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Abstract. Studied here is the Kawahara equation, a fifth-order Korteweg-de

Vries type equation, with time-delayed internal feedback. Under suitable as-
sumptions on the time delay coefficients, we prove that the solutions of this

system are exponentially stable. First, considering a damping and delayed

system, with some restriction of the spatial length of the domain, we prove
that the energy of the Kawahara system goes to 0 exponentially as t → ∞.

After that, by introducing a more general delayed system, and by introducing

suitable energies, we show using the Lyapunov approach, that the energy of
the Kawahara equation goes to zero exponentially, considering the initial data

small and a restriction in the spatial length of the domain. To remove these
hypotheses, we use the compactness-uniqueness argument which reduces our

problem to prove an observability inequality, showing a semi-global stabiliza-

tion result.

1. Introduction.

1.1. Setting of the problem. Our main focus in this work is to investigate the
behavior of the solution of the Kawahara equation [18, 23], a fifth higher-order
Korteweg-de Vires (KdV) equation

ut + ux + uxxx − uxxxxx + uux = 0 (1)

which is a dispersive PDE describing numerous wave phenomena such as magneto-
acoustic waves in a cold plasma [22], the propagation of long waves in a shallow
liquid beneath an ice sheet [20], gravity waves on the surface of a heavy liquid [13],
etc. In the literature, this equation is also referred as the fifth-order KdV equation
[7], or singularly perturbed KdV equation [35].

There are some valuable efforts in the last years that focus on the analytical
and numerical methods for solving (1). These methods include the tanh-function
method [3], extended tanh-function method [4], sine-cosine method [45], Jacobi
elliptic functions method [19], direct algebraic method [34], decompositions methods
[24], as well as the variational iterations and homotopy perturbations methods [21].
For numerical simulations, however, there appears the question of cutting off the
spatial domain [5, 6].
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Due to this recent advance, previously mentioned, other issues for the study of
the Kawahara equation appear. For example, we can cite the stabilization problem,
which is our motivation here. Precisely, we are interested in detailed qualitative
analysis of problems for (1) in bounded regions, giving a next necessary step after
the pioneer work [1] for this equation. To do this, we will analyze qualitative
properties of solutions to the initial-boundary value problem for (1) posed on a
bounded interval under the presence of a localized damping and delay terms instead
of the presence only of the damping mechanism (see [1]), that is

ut(x, t) + ux(x, t) + uxxx(x, t)− uxxxxx(x, t)

+u(x, t)ux(x, t) + a (x)u(x, t) + b(x)u(x, t− h) = 0 x ∈ (0, L), t > 0,

u (0, t) = u (L, t) = 0 t > 0,

ux (0, t) = ux (L, t) = uxx (L, t) = 0 t > 0,

u (x, 0) = u0 (x) x ∈ (0, L),

u(x, t) = z0(x, t) x ∈ (0, L), t ∈ (−h, 0),

(2)
where h > 0 is the time delay, L > 0 is the length of the spatial domain, u(x, t) is
the amplitude of the water wave at position x at time t, and a = a(x) and b = b(x)
are nonnegative functions belonging to L∞(Ω). For our purpose let us introduce
the following assumption.

Assumption 1.1. The real functions a = a (x), b = b (x) are nonnegative functions
belonging to L∞(Ω). Moreover, a(x) ≥ a0 > 0 almost everywhere in a nonempty
open subset ω ⊂ (0, L).

Note that the term a(x)u designs a feedback damping mechanism (see, for in-
stance [1]); therefore, one can expect the global well-posedness of (2) for all L > 0,
and the decay of solutions. Therefore, defining the energy of system (2) by

Eu(t) =
1

2

∫ L

0

u2(x, t)dx+
h

2

∫ L

0

∫ 1

0

b(x)u2(x, t− ρh)dρdx, (3)

the following questions arise:

Does Eu(t) −→ 0, as t → ∞? If it is the case, can we give the decay rate?

So, the main purpose of this paper is to answer these questions. There are
basically three features to be emphasized in this way.

• The damping is effectively important, i.e. there are solutions to the undamped
model (at least to its linear version) that do not decay [1];

• The nonlinear term can be estimated in appropriate norms;
• The delay in the feedback does not destabilize the system, which can be the
case for other delayed systems, see for instance [14, 30, 41].

1.2. Main results. Our first result ensures that with a restrictive assumption on
the length L of the domain and with the weight of the delayed feedback small
enough the solutions of the system (2) are locally stable.

