STABILITY OF SOLITARY WAVES FOR GENERALIZED
abcd-BOUSSINESQ SYSTEM: THE HAMILTONIAN CASE
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ABSTRACT. The abed-Boussinesq system is a model of two equations that can describe
the propagation of small-amplitude long waves in both directions in the water of finite
depth. Considering the Hamiltonian regimes, where the parameters b and d in the
system satisfy b = d > 0, small solutions in the energy space are globally defined. Then,
a variational approach is applied to establish the existence and nonlinear stability of
the set of solitary-wave solutions for the generalized abcb-Boussinesq system. The main
point of the analysis is to show that the traveling-wave solutions of the generalized
abcb-Boussinesq system converge to nontrivial solitary-wave solutions of the generalized
Korteweg-de Vries equation. Moreover, if p is the exponent of the nonlinear terms for the
generalized abcb-Boussinesq system, then the nonlinear stability of the set of solitary-
waves is obtained for any p with 0 < p < pg where pq is strictly larger than 4, while
it has been known that the critical exponent for the stability of solitary waves of the
generalized KdV equations is equal to 4.

1. INTRODUCTION

1.1. abed-Boussinesq model. Boussinesq [9] introduced several nonlinear partial dif-
ferential equations to explain certain physical observations concerning the water waves,
where the surface tension has been neglected, e.g. the emergence and stability of solitary
waves. Unfortunately, several systems derived by Boussinesq were shown to be ill-posed
and thus there was a need to propose other systems with better mathematical properties.

In that direction, the four-parameter family of the Boussinesq system
(1.1) N + Opt + Op(NU) + a0ppptt — b0y = 0,
’ Uy + Op) + UOLU + COpyzn) — dOppuy = 0,
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was introduced by Bona, Chen, and Saut [6] to describe the motion of small-amplitude
long waves on the surface of an ideal fluid of finite depth under gravity and in situations
where the motion is sensibly two-dimensional. In (1.1), 1 is the elevation of the fluid
surface from the equilibrium position and wu is the horizontal velocity at a certain height
in the flow. Initially, the constants a, b, ¢, d must satisfy only the following relation

1
atbtc+d=s-0

where o > 0 is the surface tension coefficient of the fluid. As reported in [6], when o is
zero, parameters a, b, ¢, d must satisfy the relations

1/, 1 1 , 1
. = _ i = Z — > N
(1.2) a+b 2(9 3) c+d 2(1 0°) =0, a+b+c+d 3

where 6 € [0,1]. In addition, a, b, ¢, d can be rewritten in the form

azl(Gz—l)V, 621(92—1>(1—V>,
2 3 2 3

c:%(l—GQ)u, d=%(1—92)(1—u),

with v, 1 are suitable real parameters in the sense that (1.3) implies (1.2). Depending
on the choice of different real values for v, u and 6 € [0, 1], it is possible to deduce some
classical systems, such as the classical Boussinesq system, Kaup system, Bona-Smith
system, coupled Benjamin-Bona-Mahony system, coupled Korteweg-de Vries system, and
coupled mixed Korteweg-de Vries-Benjamin-Bona-Mahony systems.

The authors in [7] studied the initial value problem for the system (1.1). The well-
posedness on R was shown if and only if the parameters a,b,c,d are in the following
regimes

(1.3)

(C1) b=d>0, a<0, c<0;
(C2) b,d=0, a=c>0.
Thus, observe that in the (C1) case, the system (1.1) takes the form as

(I —032)m + dpu + adu+ 0, (nu) =0, (x,t) e R x R,
(1.4) (I —b0%) uy + 1y + 21 + udyu = 0, (z,t) e R x R,
§.0) = me), u(z0) = u(z), R

It is known that system (1.4) admits (big) solitary-wave solutions in certain regimes of the
parameters involved in the system (for instance, see [4] and references therein for details).
Moreover, when b = d > 0, it was also shown in [7] that the system (1.4) is Hamiltonian
and globally well-posed in the energy space X = H'(R) x H'(R), at least for small data,
thanks to the conservation of the energy

1

H[n, u](t) =3 f (—a (0pu)” — ¢ (0um)” +u? + 1 + u’n) (t, z)dz.
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1.2. Problem setting. Keeping the previous conservation law in mind, our goal is to
investigate the existence and stability of some traveling-wave solutions for a more general
nonlinear dispersive system associated with (1.4), namely

(I —b3?)n, + Opu + adu + 0, (nuP) = 0, (z,t) e R x R,
(1.5) (I = b03) ug + Oun + cOin + 130:(u?™) =0, (z,t) e R x R,
2(.0) = mo(a).  u(,0) = ). ek

Here, n = n(z,t) and u = u(x,t) are real-valued functions, p > 0 is a rational constant of
the form
(1.6) p= P ith (p1, p2) =1 and p;y, pp odd,

P2

and the parameters a,b, ¢, d satisfy (C1). In the following, the system (1.5) is called the
generalized abch-Boussinesq system since b = d in (1.1).

It is well understood that the general stability theory developed in [18] is a powerful
tool to prove the stability of solitary-wave solutions for abstract Hamiltonian systems.
Taking it into account, roughly speaking, we are interested in the study of the following
problem:

Orbital Stability Problem: Let w € R and e > 0 be given and (7, @,) be a traveling-
wave solution of (1.5) with traveling speed w. Is there §(g) > 0 such that for (no,ug) €
H'(R) x HY(R) with

[(n0, wo) = (7, 1) [ x < 0(),
there exists a unique global solution (n(-,t),u(-,t)) of the system (1.5) such that

(1.7) inf [(n( ), u(, 1)) = (u( +9), Gl +9))lx <e forall t>07

Here, we may let a set G, = {(Au(- + ¥),tu(- +y)) |y € R}. Then, the orbital stability
can be stated as the set stability: (1.7) is equivalent to dist((n(-,t),u(-,t)),Gw) < € for all
t>0.

To solve the previous problem, it is natural to use the existence of a Hamiltonian
structure, as mentioned before. Thus, for our analysis of the stability, we consider the
Hamiltonian structure' for the generalized abcb-Boussinesq system (1.5) given by

n 1 2 2, .2 2 2 +1
1- = - - x - T p .
(1.8) J—C( ) 2J (77 c(0:m)° + u” — a(dyu)” + T )d:r;

u

Note that in this Hamiltonian regime, our system can be written as

e\ _ (T
&)

IThe Hamiltonian structure comes from the fact that gy, defined in the following is skew-symmetric
as pointed out in [7, Section 4].
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_ 0 -
o= (e 07 ):

It is important to mention that if (r(0),«(0)) has an average zero, so does (1(t), u(t)) as
long as the solution exists. Moreover, for a function w € L*(R) having zero average on R,
we see that it is possible to define the operator d, 'w as

ot ule) = |l dy

—0

with

in such a way that d,0;'w = w. On the other hand, there is a functional Q defined in X,
known as the Charge, which is conserved in time for classical solutions. This functional
is given formally by ?

o(0)--4(5 () ()= o-somes

From this Hamiltonian structure, we have that traveling waves of wave speed w for
the generalized abcb-Boussinesq system (1.5) correspond to stationary solutions of the

modulated system
my\ r (1
<q)t) - 3bb3~w <q)) )
where

(1.9) Fo(Y) =H(Y) +wQ(Y).
In other words, they are the solutions to the system

H (YY) +wQ(Y)=0.
Now, let us give some background for the stability issue.

1.3. Historical background. Regarding the stability issue, Grillakis, Shatah, and Strauss
[18] gave a general framework to establish the stability of solitary waves for a class of ab-
stract Hamiltonian systems, which will be called Grillakis-Shatah-Strauss (GSS) approach.
In this case, solitary-wave solutions Y,, of the least energy are the minimum of a func-
tional F,. In this approach, the analysis of the stability depends on the positiveness of
the symmetric operator F”(Y,,) in a neighborhood of the solitary wave solution Y,,, and
also the strict convexity of the scalar function

di(w) = inf{F, (V) : Y e M},

where M, is a suitable set.

In this theory, one of the main tasks is to establish the positiveness of F (Y,,). In one-
dimensional spatial problems, the spectral analysis for the operator F”(Y,,) is reduced to
studying the eigenvalues of an ordinary differential equation, which becomes an ordinary

2This holds by Noether’s theorem [32].
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differential equation with constant coefficients at +oo (for instance, see [8] for more de-
tails). Based on the GGS approach, several works in the literature treat the stability of
systems governed by partial differential equations.

For example, we can cite a series of works that show the stability of periodic waves for
a dispersive system, such as a fifth-order KdV type equation, a nonlinear Klein—Gordon
equation, a general class of nonlinear dispersive wave, a fourth-order Schrodinger system,
among others (see [1, 2, 3, 30, 31] and the references therein for these cases). Additionally,
there are recent results of stability /instability in models that arise in quantum field theory
(for example, [14, 33])°.

