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Abstract. Control properties of the Kawahara equation are considered when the equation
is posed on an unbounded domain. Precisely, the paper’s main results are related to an ap-
proximation theorem that ensures the exact (internal) controllability in p0,`8q. Following
[23], the problem is reduced to prove an approximate theorem which is achieved thanks to
a global Carleman estimate for the Kawahara operator.

1. Introduction

1.1. Problem set. Our main focus in this work is to investigate the control property for
the Kawahara equation [13, 18]

(1.1) ut ` ux ` uxxx ´ uxxxxx ` uux “ 0

which is a dispersive PDE describing numerous wave phenomena such as magneto-acoustic
waves in a cold plasma [19], the propagation of long waves in a shallow liquid beneath an
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ice sheet [16], gravity waves on the surface of a heavy liquid [10], etc. In the literature, this
equation is also referred to as the fifth-order KdV equation [4], or singularly perturbed KdV
equation [25].

Some valuable efforts in the last years focus on the analytical and numerical methods for
solving (1.1). These methods include the tanh-function method [2], extended tanh-function
method [3], sine-cosine method [26], Jacobi elliptic functions method [15], direct algebraic
method [24], decompositions methods [20], as well as the variational iterations and homotopy
perturbations methods [17].

Due to this recent advance, previously mentioned, other issues for the study of the
Kawahara equation appear. For example, we can cite the control problems, which is our
motivation. Precisely, we are interested in proving control results for the Kawahara operator
in an unbounded domain. It is well known that the first result with a “kind” of controllability
for the Kawahara equation

(1.2) ut ` ux ` uxxx ´ uxxxxx “ fpt, xq, pt, xq P R`
ˆ p0,8q,

was proposed recently by the authors in [7]. It is important to point out that in [7], the
authors are not able to prove that solutions of (1.2) satisfy the exact controllability property

(1.3) upT, xq “ uT x P p0,8q.

Instead of this, they showed that solutions of the Kawahara equations satisfy an integral
condition.

To fill this gap in providing a study of the exact boundary controllability of (1.2) in an
unbounded domain, this paper aims to present a way that may be seen as a first step in the
knowledge of control theory for the system (1.2) on unbounded domains since the results
proved in [7], can not recover (1.3). So, our aim in this manuscript is to present an answer
to the following question:

Problem A :Is there a solution to the system (1.2) satisfying (1.3)? Or, equivalently, Is the
solution of the system (1.2) exact controllable in the unbounded domain p0,`8q?

1.2. Historical background. Stabilization and control problems on the bounded domain
have been studied in recent years for the Kawahara equation. The first work concerning
the stabilization property for the Kawahara equation in a bounded domain p0, T q ˆ p0, Lq,
is due to Capistrano–Filho et al. in [1]. In this article, the authors were able to introduce
an internal feedback law and, considering general nonlinearity upux, p P r1, 4q, instead of
uux, to show that under the effect of the damping mechanism the energy associated with
the solutions of the system decays exponentially.

Concerning the internal control problems we can cite as pioneer works the Zhang and
Zhao articles [27, 28]. In both works the authors considered the Kawahara equation in a
periodic domain T with a distributed control of the form

fpt, xq “ pGhqpt, xq :“ gpxqphpt, xq ´

ż

T
gpyqhpt, yqdyq,

where g P C8pTq supported in ω Ă T and h is a control input. Still related to internal
control issues, Chen [9] presented results considering the Kawahara equation posed on a
bounded interval with a distributed control fpt, xq and homogeneous boundary conditions.
She showed the result by taking advantage of a Carleman estimate associated with the linear
operator of the Kawahara equation with an internal observation. With this in hand, she was
able to get a null controllable result when f is effective in a ω Ă p0, Lq.

As the results obtained by Chen in [9] do not answer all the issues of internal controlla-
bility, in a recent article [5] the authors closed some gaps left in [9]. Precisely, considering the
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Kawahara model with an internal control fpt, xq and homogeneous boundary conditions, the
authors can show that the equation in consideration is exactly controllable in L2-weighted
Sobolev spaces and, additionally, the Kawahara equation is controllable by regions on L2-
Sobolev space, for details see [5].

Recently, a new tool to find control properties for the Kawahara operator was proposed
in [6, 7]. First, in [6], the authors showed a new type of controllability for a Kawahara
equation, what they called the overdetermination control problem. Precisely, they can find
a control acting at the boundary that guarantees that the solution of the problem under
consideration satisfies an integral condition. In addition, when the control acts internally in
the system, instead of the boundary, the authors proved that this condition is also satisfied.
These problems give answers that were left open in [5] and present a new way to prove
boundary and internal controllability results for the Kawahara operator. After that, in [7],
the authors extend this idea for the internal control problem for the Kawahara equation
on unbounded domains. Precisely, under certain hypotheses over the initial and boundary
data, they can prove that an internal control input exists such that solutions of the Kawahara
equation satisfy an integral overdetermination condition considering the Kawahara equation
posed in the real line, left half-line, and right half-line.

1.3. Main results. With this background in hand, as mentioned before, our main goal is
to answer the Problem A. To do that, we first prove two main results which are the key
to giving some position of the controllability properties for the Kawahara operator on an
unbounded domain.

Let us introduce some notations. For L ą 0 and T ą 0 let QT “ tpx, tq P p´L,Lq ˆ

p0, T q Ă R2u, be a bounded rectangle. From now on, for the sake of brevity, we shall write
P for the operator

(1.4) P “ Bt ` Bx ` B
3
x ´ B

5
x

with domain

(1.5) DpP q “ L2
p0, T ;H5

p´L,Lq X H2
0 p´L,Lqq X H1

p0, T ;L2
p´L,Lqq.

Our first result is related to a Carleman estimate for the Kawahara operator being
precise, for f P L2p0, T ;L2p´L,Lqq and q0 P L2p´L,Lq, the operator Pq “ f , where P
is defined by (1.4) with domain (1.5). So, the first result is devoted to proving a global
Carleman estimate.

Theorem 1.1. There exist constants s0 “ s0pL, T q ą 0 and C̃ “ C̃pL, T q ą such that for
any q P DpP q and all s ě s0, one has

ż T

0

ż L

´L

␣

psφq
9
|q|2 ` psφq

7
|qx|

2
` psφq

5
|qxx|

2
` psφq

3
|qxxx|

2
` sφ|qxxxx|

2
(

e´2sφdxdt

ď C

ż T

0

ż L

´L

|f |
2e´2sφdxdt.

(1.6)

As a consequence of the previous Carleman estimate, the second main result of the
manuscript gives us an approximation theorem, which is the key point to prove the exact
controllability for the operator P posed on unbounded domain and, in this case, to answer
the Problem A.

