)
To prove ([6.16)), introduce the sequence of functions 0, (z,t) = ¢(x/2)v,(z,t). It satisfies
040+ Ay, = f,
since
1040, = ip(x/2)0svy,
A = A((ple/2)0) = [Bplw/2)]on + 270(0/2) Tun + pl/2) B0,

and

where f, = [Ap(z/2)]v, + 2V p(x/2)Vv,. Thus, one has

T T
15O e Sc( J RG]y A AT . dt).
Indeed, write the sequence ,,(t) as
) t
et (0) = T, () — / dtAF dr
0

By the parallelogram law, we have

2 2

)

150 0) -ty = 200 ey +2] [ € ur]|
0 H—2(R3)

t
Balt) [ €2 dr
0

H—2(R3)
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which implies that

2

IA

e 2o (O) 2@y < 20T (Ol-2as) + 2H/0 AT dr H-2(R3)
2[00 ()| Fr-2eey + Cllfall T o2y

< C(I5n@Br-2qay + N alEoora-seny )

IA

2

Since the semigroup is unitary, we have

supplp(x/2)] € {p = 1} yields

ei*A 05, (0))| = |8 (0)[|%—2(gs). The fact that

H-2(R3)

T T
150 (0)3-2¢e Sc( J R R Py i T P dt)

T
<e [ lpva(®)lfr-sa
giving (6.16]). Now, note that,

[0 (0) | Fr—2+112¢(/2) 0, (0) =0, (0) | Fr-2 = 2(||<P(x/2)vn(0)lliz2+||(1—90(fr/2))vn(0)||§1z),
(6.17)

by parallelogram law again. So, using (6.18)), (6.14] and (6.16)), one has
[0 (@) 3r-2zsy < 2(1(/20n(O)r-aqan + (L = 9(/2))00 O -2
T
< o [ Ievn® I dt+ 2001 = @(w/2)un(O)lf - - 0

as n — 00, that is,

v,(0) — 0 strongly in H™?(R?) as n — oo. (6.18)

Let w, = (1 — A)"'v,. Then, w, € C([0,T]; H'(R?)) is a solution of the equation ([6.5). By
the convergences (6.15)) and ([6.18)), we can ensure that

w,(0) = 0 in H'(R?) weakly as n — oo

and

w, — 0in C([0,T]; L*(R?)) strongly as n — oo. (6.19)
Now, split pw, as
pwn = (1= A) 7 (pvn) = (1= A) 7 [ip, (1 = A)uwy.

Observe that the operator [p, (1 — A)] maps L?(R?) continuously into H~*(R?). So, due to
the convergence (6.19)), we get that

(1—A)"p, (1 = A)w, — 0in C([0,T]; H(R*)) as n — oo. (6.20)
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On the other hand, by (6.14)),

(1 —A) Y (pv,) — 0in L*((0,T); H'(R?)) as n — oo. (6.21)

Therefore, by the convergences ((6.20]) and (6.21)), it follows that

ow, — 0in L*((0,T); H'(R?)) as n — oo.

Since w,, satisfies (6.5)), using Lemma[6.1.1} more precisely, the observability inequality (6.6)),

we conclude that

w,(0) — 0 in H'(R?) strongly as n — oo

and so
v,(0) = 0 in H™'(IR?) strongly as n — oo,
which is a contradiction with the fact that ||v,(0)||3,-: = 1, for all n. This finishes the

proof. O]

Third step: Proof of the observability inequality (6.3)).

Now, to conclude the proof of Proposition [6.1.1] we argue by contradiction once more. If

is false, then there exists a sequence (v, ),en of solutions to in C([0,T]; H'(R%))
such that

U= on()s > [ ova(t) o dt, ¥ > 0. (622)

Extracting a subsequence, still denoted by the same indexes, we have that
v, = v in L®((0,T); H'(R?)) weak* as n — oo

and

v, (0) = v(0) in H'(R?) weak as n — oo,

for some solution v € C([0,T]; H~(R?)) of the system (6.4). Note that
v, — v in L>(0,T; H *(R?)) weak* as n — oo

and this, combined with ((6.22)) (v, — 0 in LQ((O, T); H‘l(R?’))), yields v = 0 and, hence,
v=0for|xr|] >R+ 1,te€ (0,T). So, by the unique continuation property as in Step 2, we
deduce that v = 0 on R3 x (0,7). On the other hand, the sequence (1 — ¢(/2))v,(0) is

bounded in H~!(R?) and has compact support contained in Bag,2(0). Therefore, extracting
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a subsequence, we may assume that it converges strongly in H2(R3). Moreover, its limit is

necessarily 0 since
(1 —¢(x/2))v,(0) = 0 in H*(R?) as n — oo.