Related to the abcd-Boussinesq model, several authors have studied this system. We
mention first that, concerning explicit traveling-wave solutions, Chen [11] has considered
various cases for the abed-Boussinesq system (1.1). She was able to write many traveling-
wave solutions in the form (9, u) = (Y(x—wt), v(x—wt)), depending on the constants a, b, ¢
and d. After that, adapting the positive operator theory of Krasnosell’skii [20, 21], Bona
and Chen [5] established the existence of traveling-wave solutions for the abcd Boussinesq
system (1.1), in the regime

b,d >0, a,c<0, |al,|c| < Vbd

and for w > 1 such that

bd b+d

More recently, stability issues have been treated in two works by Chen, Nguyen, and
Sun. In [12], the authors have shown that traveling-wave solutions of (1.1) exist in the
regime a + b + ¢ + d < 0, which corresponds to a large surface tension o > 1/3. In
addition, they have also proven stability using techniques introduced earlier by Buffoni
[10] and Lions [25, 26]. Additionally, in [13], the authors considered the general case
b =4d > 0 and a,c < 0, which, in particular, allows small surface tension cases. To
be precise, they gave the existence of traveling-wave solutions in the presence of small
propagation speeds, taking into account the coefficients satisfying

min{1, \/I;TC}, b+#0,
! b=0.

1
ac o—z
w2>max{—,1+ 3}.

a,c<0, b=d, |w|<uwo, wozz{

We also mention that considering a variation of (1.1), Hakkaev, Stanislavova, and
Stefanov [19], showed the spectral stability of certain traveling-wave solutions for the
Boussinesq “abc” system, taking into advantage the explicit sech? (x) like solutions of the
form (n,u) = (Y(x —wt),v(r —wt)) = (¢, const.)), exhibited by Chen [11]. In the article,
they provided a complete rigorous characterization of the spectral stability in all cases for
which a = ¢ < 0,b > 0.

3We mention that there is also interest in studying scattering and decay issues for the system (1.1).
We suggest the nice articles [22, 23] and the reference therein.
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Finally, Loreno, Moraes, and Natali [29] treated the stability of traveling-wave solutions
for the abed-Boussinesq model (1.1) considering the Hamiltonian regimes, however in the
periodic framework, which is completely different from our case.

Let us now, briefly discuss the use of the GSS approach. To use this approach, in
our work, the verification of the hypotheses of [18, Theorem 3] is difficult, since we do
not have a close formula for traveling-wave solutions, making it almost impossible to
compute F7(Y,,) and d{(w). However, we are still able to use the method by performing
a direct approach to prove the stability of solitary-wave solutions of the system (1.5),
using the characterization of d;(w) in terms of conservatives quantities. This strategy
was satisfactory in several cases, for example, as the pioneering work done by Shatah [36]
in the case of the nonlinear Klein-Gordon equations, Bouard and Saut [15] for the KP
equation, Liu and Wang [27] for the generalized KP equation, Levandosky [24] concerning
the fourth-order wave equation, Fukuizumi [17] for the nonlinear Schrodinger equation
with harmonic potential, and Quintero [34, 35] for the 2D Benney-Luke equation and the
2D Boussinesq type system, among others.

We mention that, since the literature in this area is vast, the cited references are a small
sample - not exhaustive - about the stability results and the use of the GSS approach, thus
we suggest readers see more details in the previous works and the above-listed references,
as well as the references therein.

1.4. Main result. Given the state of the art, our work is motivated due to the results of
(12,13, 19] that deal with one dimensional abcd-Boussinesq system. We are now presenting
our main result, however, first, let us introduce some notations.

By a solitary-wave solution, we shall mean a solution (1, ) of (1.5) taking the form

(1.10) n(x,t) =v (x —wt), u(z,t)=v(x—wt),

where w denotes the wave’s speed of propagation and 1, v approach to zero as x goes
to infinity. In what follows, we require that (n(z,t),u(z,t)) € X := H'(R) x H*(R) and
restrict ourselves to the case (C1). Considering £ = x—wt and substituting the form of the
solution (1.10) into (1.5), integrating once and evaluating the constants of the integration
using the fact that (¢, v) € X, one sees that (¢, v) must satisfy the following system

111 —w (Y — ") + v+ av” + PP =0,
(1.11) w (=0 + ") + P+ e + qePtt =0

We note that traveling-wave solutions can be considered as the critical points of a
minimization problem, that is, the existence of solitary-wave solutions for the system
(1.5) is a consequence of a variational approach that applies a minimax type result since
solutions (¢, v) of the system (1.11) are the critical points of following functional J, = 2F,
defined by

(1.12) Jo(¥,0) = L,(¥,0) + G(¢,v),
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where J,, is given by (1.9). Here, the functional I, and G are defined in the space X by
(1.13) L(¥,v) = L, v) + Lu(¢,v),
with

R(w0) = [ [0 = W) + o7 = al']da,

Ly(,v) = —QwJ (v — b vde = —ZWJ (v + bp"") dx
R R
and

G(¢,v) J Yol dr.

p+1

Remark 1.1. Some remarks are worthy of mentioning.

a. A ground state solution is a solitary-wave solution that minimizes the action func-
tional J,, among all the nonzero solutions of (1.11).
b. If (1,v) is a solution of (1.11), the followz’ng quantities hold,

(1.14) Jo(h,v) = p+2 L,(¥,v),
(115) Jw(lﬁ,v) = —-G(iﬂ,?)),
(1.16) Iw(%v):—]i?G(@/) v).

With all these notations and definitions in hand, the main result of the article gives
a positive answer to the orbital stability problem (or actually the set stability)
presented at the beginning of the introduction for certain p > 0. In other words, the
generalized abcb-Boussinesq system (1.5) has a set of traveling-wave solutions that is
stable when the wave speed wy of the traveling waves is near 1.

Theorem 1.2 (Set stability). For the generalized abch-Boussinesq system (1.5) satisfying
(1.6), there is a non-empty set of traveling-wave solutions with speed w, denoted by G, if

(1.17) 2b < —a—c and 0 < |w| <min{1,+/ac/b},

are satisfied. Furthermore, if b < y/ac and 0 < p < py with a unique critical number
po > 4, the set G, for the generalized abcb-Boussinesq system (1.5) with w > 0, but
near 17, is stable in the sense of (1.7) with the set being .. In other words, given
(s, Gw) € Gy for w > 0, but near 1=, if (n(0),u(0)) is near (7, Gy) in the space X, the
solution (n(t), u(t)) remains near the set G, in the space X.
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Remark 1.3. Here, it is very interesting to see that the stability of the set S, is obtained
for any p with 0 < p < pg where pg is strictly large than 4, while the critical exponent for
the stability of solitary waves for the generalized KdV equations is py = 4. Moreover, it
can be shown numerically that py is approximately equal to 4.2280673976. The instability
problem for p > pg will be studied in near future.

1.5. Heuristic and structure of the article. Let us highlight the present work’s con-
tribution and provide a summary of how Theorem 1.2 can be obtained.

Observe that the natural space (energy space) in which we consider the well-posedness
of the Cauchy problem is X. This comes from the fact that the Hamiltonian structure
defined in (1.8) and F, given by (1.9) require (n(z,t),u(z,t)) € X to be well defined.
Additionally, these conditions already characterize the natural space (energy space) for
traveling-wave solutions of the generalized abcb-Boussinesq system (1.5).

The difficulty in using [18, Theorem 3| appears when computing F” around the traveling
wave (1, U,) since we do not know explicitly the characterization of this pair for the
generalized abcb-Boussinesq model. In other words, it is almost impossible to establish the
spectral hypotheses on the second variation of the action functional on the traveling wave.
We appeal to the variational characterization of traveling-wave solutions to overcome this
difficulty. Precisely, by the quantities (1.14) and (1.16), we can define a scalar function
d(w), see equation (4.3), establishing the convexity of d, since we can prove that d”(w) > 0.

Two tools will be useful to prove the minimization problem and show that d(w) is strictly
convex. The first one is related to the existence of traveling-wave solutions for (1.11) as
a minimizer problem. In our context, we will invoke the classical Lion’s concentration-
compactness Theorem [25, 26]. Together with this result, the second tool is to see that
the generalized Korteweg-de Vries (KdV) equation

1
(1.18) U + Uy + (§ — a) Ugge + (WP, =0,

emerges from the generalized abcb-Boussinesq system (up to some order). For this fact,
it is natural to expect that the family of solitary-wave solutions of the generalized abcb-
system (1.5) converges to nontrivial solitary-wave solutions of the generalized KdV equa-
tion (1.18). Putting these two important tools together, we can reach the convexity of the
scalar function d(w), taking into account an important fact of a transformed system re-
lated with (1.11) (see Appendix A). Summarizing what concerns our main result Theorem
1.2, the following points are worthy of mentioning.

a. In [19], the authors suggest that the GSS approach fails when applied to the
system (1.4). However, our work showed that the stability (Theorem 1.2) is a
direct consequence of the GSS approach. The main ingredients in this analysis
are: KdV scaling for the generalized abch-Boussinesq system and its properties and
GSS approach.
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b. To the authors’ best knowledge, no attempt has been made to apply this strategy
for the system (1.5). Thus, in the context presented in this article, we give a
necessary first step in understanding the stability using the previous ingredients
for the generalized abcd-Boussinesq system in the Hamiltonian case.

c. It is important to point out that our main result, Theorem 1.2, suggests that the
set G, for the generalized abcb-Boussinesq system (1.5) with speed w > 0, but near
17, could be is unstable when p > py, i.e, relation (1.7) fails. In this way, we will
soon present a detailed study of the instability of the generalized abcb-Boussinesq
system in a forthcoming paper.