Theorem 1.2. Let n P Nzt0, 1u, and t1, t2 and T real number such that 0 ă t1 ă t2 ă T.
Let us consider u P L2pp0, T q ˆ p´n, nqq such that

Pu “ 0 in p0, T q ˆ p´n, nq,
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with supp u Ă rt1, t2sˆp´n, nq. Let 0 ă ϵ ă minpt1, T ´t2q, then there exists v P L2pp0, T qˆ

p´n ´ 1, n ` 1qq satisfying

(1.7) Pv “ 0 in p0, T q ˆ p´n ´ 1, n ` 1q,

(1.8) supp v Ă rt1 ´ ϵ, t2 ` ϵs ˆ p´n ´ 1, n ` 1q,

and

(1.9) }v ´ u}L2pp0,T qˆp´n`1,n´1qq ă ϵ.

Finally, the previous result helps to show the third main result of the manuscript, giving
a positive answer for the exact controllability problem.

Theorem 1.3. Given T, ϵ an s real numbers with 0 ă ϵ ă T
2
and s P

`

´7
4
, 5
2

˘

z
␣

1
2
, 3
2

(

. Let
u0, uT P Hsp0,`8q, thus, there exists a function

u P L2

locpr0, T s ˆ p0,`8qq X Cpr0, ϵs;Hs
p0,`8qq X CprT ´ ϵ, T s;Hs

p0,`8q

solution of

(1.10)

#

ut ` ux ` uxxx ´ uxxxxx “ 0 in D1pp0, T q ˆ p0,`8qq,

up0, xq “ u0 in p0,`8q,

satisfying upT, xq “ uT in p0,`8q.

1.4. Final comments and paper’s outline. The results in this manuscript gave a neces-
sary first step to the improvement of the control properties for the Kawahara operator. Let
us comment on this in the following remark.

Remarks. The following remarks are worth mentioning:

i. From our knowledge, our results are the first ones for the Kawahara operator posed
on an unbounded domain.

ii. Note that the Carleman estimate proved in [9] is local which differs from the Carleman
estimates shown in Theorem 1.1.

iii. This work is the first one to prove an approximation theorem, that is, Theorem 1.2,
for the Kawahara operator (1.4).

iv. In the context of the Kawahara operator, there is one work [7] which is limited from
a control point of view since the solutions satisfy an integral condition instead of
(1.3). Thus, Theorem 1.3 provides progress in the control theory for this operator
in an unbounded domain thanks to the fact that solutions of (1.10) satisfy the exact
controllability condition (1.3).

v. It is important to point out that the strategy applied in our work was already applied
for the Korteweg–de Vries (KdV) equation [23] and the KdV-Burgers equation [12]. In
both cases, a Carleman estimate is derived following Fursikov–Imanuvilov’s approach
[11].

vi. The Kawahara equation (1.10) is a higher-order KdV equation, here called the Kawa-
hara equation or fifth-order KdV equation. So, for this operator, some extra difficul-
ties appear. The first main difficulty is to prove a Carleman estimate. Note that we
can not directly apply the estimates proposed in [23, Proposition 3.1] or [12, Lemma
2.4], since we have a fifth-order equation and more terms (included traces) need to
be controlled (see Section 3).

vii. Concerning the exact controllability result, Theorem 1.3, note that the restriction in
s for the space Hs is required, this is because the well-posedness on an unbounded
domain for the system (1.10) follows if s P

`

´7
4
, 5
2

˘

z
␣

1
2
, 3
2

(

, which not happens in
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[23, 12]. On the other hand, since we have a more strong well-posedness solution
borrowed from [8], we do not need the L2 space with weight as in [23, Theorem 1.3]
and [12, Theorem 1.2], for example.

viii. Summarizing, our result gives new results for the Kawahara operator (higher-order
KdV equation) in the following sense:
(1) New global Carleman estimate;
(2) Approximation theorem;
(3) Exact controllability in Hs, when s P

`

´7
4
, 5
2

˘

z
␣

1
2
, 3
2

(

.

The remainder of the paper is organized as follows. In Section 2, we present auxiliary
results which are paramount to show the main results of the article. In Section 3, we present
the global Carleman estimate, that is, we will show Theorem 1.1. Section 4 is devoted to
giving applications of the Carleman estimate, precisely, we will provide an approximation
Theorem 1.2. Finally, in Section 5, we will answer the Problem A using the approximation
theorem, i.e., we present the proof of Theorem 1.3.

2. Preliminaries

2.1. Auxiliary lemma. In this subsection, we will prove an auxiliary result that will put
us in a position to apply it to prove the main results of the article. For this propose, observe
that the operator P generates a C0–semigroup of contractions SLptqtě0 on L

2p´L,Lq (see for
instance [1]) which be denoted now on by SLp¨q. With this in hand, the next lemma holds.

Lemma 2.1. Consider l1, l2, L, t1, t2 and T be number such that 0 ă l1 ă l2 ă L and
0 ă t1 ă t2 ă T . Let u P L2pp0, T q ˆ p´l2, l2qq be such that

Pu “ 0 in p0, T q ˆ p´l2, l2q and supp u Ă rt1, t2s ˆ p´l2, l2q.

Let η ą 0 and δ ą 0, with 2δ ă minpt1, T ´ t2q be given. Then there exist v1, v2 P L2p´L,Lq

and v P L2pp0, T q ˆ p´L,Lqq such that

(2.1) Pv “ 0 in p0, T q ˆ p´L,Lq,

(2.2) vpt, ¨q “ SLpt ´ t1 ` 2δqv1, for t1 ´ 2δ ă t ă t1 ´ δ,

(2.3) vpt, ¨q “ SLpt ´ t2 ` δqv2, for t2 ` δ ă t ă t2 ` 2δ

and

}v ´ u}L2ppt1´2δ,t2`2δqˆp´l1,l1qq ă η.

Proof. Remember that QT “ p0, T q ˆ p´L,Lq, P is defined by (1.4)-(1.5) and pick Qδ “

pt1 ´ 2δ, t2 ` 2δq ˆ p´l1, l1q. By a smoothing process via convolution and multiplying the
regularized function by a cut-off function of x, we have a function u1 P DpR2q, such that

(2.4)

$

’

&

’

%

supp u1 Ă rt1 ´ δ, t2 ´ δs ˆ r´l2, l2s,

Pu1 “ 0 in p0, T q ˆ p´l1, l1q, and

}u1 ´ u}L2pp0,T qˆp´l1,l1qq ă
η
2
.

Consider the following set

E “ tv P L2
pQT q; D v1, v2 P L2

p´L,Lq such that (2.1), (2.2) and (2.3) hold trueu.

Note that this lemma is proved if we may find v P E such that

}v ´ u1
}L2pQδq ă

η

2
.
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It follows by the following trivial inequality

}v ´ u}L2pQδq ď}v ´ u1
}L2pQδq ` }u1

´ u}L2pQδq

ă}v ´ u1
}L2pQδq `

η

2
.

So we achieve the proof if we prove that u1 P E “ pEKqK, where the closure and the orthogonal
complement are taken in the space L2pQδq. For a fix function g P EK Ă L2pQδq we should
prove that the following holds

(2.5) pu1, gqL2pQδq “ 0.