Using (|6.13]), we conclude that ||v,(0)||z-1 — 0 as n — oo, which contradicts (6.22)). This
proves the desired observability inequality (6.3)) and finishes the proof of Proposition|0.1.1, [

Finally, we prove Theorem [6.1]

Proof of Theorem|[6.1l We use Hilbert's uniqueness method. First, note that, since the Schro-
dinger equation (/6.1)) is backward well-posed, we may assume that u(7") = 0 without loss of

generality. Now, consider the two systems

i0u + Au = o(x)h(x,t) on [0,T] x R3,
’ p(x)h(z,t) on [0,T] (6.23)

with ¢(x) given by (6.2) and

i0v + Av=0o0n [0,T] x R?,
v(0) = vy € HY(R3).

Multiplying the first equation of the first system by T and integrating by parts, we obtain

7;/
R3

Hence, taking L?(R?) as pivot space, one has

o(T)u(T) — w5u(0)| dx = /0 ! /R p(@)h(e, o, b) dadt.

(v, ~iuo) = | Clo(@)o, h(t) dt, (6.24)

where (-,-) denotes the duality pairing between H~!(R3) and H' (R?). Consider the con-
tinuous map A : H '(R3) — H'(R3) defined by Av = (v,-);. Given any vy € H ' (R?),
let h(t) = A (pv(t)) (h € C([0,T]; H' (R?))) and let u be the corresponding solution of
system (6.23). Finally, set I" (vy) = —iu(-,0). Then, we have

T
2
(0,7 () = [ (8 -2 asydt > ¢ lool-1a)

in view of the observability inequality (6.3]) and ([6.24)). It follows from the Lax-Milgram theorem

that I" defines an isomorphism, and this concludes the proof of Theorem [6.1] O
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6.2 NONLINEAR SYSTEM: PROOF OF THEOREM

We have gathered all the necessary information to demonstrate the Theorem 2.4 The
proof is based on a perturbation argument due to Zuazua (ZUAZUA, 1990). To use it, consider

the following two Schrédinger systems with initial data in H~! and null initial data, namely

i0,® + A® =0 on [0,7] x R3,
®(0) = By € H(RY)

and

10w+ Au — |u|*u = A® on [0,T] x R3,
(6.25)
uw(T) =0,

where A is defined as in Theorem [6.1] by
Ad = A (p(2)®).
Now, define the operator
L:H YR — H'(R?)
Oy — Ly = uy = u(0).

The purpose is to show that £ is onto in a small neighborhood of the origin of H'(R?). To

this end, split v as u = v + V¥, where is ¥ a solution of

i, ¥ + AV = Ad® on [0,T] x R?,
W(T) =0

and v is a solution of
i0w + Av = |ul*u on [0,T] x R3,
(6.26)
v(T) = 0.
Clearly u, v and ¥ belong to C([0, T], H'(R*))N L'°([0, T]; L'*(R?)) and u(0) = v(0)+ ¥ (0).
We write

Eq)o - jq)o + Fq)o,

where J®, = vy. Observe that L&, = g, or equivalently, &y = —I'17®, + I'"tuy. Now,
define the operator
B:H '(R® — H(R?

q)o — B(I)[) = F_qu)o + F_1U0,
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where we are taking into account that I' is the linear control isomorphism between H~! and
H', due to Theorem . The goal is to prove that B has a fixed point near the origin of
H~(R?). More precisely, let us prove that if ||ugl||z1 is small enough, then B is a contraction
on a small ball Bg of H~!(R?). We may assume T < 1 and we denote by C' > 0 any constant

that may have its numerical value changed line by line. Since IT" is an isomorphism, we have
1B - <[IT~ T ol -1 + [T ol
<C (1T Pl + [luoll 1) (6.27)
<C (Ol + lluollz) -