Theorem 1.2. Assume that the functions a(·) and b(·) satisfy the conditions given

in Assumption 1.1 and let L < π
√
3. Under these assumptions, there exist δ > 0,

r > 0, C > 0 and ν > 0, such that if ∥b∥∞ < δ, then for every (u0, z0) ∈ H =
L2(0, L)×L2((0, L)×(0, 1)) satisfying ∥(u0, z0)∥H ≤ r, the energy (3) of the system
(2) satisfies

Eu(t) ≤ Ce−νtEu(0), for all t ≥ 0.
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Another goal of this paper, inspired by the work of Nicaise and Pignotti [30], is
to consider the following system

ut(x, t) + ux(x, t) + uxxx(x, t)− uxxxxx(x, t)

+u(x, t)ux(x, t) + a (x) (µ1u(x, t) + µ2u(x, t− h)) = 0 x ∈ (0, L), t > 0,

u (0, t) = u (L, t) = 0 t > 0,

ux (0, t) = ux (L, t) = uxx (L, t) = 0 t > 0,

u (x, 0) = u0 (x) x ∈ (0, L),

u(x, t) = z0(x, t) x ∈ (0, L), t ∈ (−h, 0),

(4)
called now on of µi−system. Here h > 0 is the time delay, µ1 > µ2 are positive real
numbers and the initial data (u0, z0) belong to a suitable space. If a(x) satisfies
Assumption 1.1, consider the following energy associated with the solutions of the
system (4)

Eu(t) =
1

2

∫ L

0

u2(x, t)dx+
ξ

2

∫ L

0

∫ 1

0

a(x)u2(x, t− ρh)dρdx, (5)

where ξ is a positive constant verifying the following

hµ2 < ξ < h(2µ1 − µ2). (6)

Again, we are interested to see the questions previously mentioned. Note that,
in a different way from our first goal, the derivative of the energy (5) satisfies

E′
u(t) ≤ −C

[
u2
xx(0) +

∫ L

0

a(x)u2(x)dx+

∫ L

0

a(x)u2(x, t− h)dx

]
,

for some positive constant C := C(µ1, µ2, ξ, h). This indicates that the function
a(x) plays the role of a feedback damping mechanism, at least for the linearized
system. Therefore, questions previously mentioned again arise to the solution of
the system (4).

For the system (4) we split the behavior of the solutions into two parts. Employ-
ing Lyapunov’s method, it can be deduced that the energy (5) goes exponentially
to zero as t → ∞, however, the initial data needs to be sufficiently small in this
case. Precisely, the local result can be read as follows.

Theorem 1.3. Let L > 0, assume that a ∈ L∞(Ω), (6) holds and L < π
√
3. Then,

there exists 0 < r < 9π2−3L2

2L
3
2 π2

such that for every (u0, z0(·,−h(·))) ∈ H satisfying

∥(u0, z0(·,−h(·)))∥H ≤ r, the energy (5) of the system (4) decays exponentially.
More precisely, considering

γ = min

{
9π2 − 3L2 − 2L

3
2 rπ2

3L2(1 + 2Lα)
α,

βξ

2h(ξβ + ξ)

}
and κ =(1 +max{2αL, β}) ,

with α and β positive constants such that

α <min

{
1

2Lµ1 + Lµ2

(
µ1 −

ξ

2h
− µ2

2
− βξ

2h

)
,

1

Lµ2

(
ξ

2h
− µ2

2

)}
,

β <
2h

ξ

(
µ1 −

ξ

2h
− µ2

2

)
.

Then,
E(t) ≤ κE(0)e−2γt for all t > 0.
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The last result of the manuscript, still related to the system (4), removes the
hypothesis of the initial data being small. To do that, we use the compactness-
uniqueness argument due to J.-L. Lions [28], which reduces our problem to prove
an observability inequality for the nonlinear system (4). More precisely, we have the
following semi-global result.

Theorem 1.4. Assume that a(x) satisfies Assumption 1.1. Suppose that µ1 > µ2

and let ξ > 0 satisfying (6). Let R > 0, then there exists C = C(R) > 0 and
ν = ν(R) > 0 such that Eu, defined in (5), satisfies

Eu(t) ≤ CEu(0)e
−νt, ∀t > 0,

for solutions of (4) provided that ∥(u0, z0)∥H ≤ R.

1.3. Previous results. Let us now mention some bibliography comments about
the stabilization problem for KdV-type models. Concerning the Kawahara equation,
recently in [1], the authors considered the following damped system

ut + ux + uxxx − uxxxxx + upux + a(x)u = 0, (x, t) ∈ (0, L)× (0, T ), (7)

for p ∈ [1, 4), with a presence of an extra damping term a(x), such that{
a ∈ L∞(0, L) and a(x) ≥ a0 > 0 a.e. in ω
with a nonempty ω ⊂ (0, L).