Before presenting the proof of (2.5), we claim the following.

Claim 1. Let T “ tφ P C8pR2q; supp φ Ă rt1 ´ δ, t2 ` δs ˆ Ru. So, there exists C ą 0 such
that

(2.6) |pφ, gqL2pQδq| ď C}Pφ}L2pQT q,

for all φ P T.

In fact, pick φ P T and define

ψptq “

ż t

0

SLpt ´ sqPφpsqds,

for 0 ď t ď T , that is, ψ is strong solution of the boundary initial-value problem
$

’

’

’

&

’

’

’

%

Pψ “ 0, in QT ,

ψpt,´Lq “ ψpt, Lq, ψxpt,´Lq “ ψxpt, Lq, ψxxpt,´Lq “ ψxxpt, Lq, t P r0, T s,

ψxxxpt,´Lq “ ψxxxpt, Lq, ψxxxxpt,´Lq “ ψxxxxpt, Lq, t P r0, T s,

ψp0, ¨q “ 0, in r´L,Ls.

Thanks to this fact, v “ ψ ´ φ P E, observe that (2.2) and (2.3) is verified with v1 “ 0 and
v2 “ ψpt2 ` δq, hence

pv, gqL2pQδq “ pψ ´ φ, gqL2pQδq “ 0.

On the other hand, we have

}ψptq}L2p´L,Lq ď }Pφ}L1p0,t;L2p´L,Lqq ď
?
T }Pφ}L2pQT qq,

for all t P r0, T s, and therefore

|pφ, gqL2pQδq| “ |pψ, gqL2pQδq| ď T }g}L2pQδq}Pφ}L2pQT q,

showing Claim 1. We also need the following claim.

Claim 2. There exists a function ω P L2pQT q such that

(2.7) pφ, gqL2pQδq “ pPφ, ωqL2pQT q,

for all φ P T.

Indeed, let Z “ tpPφq
ˇ

ˇ

Q
;φ P Tu and define the map Λ : Z ÝÑ R by

Λpζq “ pζ, gqL2pQδq.

First, note that for any ζ P Z, if ζ “ pPφ1q
ˇ

ˇ

QT
“ pPφ2q

ˇ

ˇ

QT
, for two functions φ1, φ2 P T, we

have using claim 1 that φ1 ´ φ2 P E, hence pφ1 ´ φ2, gqL2pQδq “ 0. Thus, Λ is well defined.
Consider H the closure of Z in L2pQq. Due to (2.6), using the Hahn-Banach theorem, we
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may extend Λ to H in such way that Λ is a continuous linear form on H. Thus, it follows
from Riesz representation theorem that there exists ω P H such that

Λpζq “ pζ, ωqL2pQT q, @ζ P H,

and so (2.7) follows, and the proof of Claim 2 is finished.
Finally, let us prove (2.5). To do it, consider the extensions of g and ω in R2 given by

g̃pt, xq “ 0, for pt, xq P R2
zQδ

and
ω̃pt, xq “ 0, for pt, xq P R2

zQT ,

respectively. Taking Ω “ pt1 ´ δ, t2 ´ δq ˆ R, let φ P DpΩq Ă T. So, we have that

pφ, gqL2pQδq “ pφ, g̃qL2pΩq and pPφ, ωqL2pQT q “ pPφ, ω̃qL2pΩq,

therefore, using (2.7), we get

xP ˚
pω̃q, φyD1pΩq,DpΩq “ xg̃, φyD1pΩq,DpΩq,

so P ˚pω̃q “ g̃ in D1pΩq and

P ˚
pω̃q “ 0, for t1 ´ δ ă t ă t2 ` δ and |x| ą l1.

Since
ω̃pt, xq “ 0, for t1 ´ δ ă t ă t2 ´ δ and |x| ą L,

Holmgren’s uniqueness theorem (see e. g. [14, Theorem 8.6.8]) ensures that

ω̃pt, xq “ 0, for t1 ´ δ ă t ă t2 ` δ and |x| ą l1.

Lastly, due to (2.7) and (2.4), we conclude that

pu1, gqL2pQδq “ pPu1, ωqL2pQq “ pPu1, ωqL2ppt1´δ,t2`δqˆp´l1,l1qq “ 0,

finishing the proof. □

2.2. Observability inequality via Ingham inequality. Given a family Ω “ pωkqkPK :“
tωk : k P Ku of real numbers, we consider functions of the form

ř

kPK cke
iωkt with square

summable complex coefficients pckqkPK :“ tck : k P Ku, and we investigate the relationship
between the quantities

ż

I

∣∣∣∣∣ÿ
kPK

cke
iωkt

∣∣∣∣∣
2

dt and
ÿ

kPK

|ck|2 ,

where I is some given bounded interval. In this work, the following version of the Ingham-
type theorem will be used.

Theorem 2.2. Let tλku be a family of real numbers, satisfying the uniform gap condition

γ “ inf
k‰n

|λk ´ λn| ą 0

and set
γ1

“ sup
AĂK

inf
k,nPKzA

|λk ´ λn| ą 0

where A rums over the finite subsets of K. If I is a bounded interval of length |I| ě 2π
γ1 , then

there exist positive constants A and B such that

A
ÿ

kPK

|ck|
2

ď

ż

I

|fptq|
2dt ď B

ÿ

kPK

|ck|
2

for all functions given by the sum fptq “
ř

kPK cke
iλkt with square-summable complex coeffi-

cients ck.
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Proof. See [22, Theorem 4.6]. □

Now on, consider the operator A : DpAq Ă L2p´L,Lq ÝÑ L2p´L,Lq, defined by
Apuq “ ´ux ´ uxxx ` uxxxxx, with

DpAq “ tv P H5
p´L,Lq; vp´Lq “ vpLq, vxp´Lq “ vxpLq, ..., vxxxxp´Lq “ vxxxxxpLqu.

In what follows SL will denote the unitary group in L2p´L,Lq generated by the operator
A, using Stone theorem. With this in hand, pick en “ 1?

2L
ein

π
L
x for n P Z. So, en is an

eigenvector for A associated with the eigenvalue ωn “ iλn, with

λn “

ˆ

nπ

L

˙5

`

ˆ

nπ

L

˙3

´
nπ

L
.

If u0 P L2p´L,Lq is any complex function, we decomposed as u0 “
ř

nPZ cnen, so we have
for every t P R

SLptqu0 “
ÿ

nPZ

eiλntcnen.

We are now in a position to prove an observability result.

Proposition 2.3. Let l, L, and T be positive number such that l ă L. Then there exists a
constant positive C such that for every u0 P L2p´L,Lq, denoting u “ SLp.qu0, we get

(2.8) }u0}L2p´L,Lq ď C}u}L2pp0,T qˆp´l,lqq.

Therefore,

(2.9) }u}L2pp0,T qˆp´L,Lqq ď
?
TC}u}L2pp0,T qˆp´l,lqq.