We finish this introduction with an outline of this work, which consists of six parts
including the introduction. Section 2 gives a brief discussion of the existence of minimizers,
that is, we present the existence of solitary-wave solutions for the system (1.5). Section 3
is devoted to proving carefully the inter-relation between the generalized KdV equation
(1.18) and the generalized abcb-Boussinesq system (1.5). Section 4 gives the properties
of the scalar function d(w), in particular, the strict convexity of d(w) for w € (0, 1), near
17. In Section 5, we will give the proof of Theorem 1.2 using the GSS approach, showing
that the solution set of the generalized abcb-Boussinesq system (1.5) is stable. Finally,
Appendix A is devoted to giving properties of a transformed system associated with (1.11),
which is the key point to prove the convexity for the scalar function d(w), moreover, in
the Appendix B we presented the concentration-compactness argument which one is used
in the Section 3.

2. BRIEF DISCUSSION ON THE EXISTENCE OF MINIMIZERS

It is well known that the existence of traveling-wave solutions for (1.11) as a minimizer
of the following problem
(2.1) Jo =inf{I,(¢p,v) e X : G(¢,v) = —1}

is based on the existence of a compact embedding (local) result and also on an important
result by P.-L. Lions, which completely characterizes the convergence of measures, is
known as the Concentration-Compactness principle.

Theorem 2.1 (P.-L. Lions [25, 26]). Suppose {v,} is a sequence of nonnegative measures
on R* such that

lim dv, = 7.
n—a0 Rk

Then, there is a subsequence of {v,} (which is denoted the same) that satisfies only one
of the following properties.

i. Vanishing: For any R > 0,

lim <supf dyn) =0,
n—=% \zeR* J By ()
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where Br(z) is the ball of radius R centered at x.

ii. Dichotomy: There exist 0 € (0,J) such that for any v > 0, there are R > 0
and a sequence {x,} in R* with the following property: Given R’ > R there are
nonnegative measures v\, v such that

a) 0 < vl + 12 < vy
b) sSupp (Vi) < BR (xn) ,  Supp (I/Z) - Rk\BR’ (.Tn),

c)
lim sup <‘9 - J dv} ) <.
n—o0 RE

iii. Compactness: There exists a sequence {x,} in R¥ such that for any v > 0, there
18 R > 0 with the property that

f dv, =3 —~,  for all n.
Br(zn)

+‘(3—9)—f 2
Rk

To apply this result to our case, we note that for a minimizing sequence {(¢,,,v,)}, we
may define the concentration function induced by the integrand of I,(v,v) as

pn = (VL) + 02 + (v)° + 02,

and the measure

v (A) — L pn(@) dz < | (00, < C, forall e N,

where I,(¢n, v,) is equivalent to § podz if 0 < |w| < min(1,\/ca/b), with A < R. As
|(¢n, vn) | x < C for all n, we can extract a convergent subsequence which we again denote
as {(¢n,vn)}, so that

0
A = lim pn(x)dz
—a0
exists. Define a sequence of non-decreasing functions M,, : [0,0) — [0, \] as follows:

y+r
M,(r) = supj pn(x)dz.
yeR Jy—r
Since M, (r) is a uniformly bounded sequence of non-decreasing functions in r, one can
show that it has a subsequence, which we still denote as M,,, that converges pointwise to
a non-decreasing limit function M (r) : [0,0) — [0, A]. Let

Yy+r
Ao = lim M(r) := lim lim supJ pn(z)dz.
r—00 r—00 N—00 yeR Jy—r
Then 0 < \g < A
As is well known for dispersive type systems (see, for instance, [12, 28], for one and
two-dimensional cases, respectively), ruling out vanishing and dichotomy for a minimizing
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sequence of I, the Lion’s Concentration Compactness Theorem 2.1 ensures the existence
of a subsequence of {v,} satisfying the compactness conditions. Therefore, as a conse-
quence of local compact embedding, the minimizing sequence {(1,,, v,)} (or a subsequence)
is compact in X, up to translation. The proof is very standard and will be omitted. Thus,
the following theorem holds for the generalized abcb-Boussinesq system (1.5).

Theorem 2.2. Let 0 < |w| < min(1,+/ca/b). If {(¢n,v,)} is a minimizing sequence for
(2.1), then there is a subsequence, still denoted by the same index, a sequence of points
x, € R, and a minimizer (g, vo) € X of (2.1), such that the translated functions

(QLmﬁn) = (77Z)n( + yn)v vn(' + yn)) - (77[}072)0) strongly in X.

2.1. Minimization problem. With the previous result in hand, let us prove that (1.11)
has a nontrivial solution. Considering the minimization problem (2.1), observe that the
constraint G(¢,v) = —1 is necessary since the quantity given by (1.16) needs to be
positive. Moreover, noting that H'(R) < L4(R) for all ¢ > 2 and the Young’s inequality,
we have

(2:2) G, 0)] < M1 @y + 101705 m) < M, v)5™
Our first lemma ensures some boundedness for the quantity (1.16).

Lemma 2.3. For (1.17) being satisfied, the functional 1, defined by (1.13) is nonnegative.
Moreover, there are positive constants M (a,b,c,w) and Ms(a,b, c,w) such that

(2.3) M|, 0)[% < Lo(¥,v) < Ma|(4, )%,
and 3, given by (2.1), is finite and positive.

Proof. In fact, using the quantity (1.13) and Young’s inequality, we obtain that
o) < [ [0+ lel)? + (il + b)) (07

+(1 + |w)v? + (Ja| + blw]) (v')2] dx
<max (1 + |w], ¢ + blw], |a| + bw]) [ (¢, v) %

(2.4)

and

L) = [ = w0+ (VI - (ko) o)+ 1= P

(2.5) + (o] — (B2?/le])) (v’)Z]dx

> Cofl (¥, v)%

vea/b). Inequalities (2.4) and (2.5) give (2.3). On the other hand,
—1, we have from (2.2) that

My (L(,0))% = M|, )| = [G,v)| =1,

if 0 < |w| < min(1
using that G(¢,v)
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which implies
_ 2
]w(Qzva) = Ml p+2a
meaning that the infimum J,, is finite and positive. [

Thanks to the Theorem 2.2, the problem (2.1) has a minimizer. Therefore, the main
result in this section ensures that (1.11) has a nontrivial solution.

Theorem 2.4. Let (1g,v9) be a minimizer for the problem (2.1). Then, the function
(¢, v) = B(vo, vo) is a nontrivial solution of (1.11) for = (—)\)% with A\ = —Iﬁjw.
Proof. From the Lagrange multiplier theorem, there exists A such that
I, (1o, v0) = AG' (Y0, v0)-
On the other hand,
29, = 21,(g, vo)
= (I, (%0, v0), (10, v0))
= A (G'(tho, vo), (Y0, v0))
— Alp + 2)G (o, ).
In this case, we have that the Lagrange multiplier A is given by A = —ﬁjw. If we take
(¢, v) = B, vy) with [ = (—)\)%, we see that
I(W,0) + CW0) =0 = A+ =0,
showing the result. O

Definition 2.5. We will now call the solution given in the previous theorem as solitary-
wave solution. This solution is indeed a classical solution of (1.11). We will also denote

the set of those traveling-wave solutions with speed w by G,,.

3. THE KDV SCALING FOR THE GENERALIZED abcb-BOUSSINESQ SYSTEM

In this section, we present some auxiliary lemmas that are paramount to prove the main
result of this article. We will see that a renormalized family of solitary-wave solutions of
the generalized abcb-Boussinesq system converges to nontrivial solitary-wave solutions for
the generalized KAV equation, assuming the speed velocity w close to 1~ as € — 0% with
b < /ac and balancing the effects of nonlinearity and dispersion®.

Set € > 0, w? =1~ el and, for a given couple (1,v) € X, consider the following
scaling
(31) 1/}($) = 5(10-%—1)1(1%%—2),z(y)7 U(qj) = €(p+1)1(p+2)w(y) with Yy = grj—lx_

4This phenomenon was characterized also for solitary-wave solutions of 2D Boussinesq-Benney-Luke
system in [28], where the authors used the characterization of solitary-wave solutions for the (KP-I) model
given in [16].
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Now, define the following quantities,

(3.2) I(z,w) = I™(z,w) + I*(z,w),
and
2
== | awrtdy.
(3.3) G(z,w) | sz Yy
Here
(3.4) I'(z,w) = f (ﬁﬁzZ —c(2)? + erw? — a(w')2> dy
R
and
(3.5) I*(z,w) = —2wf (efp%zw + bz'w') dy.
R

Straightforward calculations give us the following relations:
L(,v) = eFF07 142, w),
Loo(,v) = €T 1242, w),

I,(¢,v) = E%IG(Z,U)),
and
G(Y,v) = G(z,w) = G(z,w),
where IY¢, [%¢) I¢ and G are given by (3.4), (3.5), (3.2) and (3.3), respectively.
Under relations (1.17), there exists a family {(¢,v,)}, such that

L,(Vy,vy) = 3o, Gy,v,) = —1.
Then, if we denote
J¢:=inf{I(z,w) : (z,w)e X with G(z,w)= -1},
there is a correspondent family {(z¢, w®)}. such that
J¢ = I°(2%w%), G5 w)=-1, J,= T ¢
We also have that (2¢,w¢) is a solution of the system

2
€ P (w—wz) + wb” + aw” + <]ﬁ> JezwP =0,

(3.6)

efﬁ(z — ww) + wbw” + ¢z + <m> JewPtt = 0.