(8)

This damping mechanism is essential already in a linear case: if a(x) ≡ 0 and
the length of an interval is critical (see [1]), then it can be constructed a nontrivial
solution to

ut + ux + uxxx − uxxxxx = 0, (x, t) ∈ (0, L)× (0, T )

u (0, t) = u (L, t) = ux (0, t) = ux (L, t) = uxx (L, t) = 0, t ∈ (0, T )

u (x, 0) = u0 (x) , x ∈ (0, L),

which does not decay to 0 as t → ∞. Observe that due to the drift term ux the
same occurs for the KdV equation [36]. Indeed, if for instance L = 2πn, n ∈ N,
then the function v(x) = 1− cosx solves

ut + ux + uxxx = 0, (x, t) ∈ (0, L)× (0, T )

u (0, t) = u (L, t) = ux (L, t) = 0, t ∈ (0, T )

u (x, 0) = u0 (x) , x ∈ (0, L),

and clearly v(x) ̸→ 0 as t → ∞. Despite the valuable advances in [10, 11, 12, 17], the
question of whether solutions of undamped problems associated with the nonlinear
KdV and Kawahara equations decay as t → ∞ for all finite L > 0 is still open.

To overcome these difficulties, a damping of the type a(x)u was introduced in
[33] to stabilize the KdV system. More precisely, considering the damping localized
at a subset ω ⊂ (0, L) containing nonempty neighborhoods of the end-points of
an interval, it was shown that solutions of both linear and nonlinear problems for
the KdV equation decay, independently on L > 0. In [31] it was proved that the
same holds without cumbersome restrictions on ω ⊂ (0, L). In [42, 44] the damping
like in (8) was used for (7) without the drift term ux. If, however, the linear term
ux is dropped, both the KdV and Kawahara equations do not possess critical set
restrictions [36, 43], and the damping is not necessary. The decay of solutions in
such cases was also proved in [15, 16] by different methods.
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Once the damping term a(x)u ̸≡ 0 is added to (7), the nonlinearity uux provides
the second difficulty which should be treated with accurateness. In this context the
mixed problems for the generalized KdV equation

ut + ux + uxxx + upux + a (x)u = 0, (9)

were studied in [37] when p ∈ [2, 4). For the critical exponent, p = 4, the global
well-posedness and the exponential stability were studied in [27]. The reader is also
referred to [26, 38] and the references therein for an overall literature review.

Still related with damping mechanism for dispersive model, more recently,
Cavalcanti et al. [9] studied a damped KdV–Burgers equation in the real line,

ut(x, t) + uxxx(x, t)− uxx(x, t)

+λ0u(x, t) + u(x, t)ux(x, t) = 0 (x, t) ∈ R× (0,∞),

u(x, 0) = u0(x) x ∈ R
(10)

The authors were able to show the well-posedness and exponential stability for
an indefinite damping λ0(x), giving exponential decay estimates on the L2−norm
of solutions to (10) under appropriate conditions on the damping coefficient λ0. Ad-
ditionally, recently a work due to Komornik and Pignotti [25] studied the following
equation

ut(x, t) + uxxx(x, t)− uxx(x, t) + λ0u(x, t)

+λu(x, t− τ) + u(x, t)ux(x, t) = 0 (x, t) ∈ R× (0,∞),

u(x, s) = u0(x, s) x ∈ R× [−τ, 0].

(11)

Precisely, the authors consider the system (11) in presence of a damping term
and delay feedback. They proved the exponential decay estimates under appropriate
conditions on the damping coefficients.

It is important to point out that very recently, the robustness with respect to
the delay of the boundary stability of the nonlinear KdV equation has been studied
in [2]. The authors obtain, under an appropriate condition on the feedback gains
with and without delay the locally exponentially stable result for non critical length.
Moreover, in [41], the authors extend this result for the nonlinear Korteweg-de Vries
equation in the presence of an internal delayed term. This work is our motivation
to treat more general dispersive systems in this manuscript.

1.4. Heuristic of the article. The results presented in this article give us answers
for the stabilization problems with the damping mechanism and feedback delay of
the Kawahara equation. Precisely, we are able to give two ways to stabilize the
solution of the system under consideration.