Proof. Pick T 1 P p0, T
2

q and γ ą π
T 1 . Let N P N such that

λN ´ λ´N “ 2λN ě γ and pn P Z, |n| ě Nq ñ λn`1 ´ λn ě γ.

By Ingham’s inequality, see Theorem 2.2, there exists a constant CT 1 ą 0 such that for every
sequence panq|n|ąN of complex numbers, with an “ 0, for all n P Z; |n| ă N , the following
inequality is verified

(2.10)
ÿ

|n|ěN

|an|
2

ď CT 1

ż 2T 1

0

ˇ

ˇ

ˇ

ˇ

ÿ

|n|ěN

ane
iλnt

ˇ

ˇ

ˇ

ˇ

2

dt

Let Zn “ Spanpenq for n P Z and Z “ ‘nPZZn Ă L2p´L,Lq. Let us now define the following
seminorm p in Z by

ppuq “

ˆ
ż l

´l

|upxq|
2dx

˙
1
2

dt, @u P Z.

In this case, p is a norm in each Zn. By other hand, if u0 P Z X p‘|n|ăNZqK, we can rewrite
u0 in the following way

u0 “
ÿ

|n|ąN

cnen,

with cn “ 0 for |n| large enough. Thus, applying (2.10) with an “ cn?
2L
eipλnT

1`n π
L
xq and

integrating in p´l, lq we get

2l
ÿ

|n|ěN

|cn|2

2L
ď CT 1

ż l

´l

ż 2T 1

0

ˇ

ˇ

ˇ

ˇ

ÿ

|n|ěN

eiλntcnenpxq

ˇ

ˇ

ˇ

ˇ

2

dtdx.
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Therefore, Fubini’s theorem ensures that

}u0}L2p´L,Lq ď
L

l
CT 1

ż 2T 1

0

ppSLptqu0q
2dt.

Finally, for u0 P L2p´L,Lq, we have
ż 2T 1

0

ppSLptqu0q
2dt ď }SLp.qu0}

2
L2pp0,2T 1qˆp´L,Lqq “ 2T 1

}u0}L2p´L,Lq.

Thanks to the fact that 2T 1 ă T , follows from [21, Theorem 5.2] that there exists a positive
constant, still denoted by C, such that (2.8) is verified for all z0 P Z and the general case,
that is, for all u0 P L2p´L,Lq, follows by a density argument, showing the result. □

3. Global Carleman estimate

Consider T and L ą 0 to be positive numbers. Pick any function ψ P C8r´L,Ls with

ψ ą 0 in r´L,Ls; ψ1
p´Lq ą 0; ψ1

pLq ą 0, ψ2
ă 0 and |ψx| ą 0 in r´L,Ls.(3.1)

Let u “ e´sφq, ω “ e´sφP pesφuq and φpt, xq “
ψpxq

tpT´tq
. Straightforward computations show

that

(3.2) ω “ L1puq ` L2puq,

with

L1puq “ Au ` C1uxx ` Eu4x,

L2puq “ Bux ` C2uxx ` Duxxx ` ut ´ u5x.

Here

A “spφt ` φx ` φxxx ´ φ5xq ´ s2p10φxxφxxx ´ 3φxφxx ` 5φxφ4xq

´ s3p15φxφ
2
xx ` 10φ2

xφxxx ´ φ3
xq ´ s410φ3

xφxx ´ s5φ5
x,

B “ ` sp3φxx ´ 5φ4xq ´ s2p15φ2
xx ` 20φxφxxx ´ 3φ2

xq ´ s330φ2
xφxx ´ s45φ4

x,

C1 “sp3φx ´ 10φxxxq ´ s310φ3
x

C2 “C2 “ ´s230φxφxx

D “ ´ s10φxx ´ s210φ2
x,

E “ ´ s5φx.

On the other hand }ω}2 “ }L1puq}
2

` }L2puq}
2

` 2 pL1puq, L2puqq where

pu, vq “

ż T

0

ż L

´L

uv dx dt

and }ω}2 “ pω, ωq. With this in hand, we can prove a global Carleman estimate for the
Kawahara equation

$

’

&

’

%

ut ` ux ` uxxx ´ uxxxxx “ 0 px, tq P QT ,

u p´L, tq “ u pL, tq “ ux p´L, tq “ ux pL, tq “ uxx pL, tq “ 0 t P p0, T q ,

u px, 0q “ u0 pxq x P p0, Lq .

We cite to the reader that the well-posedness theory for this system can be found in [1].
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3.1. Proof of Theorem 1.1. We split the proof in two steps. The first one provides an
exact computation of the inner product pL1puq, L2puqq, whereas the second step gives the
estimates obtained thanks to the pseudoconvexity conditions (3.1).

Step 1. Exact computation of the scalar product 2pL1puq, L2puqq.

First, let us compute the following
ż T

0

ż L

0

pAu ` C1uxx ` EuxxxxqL2puqdxdt “: J1 ` J2 ` J3

To do that, observe that u belongs to DpP q, thus, we infer by integrating by parts, that

J1 “ ´
1

2

ż T

0

ż L

´L

rAt ´ A5x ´ pAC2qxx ` pABqx ` pADqxxxsu2dxdt

´
1

2

ż T

0

ż L

´L

r5Axxx ´ 3pADqx ` 2pAC2qsu2xdxdt

`
5

2

ż T

0

ż L

´L

Axu
2
xxdxdt,

(3.3)

J2 “

ż T

0

ż L

´L

C1uxxrBux ` C2uxx ` Duxxx ´ uxxxxxsdxdt

`

ż T

0

ż L

´L

C1uxxutdxdt :“ I1 ` I2.

(3.4)

and

J3 “

ż T

0

ż L

´L

EuxxxxrBux ` C2uxx ` Duxxx ´ uxxxxxsdxdt

`

ż T

0

ż L

´L

Euxxxxutdxdt :“ I3 ` I4.

(3.5)

Let us now treat Ii, for i “ 1, 2, 3, 4. Note that I1 is equivalent to

I1 “ ´
1

2

ż T

0

ż L

´L

pC1Bqxu
2
xdxdt ´

1

2

ż T

0

ż L

´L

rpC1Dqx ´ 2pC1C2q ´ C1xxxsu2xxdxdt

´
1

2

ż T

0

ż L

´L

3C1xu
2
xxxdxdt.