Now, let us define in X the following two functionals

3.7)  JY(w) = I(ww,w) := JR e_p%(l — wHwdy + JR — ((2b+ c)w® + a) (w')*dy
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and

(3.8) K (w) = G(ww,w).

Define the following number J*

(3.9) J° = inf{J(w) : w e H'(R), K(w) = —1},

where J¢ < J¢, and need to keep in mind the following quantity defined by (3.2):

2

I(z,w) sz <e_m(z —w(e)w)® + (1 - wZ(e))(—:_ﬁuﬁ) dy

o (- B0 (D )

Let us give some behavior, as € — 0, for the functional (3.8) and the number (3.9).

(3.10)

Lemma 3.1. Considering the functionals (3.7) and (3.8), it follows that

(3.11) El_i)lgl+ K (we) = el_i,r(% G (w(e)w,w) = —1
and

(3.12) lim 9 = lim J(wf) = 3’ >0,
where

J° = inf{J°(w) : we H'(R), K°(w) = —1},

J(w) = f (w” + (o — %) w?) dy,
R
0 _ 2 f p+2
K (w)—p+1 Rw dy.

Proof. Let v e H'(R) satisfy K°(v) = —1 and define

a = (w(e) 7.

Then, for such a v, we have that K(av) = —1 and thus,
(3.13) J(av) = a?J(v) = ¢
Now, we note that lim._,+ |@] = 1. On the other hand, using w? = 1 — 741 and that

ct+a+2b= % — 0, we conclude the following

lim J(v) = lim e_ﬁ(l —w)idy + lim | ((—c—2bw(e)® —a) (V')*dy

e—0t =0T Jp e—0" Jp

_ JR(& + (0 _ %) (W)2) dy = JO(v).
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Consequently, (3.13) implies that
(3.14) J° > limsupd® and J° > limsupJ©.

e—0 e—0+t
Now, observe that
2
: 0 e\ _ 1: e\p+2 _ 1 € € €
61_1)%1+K (U))_el—l»%l*p——i-leR(M) dy EEI(%G(ww,w).

We claim that
lim K (wf) = —1

e—0t
To prove it, we need to show that
(3.15) 61_1)151+G (z,w)=€1_1>131+G (wwe, we),

since
lim G° (2, w) = —1.

e—0t

Note that (3.15) is equivalent to prove that

(3.16) lim

e—0t

|- w(e)wﬁ)(wf)p*ldy' ~0

To show (3.16), we note that

€ € € € € € 1
[ - wtouw >P+1dy\ <O 1 — wle)u oy 0Ly,
since (3.10) together with b*> < ac implies that

(317) ||2:€ - W(E)wean(R) = O(eﬁ)7 a’nd
1w g1y o 2|1y are uniformly bounded,
which ensures that (3.16) holds when € — 0*. Thus, we conclude that
Elirél+ K (we) = Elir& K (w) = elirgl+ G (25, w°) = —1,

showing (3.11). If € is small enough, it is obtained that K° (w¢) # 0, and
€ 0 €
30 < JO w - _ ‘] (w ) —
KO (w)rz ) KO (we) [

J (w) — J° (wf) = o(1).

together with
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Next, we note that (3.10) is
jE :IE(Z€7 wE)

- [ (7 e w0 dy

- i) s (=) o)

< (u),

where limsup,_ ¢+ J¢ < J° and G(2¢,w®) = —1.
Now, we consider liminf, o+ J¢, which gives that there is a sequence {¢;} — 0" such
that

lim J9 = lim J9 (29, w%) = liminf J* < §° with G (29, w%) = —1.

j%(x) J*)w e—0t
For this sequence (2%, w), the following claim holds.

Claim I: The sequence of minimizers (2,w%) for I19(z,w) with G (z,w) = —1 has a
subsequence of (2%, w%) up to some translation in x (still using the same notation for the
translated subsequence) that converges to (2°,w®) in H'(R) x H'(R).

The proof of Claim I is given in Appendix B. Thus, from this claim, (3.17) implies that

20 = w? and

(29, w9) > (v’ w’) in H'(R) x H'(R).
Moreover,
K°w") = lim G (29, w9) = —1

Jj—w

and

3° <J°(w®)

- lim R<< P+ i (< 5y - 2 <w6f>')2

N (ac—b2 2(€]
]
J <1

< lim 19 (29, w9 ) = liminf imsupJ° < 3°,
]—>OO e—0t e—0+

where (3.14) has been used. Hence, we have that

lim J¢ = 3.

e—0t
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Finally, for any w € H'(R) satisfying K¢(w) = —1, it is known that J¢ < J¢(w) due to
the fact that J¢ < J° and (3.9). Thus, we get that

J° = lim J° < liminf J¢.
e—0t e—0t

Again, using (3.14), we conclude that
lim J¢ = J°,
e—0t
showing (3.12), and the lemma is achieved. O
Before we go further, we characterize the solitary-wave solutions for the generalized
KdV equation. In the one-dimensional case, the following result is a consequence of the

results shown in [16], where the authors characterize the solitary-wave solutions for the
(KP-I) model in the d-dimensional case.

Theorem 3.2. Let {w,, }m=0 be a minimizing sequence for 3° given by Lemma 5.1. Then,
there ezists a sequence of points (yn)m < R and a subsequence, which will be denoted by
the same index, and a nonzero wy € H'(R) such that J°(wg) = J°, and

Wy (- + Ypm) — wo € H'(R).

Moreover, wy is a solution to the equation

1
(318) Wo + <_ - U) Wogr +

3 Jowh = 0.

(p+1)

2
p+1
equation (1.18), i.e.,

1
Therefore, w = < 30) " wq is a nontrivial solitary wave solution for the generalized KdV

1
w+(§—a>wm+w1)+1:0.

We are in a position to prove the main result of this section which one is a consequence of
Theorem 3.2. We will see that the translated subsequence of the renormalized sequence
{(29,w%)}; converges to a function wy that satisfies the system (1.11). Thus, wy is a
solution of the generalized KdV equation.

Theorem 3.3. For any sequence €; — 0% there is a translated subsequence
{(z9,w9)};, and a nontrivial (zy,wo) € X such that

(3.19) (29, w9) - (20,wp) n X, and 29 —w9 — 0, asj — .

Moreover, (z9,wy) is a nontrivial solution of the system

Z0 = Wy
wo + (% — 0) wy + (pil)gowg“ - 0.
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In other words, zy = wy € HY(R), with wy being a traveling wave for the generalized KdV

equation (3.18).

Proof. Let {¢;}; be a sequence of positive number such that ¢; — 0%, when j — oo.

From Lemma 3.1, we note that (—KO (wej)fz?% wej) is a minimizing sequence for J°
J

and also that K°(w®%) — —1. Thanks to the previous convergence and Theorem 3.2,

there exist a translated sequence of {w%}; and a nonzero function wy € H'(R) such that

w — wy in H'(R) and wy is a solution of (3.18). Additionally, from (3.10) and the
uniform boundedness of {(z%,w%)}; in H*(R), it is obtained that

, . 1
|29 — wlej)w| 2 gy = Ofe2),

which implies that there exists a nontrivial zy € L*(R) such that 2% — 2z, in L*(R) and
zp = wy. Moreover, since (29, w%) is a minimizer of [ (z,w) with G(z,w) = —1 and
lim; o 19 (2%, w%) = Jo, a concentration-compactness argument shows that zo € H'(R)
and 2% — 25 in H'(R), which gives (3.19).

Now, considering a test function £ € C*(R) and using the system (3.6), we get

(57w —w(6)) + (Y + w6 ) = = (219 we )

and

(G775 (™) + wle)w?) + ()€ ) =

~(GrogTa ).

Adding both equations in the previous system, we find that

<§ PR wfe) (- 29) + (bley) + a)(w)! + (bule) + C><Z”>"’§>

- _ ;Ej € \p+1 iejfj €j
N <(p+1)(p+2)J SR )p’§>'

Note that using the first part of the proof yields zy = wp, when ¢; — 0%. Moreover, since

1 —w?(ej) = p“ gives that

22 1
Jim, e; " (1 —w(ey)) = 3
thus,

2

lim <€j”+2(1 — w(€)) (w9 +29) + (bw(€;) + a)(w?)" + (bw(e;) + ¢)(27)", §> =

J—©

{wo + (20 + a + c)wp, &) .
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Thanks to the fact that J — J°, we have
— lim ;Jq(zej P Ljeﬂ'zgf(wef WY, €
i~ \(p+1)(p+2) p+2 ’

_ 2 0, ptl
- <<p+1>“’° ’5>‘

Finally, putting previous equalities together gives the existence of the non-trivial solution
wy = 2o to the equation

1 2
3.20 + (= - it POuwl™ =0,
320 wt (5-7) b+ G
as desired once we have that a + c+ 2b = % — o, showing the result. 0

Remark 3.4. We note that (2°,w) is a solution of (3.6), which can be rewritten as

672/(p+1)<we — )+ 672/(p+1)(1 — W)z + wbz,

(3.21) ; 2 e e
+awyy+p+23 (W)’ z¢=0
and
6—2/(p+1) (ZE o wE) + 6_2/(17""1)(1 — (,U)U)e + wbw;y
(3.22) 2

e, 4 I (W) = 0.
“uwT Hr D +2) (w5

By the fact that w? = 1 — e/®+Y) with Lemma 3.1 and Theorem 5.3, we have
w — wy, 2°—wy, I°—7° as €—0.