The first two results, Theorem 1.2 and Theorem 1.3, ensure the exponential
stability with some restriction in the spatial length. The strategy to obtain both
results is as follows: To show Theorem 1.2 we first prove the exponential stability
for the Kawahara system linearized around 0 (see Appendix A) by the Lyapunov

approach for all L < π
√
3 (allowing to have an estimation of the decay rate), then for

∥b∥∞ small enough, we show the local exponential stability result by a decoupling
approach inspired by [41]. The second result, Theorem 1.3, has a local character,
that is, is necessary to make the initial data small enough. The local stability
result is based on the appropriate choice of Lyapunov functional, which also gives
a restriction of the lengths L, which occurs due to the choice of the Morawetz
multipliers x in the expression of V1 (see (60)).
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Finally, Theorem 1.4 is obtained by utilizing an observability inequality for the
nonlinear delayed Kawahara equation which is proved using a contradiction ar-
gument. Consequently, the value of the decay rate can not be estimated in this
approach, differently than before. The two main difficulties to the semi-global sta-
bility result are the passage to the limit in the nonlinear term and the fact that this
nonlinear term does not allow to use of Holmgren’s uniqueness theorem. Instead,
we will use the unique continuation property for the nonlinear system due to Saut
and Scheurer [39]. In this case, the results follow without restriction in the length
L > 0.

We finish our introduction with a few comments that give a generality of the
problems in consideration.

• First, observe that to prove Theorem 1.2 we do not need to localize the solution
of the transport equation1 in a small subset of (0, L) as in [41, Section 4].
Moreover, we emphasize that we can take a = 0 in Theorem 1.2.

• It is important to point out that Theorem 1.3 gives an estimation of the decay
rate γ. In particular, we can note that when the delay h increases, the decay
rate γ decreases.

• Note that in Theorems 1.3 and 1.4 the relation (6) is more general than one
used in [41]. Our motivation is the general framework introduced by Nicaise
and Pignotti in [30].

• As mentioned before, Theorem 1.4 has a semi-global character. This comes
from the fact that even if we are able to choose any radius R for the initial
data, the decay rate ν (see (71)) depends on R.

• The previous results are not only true for the nonlinearity uux. Using the
same approach as in [1], we can deal with a general nonlinearity as upux for
p ∈ [1, 4). For simplicity here we will treat the case p = 1.

• Connecting the KdV and Kawahara equations, in [29] the authors studied the
limit behavior of the solutions of the Kawahara equation

ut + uxxx + εuxxxxx + uux = 0, ε > 0

as ε → 0. Note that in this previous equation uxxx and εuxxxxx compete for
each other and cancel each other at frequencies of order 1/

√
ε. Thus, the au-

thors proved that the solutions to this equation converge in C
(
[0, T ];H1(R)

)
towards the solutions of the KdV equation for any fixed T > 0. Due to this
previous fact, we believe that considering an approximation of the delayed
system in the bounded domain

ut(x, t) + ux(x, t) + uxxx(x, t) + εuxxxxx(x, t)

+u(x, t)ux(x, t) + a (x)u(x, t) + b(x)u(x, t− h) = 0 x ∈ (0, L), t > 0,

u (x, 0) = u0 (x) x ∈ (0, L),

u(x, t) = z0(x, t) x ∈ (0, L), t ∈ (−h, 0),

with the compatible ε−boundary condition, using the approach of our work,
we can recover (as ε → 0) the results proposed by [41].

1See the equation (16) below.
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1.5. Organization of the article. Our manuscript is outlined as follows: First,
Section 2 is related with the well-posedness results for µi−system (4) and its adjoint.
After that, Section 3 is devoted to prove properties of the damping–delayed system
(2), that is, we show the Theorem 1.2, where the analysis developed in the Appendix
A is crucial. In Section 4, we give a rigorous proof of the asymptotic stability for
the solutions of the system (4), precisely, we prove Theorem 1.3. After that, in this
same section, to remove restrictions of the Theorem 1.3, we prove an observability
inequality, which is the key to prove Theorem 1.4.

2. Well-posedness of µi−system . Our goal in this section is to prove the well-
posedness theory for the system (4). This analysis is useful for the stability prop-
erties for the solutions of this system.

2.1. Linear system. For the sake of completeness, we provide below the well-
posedness results for the linear system

ut(x, t) + ux(x, t) + uxxx(x, t)− uxxxxx(x, t)

+a (x) (µ1u(x, t) + µ2u(x, t− h)) = 0 x ∈ (0, L), t > 0,

u (0, t) = u (L, t) = 0 t > 0,

ux (0, t) = ux (L, t) = uxx (L, t) = 0 t > 0,

u (x, 0) = u0 (x) x ∈ (0, L),

u(x, t) = z0(x, t) x ∈ (0, L), t ∈ (−h, 0).