Claim 1: There exists C' > 0 such that

|0(0) ||z < C||Vull® 2. (6.28)

Lo
Indeed, note that due to the classical energy estimate for system (6.26)), Strichartz esti-
mates (see Lemma [3.2.1)) and a Sobolev embedding (see Lemma[3.2.2)), we have

o
o(0)] 2 < |\U(T)||L2+H/ A 1y dr
0 L2
< Cllw’llpyrs
< Clulldop
< CVul® |«
%OL%S
and
o
IVe)lzz < IVo@)lzz + | [ 9]l dr
0 L2
< ClIVul gl
< IVal® | s
L%OL%S
Thus,
2 10
(O] < CIVul®,
and
IVe(0)I3: < CITul, 4
t T
Adding up, we have (|6.28]), showing Claim 1.
Claim 2: There exists C' > 0 such that
IVull,, 3 < CllRolli (6.29)
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In fact, an application of Lemma to system ((6.25)) ensures that

IVull |, s < V(D)2 + Cl[Vul|

107 13 -
rior]

30 ||u||L10L10 + C||VACI)||L1L2

10 13
< oI, 5+ ||A<I>||L3H;) .
Note that, using the fact that A is an isomorphism, we get
JAD ] = A7 (@) < Cllp®]lyr

or, equivalently,
T ) 3
1402 < ([ lplfos dt)”

Then, the duality ((6.24)) yields

IVull oy < CIVUlR, g0+ o[ |so<1>||H1dt)
< IVl v c( r@o,@0>

< IVl + C(IT@ollm 2ol )
2 2
< CIvul?,, i +C (Il

< CHVuH5 i+ ClPolla-r.

3

Using a bootstrap argument, taking ||®¢||z-1 < R with R small enough, we get (6.29)),

showing Claim 2.

Observe that, putting together (6.28]) and ( into (| , we conclude that
| By < 0(Hv<o>||H1+Huo||Hl)
< C(I9lfr-s + luolln )
Then, choosing R small enough and [|ug|| i < 55, we get
|B®o||z— < R

and, therefore, BB reproduces the ball B of H~!(R).

Finally, we prove that B is a contraction map. To do this, let us study the systems

i@t(ul — UQ) + A(Ul — Ug) — ]u1|4u1 + ‘U2|4U2 = A(q)l — (1)2),

(u1 —u2)(T) =0
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and
10 (v — vg) + A(vy — v2) = |ug|uy — |us|tus, (6:30)
(Ul — UQ)(T) = 0
As done before, we have
|1B®; — B -1 < Cllv1(0) — va(0) | a1 (6.31)

We estimate v1(0) —v5(0) in the H'-norm. First, applying the Strichatz estimates (see Lemma

3.2.1)) to the system ([6.30) yields that

t .
J01(0) = w2l <[ [ €2 (e = sl |

<Clled = 31315
<Cllus = wllsgre (lualigpo + uzlpcs
<Cllus = wllggongo (Il oo + luall o

4 4
SCHVUI — Vu2|| 30 (HVUIHL%OL:E% + ||VU2HL%0L53>

107 13
Lior]

<CRY||Vu; — V|| a0

107 13
oL

and

t .
||VU1(O) — VU2(0)||L2 SH/O V@Z(t_T)A(|U1|4U1 — |U2|4U2) dr

L3

< 44
<[[V(Jur[*ur = |ug Uz)HLtQLg

<OV (=), sl
t T

<OV (u —us)| @||VU1||;O 30

10713 13
+ Ly + Lz

+ CHVUl — VUQH 10 30 (HVUng 30 HVUQH 30
L L t

33 L%OL%3
3
+||VU2HL%OL§g HvquLtmLEg)

§C’R4|]V(u1 — Uug)|| 30 +C’R4|]V(u1 — us)|| 30

1 1 1 1
LtOLxg LtOLxg

<CRY|V(u1 — )|

30 .
L%OL%:)’
Thus,
|01(0) — va(0)[|32 < CR®||Vuy — Vug||* a0

107 13
oL}

and

]

