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Abstract
Control properties of the Kawahara equation are considered when the equa-
tion is posed on an unbounded domain. Precisely, the paper’s main results
are related to an approximation theorem that ensures the exact (internal) con-
trollability in (0, +∞). Following [23], the problem is reduced to prove an
approximate theorem which is achieved thanks to a global Carleman estimate
for the Kawahara operator.
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1 INTRODUCTION

1.1 Problem set

Our main focus in this work is to investigate the control property for the Kawahara equation [13, 18]

𝑢𝑡 + 𝑢𝑥 + 𝑢𝑥𝑥𝑥 − 𝑢𝑥𝑥𝑥𝑥𝑥 + 𝑢𝑢𝑥 = 0 (1.1)

which is a dispersive partial differential equation (PDE) describing numerous wave phenomena such asmagneto-acoustic
waves in a cold plasma [19], the propagation of long waves in a shallow liquid beneath an ice sheet [16], gravity waves on
the surface of a heavy liquid [10], etc. In the literature, this equation is also referred to as the fifth-order KdV equation [4],
or singularly perturbed KdV equation [25].
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Some valuable efforts in the last years have focused on the analytical and numerical methods for solving Equation (1.1).
Thesemethods include the tanh-functionmethod [2], extended tanh-functionmethod [3], sine–cosinemethod [26], Jacobi
elliptic functions method [15], direct algebraic method [24], decompositions methods [20], as well as the variational
iterations and homotopy perturbations methods [17].
Due to this recent advance, previously mentioned, other issues for the study of the Kawahara equation appear. For

example, we can cite the control problems, which are ourmotivation. Precisely, we are interested in proving control results
for the Kawahara operator in an unbounded domain. It is well known that the first result with a “kind” of controllability
for the Kawahara equation

𝑢𝑡 + 𝑢𝑥 + 𝑢𝑥𝑥𝑥 − 𝑢𝑥𝑥𝑥𝑥𝑥 = 𝑓(𝑡, 𝑥), (𝑡, 𝑥) ∈ ℝ+ × (0,∞), (1.2)

was proposed recently by the authors in [7]. It is important to point out that in [7], the authors are not able to prove that
solutions of Equation (1.2) satisfy the exact controllability property

𝑢(𝑇, 𝑥) = 𝑢𝑇 𝑥 ∈ (0,∞). (1.3)

Instead of this, they showed that solutions of the Kawahara equations satisfy an integral condition.
To fill this gap in providing a study of the exact boundary controllability of Equation (1.2) in an unbounded domain,

this paper aims to present a way that may be seen as a first step in the knowledge of control theory for the system (1.2) on
unbounded domains since the results proved in [7], cannot recover Equation (1.3). So, our aim in this paper is to present
an answer to the following question:

Problem A. Is there a solution to the system (1.2) satisfying Equation (1.3)? Or, equivalently, Is the solution of the system
(1.2) exactly controllable in the unbounded domain (0, +∞)?

1.2 Historical background

Stabilization and control problems on the bounded domain have been studied in recent years for the Kawahara equation.
The first work concerning the stabilization property for the Kawahara equation in a bounded domain (0, 𝑇) × (0, 𝐿), is due
to Capistrano–Filho et al. in [1]. In this paper, the authors were able to introduce an internal feedback law and, considering
general nonlinearity 𝑢𝑝𝑢𝑥, 𝑝 ∈ [1, 4), instead of 𝑢𝑢𝑥, to show that under the effect of the damping mechanism the energy
associated with the solutions of the system decays exponentially.
Concerning the internal control problems we can cite pioneer works in the Zhang and Zhao articles [27, 28]. In both

works, the authors considered the Kawahara equation in a periodic domain 𝕋 with a distributed control of the form

𝑓(𝑡, 𝑥) = (𝐺ℎ)(𝑡, 𝑥) ∶= 𝑔(𝑥)(ℎ(𝑡, 𝑥) − ∫
𝕋

𝑔(𝑦)ℎ(𝑡, 𝑦)𝑑𝑦),

where 𝑔 ∈ 𝐶∞(𝕋) supported in 𝜔 ⊂ 𝕋 and ℎ is a control input. Still related to internal control issues, Chen [9] presented
results considering the Kawahara equation posed on a bounded interval with a distributed control 𝑓(𝑡, 𝑥) and homoge-
neous boundary conditions. She showed the result by taking advantage of a Carleman estimate associated with the linear
operator of the Kawahara equation with an internal observation. With this in hand, she was able to get a null controllable
result when 𝑓 is effective in a 𝜔 ⊂ (0, 𝐿).
As the results obtained by Chen in [9] do not answer all the issues of internal controllability, in a recent article [5]

the authors closed some gaps left in [9]. Precisely, considering the Kawahara model with an internal control 𝑓(𝑡, 𝑥) and
homogeneous boundary conditions, the authors can show that the equation in consideration is exactly controllable in
𝐿2-weighted Sobolev spaces and, additionally, the Kawahara equation is controllable by regions on 𝐿2-Sobolev space, for
details see [5].
Recently, a new tool to find control properties for the Kawahara operator was proposed in [6, 7]. First, in [6], the authors

showed a new type of controllability for a Kawahara equation, what they called the overdetermination control problem.
Precisely, they can find a control acting at the boundary that guarantees that the solution of the problem under consider-
ation satisfies an integral condition. In addition, when the control acts internally in the system, instead of the boundary,
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the authors proved that this condition is also satisfied. These problems give answers that were left open in [5] and present
a new way to prove boundary and internal controllability results for the Kawahara operator. After that, in [7], the authors
extend this idea to the internal control problem for the Kawahara equation on unbounded domains. Precisely, under cer-
tain hypotheses over the initial and boundary data, they can prove that an internal control input exists such that solutions
of the Kawahara equation satisfy an integral overdetermination condition considering the Kawahara equation posed in
the real line, left half-line, and right half-line.

1.3 Main results

With this background in hand, as mentioned before, our main goal is to answer the Problem. To do that, we first prove
two main results which are the key to giving some position of the controllability properties for the Kawahara operator on
an unbounded domain.
Let us introduce some notations. For 𝐿 > 0 and 𝑇 > 0 let 𝑄𝑇 = {(𝑥, 𝑡) ∈ (−𝐿, 𝐿) × (0, 𝑇) ⊂ ℝ2}, be a bounded rectangle.

From now on, for the sake of brevity, we shall write 𝑃 for the operator

𝑃 = 𝜕𝑡 + 𝜕𝑥 + 𝜕3
𝑥 − 𝜕5

𝑥 (1.4)

with domain

(𝑃) = 𝐿2(0, 𝑇;𝐻5(−𝐿, 𝐿) ∩ 𝐻2
0
(−𝐿, 𝐿)) ∩ 𝐻1(0, 𝑇; 𝐿2(−𝐿, 𝐿)). (1.5)

Our first result is related to a Carleman estimate for the Kawahara operator being precise, for 𝑓 ∈ 𝐿2(0, 𝑇; 𝐿2(−𝐿, 𝐿)) and
𝑞0 ∈ 𝐿2(−𝐿, 𝐿), the operator 𝑃𝑞 = 𝑓, where 𝑃 is defined by Equation (1.4) with domain (1.5). So, the first result is devoted
to proving a global Carleman estimate.

Theorem 1.1. There exist constants 𝑠0 = 𝑠0(𝐿, 𝑇) > 0 and �̃� = �̃�(𝐿, 𝑇) > such that for any 𝑞 ∈ (𝑃) and all 𝑠 ≥ 𝑠0, one has

∫
𝑇

0
∫

𝐿

−𝐿

{
(𝑠𝜑)9|𝑞|2 + (𝑠𝜑)7|𝑞𝑥|2 + (𝑠𝜑)5|𝑞𝑥𝑥|2 + (𝑠𝜑)3|𝑞𝑥𝑥𝑥|2 + 𝑠𝜑|𝑞𝑥𝑥𝑥𝑥|2}𝑒−2𝑠𝜑𝑑𝑥𝑑𝑡

≤ 𝐶 ∫
𝑇

0
∫

𝐿

−𝐿

|𝑓|2𝑒−2𝑠𝜑𝑑𝑥𝑑𝑡.

(1.6)

As a consequence of the previous Carleman estimate, the second main result of the manuscript gives us an approxima-
tion theorem, which is the key point to prove the exact controllability for the operator 𝑃 posed on the unbounded domain
and, in this case, to answer the Problem.
Theorem 1.2. Let 𝑛 ∈ ℕ∖{0, 1}, and 𝑡1, 𝑡2, and 𝑇 real number such that 0 < 𝑡1 < 𝑡2 < 𝑇. Let us consider 𝑢 ∈ 𝐿2((0, 𝑇) ×

(−𝑛, 𝑛)) such that

𝑃𝑢 = 0 in (0, 𝑇) × (−𝑛, 𝑛),

with supp 𝑢 ⊂ [𝑡1, 𝑡2] × (−𝑛, 𝑛). Let 0 < 𝜖 < 𝑚𝑖𝑛(𝑡1, 𝑇 − 𝑡2), then there exists 𝑣 ∈ 𝐿2((0, 𝑇) × (−𝑛 − 1, 𝑛 + 1)) satisfying

𝑃𝑣 = 0 in (0, 𝑇) × (−𝑛 − 1, 𝑛 + 1), (1.7)

supp 𝑣 ⊂ [𝑡1 − 𝜖, 𝑡2 + 𝜖] × (−𝑛 − 1, 𝑛 + 1), (1.8)

and

‖𝑣 − 𝑢‖𝐿2((0,𝑇)×(−𝑛+1,𝑛−1)) < 𝜖. (1.9)
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Finally, the previous result helps to show the third main result of the manuscript, giving a positive answer for the exact
controllability problem.

Theorem 1.3. Given𝑇, 𝜖 and 𝑠 real numbers with 0 < 𝜖 <
𝑇

2
and 𝑠 ∈

(
−

7

4
,
5

2

)
∖
{

1

2
,
3

2

}
. Let 𝑢0, 𝑢𝑇 ∈ 𝐻𝑠(0, +∞), thus, there

exists a function

𝑢 ∈ 𝐿2

loc([0, 𝑇] × (0, +∞)) ∩ 𝐶([0, 𝜖]; 𝐻𝑠(0, +∞)) ∩ 𝐶([𝑇 − 𝜖, 𝑇];𝐻𝑠(0, +∞)

solution of {
𝑢𝑡 + 𝑢𝑥 + 𝑢𝑥𝑥𝑥 − 𝑢𝑥𝑥𝑥𝑥𝑥 = 0 in′((0, 𝑇) × (0, +∞)),

𝑢(0, 𝑥) = 𝑢0 in (0, +∞),
(1.10)

satisfying 𝑢(𝑇, 𝑥) = 𝑢𝑇 in (0, +∞).

1.4 Final comments and paper’s outline

The results in this paper gave a necessary first step to the improvement of the control properties for the Kawahara operator.
Let us comment on this in the following remark.