However, since e 2P+ — 40 as e — 0, the term e 2P+ (we — 2¢) in (3.21) and (3.22)
may not approach to zero. To obtain the limit of e~ %P+ (w® — 2°), one needs to derive
the next orders of we, z¢, i.e.,

(3.23) w = wy + w, e/ ) and z°=wy + 2,2/ P+ ’

where, in general, wy — z; may not tend to zero as € — 0. In fact, the limits of wy and z,
as € — 0 can be found from (3.21) and (3.22) as well. By adding (3.21) and (3.22) and
using (3.23) and the equation for wy, we can derive one equation for wy and z1 in terms of
wo. Another equation is directly from (3.21) using (3.23). Therefore, those two equations
yield the limits of wy and z; as € — 0. In this way, we can derive the asymptotic forms
of we and z¢ up to any orders of € as € — 0.
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4. GSS APPROACH

Recall that solitary waves are characterized as critical points of a function defined on
suitable space. For our generalized abcb-Boussinesq system (1.5), remember that the
functional J : X* — X is given by (1.12), where X* is the dual space of X. Hereafter, a
solitary-wave solution (or a traveling-wave solution of finite energy) minimizes the action
functional J, under some constraints.

As proposed Shatah [36], for the study of the stability of the standing waves of nonlinear
Klein-Gordon equations, and Grillakis, Shatah, and Strauss [18, Theorems 2 and 3],
considering an abstract Hamiltonian system, the analysis of the stability of solution sets
depends upon some properties of the scalar function given by

1
(4.1) d(w) = H(¢,v) + wQ(Y,v) = F, = §Jw,
where (¢, v) is a solution of (1.11). Taking into account Remark 1.1, we have that
p
4.2 = — ] .
(4.2) o) = 5 L)

Observe that, using Section 2, (1, v,) is a critical point to J,, given by (2.1) and G, is
the set of all such (1, v,). Therefore, thanks to Theorem 2.4, we have that

(,0) = (I%ﬂ) (o),

is solution of (1.11). Thus, putting this equality in (4.2) yields that

p 2 z
o5t () )

(4.3) P < & J>ilw(ww,vw)

2p+2) \p+27°
__ P 2\’ o
55 () el )5

since 3, = 1,(1,,v,), with I, defined by (1.13).

4.1. Properties of the scalar function. This subsection is devoted to presenting prop-
erties of the scalar function d(w)” when w is near 1~. From now on, we will use the notation
of the previous section, the characterization of d(w) given by (4.3), and we take into ac-
count the relation (1.17). The first result gives us a relation for 0 < w; < ws < 1 in terms
of d.

5Tt is important to point out again that this strategy was originally introduced in [36], and after that,
extended for an abstract framework in [18].
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Lemma 4.1. For 0 < w; < ws < 1 and (Y, Vs,) € Gu,, @ = 1,2, it follows that

(4.4) d(wr) <d(wz) — % (L> Ty (V10 V) 7 <w2 — wl) Ly, (Y, V)

p+2 Wa
+O((w — w1)?)

and

w5 (55) Gt (B0
+Of(en —en)

)
Proof. Due to the definition of d(w), given by (4.3), we have that

i) =5 (5

2(p+2)

2
P p+2

(Lo (Yoy s vy ) 7

)
) (s ()
)

([1 (¢w27 Uw2) + [27002 (¢w27 Uw2)

p+2
- [2,0-22 (wwza Uwz) + [2,0-21 (www Uwz)) ’

p+2

p 2 ; Wi — W2 P
= Iw w2 Yw I w! wa Yw )
2(p+2) <p+2) ( 2(77Z) 25 U 2) + Wo 2, 2(7»/} 25 U 2))

21

thanks to (1.13) and to the fact that Ip ., (Vu,, V) = 2Iow,(Yu,, V,). Thus, using

o 12,we
wo 4
Taylor’s series around zero in the previous inequality, we find

2

P 2 P p+2
d(wl) <2(p+2) <p+2> (Iw2(¢w27vw2)) P

P 2 %p+2 s [ wy — wy
_ 2(p + 2) (p + 2) D (Iw2 (1/}4027 Uwz))p < oy > 127“,2 (I/wa Uwz)
+ O((w2 - w1)2)

)
+O((wy — w1)?)

3N

Wy — W1

W2

(IWQ (%27 UWZ))% ( ) IQ,MQ (www Uu&)

and the inequality (4.4) is verified. The proof of (4.5) is analogous and will be omitted.

We are now in a position to characterize d'(w).
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Lemma 4.2. For (¢,,v,) € G, with 0 < wy < w < 1, and (1.17) being satisfied, it
follows that

LA

(4.6) ﬂ@=1< 2)pr%MwUA%wd)=QWW)

2\p+2 w
Additionally, we have that d'(w) < 0, when w is near to 1~.

Proof. This lemma is a consequence of Lemma 4.1. Indeed, consider 0 < wy < w < 1.
Firstly, since (¢, Vi, ) € Suw, and (¥, v,) € Gy, by using (4.4), we have

2 2

dwo) —dw) _1( 2 \7? (Lo, 1))’
Wy — W T2 p+2 w

On the other hand, we have, thanks to (4.5), that

(48) d(wo) —d(UJ) > 1 ( 2 )p (Iwo(wwovvwo))g

Wy — W ~ 2 p+2 Wo

(4.7)

]2,w(¢w7 Uw) + 0 ((w - WO))

L9 (Y5 Vy) + O ((w = wo)) -

Therefore, inequalities (4.7) and (4.8) ensure that
2

1 2\ 7 Iy (Y, Vo

Z ( ) 2, 0<¢ 01 U 0) —|—O((w _WO))

2 p+ 2 Wo
_ d(wn) - d(w)
Wy — W
]- 2 % IQ,w(¢wavw) o
<§(p+2> 2 4 O((w — wo)).

Thus, taking the limit wy — w in the previous inequality shows (4.6). Here, we have used
the fact that the solutions of ordinary differential equations are continuous with respect
to the parameters when 0 < w < 1.

Finally, by the quantity 7*¢(z,w) defined in (3.5), that is, from the scaling (3.1) and
I, we have that

(4.9) 1276(267 we) = — QMJ (6_1’%1,2611}6 + b(ﬁyze)(ayw6)>dya
R

since w?(e) = 1 — €rit. Passing the limit when ¢ — 0% in (4.9), thanks to the Theorem
3.3, we obtain

lim 6%12’6(26,11}6) = —2[ widy < 0.
R

e—0t

This means that I%¢(z¢, w®) < 0 for € near 0", which implies I5 (¢, v,) < 0, and, due to
the expression (4.6), we find d'(w) < 0. O
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With the previous lemma in hand, let us give a relation for d”(w) when w is near 17,
which will ensure the convexity of d.

Lemma 4.3. Suppose that (1.17) holds. Then, for 0 < w < 1 near 17, it follows that

() Z% (p i 2)2 (IZ’”W‘“%))Q (Lo(t, v0)) 7

w

Y +1(i)’2’<f ()i (Pt
2 ST dw |

W

Moreover, when 0 < w < 1 is near 1=, d"(w) > 0 if 0 < p < py and d"(w) < 0 if p > py,
where pyg > 4 is the unique positive root of

p2\r ¥
p+1 2(p+4) '

Proof. Differentiating the equation (4.6) in terms of w and taking in mind that d(w) is
given by (4.3), straightforward calculations show that the relation (4.10) holds. Now,
since the first term of the right-hand side of (4.10) is explicit and positive, thanks to the
fact that (., v,) > 0, we only need to find that

4 (et e ( mﬂﬁ(z(y),w(y»)

_ € (p+1)(p+2)
o dw de w(e)
1 d <p+4[2v€(z(y),w(y)))

P
= —w(p + 1)€md— € P+ (p+2)
€

due to the relation (3.5) and w? = 1 — et
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Observe that using the notation (z(y),w(y)) = (2(y, €), w(y, €)), we obtain that

+4 2e
d <€<+><+> I*(2(y), w(y)))

de w(e)
pd

- i () [ (Pt 0000 + b2 Oy 9.)) o

€

d » >
= —2— <6<P+1>(P+2) J <z(y, ew(y, €) + er bz, (y, €)w,(y, e)) dy)
dE R

2 .
- (6 “’*”“’*”ﬁ (Z(y, Yw(y,e) + €7+ bz, (y, Juw, (v, 6)) dy)
R

(p+1)(p+2)

,d
-2 <6_ FPFDEF) — J (Z(% Yw(y, €) + e Tbz, (y, €)w,(y, 6)) dy)
de Jp

- o (T [ (00000 + 105 (. 0.))