V01 (0) = Voo (0)[|72 < OR®||Vay — vu?”iwf

13
T
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These bounds together give us the H'-estimate
[01(0) = v2(0)[| 2+ < CRY|[Vuy — VW”Lm %
Now, let us bound the right-hand side of this inequality. To this end, first notice that

IV (ur — “2)"@0&3 < IVl "ur = Juzltun)|

oy + VAT = 0%y

o + ClA(®" — @)l 21

IN

CR*|Vu; — Vuy|

1OL13

< CRYVur = Vol 30 + C||®5 — PGl

10L13

So, choosing R > 0 small enough, we get

jel

[V (ur —ug)l| s

107 13
rior]

< C||@g — Pgll -1

Therefore,

D=

Wﬂm_mﬂmmﬂ:Qw«n—wmmm+Wme%—Vw@Ww) (6.32)

<CR'|®} — @3-

Finally, we get, by (|6.31|) and 1|6.32|), that

1By — BEG - < Cllon(0) — v2(0)|
< CRY|®— 3|51,

concluding that B is a contraction on a small ball By of H~!. This completes the proof of

Theorem 2.4] O
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.1 PROPAGATION RESULTS FOR THE LINEAR SCHRODINGER EQUATION

We collect some results of propagation for solutions of the linear Schrodinger equation
which were used throughout this thesis (see, for instance, (DEHMAN; GERARD; LEBEAU), 2006))).

The main ingredient is basic pseudodifferential analysis.

Proposition .2. Let L = i0; + A + Ry, where Ry(t,x, D,) is a tangential pseudodifferential
operator of order 0 and (u,)nen @ sequence of functions satisfying, for every x € C§°(R?),
with x(z) =1, x € supp(x) = K,

T
sup || xtn ()| gr@sy < C, sup ||xun ()| 2@sy — 0 and / ||Lun(t)|]%2 dt — 0. (33)
te[0,7 t€[0,T 0

There exist a subsequence (U, )nren Of (U, )nen and a positive measure p on (0,T) x R? x S?
such that, for every tangential pseudodifferential operator A = A(t,z, D,) of order 2, with
principal symbol o(A) = ay(t, x,&), one has

A(t, 2, Dy) Xt Xty t,2,€) du(t,z,€). 34
(Al Do) ) e — [ ol €) dut . 6) (34)

Moreover, if G denotes the geodesic flow on R x S2, one has, for every s € R,

Ga(n) = p. (35)
In other words, 1 is invariant by the geodesic flow "at fixed t."

Demonstracdo. The construction of the tangential microlocal defect measure p satisfying
is classical (see e.g. (GERARD) [1991)). The first estimate in ([33]) combined with a separability
argument allows to find a subsequence (u,,),/en such that the left-hand side of converges
for all A. Then the second estimate in and the Garding inequality imply the existence of
some positive measure p such that holds.

For the propagation, i.e., property (35), we consider ¢ = ¢(t) € Cg°(0,T), B(z,D,) a
pseudodifferential operator of order 1, with principal symbol by, A(t,z, D,) = ¢(t)B(x, D,)

and for a given € > 0, we write A, = pB. = Ae®. Moreover, denote

a;, = (Lun,A:un) — (Agun, Lun) .

L2([0,T]xR3) L2([0,T]xR3)
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By assumption (33)), sup, aZ, — 0 as n — co. On the other hand,

af = (i@tun + Au, + Rouy, A:un>
- i(atu"’ A:u") L2(0,T] xR3) + (

- (Asun,iﬁtun>
= i((atAe)un, un)

— (Agun, 104Uy, + Au, + Roun)

L2([0,T]xR3)

Auy, AZuy)

L2([0,T]xR3)
- (ROU"’ A:u”) L2([0,T]xR3)
— (Aaun, Roun>

L2([0,T]xR3)

L2([0,T)xR3) (Asu”’ Au”)

A Au,, un)

L2(]0,T]xR3)

+ (AEROun, un)

L2(]0,T]xR3)

L2([0,T]xR3) T ( L2([0,T]xR3) L2([0,T]xR3)