Remarks. The following remarks are worth mentioning:

i. From our knowledge, our results are the first ones for the Kawahara operator posed on an unbounded domain.
ii. Note that the Carleman estimate proved in [9] is local which differs from the Carleman estimates shown in

Theorem 1.1.
iii. This work is the first one to prove an approximation theorem, that is, Theorem 1.2, for the Kawahara operator (1.4).
iv. In the context of the Kawahara operator, there is one work [7] which is limited from a control point of view since the

solutions satisfy an integral condition instead of Equation (1.3). Thus, Theorem 1.3 provides progress in the control
theory for this operator in an unbounded domain thanks to the fact that solutions of Equation (1.10) satisfy the exact
controllability condition (1.3).

v. It is important to point out that the strategy applied in our work was already applied for the Korteweg–de Vries
(KdV) equation [23] and the KdV–Burgers equation [12]. In both cases, a Carleman estimate is derived following
Fursikov–Imanuvilov’s approach [11].

vi. The Kawahara equation (1.10) is a higher-order KdV equation, here called the Kawahara equation or fifth-order KdV
equation. So, for this operator, some extra difficulties appear. The firstmain difficulty is to prove a Carleman estimate.
Note that we cannot directly apply the estimates proposed in [23, Proposition 3.1] or [12, Lemma 2.4], since we have
a fifth-order equation and more terms (included traces) need to be controlled (see Section 3).

vii. Concerning the exact controllability result, Theorem 1.3, note that the restriction in 𝑠 for the space 𝐻𝑠 is required,
this is because the well-posedness on an unbounded domain for the system (1.10) follows if 𝑠 ∈

(
−

7

4
,
5

2

)
∖
{

1

2
,
3

2

}
,

which not happens in [12, 23]. On the other hand, since we have a more strong well-posedness solution borrowed
from [8], we do not need the 𝐿2 space with weight as in [23, Theorem 1.3] and [12, Theorem 1.2], for example.

viii. Summarizing, our result gives new results for the Kawahara operator (higher-order KdV equation) in the following
sense:
(1) New global Carleman estimate;
(2) Approximation theorem;
(3) Exact controllability in𝐻𝑠, when 𝑠 ∈

(
−

7

4
,
5

2

)
∖
{

1

2
,
3

2

}
.

The remainder of the paper is organized as follows. In Section 2, we present auxiliary results which are paramount to
show the main results of the paper. In Section 3, we present the global Carleman estimate, that is, we will show Theo-
rem 1.1. Section 4 is devoted to giving applications of the Carleman estimate, precisely, we will provide an approximation
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Theorem 1.2. Finally, in Section 5, we will answer the Problem  using the approximation theorem, that is, we present
the proof of Theorem 1.3.

2 PRELIMINARIES

2.1 Auxiliary lemma

In this subsection, we will prove an auxiliary result that will put us in a position to apply it to prove the main results of
the paper. For this propose, observe that the operator 𝑃 generates a 𝐶0–semigroup of contractions 𝑆𝐿(𝑡)𝑡≥0 on 𝐿2(−𝐿, 𝐿)

(see, for instance, [1]) which be denoted now on by 𝑆𝐿(⋅). With this in hand, the next lemma holds.

Lemma 2.1. Consider 𝑙1, 𝑙2, 𝐿, 𝑡1, 𝑡2 and 𝑇 be number such that 0 < 𝑙1 < 𝑙2 < 𝐿 and 0 < 𝑡1 < 𝑡2 < 𝑇. Let 𝑢 ∈ 𝐿2((0, 𝑇) ×

(−𝑙2, 𝑙2)) be such that

𝑃𝑢 = 0 in (0, 𝑇) × (−𝑙2, 𝑙2) and supp 𝑢 ⊂ [𝑡1, 𝑡2] × (−𝑙2, 𝑙2).

Let 𝜂 > 0 and 𝛿 > 0, with 2𝛿 < min(𝑡1, 𝑇 − 𝑡2) be given. Then, there exist 𝑣1, 𝑣2 ∈ 𝐿2(−𝐿, 𝐿) and 𝑣 ∈ 𝐿2((0, 𝑇) × (−𝐿, 𝐿))

such that

𝑃𝑣 = 0 in (0, 𝑇) × (−𝐿, 𝐿), (2.1)

𝑣(𝑡, ⋅) = 𝑆𝐿(𝑡 − 𝑡1 + 2𝛿)𝑣1, for 𝑡1 − 2𝛿 < 𝑡 < 𝑡1 − 𝛿, (2.2)

𝑣(𝑡, ⋅) = 𝑆𝐿(𝑡 − 𝑡2 + 𝛿)𝑣2, for 𝑡2 + 𝛿 < 𝑡 < 𝑡2 + 2𝛿 (2.3)

and

‖𝑣 − 𝑢‖𝐿2((𝑡1−2𝛿,𝑡2+2𝛿)×(−𝑙1,𝑙1))
< 𝜂.

Proof. Remember that 𝑄𝑇 = (0, 𝑇) × (−𝐿, 𝐿), 𝑃 is defined by Equations (1.4) and (1.5) and pick 𝑄𝛿 = (𝑡1 − 2𝛿, 𝑡2 + 2𝛿) ×

(−𝑙1, 𝑙1). By a smoothing process via convolution and multiplying the regularized function by a cut-off function of 𝑥, we
have a function 𝑢′ ∈ (ℝ2), such that

⎧⎪⎨⎪⎩
supp 𝑢′ ⊂ [𝑡1 − 𝛿, 𝑡2 − 𝛿] × [−𝑙2, 𝑙2],

𝑃𝑢′ = 0 in (0, 𝑇) × (−𝑙1, 𝑙1), and‖𝑢′ − 𝑢‖𝐿2((0, 𝑇) × (−𝑙1, 𝑙1))
<

𝜂

2
.

(2.4)

Consider the following set:

 = {𝑣 ∈ 𝐿2(𝑄𝑇); ∃ 𝑣1, 𝑣2 ∈ 𝐿2(−𝐿, 𝐿) such that Equations (2.1)–(2.3) hold true}.

Note that this lemma is proved if we may find 𝑣 ∈  such that
‖𝑣 − 𝑢′‖𝐿2(𝑄𝛿)

<
𝜂

2
.

It follows by the following trivial inequality:

‖𝑣 − 𝑢‖𝐿2(𝑄𝛿)
≤‖𝑣 − 𝑢′‖𝐿2(𝑄𝛿)

+ ‖𝑢′ − 𝑢‖𝐿2(𝑄𝛿)

<‖𝑣 − 𝑢′‖𝐿2(𝑄𝛿)
+

𝜂

2
.
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So, we achieve the proof if we prove that 𝑢′ ∈  = (⟂)⟂, where the closure and the orthogonal complement are taken in
the space 𝐿2(𝑄𝛿). For a fix function 𝑔 ∈ ⟂ ⊂ 𝐿2(𝑄𝛿) we should prove that the following holds

(𝑢′, 𝑔)𝐿2(𝑄𝛿)
= 0. (2.5)

Before presenting the proof of Equation (2.5), we claim the following.

Claim 1. Let  = {𝜑 ∈ 𝐶∞(ℝ2); supp 𝜑 ⊂ [𝑡1 − 𝛿, 𝑡2 + 𝛿] × ℝ}. So, there exists 𝐶 > 0 such that

|(𝜑, 𝑔)𝐿2(𝑄𝛿)
| ≤ 𝐶‖𝑃𝜑‖𝐿2(𝑄𝑇)

, (2.6)

for all 𝜑 ∈  .
In fact, pick 𝜑 ∈  and define

𝜓(𝑡) = ∫
𝑡

0

𝑆𝐿(𝑡 − 𝑠)𝑃𝜑(𝑠)𝑑𝑠,

for 0 ≤ 𝑡 ≤ 𝑇, that is, 𝜓 is strong solution of the boundary initial-value problem

⎧⎪⎪⎨⎪⎪⎩

𝑃𝜓 = 0, in 𝑄𝑇 ,
𝜓(𝑡, −𝐿) = 𝜓(𝑡, 𝐿), 𝜓𝑥(𝑡, −𝐿) = 𝜓𝑥(𝑡, 𝐿), 𝜓𝑥𝑥(𝑡, −𝐿) = 𝜓𝑥𝑥(𝑡, 𝐿), 𝑡 ∈ [0, 𝑇],

𝜓𝑥𝑥𝑥(𝑡, −𝐿) = 𝜓𝑥𝑥𝑥(𝑡, 𝐿), 𝜓𝑥𝑥𝑥𝑥(𝑡, −𝐿) = 𝜓𝑥𝑥𝑥𝑥(𝑡, 𝐿), 𝑡 ∈ [0, 𝑇],

𝜓(0, ⋅) = 0, in [−𝐿, 𝐿].

Thanks to this fact, 𝑣 = 𝜓 − 𝜑 ∈  , observe that Equations (2.2) and (2.3) are verified with 𝑣1 = 0 and 𝑣2 = 𝜓(𝑡2 + 𝛿),
hence

(𝑣, 𝑔)𝐿2(𝑄𝛿)
= (𝜓 − 𝜑, 𝑔)𝐿2(𝑄𝛿)

= 0.

On the other hand, we have

‖𝜓(𝑡)‖𝐿2(−𝐿,𝐿) ≤ ‖𝑃𝜑‖𝐿1(0,𝑡;𝐿2(−𝐿,𝐿)) ≤
√

𝑇‖𝑃𝜑‖𝐿2(𝑄𝑇))
,

for all 𝑡 ∈ [0, 𝑇], and therefore

|(𝜑, 𝑔)𝐿2(𝑄𝛿)
| = |(𝜓, 𝑔)𝐿2(𝑄𝛿)

| ≤ 𝑇‖𝑔‖𝐿2(𝑄𝛿)
‖𝑃𝜑‖𝐿2(𝑄𝑇)

,

showing Claim 1. We also need the following claim.

Claim 2. There exists a function 𝜔 ∈ 𝐿2(𝑄𝑇) such that

(𝜑, 𝑔)𝐿2(𝑄𝛿)
= (𝑃𝜑, 𝜔)𝐿2(𝑄𝑇)

, (2.7)

for all 𝜑 ∈  .
Indeed, let  = {(𝑃𝜑)||𝑄; 𝜑 ∈  } and define the map Λ ∶  ⟶ ℝ by

Λ(𝜁) = (𝜁, 𝑔)𝐿2(𝑄𝛿)
.

First, note that for any 𝜁 ∈ , if 𝜁 = (𝑃𝜑1)||𝑄𝑇
= (𝑃𝜑2)||𝑄𝑇

, for two functions 𝜑1, 𝜑2 ∈  , we have using claim 1 that 𝜑1 −

𝜑2 ∈  , hence (𝜑1 − 𝜑2, 𝑔)𝐿2(𝑄𝛿)
= 0. Thus,Λ is well defined. Consider𝐻 the closure of in 𝐿2(𝑄). Due to Equation (2.6),

using the Hahn–Banach theorem, we may extend Λ to 𝐻 in such way that Λ is a continuous linear form on 𝐻. Thus, it
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follows from the Riesz representation theorem that there exists 𝜔 ∈ 𝐻 such that

Λ(𝜁) = (𝜁, 𝜔)𝐿2(𝑄𝑇)
, ∀𝜁 ∈ 𝐻,

and so Equation (2.7) follows, and the proof of Claim 2 is finished.