+ e T R(z,w, z¢, w,),
where the subscripts € and y mean the derivatives with respect these variables and

R(z,w, z¢,w,) is linear in terms of either z. or w.. Taking the limit when € goes to
0" in the previous identity, from Theorem 3.3 and Lemma A.1, we can see that

d ( MIQ’E(Z(y),w(y)))

li — P+D(P+2)
1m € w(e)

e—0+ de
gy (e‘wﬁwfl U 2(y, w(y, e)dy + 0(1))> :
(p+1)(p+2) ot R

Thus, by (4.10), after a straightforward calculation, it is obtained that

d”(w):hm< 4(Lz(y76)w(y,6)dy+o(l)> @ < , )i

pI<(z(y,€), w(y,e)) Cp+2 p+2

e—0t

LSRN

x (I(=(y, €), w(y, ) (j 2(y, w(y, e)dy + o<1>) T (14 o<1>>>

Therefore, as € — 0%, the sign of d”(w) is determined by

) 4 (waS(y)dy) )

pd° p+2

Y
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where wy(z) satisfies (3.18) and

(4.12) Hozzﬁg(w§+<a~%)lﬁ%>dy

To calculate wg(x), we note that by a classical theory of ordinary differential equations,
(3.18) has a unique homoclinic solution of the form

- _ 0_% ; ﬁsec% _
wo(r) = (3) ((p+1)(p+2)) h (2 0—1/3)7

with an arbitrary translation in x. Plug this wy into (4.12) to obtain

o _ (202 ot ViVe BB/ 2|
’ p(p +4) ’

(4.13)

where B(x,y) is the Beta function of variables x,y, and the formula

2. 41171

J sech® (ay)dy = B(v,v)
R

has been used. Moreover, it can be derived similarly that

(4.14) wade=(]%4>W(p+2)5(p+1)‘m( 0_1/35(2/]9,2/29))? .

Hence, putting (4.13) and (4.14) into (4.11) gives that the sign of d”(w) is determined by
the following relation

z%(p”ﬁ’l (p+ 1) 7F(p+4) — —— = (<w) P £ ) i

p+2 p+1 p+4)

which has a unique positive root pq for

p2\r
p+1 2(p +4) ’

since a straightforward computation shows that for p > 0,
d p+2 ; P <0
dp \\p+1 2(p+4)

2
2\ 7 2
P — p is from + o to — @
p+1 2(p +4)

and
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as p goes from 0 to co. Moreover, if 0 < p < 4,
pt2\r o (G-pt2)
p+1 2(p+4) 2(p+4) 2p+4) 7

which implies that py > 4. Numerically, py is approximately equal to 4.2280673976.
Hence, when € is near 01, we get

d’" >0, for 0<p<po,
d’" <0, for p>po,

showing the lemma. O

5. STABILITY RESULT

In this section, we always assume that 0 < p < py satisfies (1.6) so that d”(w) > 0, for
small € > 0, with w close enough to 17. Let us now introduce some notations.

We denote any pair of function (¢,v) as an element in X, the pair (¢,,v,) as the
critical point for (2.1) with G,, as the set of such functions, and (¢, @) as any solution
of (1.11) with G, as the set of such solutions. Also, define

Use = {(,v) € X2 inf _[[(¢,0) = ($h, ) |x < e}

w,Vw ng

Since d(w) is differentiable and decreasing for w > 0 near to 1~ (see Lemma 4.2), it follows
that for (¢, v) near of (¢, 7,) € G, we have a C' map

w(+, ) Uye —(0,1), for small € > 0,
thanks to relations (1.15) and (4.1), given by

65.1) s(w.0) = a7 (<26,

and w(zﬁw,ﬁw) = w, for any (1[@, U,) € G, and with w > 0 near 1. The next result uses
a variational characterization of such a solution to establish the key inequality to prove
the main result.

Lemma 5.1. Under the hypothesis of Theorem 1.2, there exists € > 0 such that for all
(¢Y,v) € Uye and (¢, Uy) € Gu, it follows that

H(p,v) —H (@Z;w,f;w> + w(,v) <Q(¢,v) -Q (@Z;w,@w>> > }ld"(wﬂw(@/},v) — wl?,
where w(1,v) is defined by (5.1) for (Y,v) € U, ..

Proof. Initially observe, by (1.12) and (4.1), that

(5.2 H(, ) + (), 0)0,0) = 3 (T (0) + Gl v)
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Since
——d( (¥, v)) = G(¥,v)

and

—%d(w(l/),v)) =G @w(w,vw@ww,v)) o (Vo) D)) € S,
we have that
G,v) =G (%W,U), @w(w,w) -
Remember that
d(w) = H(Ww, B) + WOt ) == H(Yo, 0) = d(w) — wd'(w),
thanks the relation (4.6). Due to this fact and that (1y(yv), Vu(p,e)) is @ minimizer of

L,(pv) subject to the constraint G (ww(wj), vw(wﬂ,)) = —1, then w(y),v) € C!, Lemmas 4.2,
4.3 and relation (5.2) yield that

}C(¢> 'U) + w(,lvD? U)Q(wv U) (Iw w,v)(¢a U) + G(¢7 U))

(Iw () (%(w 0)s D)) + G <¢ ) 17w(w7v)>>

(W W) Do)
))

d@»+w<x<wwwww+§wwawﬂo—w2
=X <7,Ew,17w> + w(,v)Q <1/~)w,?7w> - id”(w)w(@/),v) —wl?,

where the fifth inequality holds by Taylor’s expansion at w and we have used in the
last line that the relation (4.6) is verified, that is, d'(w) = Q(¢),v). Thus, the result is
proven. [

IH[\DI»—t

I
/g&w
§
@

With this in hand, let us now prove the main result of the article.

Proof of Theorem 1.2. First, consider the following: let U(¢) be a global solution of the
generalized abcb-Boussinesq system (1.5) in the form

Vm=mmw» £>0,

(53) U(0) = Up = (n(0), u(0)) in X.

Now, suppose that the solution set G,, is unstable. Then, for a U* = (1/1‘,, 0,) € Qw, there
exists a sequence of initial data {Uf}rey = X and § > 0, such that

lim |[U¥ —U%|x =0 and  inf |U*(t) = V|x =8 for some t >0,
k—00 Ved,
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where U* denotes the sequence of solutions to the system (5.3) with initial condition
U*(0) = U¥. By continuity in ¢, we can pick the first time #;, such that,
(5.4) inf |U*(t) — V]x =0 > 0,

VeSw

where at least in the interval [0,#;] the solution U* exists. Moreover, we have that H(U)
and Q(U) are conserved at ¢ and continuous for U(t) = (n(t), u(t)), which implies that

IC(UF () = 36(0%)| = e (UH(0)) = 9¢(0%)| = 0,

and

9 (U* (1) - 2(0%)| = |2 (U"(0)) - 2(T%)| =0,

as k — oo. Now, pick ¢ small enough so that Lemma 5.1 can be applied, which ensures
that

IC(UF () = H(0%) +w (U (1)) (2 (UF () — 2(0%))
(5.5)
> }Ld"(w) w (U (th)) — w|2 :
Note that due to the fact that w(U) is a continuous map, w (U* (¢;)) is uniformly bounded
for k. Thus, using (5.5) and letting k — oo, we have

w (U* (ty)) — w,

and therefore,
56) Jim G (U* () = = im d (& (U* (t))) = —>d(w),
On the other hand,
L, (U (tr)) + G (U* (t)) =2 (H (U* (t)) + wQ (U* (tr)))

=2 (H (U (0)) +wQ (U*(0))) ,
since the quantities of the right-hand side are conserved in ¢. Taking & — o0 in (5.7) and
using (5.6), as U*(0) is the initial data of (5.3), yield that

k  92d(w 4 W) = 2(p +2)
L, (U* (t)) — 2d( )+pd( ) —

(5.7)

d(w) = L,(U*).

Let
Zi (tr) = (G (U* (t)) "2 U (ts)
Noting that G (Zj (tx)) = —1 and making k — oo, we have that
L (Ze (t) = (G (U* (1)) 77 L, (U* ()
= (4/p)d(w)) 77 L(U%) = L(thu, 1) = T
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Hence, Zj (t;) is a minimizing sequence for (2.1). Therefore, there exists U € G, such
that, after possible translations and subsequences,

T | Z, (1) ~ UPl =0,

with G (U¥) = —1. Finally, since U¥ € G, the previous limit together with to the fact
that

vt - 02| = (@ @)™ | (6 (U @) (UF ) - 7))
gives us
lim [U* (1) = 07| <M(1L(U=)7 lim |2, (8) = (GO () 7207 |
=M(L(U*)7** lim | Zi (1) — ((4/p)d(w)) 72 O |
=M(1,(U%))7 lim | Z, (t) = UF| 5 = 0,
which contradicts (5.4), and the result is shown. O

APPENDIX A. PROPERTIES OF THE TRANSFORMED SYSTEM

The goal of this appendix is to prove the properties of the solutions of the system (3.6).
The main result ensures that its derivative with respect to € is bounded.

Lemma A.1. The pair ez%i(ze,we), where (z,w) is a solution of (3.6), is bounded in
Sobolev space H'(R). Here, the subscript ¢ means the derivative with respect to this
variable.

For the sake of simplicity, we will omit € in the solution forms. Thus, to show this lemma,

let us first consider the change of variable z = ww + 6%5 and replace the equations in
(3.6) by

2 2
w — wé + wWbw" + et TwbE" + aw” + J° (ﬁ) (ww + er 1) wP =0,

(A.1)

2
&+ bww” + cww” + cerri " + J€ (W) wPtt = 0.