- i((atAE)u"’ u”>L2([o,T]xR3) N (AAEun7un)L2([O,T]><]R{3) B (RSAEU”’ u")L?([O,T]xRS)
- ([Aa’ Alun, u”)Lz([o,T]xRS) + ([AaRO — Ry Aclun, un)L2([O,T]><R3)
= ([Ae, AJun + [A-Ro = RiAu ) oo
So
Sup (X[Ag, Aluy, + x[AcRy — Ry A un, Xu")L2([o,T}xR3) — 0 as n — oo.
Observe that, taking (X[AERO — RSAE]U”’Xun)LQ([O,T]xRi’*) = 32, we have sup. 55 — 0 as
n — oo. Finally, passing to the limit as ¢ — 0, we obtain, for all y € C5°(R?),
(Xgp[B, Aluy, Xun)LQ([O,T]XR3) -0 (36)

as n — o00. Denoting D := ¢[B,A], D is a pseudodifferential operator of order 2 and we
have

(90[37 A]Xun: Xun> = (DXunv Xun)

L2([0,T]xR3) L2(]0,T]xR3)

= ([D7 Xtn, Xun)

— 0

+ (XDun, Xun)

L2([0,T]xR3) L2([0,T]xR3)

as n — 00, using ((36]), and

([D, XJtun, xun ) 11D, Xl 2|t | 2

L2([0,T]xR3) <

IN

Cltnll a2
In view of , one has
2
) b} d t,x, = 0.
/(O,T)x]RiﬂXSg 90{|§|g; 1} du( €)
This identity expresses property and completes the proof. .

Using this tool we obtain the following important corollary.
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Corollary .3. Assume that w C R? satisfies Assumption . Let (un)nen be a sequence of
functions bounded in L°°([0,T], H*(R?)), convergent to 0 in L*? and satisfying
10y, + Au, — 0 in L2([0,T], HY(R?)),

(37)
w, — 0 in L2([0, T}, H (w)).

Then, (u,)nen Strongly converges to 0 in L*°([0,T], H}.(R?)).

Demonstracdo. By Proposition , we can attach to the sequence (u,,),en @ microlocal defect
measure in L*((0,T), H'(R?)) that propagates with infinite speed along the geodesics of R?.
Using the second equation of ([37)), we can deduce that

p=00n (0,T) x wx S,

which yields, by the propagation and Assumption 5.1} = 0 on (0,7) x R? x S%. This

2
loc

means that u,, — 0 in L2 ((0,7); HL.(R?)) as n — oo. Finally, solving the first equation of

(37) with initial data w,(to), where to € (0,T') is such that [[u,(to)[| 1 — 0 asn — oo, this

implies the strong convergence u,(t) — 0 in the space L*°([0,T], H. .(R?)) asn — oco. [

.2 SMOOTHING

For the sake of completeness, we discuss the smoothing properties of the linear Schrodinger

equation
iOu—u+Au=0, z€R3tcR,
(38)
u(z,0) = ¥(x), r € R3.
For j € {1,2,3}, let P; be the differential operator on R* defined by
Piu(t,x) = (z; + 2it0;)v(t, x) = z;v(t, x) + 2it£nv(t’ ). (39)
J

For a multi-index «, define the differential operator P, on R* by

In addition, for z € R3, set

For a given smooth function u(t, x), one has

Pu(t,z) = 2itel i (e_ZTu(t, x))
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Indeed,
22 O |22 22 265 =2 =2 22 O
2ite’ it — (e VAt w) = —2te’ w —Le Var u(t, x) + 2ite" ¥ e L1t —u(t,x
0
= zu(t,r) + 2it—u(t, ).
jult, @) + 2it 5,2
Hence,

| 2

Pu(t,x) = (Zit)“”ez%Do‘ (e_zfltu(t,a:)).
On the other hand, a calculation gives

Therefore, if u € C(R, H'(R?)) is any solution of the linear Schrédinger equation (38]), then

so is Pju and Pyu.

Proposition .4. Let a be a multi-index and T' > 0 be given. Let v» € H'(R?) be such that
%) € H'(R3). The corresponding solution u of the IVP

iOu+Au—u=0, (t,z) € RxR3
(40)
u($7 O) - /I7Z}7 CU e Rg?
satisfies

P,u € O(R; H'(R?)),

and there exists a constant C depending only on T' and « such that
[Pl sy < Clle®| g es)

holds for any t € [—T,T]. In particular, if p € H'(R®) has compact support, then u is

infinitely smooth everywhere except at t = 0.