Finally, let us prove Equation (2.5). To do it, consider the extensions of 𝑔 and 𝜔 in ℝ2 given by

𝑔(𝑡, 𝑥) = 0, for (𝑡, 𝑥) ∈ ℝ2∖𝑄𝛿

and

�̃�(𝑡, 𝑥) = 0, for (𝑡, 𝑥) ∈ ℝ2∖𝑄𝑇,

respectively. Taking Ω = (𝑡1 − 𝛿, 𝑡2 − 𝛿) × ℝ, let 𝜑 ∈ (Ω) ⊂  . So, we have that
(𝜑, 𝑔)𝐿2(𝑄𝛿)

= (𝜑, 𝑔)𝐿2(Ω) and (𝑃𝜑, 𝜔)𝐿2(𝑄𝑇)
= (𝑃𝜑, �̃�)𝐿2(Ω),

therefore, using Equation (2.7), we get

⟨𝑃∗(�̃�), 𝜑⟩′(Ω),(Ω) = ⟨𝑔, 𝜑⟩′(Ω),(Ω),

so 𝑃∗(�̃�) = 𝑔 in′(Ω) and

𝑃∗(�̃�) = 0, for 𝑡1 − 𝛿 < 𝑡 < 𝑡2 + 𝛿 and |𝑥| > 𝑙1.

Since

�̃�(𝑡, 𝑥) = 0, for 𝑡1 − 𝛿 < 𝑡 < 𝑡2 − 𝛿 and |𝑥| > 𝐿,

Holmgren’s uniqueness theorem (see, e.g., [14, Theorem 8.6.8]) ensures that

�̃�(𝑡, 𝑥) = 0, for 𝑡1 − 𝛿 < 𝑡 < 𝑡2 + 𝛿 and |𝑥| > 𝑙1.

Lastly, due to Equations (2.7) and (2.4), we conclude that

(𝑢′, 𝑔)𝐿2(𝑄𝛿)
= (𝑃𝑢′, 𝜔)𝐿2(𝑄) = (𝑃𝑢′, 𝜔)𝐿2((𝑡1 − 𝛿, 𝑡2 + 𝛿) × (−𝑙1, 𝑙1))

= 0,

finishing the proof. □

2.2 Observability inequality via Ingham inequality

Given a familyΩ = (𝜔𝑘)𝑘∈𝐾 ∶= {𝜔𝑘 ∶ 𝑘 ∈ 𝐾} of real numbers, we consider functions of the form
∑

𝑘∈𝐾
𝑐𝑘e𝑖𝜔𝑘𝑡 with square

summable complex coefficients (𝑐𝑘)𝑘∈𝐾 ∶= {𝑐𝑘 ∶ 𝑘 ∈ 𝐾}, and we investigate the relationship between the quantities

∫
𝐼

|||||
∑
𝑘∈𝐾

𝑐𝑘e𝑖𝜔𝑘𝑡
|||||
2

𝑑𝑡 and
∑
𝑘∈𝐾

|𝑐𝑘|2,
where 𝐼 is some given bounded interval. In this work, the following version of the Ingham-type theorem will be used.
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Theorem 2.2. Let {𝜆𝑘} be a family of real numbers, satisfying the uniform gap condition

𝛾 = inf
𝑘≠𝑛

|𝜆𝑘 − 𝜆𝑛| > 0

and set

𝛾′ = sup
𝐴⊂𝐾

inf
𝑘,𝑛∈𝐾⧵𝐴

|𝜆𝑘 − 𝜆𝑛| > 0

where𝐴 rums over the finite subsets of𝐾. If I is a bounded interval of length |𝐼| ≥ 2𝜋

𝛾′
, then there exist positive constants𝐴 and

𝐵 such that

𝐴
∑
𝑘∈𝐾

|𝑐𝑘|2 ≤ ∫
𝐼

|𝑓(𝑡)|2𝑑𝑡 ≤ 𝐵
∑
𝑘∈𝐾

|𝑐𝑘|2
for all functions given by the sum 𝑓(𝑡) =

∑
𝑘∈𝐾

𝑐𝑘𝑒
𝑖𝜆𝑘𝑡 with square-summable complex coefficients 𝑐𝑘 .

Proof. See [22, Theorem 4.6]. □

Now on, consider the operator 𝐴 ∶ 𝐷(𝐴) ⊂ 𝐿2(−𝐿, 𝐿) ⟶ 𝐿2(−𝐿, 𝐿), defined by 𝐴(𝑢) = −𝑢𝑥 − 𝑢𝑥𝑥𝑥 + 𝑢𝑥𝑥𝑥𝑥𝑥, with

𝐷(𝐴) = {𝑣 ∈ 𝐻5(−𝐿, 𝐿); 𝑣(−𝐿) = 𝑣(𝐿), 𝑣𝑥(−𝐿) = 𝑣𝑥(𝐿), … , 𝑣𝑥𝑥𝑥𝑥(−𝐿) = 𝑣𝑥𝑥𝑥𝑥𝑥(𝐿)}.

In what follows 𝑆𝐿 will denote the unitary group in 𝐿2(−𝐿, 𝐿) generated by the operator𝐴, using the Stone theorem. With
this in hand, pick 𝑒𝑛 =

1√
2𝐿
e𝑖𝑛

𝜋

𝐿
𝑥 for 𝑛 ∈ ℤ. So, 𝑒𝑛 is an eigenvector for 𝐴 associated with the eigenvalue 𝜔𝑛 = 𝑖𝜆𝑛, with

𝜆𝑛 =

(
𝑛𝜋

𝐿

)5

+

(
𝑛𝜋

𝐿

)3

−
𝑛𝜋

𝐿
.

If 𝑢0 ∈ 𝐿2(−𝐿, 𝐿) is any complex function, we decomposed as 𝑢0 =
∑

𝑛∈ℤ
𝑐𝑛𝑒𝑛, so we have for every 𝑡 ∈ ℝ

𝑆𝐿(𝑡)𝑢0 =
∑
𝑛∈ℤ

e𝑖𝜆𝑛𝑡𝑐𝑛𝑒𝑛.

We are now in a position to prove an observability result.

Proposition 2.3. Let 𝑙, 𝐿, and 𝑇 be positive number such that 𝑙 < 𝐿. Then, there exists a constant positive 𝐶 such that for
every 𝑢0 ∈ 𝐿2(−𝐿, 𝐿), denoting 𝑢 = 𝑆𝐿(.)𝑢0, we get

‖𝑢0‖𝐿2(−𝐿,𝐿) ≤ 𝐶‖𝑢‖𝐿2((0,𝑇)×(−𝑙,𝑙)). (2.8)

Therefore,

‖𝑢‖𝐿2((0,𝑇)×(−𝐿,𝐿)) ≤
√

𝑇𝐶‖𝑢‖𝐿2((0,𝑇)×(−𝑙,𝑙)). (2.9)

Proof. Pick 𝑇′ ∈ (0,
𝑇

2
) and 𝛾 >

𝜋

𝑇′
. Let 𝑁 ∈ ℕ such that

𝜆𝑁 − 𝜆−𝑁 = 2𝜆𝑁 ≥ 𝛾 and (𝑛 ∈ ℤ, |𝑛| ≥ 𝑁) ⇒ 𝜆𝑛+1 − 𝜆𝑛 ≥ 𝛾.

By Ingham’s inequality, see Theorem 2.2, there exists a constant𝐶𝑇′ > 0 such that for every sequence (𝑎𝑛)|𝑛|>𝑁 of complex
numbers, with 𝑎𝑛 = 0, for all 𝑛 ∈ ℤ; |𝑛| < 𝑁, the following inequality is verified

∑
|𝑛|≥𝑁

|𝑎𝑛|2 ≤ 𝐶𝑇′ ∫
2𝑇′

0

|||| ∑|𝑛|≥𝑁

𝑎𝑛e𝑖𝜆𝑛𝑡
||||
2

𝑑𝑡 (2.10)



CAPISTRANO–FILHO et al. 9

Let 𝑛 = 𝑆𝑝𝑎𝑛(𝑒𝑛) for 𝑛 ∈ ℤ and  = ⊕𝑛∈ℤ𝑛 ⊂ 𝐿2(−𝐿, 𝐿). Let us now define the following seminorm 𝑝 in ℤ by

𝑝(𝑢) =

(
∫

𝑙

−𝑙

|𝑢(𝑥)|2𝑑𝑥) 1

2

𝑑𝑡, ∀𝑢 ∈ .

In this case, 𝑝 is a norm in each 𝑛. By other hand, if 𝑢0 ∈  ∩ (⊕|𝑛|<𝑁)⟂, we can rewrite 𝑢0 in the following way:

𝑢0 =
∑

|𝑛|>𝑁

𝑐𝑛𝑒𝑛,

with 𝑐𝑛 = 0 for |𝑛| large enough. Thus, applying Equation (2.10) with 𝑎𝑛 =
𝑐𝑛√
2𝐿
e𝑖(𝜆𝑛𝑇

′+𝑛
𝜋

𝐿
𝑥) and integrating in (−𝑙, 𝑙) we

get

2𝑙
∑

|𝑛|≥𝑁

|𝑐𝑛|2
2𝐿

≤ 𝐶𝑇′ ∫
𝑙

−𝑙
∫

2𝑇′

0

|||| ∑|𝑛|≥𝑁

e𝑖𝜆𝑛𝑡𝑐𝑛𝑒𝑛(𝑥)
||||
2

𝑑𝑡𝑑𝑥.

Therefore, Fubini’s theorem ensures that

‖𝑢0‖𝐿2(−𝐿,𝐿) ≤ 𝐿

𝑙
𝐶𝑇′ ∫

2𝑇′

0

𝑝(𝑆𝐿(𝑡)𝑢0)
2𝑑𝑡.

Finally, for 𝑢0 ∈ 𝐿2(−𝐿, 𝐿), we have

∫
2𝑇′

0

𝑝(𝑆𝐿(𝑡)𝑢0)
2𝑑𝑡 ≤ ‖𝑆𝐿(.)𝑢0‖2

𝐿2((0,2𝑇′)×(−𝐿,𝐿))
= 2𝑇′‖𝑢0‖𝐿2(−𝐿,𝐿).

Thanks to the fact that 2𝑇′ < 𝑇, follows from [21, Theorem 5.2] that there exists a positive constant, still denoted by 𝐶,
such that Equation (2.8) is verified for all 𝑧0 ∈  and the general case, that is, for all 𝑢0 ∈ 𝐿2(−𝐿, 𝐿), follows by a density
argument, showing the result. □

3 GLOBAL CARLEMAN ESTIMATE

Consider 𝑇 and 𝐿 > 0 to be positive numbers. Pick any function 𝜓 ∈ 𝐶8[−𝐿, 𝐿] with

𝜓 > 0 in [−𝐿, 𝐿]; 𝜓′(−𝐿) > 0; 𝜓′(𝐿) > 0, 𝜓′′ < 0 and |𝜓𝑥| > 0 in [−𝐿, 𝐿]. (3.1)

Let 𝑢 = e−𝑠𝜑𝑞, 𝜔 = e−𝑠𝜑𝑃(𝑒𝑠𝜑𝑢) and 𝜑(𝑡, 𝑥) =
𝜓(𝑥)

𝑡(𝑇−𝑡)
. Straightforward computations show that

𝜔 = 𝐿1(𝑢) + 𝐿2(𝑢), (3.2)

with

𝐿1(𝑢) = 𝐴𝑢 + 𝐶1𝑢𝑥𝑥 + 𝐸𝑢4𝑥,

𝐿2(𝑢) = 𝐵𝑢𝑥 + 𝐶2𝑢𝑥𝑥 + 𝐷𝑢𝑥𝑥𝑥 + 𝑢𝑡 − 𝑢5𝑥.