(3.6)

By other hand, by the definition of ω, see (3.2), for I2 we have that

I2 “ ´
1

2

ż T

0

ż L

´L

pAC1xqxu
2dxdt ´

ż T

0

ż L

´L

pC1xqu2xxxdxdt

´
1

2

ż T

0

ż L

´L

r´2pBC1xq ` pCC1xqx ´ pDC1xqxx

` pEC1xqxxx ´ C1x ` pC1qxxxxxsu2xdxdt

´
1

2

ż T

0

ż L

´L

rp2DC1xq ´ 3pEC1xqx ´ 4C1xxxsu2xxdxdt

´

ż T

0

ż L

´L

C1xuxωdxdt,

(3.7)
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where we have used that u belongs to DpP q and u|t“0 “ u|t“T “ 0. Now, using the same
strategy as before, that is, integration by parts, u belongs to DpP q and u|t“0 “ u|t“T “ 0
ensures that

I3 “ ´
1

2

ż T

0

ż L

´L

pEBqxxxu
2
xdxdt `

1

2

ż T

0

ż L

´L

r3pEBqx ` pEC2qxxsu2xxdxdt

´
1

2

ż T

0

ż L

´L

rpEDqx ` 2pEC2qsu2xxxdxdt `
1

2

ż T

0

ż L

´L

Exu
2
xxxxdxdt,

(3.8)

and

I4 “

ż T

0

ż L

´L

Exxutuxxdxdt ´ 2

ż T

0

ż L

´L

pExuxxqxutdxdt `
1

2

ż T

0

ż L

´L

E
d

dt
u2xxdxdt

“ ´

ż T

0

ż L

´L

Exxuxxutdxdt ´ 2

ż T

0

ż L

´L

Exuxxxutdxdt ´
1

2

ż T

0

ż L

´L

Etu
2
xxdxdt

“ ´

ż T

0

ż L

´L

rExxuxx ` 2Exuxxxsutdxdt ´
1

2

ż T

0

ż L

´L

Etu
2
xxdxdt “: I5 ` I6.

(3.9)

Note that I5 can be seen as

I5 “
1

2

ż T

0

ż L

´L

rpExxAqxx ´ 2pExAqxxxsu2dxdt

`
1

2

ż T

0

ż L

´L

r´2pExxAq ´ pBExxqx ` 6pExAqx ` 2pExBqxxsu2xdxdt

`
1

2

ż T

0

ż L

´L

r2pExxCq ´ pExxDqx ` pExxEqxx ` Exxxxx ´ 4pExBq ´ 2pCExqxsu2xxdxdt

`
1

2

ż T

0

ż L

´L

r´2pExxxEq ´ 7Exxx ` 4pExDq ´ 2pEExqxsu2xxxdxdt

`

ż T

0

ż L

´L

Exu
2
xxxxdxdt ´

ż T

0

ż L

´L

pExxuxx ` 2Exuxxxqωdxdt,

thanks to (3.2). So, putting the previous equality into (3.9) we get,

I4 “
1

2

ż T

0

ż L

´L

rpExxAqxx ´ 2pExAqxxxsu2dxdt

`
1

2

ż T

0

ż L

´L

r´2pExxAq ´ pBExxqx ` pExAqx ` 2pExBqxxsu2xdxdt

`
1

2

ż T

0

ż L

´L

r2pExxCq ´ pExxDqx ` pExxEqxx ` Exxxxx ´ 4pExBq ´ Et ´ 2pCExqxsu2xxdxdt

`
1

2

ż T

0

ż L

´L

r´2pExxxEq ´ 7Exxx ` 4pExDq ´ 2pEExqxsu2xxxdxdt

`

ż T

0

ż L

´L

Exu
2
xxxxdxdt ´

ż T

0

ż L

´L

pExxuxx ` 2Exuxxxqωdxdt.

(3.10)
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Putting together (3.6) and (3.7) in (3.4), (3.8) and (3.10) into (3.5), and adding the result
quantities with (3.3), we have that the scalar product 2pL1puq, L2puqq is given by

2

ż T

0

ż L

´L

L1puqL2puqdxdt “ ´

ż T

0

ż L

´L

pExxuxx ` 2Exuxxxqωdxdt

´ 2

ż T

0

ż L

´L

pωC1xquxdxdt `

ż T

0

ż L

´L

Mu2dxdt

`

ż T

0

ż L

´L

Nu2xdxdt `

ż T

0

ż L

´L

Ou2xxdxdt

`

ż T

0

ż L

´L

Ru2xxxdxdt `

ż T

0

ż L

´L

Su24xdxdt,

(3.11)

where

M “ ´ pABqx ´ At ` A5x ` pAC2qxx ´ pADqxxx ´ pAC1xqx ` pExxAqxx ´ 2pExAqxxx

N “ 3pADqx ´ 2pAC2q ´ pC1Bqx ` pBC1xq ` C1x ´ pCC1xqx ` pDC1xqxx ´ 5Axxx

´ pEC1xqxxx ´ C15x ´ pEBqxxx ´ 2pExxAq ´ pBExxqx ` 6pExAqx ` 2pExBqxx

O “ 5Ax ´ pC1Dqx ´ 2pDC1xq ` 3pEBqx ` 2pC1C2q ´ 4pExBq ` 5C1xxx ` 3pEC1xqx

` 2pExxCq ` pEC2qxx ´ pExxDqx ` pExxEqxx ` E5x ´ Et ´ 2pCExqx

R “ ´ 5C1x ´ pEDqx ` 4pExDq ´ 2pEC2q ´ 2pExxxEq ´ 7Exxx ´ 2pEExqx

S “ 3Ex

Now, note that

2

ż T

0

ż L

´L

L1puqL2puqdxdt ď

ż T

0

ż L

´L

pL1puq ` L2puqq
2 dxdt ď

ż T

0

ż L

´L

ω2dxdt,

we have due to (3.11) that
ż T

0

ż L

´L

Mu2dxdt `

ż T

0

ż L

´L

Nu2xdxdt `

ż T

0

ż L

´L

Ou2xxdxdt `

ż T

0

ż L

´L

Ru2xxxdxdt

`

ż T

0

ż L

´L

Su2xxxxdxdt ´ 2

ż T

0

ż L

´L

pωC1xquxdxdt ´

ż T

0

ż L

´L

pExxuxx ` 2Exuxxxqωdxdt

ď

ż T

0

ż L

´L

ω2dxdt.

(3.12)

Let us put each common term of the previous inequality together. To do that, note that
using Young inequality, for ϵ P p0, 1q we get

2

ż T

0

ż L

´L

pωC1xquxdxdt “ 2

ż T

0

ż L

´L

´

ϵ
1
2C1xux

¯´

ϵ´ 1
2ω

¯

dxdt

ď ϵ

ż T

0

ż L

´L

C2
1xu

2
xdxdt ` ϵ´1

ż T

0

ż L

´L

ω2dxdt.

In an analogous way,
ż T

0

ż L

´L

pExxuxx ` 2Exuxxxqωdxdt ď
ϵ

2

ż T

0

ż L

´L

E2
xxu

2
xxdxdt ` ϵ

ż T

0

ż L

´L

E2
xu

2
xxxdxdt

`
3

2
ϵ´1

ż T

0

ż L

´L

ω2dxdt.
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So, we have that

´ϵ

ż T

0

ż L

´L

C2
1xu

2
xdxdt ´ ϵ´1

ż T

0

ż L

´L

ω2dxdt ď ´2

ż T

0

ż L

´L

pωC1xquxdxdt(3.13)

and

´
ϵ

2

ż T

0

ż L

´L

E2
xxu

2
xxdxdt ´ ϵ

ż T

0

ż L

´L

E2
xu

2
xxxdxdt ´

3

2
ϵ´1

ż T

0

ż L

´L

ω2dxdt

ď ´

ż T

0

ż L

´L

pExxuxx ` 2Exuxxxqωdxdt.