Demonstracdo. Using a standard density argument, it is sufficient to prove the result for
Y € S(R?). Assume first that || = 1, so that P, = P; for some j € {1,2,3}. First, note
that

[l a1 es) = ([Pl es),

for any ¢ € [T, T). Set v/ (t,z) = Pyu(t,x). Applying the operator P; to yields
i + Aw — =0,

u! (0,x) =z,
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since Pju(0,z) = x;u(0,z). Thus,
[ (@)l sy = Il L (roy.
The general case (Ja| > 1) is obtained by induction. O

Remark .5. The Proposition [.4] also holds for the traditional Schrodinger equation without

the perturbation term as we can see in (ROSIER; ZHANG, 2009).

.3 PROOF OF THEOREM

Demonstracdo. We follow the ideas from (KENIG; MERLE, |2006)). Define I = [0, 7| and observe

that the Cauchy problem is equivalent to the integral equation (by Duhamel's formula)
u(t) = eug — | DAyl 4 f] dr.
Define
[Ilulll = sup fu(®)llz> + sup [Vu(®)l|ze + llullso + [Vulwa + [Vull ).
For R > 0 to be conveniently chosen later on, consider the set
Bp = {u(t,x) on I x R : [|[ul|| < R}.
We want to show that the operator ®,,, : Br — Bp defined by
B () = g — [ IS ultu+ ) dr

has a fixed point if R small enough. To this end, first, observe that

) t )

[u(llz < e ulzz + | [ Ve ultu+ g dr|
< Mluollzz + Clllul*ull iz + [1fll 2y 22
< Clluollgr + Cllullgry + Cill fll e

and
) t .
IVew(@lz < IVeull + | [ Ve + ) ar
0 2

<

< IVuolls + CIVIul'ul iy + 19l

< Clluollar + Cllullsn IVullway + Crll fll oo
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Choosing the length of I small enough such that Ci|| f||zeemz < Cllug||m1, we have
1P (W22 + IVOu(W)lzz < 2C]uolls + CR.

Secondly, notice that

. t .
IVeu@llwiy < IVeuwn + | [ Ve2 + f) dr

w(I)
< | Vuollze + ClIVIutull o a0 + 1V Fll20.

L7 L,

So, due to Hélder's inequality with p = T and ¢ = I, we get

IVIul®ull 3 2 < Cllulls[Vullwa).
t

70
Thus,

IVew@lwi < C(IVuslle + lulli I Vallwin + 1]z )

< Cllugllm + CR® + Cr || f| ooz -

Choosing the length of I small enough such that Cy|| f|| Lo < Cllug|| 1, one gets

VO, (Wllway < 2C|uolla + CR.

On the other hand, using Lemma with ¢ = 10 and r = 30/13, inequality (3.11)) with

g=10and r =30/13 and m' =2 and n' = g and Hélder's inequality, one has

) t .
V@@l < 196 uallzr + | [ V20 + ) ar

Vualle + CUTlulul g +CIV fll

Z(I)

IN

IN

IVuollz2 + ClIVull zallullsey + CIV Fllnre

IN

Clluollzr + CR® + Ci| f|| oo 2

IN

QCHU()HHl + CR5,

since CIHfHLtOOH% < CHUOHHl- FinaIIy,

[Py (Wllsry < 1V Puq ()l 2r)
. t
S ) PR A T s
0 Z(I)
< Vuollzz + ClIVullznllullsay + CIIV Fllirz
< Cllugllgr + CR’ + C|IV flLir2
< Cllugllm + CR® + Co || fl| oo 2
< 2C|luol|z + CR?,
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since Crl| f|l Lo < Cllug|| g1 Adding up, we get
lPu @Il < 2C|uolla + CR* < R,
as long as ||uo|lm < 55 — %5. Next, denoting g(u) = |u|*u, we get
[Pug (1) = Pug (V)22 < Cllg(u) = 9(©) 1122