Here,

𝐴 = 𝑠(𝜑𝑡 + 𝜑𝑥 + 𝜑𝑥𝑥𝑥 − 𝜑5𝑥) − 𝑠2(10𝜑𝑥𝑥𝜑𝑥𝑥𝑥 − 3𝜑𝑥𝜑𝑥𝑥 + 5𝜑𝑥𝜑4𝑥)

− 𝑠3(15𝜑𝑥𝜑
2
𝑥𝑥 + 10𝜑2

𝑥𝜑𝑥𝑥𝑥 − 𝜑3
𝑥) − 𝑠410𝜑3

𝑥𝜑𝑥𝑥 − 𝑠5𝜑5
𝑥,
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𝐵 = +𝑠(3𝜑𝑥𝑥 − 5𝜑4𝑥) − 𝑠2(15𝜑2
𝑥𝑥 + 20𝜑𝑥𝜑𝑥𝑥𝑥 − 3𝜑2

𝑥) − 𝑠330𝜑2
𝑥𝜑𝑥𝑥 − 𝑠45𝜑4

𝑥,

𝐶1 = 𝑠(3𝜑𝑥 − 10𝜑𝑥𝑥𝑥) − 𝑠310𝜑3
𝑥

𝐶2 = 𝐶2 = −𝑠230𝜑𝑥𝜑𝑥𝑥

𝐷 = −𝑠10𝜑𝑥𝑥 − 𝑠210𝜑2
𝑥,

𝐸 = −𝑠5𝜑𝑥.

On the other hand, ‖𝜔‖2 = ‖𝐿1(𝑢)‖2
+ ‖𝐿2(𝑢)‖2

+ 2 (𝐿1(𝑢), 𝐿2(𝑢)), where

(𝑢, 𝑣) = ∫
𝑇

0
∫

𝐿

−𝐿

𝑢𝑣𝑑𝑥𝑑𝑡

and ‖𝜔‖2 = (𝜔, 𝜔). With this in hand, we can prove a global Carleman estimate for the Kawahara equation

⎧⎪⎨⎪⎩
𝑢𝑡 + 𝑢𝑥 + 𝑢𝑥𝑥𝑥 − 𝑢𝑥𝑥𝑥𝑥𝑥 = 0 (𝑥, 𝑡) ∈ 𝑄𝑇 ,
𝑢(−𝐿, 𝑡) = 𝑢(𝐿, 𝑡) = 𝑢𝑥(−𝐿, 𝑡) = 𝑢𝑥(𝐿, 𝑡) = 𝑢𝑥𝑥(𝐿, 𝑡) = 0 𝑡 ∈ (0, 𝑇),
𝑢(𝑥, 0) = 𝑢0(𝑥) 𝑥 ∈ (0, 𝐿).

We cite to the reader that the well-posedness theory for this system can be found in [1].

3.1 Proof of Theorem 1.1

We split the proof into two steps. The first one provides an exact computation of the inner product (𝐿1(𝑢), 𝐿2(𝑢)), whereas
the second step gives the estimates obtained thanks to the pseudoconvexity conditions (3.1).
Step 1. Exact computation of the scalar product 2(𝐿1(𝑢), 𝐿2(𝑢)).
First, let us compute the following:

∫
𝑇

0
∫

𝐿

0

(𝐴𝑢 + 𝐶1𝑢𝑥𝑥 + 𝐸𝑢𝑥𝑥𝑥𝑥)𝐿2(𝑢)𝑑𝑥𝑑𝑡 =∶ 𝐽1 + 𝐽2 + 𝐽3

To do that, observe that 𝑢 belongs to(𝑃), thus, we infer by integrating by parts, that

𝐽1 = −
1

2 ∫
𝑇

0
∫

𝐿

−𝐿

[𝐴𝑡 − 𝐴5𝑥 − (𝐴𝐶2)𝑥𝑥 + (𝐴𝐵)𝑥 + (𝐴𝐷)𝑥𝑥𝑥]𝑢
2𝑑𝑥𝑑𝑡

−
1

2 ∫
𝑇

0
∫

𝐿

−𝐿

[5𝐴𝑥𝑥𝑥 − 3(𝐴𝐷)𝑥 + 2(𝐴𝐶2)]𝑢
2
𝑥𝑑𝑥𝑑𝑡

+
5

2 ∫
𝑇

0
∫

𝐿

−𝐿

𝐴𝑥𝑢
2
𝑥𝑥𝑑𝑥𝑑𝑡,

(3.3)

𝐽2 = ∫
𝑇

0
∫

𝐿

−𝐿

𝐶1𝑢𝑥𝑥[𝐵𝑢𝑥 + 𝐶2𝑢𝑥𝑥 + 𝐷𝑢𝑥𝑥𝑥 − 𝑢𝑥𝑥𝑥𝑥𝑥]𝑑𝑥𝑑𝑡

+ ∫
𝑇

0
∫

𝐿

−𝐿

𝐶1𝑢𝑥𝑥𝑢𝑡𝑑𝑥𝑑𝑡 ∶= 𝐼1 + 𝐼2.

(3.4)
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and

𝐽3 = ∫
𝑇

0
∫

𝐿

−𝐿

𝐸𝑢𝑥𝑥𝑥𝑥[𝐵𝑢𝑥 + 𝐶2𝑢𝑥𝑥 + 𝐷𝑢𝑥𝑥𝑥 − 𝑢𝑥𝑥𝑥𝑥𝑥]𝑑𝑥𝑑𝑡

+ ∫
𝑇

0
∫

𝐿

−𝐿

𝐸𝑢𝑥𝑥𝑥𝑥𝑢𝑡𝑑𝑥𝑑𝑡 ∶= 𝐼3 + 𝐼4.

(3.5)

Let us now treat 𝐼𝑖 , for 𝑖 = 1, 2, 3, 4. Note that 𝐼1 is equivalent to

𝐼1 = −
1

2 ∫
𝑇

0
∫

𝐿

−𝐿

(𝐶1𝐵)𝑥𝑢
2
𝑥𝑑𝑥𝑑𝑡 −

1

2 ∫
𝑇

0
∫

𝐿

−𝐿

[(𝐶1𝐷)𝑥 − 2(𝐶1𝐶2) − 𝐶1𝑥𝑥𝑥]𝑢
2
𝑥𝑥𝑑𝑥𝑑𝑡

−
1

2 ∫
𝑇

0
∫

𝐿

−𝐿

3𝐶1𝑥𝑢
2
𝑥𝑥𝑥𝑑𝑥𝑑𝑡.

(3.6)

By other hand, by the definition of 𝜔, see Equation (3.2), for 𝐼2 we have that

𝐼2 = −
1

2 ∫
𝑇

0
∫

𝐿

−𝐿

(𝐴𝐶1𝑥)𝑥𝑢
2𝑑𝑥𝑑𝑡 − ∫

𝑇

0
∫

𝐿

−𝐿

(𝐶1𝑥)𝑢
2
𝑥𝑥𝑥𝑑𝑥𝑑𝑡

−
1

2 ∫
𝑇

0
∫

𝐿

−𝐿

[−2(𝐵𝐶1𝑥) + (𝐶𝐶1𝑥)𝑥 − (𝐷𝐶1𝑥)𝑥𝑥

+ (𝐸𝐶1𝑥)𝑥𝑥𝑥 − 𝐶1𝑥 + (𝐶1)𝑥𝑥𝑥𝑥𝑥]𝑢
2
𝑥𝑑𝑥𝑑𝑡

−
1

2 ∫
𝑇

0
∫

𝐿

−𝐿

[(2𝐷𝐶1𝑥) − 3(𝐸𝐶1𝑥)𝑥 − 4𝐶1𝑥𝑥𝑥]𝑢
2
𝑥𝑥𝑑𝑥𝑑𝑡

− ∫
𝑇

0
∫

𝐿

−𝐿

𝐶1𝑥𝑢𝑥𝜔𝑑𝑥𝑑𝑡,

(3.7)

where we have used that 𝑢 belongs to (𝑃) and 𝑢∣𝑡=0 = 𝑢∣𝑡=𝑇 = 0. Now, using the same strategy as before, that is,
integration by parts, 𝑢 belongs to(𝑃) and 𝑢∣𝑡=0 = 𝑢∣𝑡=𝑇 = 0 ensures that

𝐼3 = −
1

2 ∫
𝑇

0
∫

𝐿

−𝐿

(𝐸𝐵)𝑥𝑥𝑥𝑢
2
𝑥𝑑𝑥𝑑𝑡 +

1

2 ∫
𝑇

0
∫

𝐿

−𝐿

[3(𝐸𝐵)𝑥 + (𝐸𝐶2)𝑥𝑥]𝑢
2
𝑥𝑥𝑑𝑥𝑑𝑡

−
1

2 ∫
𝑇

0
∫

𝐿

−𝐿

[(𝐸𝐷)𝑥 + 2(𝐸𝐶2)]𝑢
2
𝑥𝑥𝑥𝑑𝑥𝑑𝑡 +

1

2 ∫
𝑇

0
∫

𝐿

−𝐿

𝐸𝑥𝑢
2
𝑥𝑥𝑥𝑥𝑑𝑥𝑑𝑡,

(3.8)

and

𝐼4 = ∫
𝑇

0
∫

𝐿

−𝐿

𝐸𝑥𝑥𝑢𝑡𝑢𝑥𝑥𝑑𝑥𝑑𝑡 − 2∫
𝑇

0
∫

𝐿

−𝐿

(𝐸𝑥𝑢𝑥𝑥)𝑥𝑢𝑡𝑑𝑥𝑑𝑡 +
1

2 ∫
𝑇

0
∫

𝐿

−𝐿

𝐸
𝑑

𝑑𝑡
𝑢2
𝑥𝑥𝑑𝑥𝑑𝑡

= −∫
𝑇

0
∫

𝐿

−𝐿

𝐸𝑥𝑥𝑢𝑥𝑥𝑢𝑡𝑑𝑥𝑑𝑡 − 2∫
𝑇

0
∫

𝐿

−𝐿

𝐸𝑥𝑢𝑥𝑥𝑥𝑢𝑡𝑑𝑥𝑑𝑡 −
1

2 ∫
𝑇

0
∫

𝐿

−𝐿

𝐸𝑡𝑢
2
𝑥𝑥𝑑𝑥𝑑𝑡

= −∫
𝑇

0
∫

𝐿

−𝐿

[𝐸𝑥𝑥𝑢𝑥𝑥 + 2𝐸𝑥𝑢𝑥𝑥𝑥]𝑢𝑡𝑑𝑥𝑑𝑡 −
1

2 ∫
𝑇

0
∫

𝐿

−𝐿

𝐸𝑡𝑢
2
𝑥𝑥𝑑𝑥𝑑𝑡 =∶ 𝐼5 + 𝐼6.