(3.14)

Replacing (3.13) and (3.14) into (3.12) yields that
ż T

0

ż L

´L

Mu2dxdt `

ż T

0

ż L

´L

`

N ´ ϵC2
1x

˘

u2xdxdt `

ż T

0

ż L

´L

´

O ´
ϵ

2
E2
xx

¯

u2xxdxdt

`

ż T

0

ż L

´L

`

R ´ ϵE2
x

˘

u2xxxdxdt `

ż T

0

ż L

´L

Su2xxxxdxdt ď

ˆ

1 `
5

2
ϵ´1

˙
ż T

0

ż L

´L

ω2dxdt.

(3.15)

Step 2. Estimation of each term of the left hand side of (3.15).

The estimates are given in a series of claims.

Claim 1. There exist some constants s1 ą 0 and C1 ą 1 such that for all s ě s1, we have

ż T

0

ż L

´L

Mu2dxdt ě C´1
1

ż T

0

ż L

´L

psφq
9u2dxdt.

Observe that

M “ ´ pABqx `
O ps8q

t8pT ´ tq8
“ ´45s9φ8

xφxx `
O ps8q

t8pT ´ tq8
“ ´45s9

pψ1q8ψ2

t9pT ´ tq9
`

O ps8q

t8pT ´ tq8

We infer from (3.1) that for some k1 ą 0 and all s ą 0, large enough, we have

M ě k1
s9

t9pT ´ tq9

Claim 1 follows then for all s ą s1, with s1 large enough and some C1 ą 1.

Claim 2. There exist some constants s2 ą 0 and C2 ą 1 such that for all s ě s2, we have

ż T

0

ż L

´L

`

N ´ ϵC2
1x

˘

u2xdxdt ě C´1
2

ż T

0

ż L

´L

psφq
7u2xdxdt.

Noting that

N ´ ϵC2
1x “3pADqx ´ 2pAC2q ´ pC1Bqx ` pBC1xq `

O ps6q

t6pT ´ tq6

“ ´ 50s7φ6
xφxx `

O ps6q

t6pT ´ tq6
“ ´50s7

pψ1q6ψ2

t7pT ´ tq7
`

O ps6q

t6pT ´ tq6
,

and using again that (3.1) holds, we get for some k2 ą 0 and all s ą 0, large enough, that

N ´ ϵC2
1x ě k2

s7

t7pT ´ tq7

and Claim 2 follows then for all s ą s2, with s2 large enough and some C2 ą 1.

Claim 3. There exist some constants s3 ą 0 and C3 ą 1 such that for all s ě s3, we have
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ż T

0

ż L

´L

´

O ´
ϵ

2
E2
xx

¯

u2xxdxdt ě C´1
3

ż T

0

ż L

´L

psφq
5u2xxdxdt.

First, see that

O ´
ϵ

2
E2
xx “ 5Ax ´ pC1Dqx ´ 2pDC1xq ` 3pEBqx ` 2pC1C2q ´ 4pExBq `

O ps4q

t4pT ´ tq4

“ ´ 250s5φ4
xφxx `

O ps4q

t4pT ´ tq4
“ ´250s5

pψ1q4ψ2

t5pT ´ tq5
`

O ps4q

t4pT ´ tq4
.

Next, using (3.1) we have that for some k3 ą 0 and all s ą 0, large enough,

O ´
ϵ

2
E2
xx ě k3

s5

t5pT ´ tq5

is verified, so Claim 3 holds true for all s ą s3, with s3 large enough and some C3 ą 1.

Claim 4. There exist some constants s4 ą 0 and C4 ą 1 such that for all s ě s4, we have

ż T

0

ż L

´L

`

R ´ ϵE2
x

˘

u2xxxdxdt ě C´1
4

ż T

0

ż L

´L

psφq
3u2xxxdxdt.

As the previous Claims, thanks to (3.1) and

R ´ ϵE2
x “ ´ 5C1x ´ pEDqx ` 4pExDq ´ 2pEC2q `

O ps2q

t2pT ´ tq2

“ ´ 100s3φ2
xφxx `

O ps2q

t2pT ´ tq2
“ ´100s3

pψ1q2ψ2

t3pT ´ tq3
`

O ps2q

t2pT ´ tq2
,

we can find some constant k4 ą 0 and all s ą 0, large enough, such that

R ´ ϵE2
x ě k4

s3

t3pT ´ tq3

follows and Claim 4 is verified for all s ą s4, with s4 large enough and some C4 ą 1.

Claim 5. There exist some constants s5 ą 0 and C5 ą 1 such that for all s ě s4, we have

ż T

0

ż L

´L

Su2xxxxdxdt ě C´1
5

ż T

0

ż L

´L

psφqu2xxxxdxdt.

This is also a direct consequence of the fact that S “ ´s5φxx and (3.1) holds. Therefore,
Claim 5 is verified.

We infer from Steps 1 and 2, that for some positive constants s0, C, and all s ě s0, we
have

ż T

0

ż L

´L

␣

psφq
9
|u|

2
` psφq

7
|ux|

2
` psφq

5
|uxx|

2
` psφq

3
|uxxx|

2
` sφ|uxxxx|

2
(

dxdt

ď C

ż T

0

ż L

´L

|ω|
2dxdt.

Replacing u by e´sϖq yields (1.6). □
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4. Approximation Theorem

This section is devoted to presenting an application of the Carleman estimate shown
in Section 3 for the Kawahara operator P defined by (1.4)-(1.5). First, we prove a result
which is the key to proving the approximation Theorem 1.2. We have the following as a
consequence of the Theorem 1.1.

Proposition 4.1. For L ą 0 and f “ fpt, xq a function in L2pR ˆ p´L,Lqq with supp f Ă

prt1, t2s ˆ p´L,Lqq, where ´8 ă t1 ă t2 ă 8, we have that for every ϵ ą 0 there exist a
positive number C “ CpL, t1, t2, ϵq (C does not depend on f) and a function v P L2pR ˆ

p´L,Lqq such that
#

vt ` vx ` vxxx ´ vxxxxx “ f in D1pR ˆ p´L,Lqq,

supp v Ă rt1 ´ ϵ, t2 ´ ϵs ˆ p´L,Lq

and

}v}L2pRˆp´L,Lqq ď C}f}L2pRˆp´L,Lqq.