< Cllu—vlisw(lullém + lvl§m),

V@ (1) = VO, (v)llz < ClIVg(u) = V)] 10 1

L7 L,
< c@mWVu—vwoo (RS A]
7 7 7 Lz7
+ lu = wlleP1vo wlﬂ
Lt7 Lz7
< C(WMémHVu—Yhﬂwur+Ww—ﬂbmHVMMMﬂW

+ ||u — UHS(I)HVUHW(I)“UH%(I)>
< CRYu—vllsa) + CRYVu = Vollw
and

IV ®ug (1) = Vo (0)llwry < ClVa(u) = V)| 1

t

i3

L,

IN

<H|u| |Vu — Vo

P

10 10
7 7

10 10
7L7)

< C(HUII‘éu)IIVU = Vollway + [lu = ollsn [ Vollw]

L,

+ H|u — v||v| |Vl

+lu = v||s<1>||Vv||wu>IIUII?éu))
< CRYu—vlsq+ CRYVu— Voullwa

Following the same reasoning,

H?é(f) +

10
7

|U||§(1) +

V@ (1) = Vo (0) [l 21y < C(Hu\ls IVu = Vollza) + [lu = vllsa Vol za lullsy +

+lu - vHs(I)HWHZ(I)””Hg(I))

< CRY|Vu— V|7 + CRY|lu — v||s()
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Moreover, by Sobolev's embedding,
1@ (1) = Pug (V) |51y < IV Pug () = VP (v) | 21y < CRY[[Vu— V]| 70y +CRY|u—v]|s(r)-
Adding up, we get

1|®ug (1) = Doy (W)l < CRY[Vu = V|| za) + CRY|u = vllsz) + CRY|[Vu — Vollw

< CRYVu— Vol 7z + CRY|u = |5 + CRY|[Vu — Vollw
+ CR*sup |Vu(t) = Vo(t)|| 2 + CR*sup lu(t) — v(t)| L2
tel tel
< CRY||u—vl]].

Thus, if R > 0 is such that CR* < 1, then @, is a contraction in By and, therefore, has
a unique fixed point, i.e., problem ([2.5)) has a local solution defined on a maximal interval

[0,77. O

Remark .6. Observe that it is possible to use the energy estimates to get global existence,
that is, the solution u = u(x,t) of (2.5 is globally well-defined in time. To verify this, first

consider the energy defined by

1 1
Bt)=5 [ 1Vuf+ 2 [ Jul’,
which is conserved if f = 0. Multiplying equation by O,u, we have
B(t) <B(0) - Re | t [, s dud
<E(0) - Re /Ot [, $tu = ifultu— i) dede
<E(0)+C [ IVF@) el Va(r) 1 dr
+C [ 1@ slu(?l, g dr+ [1F@IE dr
<BO)+C [ IVFDll(E@) dr+C [ 1@ s(B)F dr+ £ agomm)
<BO)+C [ 1D E@) dr+C [ 1@ m(EE)F dr+ 1100y
Then,
B(t) <B(0) +C [ 1£(0)llm (B() ™} (E(7)? dr
+C [ 1@l (B dr+ 11 g0 e
<BO)+C [ 1@ (BE)E dr + £ o ey

<B(0)+C [ 150 (1+ (D) dr o+ 1 aqoapeas
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Therefore,

5
max B(r) < E(©0) +C(1+ max(B)F )1 lsqomyanwsy + 1o mpesey

0<t<T

So, finally, it follows that

E(t) < C<1 + E(0)° + If 12 qo.ryxms) + HfH%l([o,T];Hl(m)))-

So, if f € Li%(R, H'(R?)), then the energy is bounded. Now, for the L?-energy (or mass),

loc

define the following quantity
— 1
E(t) = 5llu(®)][Ze-

Multiplying equation (2.5 by @, taking its imaginary part and integrating by parts yields

1 t
Sl < SIu@e+Im [ [ f -7 dodt
0 JR
1 t
SNz + [ [ 177l deat
0 JR3

1 9 t
SOz + [ 17 ezl .

IN

IA

So,

BO)+ [ 15 ()l et
BO)+C [ 1)l E(rn

This implies that the L?-energy is bounded if f € L (R, H'(R?)).

loc

=
N
VAN

IA
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