(3.9)
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Note that 𝐼5 can be seen as

𝐼5 =
1

2 ∫
𝑇

0
∫

𝐿

−𝐿

[(𝐸𝑥𝑥𝐴)𝑥𝑥 − 2(𝐸𝑥𝐴)𝑥𝑥𝑥]𝑢
2𝑑𝑥𝑑𝑡

+
1

2 ∫
𝑇

0
∫

𝐿

−𝐿

[−2(𝐸𝑥𝑥𝐴) − (𝐵𝐸𝑥𝑥)𝑥 + 6(𝐸𝑥𝐴)𝑥 + 2(𝐸𝑥𝐵)𝑥𝑥]𝑢
2
𝑥𝑑𝑥𝑑𝑡

+
1

2 ∫
𝑇

0
∫

𝐿

−𝐿

[2(𝐸𝑥𝑥𝐶) − (𝐸𝑥𝑥𝐷)𝑥 + (𝐸𝑥𝑥𝐸)𝑥𝑥 + 𝐸𝑥𝑥𝑥𝑥𝑥 − 4(𝐸𝑥𝐵) − 2(𝐶𝐸𝑥)𝑥]𝑢
2
𝑥𝑥𝑑𝑥𝑑𝑡

+
1

2 ∫
𝑇

0
∫

𝐿

−𝐿

[−2(𝐸𝑥𝑥𝑥𝐸) − 7𝐸𝑥𝑥𝑥 + 4(𝐸𝑥𝐷) − 2(𝐸𝐸𝑥)𝑥]𝑢
2
𝑥𝑥𝑥𝑑𝑥𝑑𝑡

+ ∫
𝑇

0
∫

𝐿

−𝐿

𝐸𝑥𝑢
2
𝑥𝑥𝑥𝑥𝑑𝑥𝑑𝑡 − ∫

𝑇

0
∫

𝐿

−𝐿

(𝐸𝑥𝑥𝑢𝑥𝑥 + 2𝐸𝑥𝑢𝑥𝑥𝑥)𝜔𝑑𝑥𝑑𝑡,

thanks to Equation (3.2). So, putting the previous equality into Equation (3.9) we get,

𝐼4 =
1

2 ∫
𝑇

0
∫

𝐿

−𝐿

[(𝐸𝑥𝑥𝐴)𝑥𝑥 − 2(𝐸𝑥𝐴)𝑥𝑥𝑥]𝑢
2𝑑𝑥𝑑𝑡

+
1

2 ∫
𝑇

0
∫

𝐿

−𝐿

[−2(𝐸𝑥𝑥𝐴) − (𝐵𝐸𝑥𝑥)𝑥 + (𝐸𝑥𝐴)𝑥 + 2(𝐸𝑥𝐵)𝑥𝑥]𝑢
2
𝑥𝑑𝑥𝑑𝑡

+
1

2 ∫
𝑇

0
∫

𝐿

−𝐿

[2(𝐸𝑥𝑥𝐶) − (𝐸𝑥𝑥𝐷)𝑥 + (𝐸𝑥𝑥𝐸)𝑥𝑥 + 𝐸𝑥𝑥𝑥𝑥𝑥 − 4(𝐸𝑥𝐵) − 𝐸𝑡 − 2(𝐶𝐸𝑥)𝑥]𝑢
2
𝑥𝑥𝑑𝑥𝑑𝑡

+
1

2 ∫
𝑇

0
∫

𝐿

−𝐿

[−2(𝐸𝑥𝑥𝑥𝐸) − 7𝐸𝑥𝑥𝑥 + 4(𝐸𝑥𝐷) − 2(𝐸𝐸𝑥)𝑥]𝑢
2
𝑥𝑥𝑥𝑑𝑥𝑑𝑡

+ ∫
𝑇

0
∫

𝐿

−𝐿

𝐸𝑥𝑢
2
𝑥𝑥𝑥𝑥𝑑𝑥𝑑𝑡 − ∫

𝑇

0
∫

𝐿

−𝐿

(𝐸𝑥𝑥𝑢𝑥𝑥 + 2𝐸𝑥𝑢𝑥𝑥𝑥)𝜔𝑑𝑥𝑑𝑡.

(3.10)

Putting together Equations (3.6) and (3.7) in Equations (3.4), (3.8), and (3.10) into (3.5), and adding the result quantities
with Equation (3.3), we have that the scalar product 2(𝐿1(𝑢), 𝐿2(𝑢)) is given by

2∫
𝑇

0
∫

𝐿

−𝐿

𝐿1(𝑢)𝐿2(𝑢)𝑑𝑥𝑑𝑡 = −∫
𝑇

0
∫

𝐿

−𝐿

(𝐸𝑥𝑥𝑢𝑥𝑥 + 2𝐸𝑥𝑢𝑥𝑥𝑥)𝜔𝑑𝑥𝑑𝑡

− 2∫
𝑇

0
∫

𝐿

−𝐿

(𝜔𝐶1𝑥)𝑢𝑥𝑑𝑥𝑑𝑡 + ∫
𝑇

0
∫

𝐿

−𝐿

𝑀𝑢2𝑑𝑥𝑑𝑡

+ ∫
𝑇

0
∫

𝐿

−𝐿

𝑁𝑢2
𝑥𝑑𝑥𝑑𝑡 + ∫

𝑇

0
∫

𝐿

−𝐿

𝑂𝑢2
𝑥𝑥𝑑𝑥𝑑𝑡

+ ∫
𝑇

0
∫

𝐿

−𝐿

𝑅𝑢2
𝑥𝑥𝑥𝑑𝑥𝑑𝑡 + ∫

𝑇

0
∫

𝐿

−𝐿

𝑆𝑢2
4𝑥

𝑑𝑥𝑑𝑡,

(3.11)

where

𝑀 = −(𝐴𝐵)𝑥 − 𝐴𝑡 + 𝐴5𝑥 + (𝐴𝐶2)𝑥𝑥 − (𝐴𝐷)𝑥𝑥𝑥 − (𝐴𝐶1𝑥)𝑥 + (𝐸𝑥𝑥𝐴)𝑥𝑥 − 2(𝐸𝑥𝐴)𝑥𝑥𝑥

𝑁 = 3(𝐴𝐷)𝑥 − 2(𝐴𝐶2) − (𝐶1𝐵)𝑥 + (𝐵𝐶1𝑥) + 𝐶1𝑥 − (𝐶𝐶1𝑥)𝑥 + (𝐷𝐶1𝑥)𝑥𝑥 − 5𝐴𝑥𝑥𝑥

− (𝐸𝐶1𝑥)𝑥𝑥𝑥 − 𝐶15𝑥 − (𝐸𝐵)𝑥𝑥𝑥 − 2(𝐸𝑥𝑥𝐴) − (𝐵𝐸𝑥𝑥)𝑥 + 6(𝐸𝑥𝐴)𝑥 + 2(𝐸𝑥𝐵)𝑥𝑥
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𝑂 = 5𝐴𝑥 − (𝐶1𝐷)𝑥 − 2(𝐷𝐶1𝑥) + 3(𝐸𝐵)𝑥 + 2(𝐶1𝐶2) − 4(𝐸𝑥𝐵) + 5𝐶1𝑥𝑥𝑥 + 3(𝐸𝐶1𝑥)𝑥

+ 2(𝐸𝑥𝑥𝐶) + (𝐸𝐶2)𝑥𝑥 − (𝐸𝑥𝑥𝐷)𝑥 + (𝐸𝑥𝑥𝐸)𝑥𝑥 + 𝐸5𝑥 − 𝐸𝑡 − 2(𝐶𝐸𝑥)𝑥

𝑅 = −5𝐶1𝑥 − (𝐸𝐷)𝑥 + 4(𝐸𝑥𝐷) − 2(𝐸𝐶2) − 2(𝐸𝑥𝑥𝑥𝐸) − 7𝐸𝑥𝑥𝑥 − 2(𝐸𝐸𝑥)𝑥

𝑆 = 3𝐸𝑥

Now, note that

2∫
𝑇

0
∫

𝐿

−𝐿

𝐿1(𝑢)𝐿2(𝑢)𝑑𝑥𝑑𝑡 ≤ ∫
𝑇

0
∫

𝐿

−𝐿

(𝐿1(𝑢) + 𝐿2(𝑢))
2
𝑑𝑥𝑑𝑡 ≤ ∫

𝑇

0
∫

𝐿

−𝐿

𝜔2𝑑𝑥𝑑𝑡,

we have due to Equation (3.11) that

∫
𝑇

0
∫

𝐿

−𝐿

𝑀𝑢2𝑑𝑥𝑑𝑡 + ∫
𝑇

0
∫

𝐿

−𝐿

𝑁𝑢2
𝑥𝑑𝑥𝑑𝑡 + ∫

𝑇

0
∫

𝐿

−𝐿

𝑂𝑢2
𝑥𝑥𝑑𝑥𝑑𝑡 + ∫

𝑇

0
∫

𝐿

−𝐿

𝑅𝑢2
𝑥𝑥𝑥𝑑𝑥𝑑𝑡

+ ∫
𝑇

0
∫

𝐿

−𝐿

𝑆𝑢2
𝑥𝑥𝑥𝑥𝑑𝑥𝑑𝑡 − 2∫

𝑇

0
∫

𝐿

−𝐿

(𝜔𝐶1𝑥)𝑢𝑥𝑑𝑥𝑑𝑡 − ∫
𝑇

0
∫

𝐿

−𝐿

(𝐸𝑥𝑥𝑢𝑥𝑥 + 2𝐸𝑥𝑢𝑥𝑥𝑥)𝜔𝑑𝑥𝑑𝑡

≤ ∫
𝑇

0
∫

𝐿

−𝐿

𝜔2𝑑𝑥𝑑𝑡.

(3.12)

Let us put each common termof the previous inequality together. To do that, note that usingYoung inequality, for 𝜖 ∈ (0, 1)

we get

2∫
𝑇

0
∫

𝐿

−𝐿

(𝜔𝐶1𝑥)𝑢𝑥𝑑𝑥𝑑𝑡 = 2∫
𝑇

0
∫

𝐿

−𝐿

(
𝜖

1

2 𝐶1𝑥𝑢𝑥

)(
𝜖
−

1

2 𝜔

)
𝑑𝑥𝑑𝑡

≤ 𝜖 ∫
𝑇

0
∫

𝐿

−𝐿

𝐶2
1𝑥

𝑢2
𝑥𝑑𝑥𝑑𝑡 + 𝜖−1 ∫

𝑇

0
∫

𝐿

−𝐿

𝜔2𝑑𝑥𝑑𝑡.

In an analogous way,

∫
𝑇

0
∫

𝐿

−𝐿

(𝐸𝑥𝑥𝑢𝑥𝑥 + 2𝐸𝑥𝑢𝑥𝑥𝑥)𝜔𝑑𝑥𝑑𝑡 ≤ 𝜖

2 ∫
𝑇

0
∫

𝐿

−𝐿

𝐸2
𝑥𝑥𝑢

2
𝑥𝑥𝑑𝑥𝑑𝑡 + 𝜖 ∫

𝑇

0
∫

𝐿

−𝐿

𝐸2
𝑥𝑢

2
𝑥𝑥𝑥𝑑𝑥𝑑𝑡

+
3

2
𝜖−1 ∫

𝑇

0
∫

𝐿

−𝐿

𝜔2𝑑𝑥𝑑𝑡.