Proof. By a change of variable, if necessary, and without loss of generality, we may assume
that 0 “ t1 ´ ϵ ă t1 ă t2 ă t2 ´ ϵ “ T . Thanks to the Calerman estimate (1.6), we have that

(4.1)

ż T

0

ż L

´L

|q|2e´ k
tpT´tqdxdt ď C1

ż T

0

ż L

´L

|P pqq|
2dxdt,

for some k ą 0, C1 ą 0 and any q P Z. Here, the operator P is defined by (1.4). Therefore,
we have that F : Z ˆ Z ÝÑ R defined by

F pp, qq “

ż T

0

ż L

´L

P ppqP pqqdxdt

is a scalar product in Z. Now, let us consider H the completion of Z for p¨, ¨q. Note that

|q|2e´ k
tpT´tq is integrable on QT if q P H and (4.1) holds true. By the other hand, we claim

that T : H ÝÑ R defined by

T pqq “ ´

ż T

0

ż L

´L

fpt, xqqpxqdxdt,

is well-defined on H. In fact, due the hypotheses, that is, supp f Ă prt1, t2s ˆ p´L,Lqq, and
thanks to Hölder inequality and the relation (4.1), we have
(4.2)

ż T

0

ż L

´L

|fpt, xqqpxq|dxdt ď

ż t2

t1

ż L

´L

|fpt, xqqpxq|dxdt ď C}fpt, xq}L2ppt1,t2qˆp´L,Lqqpq, qq
1
2 ,

for some constant positive C.
Thus, it follows from the Riesz representation theorem that there exists a unique u P H

such that

(4.3) F pu, qq “ T pqq, @q P H.

Pick v :“ P puq P L2pp0, T q ˆ p´L,Lqq, so have that

xP ˚
pvq, qy “xv, P pqqy “

ż T

0

ż L

´L

vP pqqdxdt “

ż T

0

ż L

´L

P puqP pqqdxdt

“F pu, qq “ T pqq “ ´

ż T

0

ż L

´L

fqdxdt “ x´f, qy,
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where x¨, ¨y denotes the duality pairing x¨, ¨yD1pQT q;DpQT q and P
˚ “ ´P , hence

Pv “ f in D1
pQT q.

Finally, observe that v P H1pp0, T q;H´5p´L,Lqq, since we have

vt “ f ` vxxxxx ´ vxxx ´ vx P L2
p0, T ;H´5

p´L,Lqq,

thus vp0, ¨q and vpT, ¨q make sense in H´5p´L,Lq. Now, let q P H1p0, T ;H5
0 p´L,Lqq, follows

by (4.3) that

´

ż T

0

ż L

´L

fqdxdt “ ´

ż T

0

ż L

´L

fqdxdtt ` xvpt, xq, qpt, xqy

ˇ

ˇ

ˇ

ˇ

T

t“0

,

where x¨, ¨y denotes the duality pairing x¨, ¨yH´5p´L,Lq;H5
0 p´L,Lq. Since q|t“0 and q|t“T are arbi-

trarily in Dp´L,Lq, we infer that vpT, ¨q “ vp0, ¨q “ 0 in H´5p´L,Lq. Therefore, the result
follows extending v by setting vpt, xq “ 0 for pt, xq R QT . □

Now, we are in a position to prove Theorem 1.2.

Proof of Theorem 1.2. Pick η ą 0, to be chosen later. Thanks to the Lemma 2.1, applied
for L “ n` 1, l1 “ n´ 1, l2 “ n, 2δ “ ϵ

2
, there exists ṽ P L2pp0, T q ˆ p´n´ 1, n` 1qq such

that

P ṽ “ 0 in p0, T q ˆ p´n ´ 1, n ` 1q.

(4.4) ṽpt, .q “ Sn`1pt ´ t1 `
ϵ

2
qv1, for t1 ´

ϵ

2
ă t ă t1 ´

ϵ

4

and

(4.5) ṽpt, .q “ Sn`1pt ´ t2 ´
ϵ

4
qv2, for t2 `

ϵ

4
ă t ă t2 `

ϵ

2
,

for some pv1, v2q P L2ppt1 ´ ϵ
2
, t2 ` ϵ

2
q ˆ p´n ` 1, n ´ 1qq2 and

}ṽ ´ u}L2ppt1´ ϵ
2
,t2` ϵ

2
qˆp´n`1,n´1qq ă η.

So that (1.8) be fulfilled, we multiply ṽ by a cut-off function. Now on, consider φ P Dp0, T q

be such that 0 ď φ ď 1, φptq “ 1, for all t P rt1 ´ ϵ
4
, t2 ` ϵ

4
s and supp φ Ă rt1 ´ ϵ

2
, t2 ` ϵ

2
s.

Picking vpt, xq “ φptqṽpt, xq, we get

supp v Ă rt1 ´
ϵ

2
, t2 `

ϵ

2
s ˆ p´n ´ 1, n ` 1q.

Therefore,

}v ´ u}L2pp0,T qˆp´n`1,n´1qq ď}ṽ ´ u}L2ppt1´ ϵ
2
,t2` ϵ

2
qˆp´n`1,n´1qq

` }pφ ´ 1qṽ}L2ppt1´ ϵ
2
,t2` ϵ

2
qˆp´n`1,n´1qq.

Since supp u Ă rt1, t2s ˆ p´n, nq and φptq “ 1, for t1 ´ ϵ
4

ď t ď t2 ` ϵ
4
, we have

}pφ ´ 1qṽ}
2
L2ppt1´ ϵ

2
,t2` ϵ

2
qˆp´n`1,n´1qq ď}ṽ}

2
L2ptpt1´ ϵ

2
,t1´ ϵ

4
qYpt2` ϵ

4
,t2` ϵ

2
quˆp´n`1,n´1qq

“}ṽ ´ u}
2
L2ptpt1´ ϵ

2
,t1´ ϵ

4
qYpt2` ϵ

4
,t2` ϵ

2
quˆp´n`1,n´1qq

ď}ṽ ´ u}
2
L2ppt1´ ϵ

2
,t2` ϵ

2
qˆp´n`1,n´1qq

ďη2.

(4.6)

Hence,

(4.7) }v ´ u}L2pp0,T qˆp´n`1,n´1qq ď 2η,
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where we have used the fact that supp u Ă rt1, t2s ˆ p´n, nq. Finally,

Pv “
dφ

dt
ṽ in p0, T q ˆ p´n ´ 1, n ` 1q

so

}Pv}
2
L2pp0,T qˆp´n´1,n`1qq ď

›

›

dφ

dt

›

›

2

L8p0,T q
}ṽ}

2
L2ptpt1´ ϵ

2
,t1´ ϵ

4
qYpt2` ϵ

4
,t2` ϵ

2
quˆp´n´1,n`1qq

thanks to the fact that φptq “ 1 in rt1 ´ ϵ
4
, t1 ` ϵ

4
s. On the other hand, since (4.4) and (4.5)

holds, we infer by the observability result, that is, by Lemma 2.3, that there exists a constant
C “ Cpn, ϵq ą 0 such that

}ṽ}L2ppt1´ ϵ
2
,t1´ ϵ

4
qˆp´n´1,n`1qq ď C}ṽ}L2ppt1´ ϵ

2
,t1´ ϵ

4
qˆp´n`1,n´1qq

and also

}ṽ}L2ppt2` ϵ
4
,t2` ϵ

2
qˆp´n´1,n`1qq ď C}ṽ}L2ppt2` ϵ

4
,t1` ϵ

2
qˆp´n`1,n´1qq,

or equivalently,

}ṽ}L2ptpt1´ ϵ
2
,t1´ ϵ

4
qYpt2` ϵ

4
,t2` ϵ

2
quˆp´n´1,n`1qq ď C}ṽ}L2ptpt1´ ϵ

2
,t1´ ϵ

4
qYpt2` ϵ

4
,t2` ϵ

2
qqˆp´n`1,n´1qq.