Multiplying the first equation of (A.1) by ¢ and the second one by bw yields that

2 2
cw — cwé + cw?bw” + cerrTwbE” + acw” + cJ¢ (ﬁ) (ww + er1zE)uwP =0,

bwé + wWb?w” + cw?bw” + ceﬁbwf” + bwJ* <m) wPtl = 0.
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Subtracting in the previous system the first equation with the second one, we have that
" € 2 p+1 € 2 2. D
cw — cwé + acw" +cJ | —— JwwPT + I —— | ertigw
p+2 p+2

2
—b o 2b2 //_b je p+1:0
wf 8 (e =0

that is,
2
13 (—w(b +¢) + cert1ge (?> wp> = —w"(ac — w*b?) — cw
p
+ w | bJ° S S cJe 2 wP
(p+1Dlp+2) p+2
Therefore,

—w"(ac — w?) — cw + w (bf]6 <—( 2 )> — cJe (i» wpPt!

¢ = p+1)(p+2 p+2
- —w(b+c)+ ceriige (ﬁ) wp
From now on, to make the computation clear, consider the function £ as
(A.2) ¢ = —Aw" + Bw + CwP™,
where
A= Adw) = ac — w?b?

2 Y
—w(b+ ¢) + certide (}%) wp

—C

B := B(w) = — 5 ,
—w(b+ ¢) + cer+iJe <m> wP

and

o ) ()
—w(b+c)+ ceriige (ﬁ) wp

Then, differentiating the relation (A.2) twice with respect to z yields that
" - _ (A//w// + 2A/w/// + Aw////) + (B//w + 2B/w/ + Bw//)
+ C"wPt 4+ 20" (p + Dw® + C(p + 1)pwP™,

where the superscript ’ in A, B and C' indicates the derivative(s) with respect to x and
2
A’ will introduce a factor e»+2. Hence, replacing (A.2) and £” in the second equation of
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(A.1) gives us
— Aw” + Bw + CwP* + w(b + c)w” + ceril (—(A"w" + 2A"W" + Aw™)
+ (B"w + 2B'w' + Bw") + C"w’* +2C"(p + 1)w” + C(p + 1)pw? ™)

7 (Griges) v =0

and arranging similar terms finds that
— cert T Aw" — 2T cAlw” + <—A +w(b+c)+ ceﬁ(—A” + B)> w”

+ 2ce71 B'w' + (B + ce1 B"Yw + Cp + Dpeeriw? ™" + 20 (p + 1)ceriw?

) 2
v (Creerriom g —2 ) )urtt=o,
< <(p+1)(p+2)>)

or equivalently,

2 2
—cert T Aw™ + (—A + w(b+ ¢))w" + Bw + <C’ + J° (—)) wPt

(A.3) p+2

2
= ¢ (@+1)(p+2) ﬁP’

where
Plw] =2cA'w" — (¢(—A" + B))w" — 2¢B'w' — ¢B"w
— C(p+ Dpew”™ —2C"(p + 1)cw? — cC"wP™.

Here, we note that by the assumptions on a, b, ¢ and the fact that w is uniformly bounded
in H'(R) for € > 0 small, the linear part of (A.3) is uniformly invertible, which implies
from the classical theory of ordinary differential equation that w is uniformly bounded in
H?*(R), er T € L?(R) and its norm is uniformly bounded together with e € L*(R)

and its norm being uniformly bounded.
p—1

. .- p—1
We are now in a position to prove that, for ¢ > 0 small enough, er+1w, and e»+1 2z, are
bounded.

Proof of Lemma A.1. Rewrite (A.3) in the following form
(A.4) erTaw” + M +w + puk = erTPlw],
with k =p+1>1 and fﬁ(w,w,w’,w”,w’”,A’,A’”,B,B’,B”,C",C’”,p,c) := P, where
1 2
a=ac—b>0, A=a+b+2b= §_U<0’ ﬁ:mjf,

and P is the remaining term and has a similar form with = Plw].
We note that (z,w) is the solution of (3.6) and w is a solution of (A.4). By the theory
of ordinary differential equations, due to the symmetry of the equation (A.4) with respect
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to x, it can be deduced that any solution of (A.4) is even in x after a suitable translation

in z-variable. Moreover, if € > 0, the equation (3.6) or (A.4) is differentiable with respect

to €, which implies that the solution w is also differentiable with respect to e. Now, taking

the derivative in terms of € on both sides of (A.4) and, after that, multiplying the result
—1

by eﬁ, we have

m Lﬁ} " % % k—1 T
eauw.’ + eI \w, + errlw, + fertikw"™ w, =Py |w, €]L{ew,] + Pofw, €]

—Plw, we, ],

(A.5)

where Py [w, €] and Py[w, €] are functions that only depend on w and e and are uniformly
bounded in any Sobolev norms as € small and € — 0, and L[ew,] is linear in terms of ew,

1
or its z-derivatives . Let 1 = er1w,, which changes (A.5) to

(A6) P T + M + i + Blwt i =§)1 [w, e]eﬁL[w] + Po[w, €]
—P[w, i, €].

Consider the linear equation associated with (A.6),

2 P
ertla” — A" +w = 0.

The characteristic equation associated with the linear equation is
aerrirt — IAr? +1=0,

with roots +r; and +ry and

A — A/ [A2 — daerit

I\l + A/ A2 — daerst

ry = > and 19 = 5 ,
2cer+T 2qer+1t
satisfying
1
rTT = —
epP+1

Using a variation of parameters, the bounded even solutions of (A.6) can be written as
follows

o) = = [ e (g () + Pl i, ) de

2arierit (r? +12) Jo

_ 1 FOO o—T2le—el (_ka_l@w@ + Pw i, 6](5)) k.

20&7’26ﬁ (r? +r3) J-w
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By differentiating previous equality twice with respect to x, we obtain

—fhuwt(z)i(x)  Plx)

aertT (r? +1r3) aertt (r? 4+ 13)
1 +00
+ _ J e—r2|x—§| (5 ((kwk_l(f)ﬁ)(f))&

2ar9ert (rf + r3) J-w
—rikw" " (€)w(E))) dé

= [ Al (W — 7“%1?)) =

00]

+ e e (€)dg

2argep+1 (r% + 72) f

2
7’2_7’1

_ e T2le— &Ify (€)d¢

27’2€P+1 7’ +r2 —©

:_< - 2>w“%mmm+ﬁ@
aert (17 +13)
— Bkw* (@)i(x) + fi(z).

Here, we remark that the solution of (A.4), which goes to zero at infinity, can also be
rewritten in the above form of a second-order integro-differential equation. Then, such a
solution must be even in terms of x after a translation, which is another proof of evenness
of (z,w) for (3.6). Now, we rewrite the above w equation as

e — A 7M0 — (A7 Bokwg ™ ()i () = (rf — [A7) @
— X7 (Bows ™ () = Bt (@) (@) — [N (@) = fole),

where [y = ]%30, wo(x) is a solution of the generalized KdV equation (see Theorem 3.3),
and

(A7)

[ = A7+ [Bowg ™ (2) = Bu* T (2)] — 0

as € — 0. We mention that the terms involving w or its derivatives in fo(z) are linear in
terms of w or its derivatives and the coefficients, which may have € or w or wg, will go to
zero as € — 0. Since w is even in x, the following claim is verified:

Claim 1. (A.7) can be transformed into an integro-differential equation as:

0

210 [ S + 20 [ Eo)fals)ds

0 T

w(x)
(A.8) +00
_ f K(x,s)fa(s)ds = L[ f2] (),

for x = 0, which can be evenly extended to x < 0, for appropriated functions =1 and =s.
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Indeed, note that
d

El (ZL‘) = — Wy

dx
is an odd solution of the homogenous equation for (A.7) with wp(x) as a solution of
the generalized KAV equation such that Z; — —exp (—|A\|7"2|z|) as |z| — o0. Using the
Liouville formula, we have the existence of an even function Z,(z) such that {Z;(z), Zs(z)}
form a fundamental set of solutions to (A.7) with Wronskian W [Z, 25| = =1 (2)Zh(x) —
=\ (x)Z5(x) = 1. Therefore, by constructing Green’s function K (x,s) using =; and Zs,
(A.7) can be transformed into the integral equation (A.8), giving Claim 1.

With this claim, we can apply the contraction mapping theorem to the integro-differential
equation (A.8). To do this, we let the Banach space be the Sobolev space H!(R) with
the corresponding Sobolev norm and define

By ={f(z)e H'(R) | f(=2) = f(), |flm® = [/]5, <o}

Then, applying the similar proof as done in [37, Section 3|, the following estimate holds
for (A.8).

Lemma A.2. If f(x) € By, then
L[f)(x) e By and |L[f)(@)|5, < C|f]z .

where C' is independent of €.
Now, apply Lemma A.2 to (A.8) together with the uniform boundedness of w in H?(R)
and er+1w" in L?*(R), and the properties of f, to obtain that if € By,
Llfo](x) e By and  |L[fo](@)] 5, < Cole) [w] g, + Ch,

where for small € > 0, C; > 0 is a constant and Cy(e) — 0 as ¢ — 0. Finally, for
s = 2C7 > 0 large, consider a closed convex subset of B; given by
Ss={we B;:|w|p <s}.