So, we have that

−𝜖 ∫
𝑇

0
∫

𝐿

−𝐿

𝐶2
1𝑥

𝑢2
𝑥𝑑𝑥𝑑𝑡 − 𝜖−1 ∫

𝑇

0
∫

𝐿

−𝐿

𝜔2𝑑𝑥𝑑𝑡 ≤ −2∫
𝑇

0
∫

𝐿

−𝐿

(𝜔𝐶1𝑥)𝑢𝑥𝑑𝑥𝑑𝑡 (3.13)

and

−
𝜖

2 ∫
𝑇

0
∫

𝐿

−𝐿

𝐸2
𝑥𝑥𝑢

2
𝑥𝑥𝑑𝑥𝑑𝑡 − 𝜖 ∫

𝑇

0
∫

𝐿

−𝐿

𝐸2
𝑥𝑢

2
𝑥𝑥𝑥𝑑𝑥𝑑𝑡 −

3

2
𝜖−1 ∫

𝑇

0
∫

𝐿

−𝐿

𝜔2𝑑𝑥𝑑𝑡

≤ − ∫
𝑇

0
∫

𝐿

−𝐿

(𝐸𝑥𝑥𝑢𝑥𝑥 + 2𝐸𝑥𝑢𝑥𝑥𝑥)𝜔𝑑𝑥𝑑𝑡.

(3.14)



14 CAPISTRANO–FILHO et al.

Replacing Equations (3.13) and (3.14) into Equation (3.12) yields that

∫
𝑇

0
∫

𝐿

−𝐿

𝑀𝑢2𝑑𝑥𝑑𝑡 + ∫
𝑇

0
∫

𝐿

−𝐿

(
𝑁 − 𝜖𝐶2

1𝑥

)
𝑢2
𝑥𝑑𝑥𝑑𝑡 + ∫

𝑇

0
∫

𝐿

−𝐿

(
𝑂 −

𝜖

2
𝐸2
𝑥𝑥

)
𝑢2
𝑥𝑥𝑑𝑥𝑑𝑡

+ ∫
𝑇

0
∫

𝐿

−𝐿

(
𝑅 − 𝜖𝐸2

𝑥

)
𝑢2
𝑥𝑥𝑥𝑑𝑥𝑑𝑡 + ∫

𝑇

0
∫

𝐿

−𝐿

𝑆𝑢2
𝑥𝑥𝑥𝑥𝑑𝑥𝑑𝑡 ≤

(
1 +

5

2
𝜖−1

)
∫

𝑇

0
∫

𝐿

−𝐿

𝜔2𝑑𝑥𝑑𝑡.

(3.15)

Step 2. Estimation of each term of the left-hand side of Equation (3.15).
The estimates are given in a series of claims.

Claim 1. There exist some constants 𝑠1 > 0 and 𝐶1 > 1 such that for all 𝑠 ≥ 𝑠1, we have

∫
𝑇

0
∫

𝐿

−𝐿

𝑀𝑢2𝑑𝑥𝑑𝑡 ≥ 𝐶−1
1 ∫

𝑇

0
∫

𝐿

−𝐿

(𝑠𝜑)9𝑢2𝑑𝑥𝑑𝑡.

Observe that

𝑀 = −(𝐴𝐵)𝑥 +
𝑂
(
𝑠8
)

𝑡8(𝑇 − 𝑡)8
= −45𝑠9𝜑8

𝑥𝜑𝑥𝑥 +
𝑂
(
𝑠8
)

𝑡8(𝑇 − 𝑡)8
= −45𝑠9

(𝜓′)8𝜓′′

𝑡9(𝑇 − 𝑡)9
+

𝑂
(
𝑠8
)

𝑡8(𝑇 − 𝑡)8

We infer from Equation (3.1) that for some 𝑘1 > 0 and all 𝑠 > 0, large enough, we have

𝑀 ≥ 𝑘1
𝑠9

𝑡9(𝑇 − 𝑡)9

Claim 1 follows then for all 𝑠 > 𝑠1, with 𝑠1 large enough and some 𝐶1 > 1.

Claim 2. There exist some constants 𝑠2 > 0 and 𝐶2 > 1 such that for all 𝑠 ≥ 𝑠2, we have

∫
𝑇

0
∫

𝐿

−𝐿

(
𝑁 − 𝜖𝐶2

1𝑥

)
𝑢2
𝑥𝑑𝑥𝑑𝑡 ≥ 𝐶−1

2 ∫
𝑇

0
∫

𝐿

−𝐿

(𝑠𝜑)7𝑢2
𝑥𝑑𝑥𝑑𝑡.

Noting that

𝑁 − 𝜖𝐶2
1𝑥

= 3(𝐴𝐷)𝑥 − 2(𝐴𝐶2) − (𝐶1𝐵)𝑥 + (𝐵𝐶1𝑥) +
𝑂
(
𝑠6
)

𝑡6(𝑇 − 𝑡)6

= −50𝑠7𝜑6
𝑥𝜑𝑥𝑥 +

𝑂
(
𝑠6
)

𝑡6(𝑇 − 𝑡)6
= −50𝑠7

(𝜓′)6𝜓′′

𝑡7(𝑇 − 𝑡)7
+

𝑂
(
𝑠6
)

𝑡6(𝑇 − 𝑡)6
,

and using again that Equation (3.1) holds, we get for some 𝑘2 > 0 and all 𝑠 > 0, large enough, that

𝑁 − 𝜖𝐶2
1𝑥

≥ 𝑘2
𝑠7

𝑡7(𝑇 − 𝑡)7

and Claim 2 follows then for all 𝑠 > 𝑠2, with 𝑠2 large enough and some 𝐶2 > 1.

Claim 3. There exist some constants 𝑠3 > 0 and 𝐶3 > 1 such that for all 𝑠 ≥ 𝑠3, we have

∫
𝑇

0
∫

𝐿

−𝐿

(
𝑂 −

𝜖

2
𝐸2
𝑥𝑥

)
𝑢2
𝑥𝑥𝑑𝑥𝑑𝑡 ≥ 𝐶−1

3 ∫
𝑇

0
∫

𝐿

−𝐿

(𝑠𝜑)5𝑢2
𝑥𝑥𝑑𝑥𝑑𝑡.
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First, see that

𝑂 −
𝜖

2
𝐸2
𝑥𝑥 = 5𝐴𝑥 − (𝐶1𝐷)𝑥 − 2(𝐷𝐶1𝑥) + 3(𝐸𝐵)𝑥 + 2(𝐶1𝐶2) − 4(𝐸𝑥𝐵) +

𝑂
(
𝑠4
)

𝑡4(𝑇 − 𝑡)4

= −250𝑠5𝜑4
𝑥𝜑𝑥𝑥 +

𝑂
(
𝑠4
)

𝑡4(𝑇 − 𝑡)4
= −250𝑠5

(𝜓′)4𝜓′′

𝑡5(𝑇 − 𝑡)5
+

𝑂
(
𝑠4
)

𝑡4(𝑇 − 𝑡)4
.

Next, using Equation (3.1) we have that for some 𝑘3 > 0 and all 𝑠 > 0, large enough,

𝑂 −
𝜖

2
𝐸2
𝑥𝑥 ≥ 𝑘3

𝑠5

𝑡5(𝑇 − 𝑡)5

is verified, so Claim 3 holds true for all 𝑠 > 𝑠3, with 𝑠3 large enough and some 𝐶3 > 1.

Claim 4. There exist some constants 𝑠4 > 0 and 𝐶4 > 1 such that for all 𝑠 ≥ 𝑠4, we have

∫
𝑇

0
∫

𝐿

−𝐿

(
𝑅 − 𝜖𝐸2

𝑥

)
𝑢2
𝑥𝑥𝑥𝑑𝑥𝑑𝑡 ≥ 𝐶−1

4 ∫
𝑇

0
∫

𝐿

−𝐿

(𝑠𝜑)3𝑢2
𝑥𝑥𝑥𝑑𝑥𝑑𝑡.

As the previous claims, thanks to Equation (3.1) and

𝑅 − 𝜖𝐸2
𝑥 = −5𝐶1𝑥 − (𝐸𝐷)𝑥 + 4(𝐸𝑥𝐷) − 2(𝐸𝐶2) +

𝑂
(
𝑠2
)

𝑡2(𝑇 − 𝑡)2

= −100𝑠3𝜑2
𝑥𝜑𝑥𝑥 +

𝑂
(
𝑠2
)

𝑡2(𝑇 − 𝑡)2
= −100𝑠3

(𝜓′)2𝜓′′

𝑡3(𝑇 − 𝑡)3
+

𝑂
(
𝑠2
)

𝑡2(𝑇 − 𝑡)2
,

we can find some constant 𝑘4 > 0 and all 𝑠 > 0, large enough, such that

𝑅 − 𝜖𝐸2
𝑥 ≥ 𝑘4

𝑠3

𝑡3(𝑇 − 𝑡)3

follows and Claim 4 is verified for all 𝑠 > 𝑠4, with 𝑠4 large enough and some 𝐶4 > 1.

Claim 5. There exist some constants 𝑠5 > 0 and 𝐶5 > 1 such that for all 𝑠 ≥ 𝑠4, we have

∫
𝑇

0
∫

𝐿

−𝐿

𝑆𝑢2
𝑥𝑥𝑥𝑥𝑑𝑥𝑑𝑡 ≥ 𝐶−1

5 ∫
𝑇

0
∫

𝐿

−𝐿

(𝑠𝜑)𝑢2
𝑥𝑥𝑥𝑥𝑑𝑥𝑑𝑡.

This is also a direct consequence of the fact that 𝑆 = −𝑠5𝜑𝑥𝑥 and Equation (3.1) holds. Therefore, Claim 5 is verified.

We infer from Steps 1 and 2, that for some positive constants 𝑠0, 𝐶, and all 𝑠 ≥ 𝑠0, we have

∫
𝑇

0
∫

𝐿

−𝐿

{
(𝑠𝜑)9|𝑢|2 + (𝑠𝜑)7|𝑢𝑥|2 + (𝑠𝜑)5|𝑢𝑥𝑥|2 + (𝑠𝜑)3|𝑢𝑥𝑥𝑥|2 + 𝑠𝜑|𝑢𝑥𝑥𝑥𝑥|2}𝑑𝑥𝑑𝑡

≤ 𝐶 ∫
𝑇

0
∫

𝐿

−𝐿

|𝜔|2𝑑𝑥𝑑𝑡.
Replacing 𝑢 by e−𝑠𝜛𝑞 yields Equation (1.6).
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4 APPROXIMATION THEOREM

This section is devoted to presenting an application of theCarleman estimate shown in Section 3 for theKawahara operator
𝑃 defined by Equations (1.4) and (1.5). First, we prove a result which is the key to proving the approximation Theorem 1.2.
We have the following as a consequence of Theorem 1.1.