Thus, combining the last inequality with (4.6) yields that

(4.8) }Pv}L2pp0,T qˆp´n´1,n`1qq ď C
›

›

dφ

dt

›

›

L8p0,T q
η

Now, to finish the proof, we use Proposition 4.1, to ensure the existence of a constant
C “ C 1pn, t1, t2, ϵq ą 0 and a function ω P L2pp0, T q ˆ p´n ´ 1, n ` 1qq such that

(4.9)

#

Pω “ Pv in p0, T q ˆ p´n ´ 1, n ` 1q,

supp ω Ă rt1 ´ ϵ, t2 ` ϵs ˆ p´n ´ 1, n ` 1q,

and

(4.10) }ω}L2pp0,T qˆp´n´1,n`1qq ď C 1
}Pv}L2pp0,T qˆp´n´1,n`1qq.

Consequently, setting v “ v ´ ω we get (1.7) and (1.8) by using (4.9). Moreover, thanks to
(4.7), (4.8) and (4.10), we get that

}v ´ u}L2pp0,T qˆp´n`1,n´1qq ď
`

2 ` CC 1
›

›

dφ

dt

›

›

L8p0,T q

˘

η.

Now, choosing η small enough, we have shown (1.9) and so the result is shown. □

Finally, as a consequence of Theorem 1.2, we prove the next result that gives us infor-
mation to prove the third main result of the article in the next section.

Corollary 4.2. Let t1, t2, T real numbers such thar 0 ă t1 ă t2 ă T and f “ fpt, xq be a
function in L2

locpR2q such that

supp f Ă rt1, t2s ˆ R.
Let ϵ P p0,minpt1, T ´ t2qq, then there exists u P L2

locpR2q such that

ωt ` ωx ` ωxxx ´ ωxxxxx “ f in D1
pR2

q

and

supp ω Ă rt1 ´ ϵ, t2 ` ϵs ˆ R.
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Proof. Consider two sequences of number denoted by ttn1uně2 and ttn2uně2 such that for all
n ě 2 we have

(4.11) t1 ´ ϵ ă tn`1
1 ă tn1 ă t1 ă t2 ă tn2 ă tn`1

2 ă t2 ` ϵ.

We construct by induction over n a sequence tununě2 of function such that, for every n ě 2

(4.12)

$

’

&

’

%

un P L2pp0, T q ˆ p´n, nqq,

supp un Ă rtn1 , t
n
2 s ˆ p´n, nq,

Pun “ f in p0, T q ˆ p´n, nq,

and, if n ą 2

(4.13) }ũn ´ un´1}L2pp0,T qˆp´n`2,n´2qq ă
1

2n
.

Here, u2 is given by Proposition 4.1. Now on, let us assume, for n ě 2, that u2, ¨ ¨ ¨ , un
satisfies (4.12) and (4.13). By Proposition 4.1, there exists ω P L2pp0, T q ˆ p´n ´ 1, n ` 1qq

such that

supp ω Ă rt21, t
2
2s ˆ p´n ´ 1, n ` 1q

and

Pω “ f in p0, T q ˆ p´n ´ 1, n ` 1q.

As we have P pun ´ ωq “ 0 in p0, T q ˆ p´n, nq and

supp pun ´ ωq Ă rtn1 , t
n
2 s ˆ p´n, nq

with tn`1
1 ă tn1 ă tn2 ă tn`1

2 . So, using Theorem 1.2, there exists a function v P L2pp0, T q ˆ

p´n ´ 1, n ` 1qq such that

supp v Ă rtn`1
1 , tn`1

2 s ˆ p´n ´ 1, n ` 1q, Pv “ 0 in p0, T q ˆ p´n ´ 1, n ` 1q

and

}v ´ pun ´ ωq}L2pp0,T qˆp´n`1,n´1qq ă
1

2n´1
.

Thus, picking un`1 “ v ` ω, we get that un`1 satisfies (4.12) and (4.12). Extending the
sequence tununě2 by unpt, xq “ 0 for pt, xq P R2zp0, T q ˆ p´n, nq, we deduce, thanks to (4.13)
that

tununě2 Ñ u in L2
locpR2

q

with

supp u Ă rt1 ´ ϵ, t2 ` ϵs ˆ R

due to the fact (4.11). Additionally, Pu “ f in R2 by the third equation of (4.12). Thus,
the proof is finished. □

5. Approximation Theorem applied in control problem

In this section, we present a direct application of the approximation Theorem 1.2, which
ensures the proof of Theorem 1.3.
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5.1. Proof of Theorem 1.3. As is well know, see [8], that there exist u1 and u2 in a
class Cp0, T ;Hsp0,`8q, for s P

`

´7
4
, 5
2

˘

z
␣

1
2
, 3
2

(

, solutions of (without specification of the
boundary conditions)

#

u1t ` u1x ` u1xxx ´ u1xxxxx “ 0 in p0, T q ˆ p0,`8q,

u1p0, xq “ u0 in p0,`8q

and
#

u2t ` u2x ` u2xxx ´ u2xxxxx “ 0 in p0, T q ˆ p0,`8q,

u2p0, xq “ uT in p0,`8q,

respectively, for s P
`

´7
4
, 5
2

˘

. Now, consider ũ2pt, xq “ u2pt ´ T, xq. We have that Pũ2 “ 0

in r0, T s ˆ p0,`8q. Now, pick any ϵ1 P pϵ, T
2

q and consider the function φ P C8p0, T q defined
by

φptq “

#

1, if t P r0, ϵ1s

0, if t P rT ´ ϵ1, T s.

Note that the change of variable

upt, xq “ φptqu1pt, xq ` p1 ´ φptqqũ2pt, xq ` ωpt, xq,

transforms (1.10) in
#

ωt ` ωx ` ωxxx ´ ωxxxxx “ d
dt
φpũ2 ´ u1q in D1pp0, T q ˆ p0,`8qq,

ωp0, xq “ ωpT, xq “ 0 in p0,`8q.

The proof is finished taking into account the Corollary 4.2 with f “
dφ
dt

pũ2 ´ u1q. □
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