Then if w € 8, we can let € small enough such that Cy(e)s < Cy, which implies that

L[ f2](z) maps 85 to Ss. If we let fz(j) (z) be the corresponding fo(x) for W (z) € By, since
w is linear in fo(x), it is straightforward to see that from Lemma A.2 again, we have

o[£ @) = £ [52] @], < Cole) [ () — i),

Hence, for small € > 0, it is deduced that L[f>](z) is a contraction for w € 84 and the
contraction mapping principle implies that w is the only fixed point of L[ fs](x) in 8.
Therefore, 1 in (A.6) satisfies that for small € > 0, ||z ) < s where s is independent

e. Since 1 = err1w, and the relation between ¢,z and w is given in (A.1) and (A.2), it

is obtained that e%(ze, w,) is uniformly bounded in H'(R) with respect to small € > 0,
showing Lemma A.1. O
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APPENDIX B. THE PROOF OF CLAIM I IN THE PROOF OF LEMMA 3.1

This appendix gives the proof of Claim I, which is stated in the middle of the proof
for Lemma 3.1. Here, the concentration-compactness argument from Theorem 2.1 can be
applied to generate a convergence subsequence in H'(R) x H'(R) and we mainly use the
argument for a system in [28, Section 3.1].

First, let us state the properties of (2%,w%). It is known that there is a sequence
{e;} — 0" such that

lim J9 = lim 19 (29, w9) = I, = liminfJ° < J° with G (29, w%) = —1,

Jj—®© Jj—®© e—0t
where [€(z,w) is defined in (3.10), J¢ is the infimum of I¢(z,w) under the condition
G (z,w) = —1, and J° is finite. Hence, (2%,w%),j = 1,2,... are minimizers of I (z, w)
with G (z,w) = —1. Now, we apply the concentration-compactness argument (see The-

orem 2.1) to this sequence (z%,w%). Since I¢(z,w) is non-negative and the limit of
I (2% ,w%) as j — oo exists, Theorem 2.1 can be applied. Here, the positive measure
{v;} is defined by dv; = p,dx, where p; is given by

py =6 7T (2 = wlehuwo) o+ (w)’

b (e 2 — b2w?(e;

+ el <(Zej)’ _ % (w6j)') n (ac—w@)) (ws))?
which is the integrand of 19 (2%, w%).

i. Vanishing:

This case can be easily ruled out. If “vanishing” happened, then G (2%, w%) would
approach to zero as j — o0, which contradicts to G (29, w%) = —1. A detailed proof was
given in [28, Lemma 3.2] for an almost identical argument.

ii. Dichotomy:

To rule out “dichotomy”, we follow the usual steps if “dichotomy” happens. Following

the ideas in the proof of [28, Lemma 3.4], we let a fixed function ¢(z) € C§°(R) such

that supp(¢) < [-2,2] and ¢ =1 in [—1,1]. From the assumptions of “dichotomy” with
0 < 0 < I., we can choose sequences v; — 0, [; — o0 such that

supp (v;) < Br,(z;), supp (v}) = R\Bag, (1;),

lim sup (lﬁ—fdu ‘ (I. —0) — f ) ,
Jj—© R
lim sup J
J—0 Bar;(2)\BRr; (907)

and

which imply that



36 CAPISTRANO-FILHO, QUINTERO, AND SUN

Based on those properties, if we let ¢;(x) = ¢((z — x;)/R;), then we can establish a
splitting for the sequence (z%,w%) by
(29, w7) = (2, wy’) + (2, wy)
with
(o wy’) = (29, w) ¢, (25 wy') = (29, w9) (1= ¢),

and show that as j — o0,

I9 (29, w) = I9 (2, wy') + 19 (23], wy’) + (1),

G (29,w9) = G (27, wy) + G (25, wy') +o(1).
The proof of the splitting properties is referenced to the same proof in [28, Lemma 3.3].
Then, by a same proof as that in [28, Lemma 3.4], it is obtained that

lim (19 (29, w%) — I9 (2, wy’) — 19 (25, wy')) = 0,
j—o
. € 6\ €5 €&\ €5 €5 _
Jh_)rg) (G(zﬂ,wﬂ) G(zl , Wy ) G(22 , Wy )) 0.
Let A, = ’G (zfj,w?)‘ for i = 1,2. We show that A\; = lim;_ A, ; + 0. If one is those
limits is zero, without loss of generality, let A\; = 0, which implies that Ay = 1. Then,
consider )
(5, 07) = A5~ (55, wy)
so that G((25',w3’) = —1. By the construction of (z;’,w;’), it is deduced that
I, =lim (I9 (2, wy) + 19 (257, wy'))

Jj—0

2 , .
> lim J dvy + NI (25, w3 )
J—00 BR]- (m]) VRS

_2
> lim (J dv} + NI (zgﬂ',wej)> =0+1,

j—>oo R 79
where the fact that 19 (2%, w%) is the minimum of I (z,w) with G(z,w) = —1 has been
used. Since 6 > 0, the above inequality gives a contradiction. Thus, A\; + 0 for ¢ = 1, 2.
Hence, we can define

1
~€5 ~ €4 _ _? €5 €5 .

(27, wy) = A (27, w;") for 1 =1,2.

i) )

which gives G((2;,w;") = —1 (here we note that G (%, w;") = +1. Since G (z9,w%) =
—1, then for j large, G (z;,w;’) must be nonzero and negative). Moreover,
I =lim (19 (2, wy’) + I9 (25, w5'))

J—©

2 2
—1i p+2 165 (€5 €5 p+2 7€ (36 ~6i
= lim <)\€j,117 (2, wy) + Ao (5, w; )>

J—®
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2 2
> lim <Afjf12[€j (29, w9) + A5 19 (zgj,wq))

Jj—o
2 2
> (/\f+2 + A3 ) I,
where, again, the fact that I (2%, w%) is the minimum of /% (z,w) with G(z,w) = —1
2 2
has been used. Hence, 1 > (Af” + )\5’”) with \; > 0,7 = 1,2, and A\; + Ay = 1, which
contradicts to the strictly concave property of the function A7tz for p = 1. Therefore,

“dichotomy” is ruled out.

iii. Compactness:

Finally, by Theorem 2.1, only “compactness” holds. Then, in the following, we show
that there is a subsequence of (2%, w) (which we still denote the same), a sequence of
points {z;} € R, and (20, wp) € H'(R) x H'(R), such that the translated functions

(35, @) = (5 + 23), w0 + )
converge to (zp, wp) strongly in H'(R) x H'(R). The proof is similar to the proof of [28,

Theorem 3.3] with some modifications.
It is known that

lim 19 (29, w%) = I, and G(z9,w9) =—1.
j—00

“Compactness” implies that there is a sequence {z;} € R such that for a given v > 0,
there exists an R > 0 satisfying

J dv; = I, —~ forall j=1,2,....
Br(z;)

Define
pi(x) = pij(x +x;),  (39(x), w9 (2) = (29(z + 2;), w9 (x + 7;)) ,
which have the same properties as (2, w%) with
J ﬁj(x)dxzj dvj=1.—~ forall j=12,...,
Br(0)

Br(z;)
or

(B.1) J pi(x)dr = J dv; <2y forall j=1,2,....
R\Br(0) R\Bg(z;)

Since (2% (), w% (z)) is uniformly bounded in H!(R) x H*(R), Sobolev imbedding theorem
shows that there is a subsequence of (2% (z),w% (x)) (denoted by the same notations) and
(20, wp) € HY(R) x H*(R) such that as j — o,

(39, W9) — (20,wg) in H'(R)x H'(R) and L*(R)x L*(R),
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(29,0

(R) x Li,.(R),
(39,0%9) — (20,wp) a.e. in R?.

Then, it is deduced from (B.1) that

J |z0(2) [Pdz <1iminff |25 (x)|*dx
R J7o IR

) - (207w0) n LZQOC

j—0

< lim inf f 159 () Pz + Cy
Br(0)

~ | Ja)Pde+ 0y < | a()Pds + 0,
Br(0) R

where C' > 0 is a fixed constant which may depend on the constants in I (z,w), but
independent of 7. Hence,
liminff 2% (x)|?dx =f |z0(2)|*dx
J=o JRr R

By the weak convergence of 2% to z in L*(R), there is a subsequence of 2% (still denoted
same) such that z% — zg strongly in L*(R). Similar argument works for % — wj strongly
in L?(R). Hence, the uniform boundedness of I% (2% w%) yields that 2% — w% — 0 in
L?*(R) and wy = 2p. Then, Sobolev imbedding theorem implies that

G(’ZOawO) = ]1L%G(g€j’wfj) _ _1’

which gives

.hm IC (ZO)wo) > .hm G (Zej,w6j> — ]c'
j—00 J—®0

Moreover, for € > 0 small, the weak convergence of (25, w%) to (zp, wp) in H*(R) x H'(R)
yields that if we denote

II°(z,w) = JR ((z —wle)w)® + (1 - w2(e))e_P%w2> dy

+JR <|c| <z’ - 6T£|€)w’>2 + (%{Tﬂ(e)) (U/)2> dy,

then
0< lim 1719 (29 — 2z, W9 — wyp) = lim ([19 (29, w9) — 19 (29, wp))
j—00 J—®©
< lim (19 (29,w9) — I19 (z9,wp)) = I. — im I (zp, wp) < 0
j— j—

where the facts that zg = wg in L?*(R) and 1 —w(e) = O(ep%) have been used. Therefore,

lim 179 (29 — 2z, W —wp) =0,
J—=©
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which, together with L?-convergence of (Z%,w%) to (z,wp), yields that (2%, w%) —
(20, wp) in HY(R) x H*(R). The claim is proved. ]
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