Proposition 4.1. For 𝐿 > 0 and 𝑓 = 𝑓(𝑡, 𝑥) a function in 𝐿2(ℝ × (−𝐿, 𝐿)) with supp 𝑓 ⊂ ([𝑡1, 𝑡2] × (−𝐿, 𝐿)), where −∞ <

𝑡1 < 𝑡2 < ∞, we have that for every 𝜖 > 0 there exist a positive number 𝐶 = 𝐶(𝐿, 𝑡1, 𝑡2, 𝜖) (𝐶 does not depend on 𝑓) and a
function 𝑣 ∈ 𝐿2(ℝ × (−𝐿, 𝐿)) such that{

𝑣𝑡 + 𝑣𝑥 + 𝑣𝑥𝑥𝑥 − 𝑣𝑥𝑥𝑥𝑥𝑥 = 𝑓 in′(ℝ × (−𝐿, 𝐿)),

supp 𝑣 ⊂ [𝑡1 − 𝜖, 𝑡2 − 𝜖] × (−𝐿, 𝐿)

and

‖𝑣‖𝐿2(ℝ×(−𝐿,𝐿)) ≤ 𝐶‖𝑓‖𝐿2(ℝ×(−𝐿,𝐿)).

Proof. By a change of variable, if necessary, and without loss of generality, we may assume that 0 = 𝑡1 − 𝜖 < 𝑡1 < 𝑡2 <

𝑡2 − 𝜖 = 𝑇. Thanks to the Calerman estimate (1.6), we have that

∫
𝑇

0
∫

𝐿

−𝐿

|𝑞|2e− 𝑘

𝑡(𝑇−𝑡) 𝑑𝑥𝑑𝑡 ≤ 𝐶1 ∫
𝑇

0
∫

𝐿

−𝐿

|𝑃(𝑞)|2𝑑𝑥𝑑𝑡, (4.1)

for some 𝑘 > 0, 𝐶1 > 0 and any 𝑞 ∈ . Here, the operator 𝑃 is defined by Equation (1.4). Therefore, we have that 𝐹 ∶

 × ⟶ ℝ defined by

𝐹(𝑝, 𝑞) = ∫
𝑇

0
∫

𝐿

−𝐿

𝑃(𝑝)𝑃(𝑞)𝑑𝑥𝑑𝑡

is a scalar product in . Now, let us consider 𝐻 the completion of  for (⋅, ⋅). Note that |𝑞|2e− 𝑘

𝑡(𝑇−𝑡) is integrable on 𝑄𝑇 if
𝑞 ∈ 𝐻 and Equation (4.1) holds true. By the other hand, we claim that 𝑇 ∶ 𝐻 ⟶ ℝ defined by

𝑇(𝑞) = −∫
𝑇

0
∫

𝐿

−𝐿

𝑓(𝑡, 𝑥)𝑞(𝑥)𝑑𝑥𝑑𝑡,

is well-defined on 𝐻. In fact, due the hypotheses, that is, supp 𝑓 ⊂ ([𝑡1, 𝑡2] × (−𝐿, 𝐿)), and thanks to Hölder inequality
and the relation (4.1), we have

∫
𝑇

0
∫

𝐿

−𝐿

|𝑓(𝑡, 𝑥)𝑞(𝑥)|𝑑𝑥𝑑𝑡 ≤ ∫
𝑡2

𝑡1
∫

𝐿

−𝐿

|𝑓(𝑡, 𝑥)𝑞(𝑥)|𝑑𝑥𝑑𝑡 ≤ 𝐶‖𝑓(𝑡, 𝑥)‖𝐿2((𝑡1,𝑡2)×(−𝐿,𝐿))(𝑞, 𝑞)
1

2 , (4.2)

for some constant positive 𝐶.
Thus, it follows from the Riesz representation theorem that there exists a unique 𝑢 ∈ 𝐻 such that

𝐹(𝑢, 𝑞) = 𝑇(𝑞), ∀𝑞 ∈ 𝐻. (4.3)

Pick 𝑣 ∶= 𝑃(𝑢) ∈ 𝐿2((0, 𝑇) × (−𝐿, 𝐿)), so have that

⟨𝑃∗(𝑣), 𝑞⟩ = ⟨𝑣, 𝑃(𝑞)⟩ = ∫
𝑇

0
∫

𝐿

−𝐿

𝑣𝑃(𝑞)𝑑𝑥𝑑𝑡 = ∫
𝑇

0
∫

𝐿

−𝐿

𝑃(𝑢)𝑃(𝑞)𝑑𝑥𝑑𝑡

= 𝐹(𝑢, 𝑞) = 𝑇(𝑞) = −∫
𝑇

0
∫

𝐿

−𝐿

𝑓𝑞𝑑𝑥𝑑𝑡 = ⟨−𝑓, 𝑞⟩,
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where ⟨⋅, ⋅⟩ denotes the duality pairing ⟨⋅, ⋅⟩′(𝑄𝑇);(𝑄𝑇)
and 𝑃∗ = −𝑃, hence

𝑃𝑣 = 𝑓 in′(𝑄𝑇).

Finally, observe that 𝑣 ∈ 𝐻1((0, 𝑇);𝐻−5(−𝐿, 𝐿)), since we have

𝑣𝑡 = 𝑓 + 𝑣𝑥𝑥𝑥𝑥𝑥 − 𝑣𝑥𝑥𝑥 − 𝑣𝑥 ∈ 𝐿2(0, 𝑇;𝐻−5(−𝐿, 𝐿)),

thus 𝑣(0, ⋅) and 𝑣(𝑇, ⋅)make sense in𝐻−5(−𝐿, 𝐿). Now, let 𝑞 ∈ 𝐻1(0, 𝑇;𝐻5
0
(−𝐿, 𝐿)), follows by Equation (4.3) that

−∫
𝑇

0
∫

𝐿

−𝐿

𝑓𝑞𝑑𝑥𝑑𝑡 = −∫
𝑇

0
∫

𝐿

−𝐿

𝑓𝑞𝑑𝑥𝑑𝑡𝑡 + ⟨𝑣(𝑡, 𝑥), 𝑞(𝑡, 𝑥)⟩||||
𝑇

𝑡=0

,

where ⟨⋅, ⋅⟩ denotes the duality pairing ⟨⋅, ⋅⟩𝐻−5(−𝐿,𝐿);𝐻5
0
(−𝐿,𝐿). Since 𝑞|𝑡=0 and 𝑞|𝑡=𝑇 are arbitrarily in (−𝐿, 𝐿), we infer

that 𝑣(𝑇, ⋅) = 𝑣(0, ⋅) = 0 in𝐻−5(−𝐿, 𝐿). Therefore, the result follows extending 𝑣 by setting 𝑣(𝑡, 𝑥) = 0 for (𝑡, 𝑥) ∉ 𝑄𝑇 . □

Now, we are in a position to prove Theorem 1.2.

Proof of Theorem 1.2. Pick 𝜂 > 0, to be chosen later. Thanks to Lemma 2.1, applied for 𝐿 = 𝑛 + 1, 𝑙1 = 𝑛 − 1, 𝑙2 = 𝑛, 2𝛿 =
𝜖

2
, there exists 𝑣 ∈ 𝐿2((0, 𝑇) × (−𝑛 − 1, 𝑛 + 1)) such that

𝑃𝑣 = 0 in (0, 𝑇) × (−𝑛 − 1, 𝑛 + 1).

𝑣(𝑡, .) = 𝑆𝑛+1

(
𝑡 − 𝑡1 +

𝜖

2

)
𝑣1, for 𝑡1 −

𝜖

2
< 𝑡 < 𝑡1 −

𝜖

4
(4.4)

and

𝑣(𝑡, .) = 𝑆𝑛+1

(
𝑡 − 𝑡2 −

𝜖

4

)
𝑣2, for 𝑡2 +

𝜖

4
< 𝑡 < 𝑡2 +

𝜖

2
, (4.5)

for some (𝑣1, 𝑣2) ∈ 𝐿2((𝑡1 −
𝜖

2
, 𝑡2 +

𝜖

2
) × (−𝑛 + 1, 𝑛 − 1))2 and

‖𝑣 − 𝑢‖𝐿2((𝑡1−
𝜖

2
,𝑡2+

𝜖

2
)×(−𝑛+1,𝑛−1)) < 𝜂.

So that Equation (1.8) be fulfilled, we multiply 𝑣 by a cut-off function. Now on, consider 𝜑 ∈ (0, 𝑇) be such that 0 ≤ 𝜑 ≤
1, 𝜑(𝑡) = 1, for all 𝑡 ∈ [𝑡1 −

𝜖

4
, 𝑡2 +

𝜖

4
] and supp 𝜑 ⊂ [𝑡1 −

𝜖

2
, 𝑡2 +

𝜖

2
]. Picking 𝑣(𝑡, 𝑥) = 𝜑(𝑡)𝑣(𝑡, 𝑥), we get

supp 𝑣 ⊂ [𝑡1 −
𝜖

2
, 𝑡2 +

𝜖

2
] × (−𝑛 − 1, 𝑛 + 1).

Therefore,

‖𝑣 − 𝑢‖𝐿2((0,𝑇)×(−𝑛+1,𝑛−1)) ≤‖𝑣 − 𝑢‖𝐿2((𝑡1−
𝜖

2
,𝑡2+

𝜖

2
)×(−𝑛+1,𝑛−1))

+ ‖(𝜑 − 1)𝑣‖𝐿2((𝑡1−
𝜖

2
,𝑡2+

𝜖

2
)×(−𝑛+1,𝑛−1)).

Since supp 𝑢 ⊂ [𝑡1, 𝑡2] × (−𝑛, 𝑛) and 𝜑(𝑡) = 1, for 𝑡1 −
𝜖

4
≤ 𝑡 ≤ 𝑡2 +

𝜖

4
, we have

‖(𝜑 − 1)𝑣‖2

𝐿2((𝑡1−
𝜖

2
,𝑡2+

𝜖

2
)×(−𝑛+1,𝑛−1))

≤ ‖𝑣‖2

𝐿2({(𝑡1−
𝜖

2
,𝑡1−

𝜖

4
)∪(𝑡2+

𝜖

4
,𝑡2+

𝜖

2
)}×(−𝑛+1,𝑛−1))

= ‖𝑣 − 𝑢‖2

𝐿2({(𝑡1−
𝜖

2
,𝑡1−

𝜖

4
)∪(𝑡2+

𝜖

4
,𝑡2+

𝜖

2
)}×(−𝑛+1,𝑛−1))

≤ ‖𝑣 − 𝑢‖2

𝐿2((𝑡1−
𝜖

2
,𝑡2+

𝜖

2
)×(−𝑛+1,𝑛−1))

≤ 𝜂2.

(4.6)
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Hence,

‖𝑣 − 𝑢‖𝐿2((0,𝑇)×(−𝑛+1,𝑛−1)) ≤ 2𝜂, (4.7)

where we have used the fact that supp 𝑢 ⊂ [𝑡1, 𝑡2] × (−𝑛, 𝑛). Finally,

𝑃𝑣 =
𝑑𝜑

𝑑𝑡
𝑣 in (0, 𝑇) × (−𝑛 − 1, 𝑛 + 1)

so

‖𝑃𝑣‖2
𝐿2((0,𝑇)×(−𝑛−1,𝑛+1))

≤ ‖‖𝑑𝜑𝑑𝑡 ‖‖2

𝐿∞(0,𝑇)
‖𝑣‖2

𝐿2({(𝑡1−
𝜖

2
,𝑡1−

𝜖

4
)∪(𝑡2+

𝜖

4
,𝑡2+

𝜖

2
)}×(−𝑛−1,𝑛+1))

thanks to the fact that 𝜑(𝑡) = 1 in [𝑡1 −
𝜖

4
, 𝑡1 +

𝜖

4
]. On the other hand, since Equations (4.4) and (4.5) hold, we infer by the

observability result, that is, by Lemma 2.3, that there exists a constant 𝐶 = 𝐶(𝑛, 𝜖) > 0 such that

‖𝑣‖𝐿2((𝑡1−
𝜖

2
,𝑡1−

𝜖

4
)×(−𝑛−1,𝑛+1)) ≤ 𝐶‖𝑣‖𝐿2((𝑡1−

𝜖

2
,𝑡1−

𝜖

4
)×(−𝑛+1,𝑛−1))

and also

‖𝑣‖𝐿2((𝑡2+
𝜖

4
,𝑡2+

𝜖

2
)×(−𝑛−1,𝑛+1)) ≤ 𝐶‖𝑣‖𝐿2((𝑡2+

𝜖

4
,𝑡1+

𝜖

2
)×(−𝑛+1,𝑛−1)),

or equivalently,

‖𝑣‖𝐿2({(𝑡1−
𝜖

2
,𝑡1−

𝜖

4
)∪(𝑡2+

𝜖

4
,𝑡2+

𝜖

2
)}×(−𝑛−1,𝑛+1)) ≤ 𝐶‖𝑣‖𝐿2({(𝑡1−

𝜖

2
,𝑡1−

𝜖

4
)∪(𝑡2+

𝜖

4
,𝑡2+

𝜖

2
))×(−𝑛+1,𝑛−1)).

Thus, combining the last inequality with Equation (4.6) yields that

‖𝑃𝑣‖𝐿2((0,𝑇)×(−𝑛−1,𝑛+1)) ≤ 𝐶‖‖𝑑𝜑𝑑𝑡 ‖‖𝐿∞(0,𝑇)
𝜂 (4.8)

Now, to finish the proof, we use Proposition 4.1, to ensure the existence of a constant 𝐶 = 𝐶′(𝑛, 𝑡1, 𝑡2, 𝜖) > 0 and a
function 𝜔 ∈ 𝐿2((0, 𝑇) × (−𝑛 − 1, 𝑛 + 1)) such that{

𝑃𝜔 = 𝑃𝑣 in (0, 𝑇) × (−𝑛 − 1, 𝑛 + 1),

supp 𝜔 ⊂ [𝑡1 − 𝜖, 𝑡2 + 𝜖] × (−𝑛 − 1, 𝑛 + 1),
(4.9)

and

‖𝜔‖𝐿2((0,𝑇)×(−𝑛−1,𝑛+1)) ≤ 𝐶′‖𝑃𝑣‖𝐿2((0,𝑇)×(−𝑛−1,𝑛+1)). (4.10)

Consequently, setting 𝑣 = 𝑣 − 𝜔 we get Equations (1.7) and (1.8) by using Equation (4.9). Moreover, thanks to
Equations (4.7), (4.8), and (4.10), we get that

‖𝑣 − 𝑢‖𝐿2((0,𝑇)×(−𝑛+1,𝑛−1)) ≤
(
2 + 𝐶𝐶′‖‖𝑑𝜑𝑑𝑡 ‖‖𝐿∞(0,𝑇)

)
𝜂.

Now, choosing 𝜂 small enough, we have shown Equation (1.9) and so the result is shown. □

Finally, as a consequence of Theorem 1.2, we prove the next result that gives us information to prove the third main
result of the paper in the next section.
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Corollary 4.2. Let 𝑡1, 𝑡2, 𝑇 real numbers such that 0 < 𝑡1 < 𝑡2 < 𝑇 and 𝑓 = 𝑓(𝑡, 𝑥) be a function in 𝐿2
𝑙𝑜𝑐

(ℝ2) such that

supp 𝑓 ⊂ [𝑡1, 𝑡2] × ℝ.

Let 𝜖 ∈ (0,𝑚𝑖𝑛(𝑡1, 𝑇 − 𝑡2)), then there exists 𝑢 ∈ 𝐿2
𝑙𝑜𝑐

(ℝ2) such that

𝜔𝑡 + 𝜔𝑥 + 𝜔𝑥𝑥𝑥 − 𝜔𝑥𝑥𝑥𝑥𝑥 = 𝑓 in′(ℝ2)

and

supp 𝜔 ⊂ [𝑡1 − 𝜖, 𝑡2 + 𝜖] × ℝ.

Proof. Consider two sequences of number denoted by {𝑡𝑛
1
}𝑛≥2 and {𝑡𝑛

2
}𝑛≥2 such that for all 𝑛 ≥ 2 we have

𝑡1 − 𝜖 < 𝑡𝑛+1
1

< 𝑡𝑛
1
< 𝑡1 < 𝑡2 < 𝑡𝑛

2
< 𝑡𝑛+1

2
< 𝑡2 + 𝜖. (4.11)

We construct by induction over 𝑛 a sequence {𝑢𝑛}𝑛≥2 of function such that, for every 𝑛 ≥ 2

⎧⎪⎨⎪⎩
𝑢𝑛 ∈ 𝐿2((0, 𝑇) × (−𝑛, 𝑛)),

supp 𝑢𝑛 ⊂ [𝑡𝑛
1
, 𝑡𝑛

2
] × (−𝑛, 𝑛),

𝑃𝑢𝑛 = 𝑓 in (0, 𝑇) × (−𝑛, 𝑛),

(4.12)

and, if 𝑛 > 2

‖�̃�𝑛 − 𝑢𝑛−1‖𝐿2((0,𝑇)×(−𝑛+2,𝑛−2)) <
1

2𝑛
. (4.13)

Here, 𝑢2 is given by Proposition 4.1. Now on, let us assume, for 𝑛 ≥ 2, that 𝑢2, … , 𝑢𝑛 satisfies Equations (4.12) and (4.13).
By Proposition 4.1, there exists 𝜔 ∈ 𝐿2((0, 𝑇) × (−𝑛 − 1, 𝑛 + 1)) such that

supp 𝜔 ⊂ [𝑡2
1
, 𝑡2

2
] × (−𝑛 − 1, 𝑛 + 1)

and

𝑃𝜔 = 𝑓 in (0, 𝑇) × (−𝑛 − 1, 𝑛 + 1).

As we have 𝑃(𝑢𝑛 − 𝜔) = 0 in (0, 𝑇) × (−𝑛, 𝑛) and

supp (𝑢𝑛 − 𝜔) ⊂ [𝑡𝑛
1
, 𝑡𝑛

2
] × (−𝑛, 𝑛)

with 𝑡𝑛+1
1

< 𝑡𝑛
1
< 𝑡𝑛

2
< 𝑡𝑛+1

2
. So, using Theorem 1.2, there exists a function 𝑣 ∈ 𝐿2((0, 𝑇) × (−𝑛 − 1, 𝑛 + 1)) such that

supp 𝑣 ⊂ [𝑡𝑛+1
1

, 𝑡𝑛+1
2

] × (−𝑛 − 1, 𝑛 + 1), 𝑃𝑣 = 0 in (0, 𝑇) × (−𝑛 − 1, 𝑛 + 1)

and

‖𝑣 − (𝑢𝑛 − 𝜔)‖𝐿2((0,𝑇)×(−𝑛+1,𝑛−1)) <
1

2𝑛−1
.

Thus, picking 𝑢𝑛+1 = 𝑣 + 𝜔, we get that 𝑢𝑛+1 satisfies Equations (4.12) and (4.12). Extending the sequence {𝑢𝑛}𝑛≥2 by
𝑢𝑛(𝑡, 𝑥) = 0 for (𝑡, 𝑥) ∈ ℝ2 ⧵ (0, 𝑇) × (−𝑛, 𝑛), we deduce, thanks to Equation (4.13) that

{𝑢𝑛}𝑛≥2 → 𝑢 in 𝐿2
𝑙𝑜𝑐

(ℝ2)
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with

supp 𝑢 ⊂ [𝑡1 − 𝜖, 𝑡2 + 𝜖] × ℝ

due to the fact Equation (4.11). Additionally, 𝑃𝑢 = 𝑓 in ℝ2 by the third equation of Equation (4.12). Thus, the proof is
finished. □

5 APPROXIMATION THEOREMAPPLIED IN CONTROL PROBLEM

In this section, we present a direct application of the approximation Theorem 1.2, which ensures the proof of Theorem 1.3.

5.1 Proof of theorem 1.3

As is well known, see [8], that there exist 𝑢1 and 𝑢2 in a class 𝐶(0, 𝑇;𝐻𝑠(0, +∞), for 𝑠 ∈
(
−

7

4
,
5

2

)
∖
{

1

2
,
3

2

}
, solutions of

(without specification of the boundary conditions){
𝑢1𝑡 + 𝑢1𝑥 + 𝑢1𝑥𝑥𝑥 − 𝑢1𝑥𝑥𝑥𝑥𝑥 = 0 in (0, 𝑇) × (0, +∞),

𝑢1(0, 𝑥) = 𝑢0 in (0, +∞)

and {
𝑢2𝑡 + 𝑢2𝑥 + 𝑢2𝑥𝑥𝑥 − 𝑢2𝑥𝑥𝑥𝑥𝑥 = 0 in (0, 𝑇) × (0, +∞),

𝑢2(0, 𝑥) = 𝑢𝑇 in (0, +∞),

respectively, for 𝑠 ∈
(
−

7

4
,
5

2

)
. Now, consider �̃�2(𝑡, 𝑥) = 𝑢2(𝑡 − 𝑇, 𝑥). We have that 𝑃�̃�2 = 0 in [0, 𝑇] × (0, +∞). Now, pick

any 𝜖′ ∈ (𝜖,
𝑇

2
) and consider the function 𝜑 ∈ 𝐶∞(0, 𝑇) defined by

𝜑(𝑡) =

{
1, if 𝑡 ∈ [0, 𝜖′]

0, if 𝑡 ∈ [𝑇 − 𝜖′, 𝑇].

Note that the change of variable

𝑢(𝑡, 𝑥) = 𝜑(𝑡)𝑢1(𝑡, 𝑥) + (1 − 𝜑(𝑡))�̃�2(𝑡, 𝑥) + 𝜔(𝑡, 𝑥),

transforms Equation (1.10) in{
𝜔𝑡 + 𝜔𝑥 + 𝜔𝑥𝑥𝑥 − 𝜔𝑥𝑥𝑥𝑥𝑥 =

𝑑

𝑑𝑡
𝜑(�̃�2 − 𝑢1) in′((0, 𝑇) × (0, +∞)),

𝜔(0, 𝑥) = 𝜔(𝑇, 𝑥) = 0 in (0, +∞).

The proof is finished taking into account Corollary 4.2 with 𝑓 =
𝑑𝜑

𝑑𝑡
(�̃�2 − 𝑢1).
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