(12)

A classical way to deal with the well-posedness of the delayed equations (see e.g.
[30]) is to consider z(x, ρ, t) = u(x, t− ρh), for any x ∈ (0, L), ρ ∈ (0, 1) and t > 0.
So, its easily verified that z satisfies the transport equation

hzt(x, ρ, t) + zρ(x, ρ, t) = 0 x ∈ (0, L), ρ ∈ (0, 1), t > 0,

z(x, 0, t) = u(x, t) x ∈ (0, L), t > 0,

z(x, ρ, 0) = z0(x,−ρh) x ∈ (0, L), ρ ∈ (0, 1).

(13)

We equipped the Hilbert space H = L2(0, L) × L2((0, L) × (0, 1)) with the fol-
lowing inner product

((u, z), (v, w))H =

∫ L

0

uvdx+ ξ∥a∥∞
∫ L

0

∫ 1

0

z(x, ρ)w(x, ρ)dxdρ,

where ξ is a positive constant satisfying (6) or, equivalently,

µ2 <
ξ

h
< 2µ1 − µ2. (14)

that we will use from now on.
Throughout this article, we shall adopt the notation z(1) := z(x, 1, t). To study

the well-posedness theory in the sense of Hadamard, we need to put the equation
(12) into an abstract setting. To do it, let us rewrite this system as follows: Consider
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U(t) = (u, z(·, ·, t)), so the equation (12) can be reformulated as the following system

ut(x, t) + ux(x, t) + uxxx(x, t)− uxxxxx(x, t)

+a (x) (µ1u(x, t) + µ2z(1)) = 0 x ∈ (0, L), t > 0,

u (0, t) = u (L, t) = 0 t > 0,

ux (0, t) = ux (L, t) = uxx (L, t) = 0 t > 0,

u (x, 0) = u0 (x) x ∈ (0, L),

hzt(x, ρ, t) + zρ(x, ρ, t) = 0 x ∈ (0, L), ρ ∈ (0, 1), t > 0,

z(x, 0, t) = u(x, t) x ∈ (0, L), t > 0,

z(x, ρ, 0) = z0(x,−ρh) x ∈ (0, L), ρ ∈ (0, 1),

(15)

which is equivalent to the following abstract Cauchy problem
∂U

∂t
(t) = AU(t),

U(0) = (u0(x), z0(x,−ρh)).
(16)

Here, the unbounded operator A : D(A) ⊂ H → H is given by

A(u, z) = (−ux − uxxx + uxxxxx − a(x)(µ1u+ µ2z(·, 1)),−h−1zρ) (17)

with domain

D(A) =

(u, z) ∈ H :
u ∈ H5(0, L), u(0) = u(L) = 0,
ux(0) = ux(L) = uxx(L) = 0,

zρ ∈ L2((0, L)× (0, 1)), z(0) = u

 . (18)

The first result of this section gives some properties of the operator A and its
adjoint A∗.

Lemma 2.1. The operator A is closed and its adjoint A∗ : D(A∗) ⊂ H → H is
given by

A∗(u, z) = (ux + uxxx − uxxxxx − a(x)µ1u+
ξ∥a∥∞

h
z(·, 0), h−1zρ) (19)

with domain

D(A∗) =

(u, z) ∈ H :

u ∈ H5(0, L), u(0) = u(L) = 0,
ux(0) = ux(L) = uxx(0) = 0,

zρ ∈ L2((0, L)× (0, 1)),

z(x, 1) = −a(x)hµ2

∥a∥∞ξ
u(x)

 . (20)

Proof. The proof that A∗ is given as in the statement of the lemma is standard. To
show that A is closed, note that A∗∗ = A and the result follows from [8, Proposition
2.17].

Now, we are able to prove that A is the infinitesimal generator of a C0-semigroup.
Precisely, the result can be read as follows.

Proposition 2.2. Assume that a ∈ L∞(Ω) is a nonnegative function and (14)
holds. Then, A is the infinitesimal generator of a C0-semigroup in H.
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Proof. Let U = (u, z) ∈ D(A), then integrating by parts, using the definition (18)
and Young’s inequality we have

(AU,U)H ≤− 1

2
u2
xx(0) +

(
−µ1 +

µ2

2

)∫ L

0

a(x)u2(x)dx+
ξ∥a∥∞
2h

∫ L

0

u2(x)dx

+

(
µ2

2
− ξ

2h

)
∥a∥∞

∫ L

0

z2(x, 1)dx

≤ξ∥a∥∞
2h

∫ L

0

u2(x)dx.

Hence, for λ = ξ∥a∥∞
2h we have

((A− λI)U,U)H ≤ 0.

Now, let U = (u, z) ∈ D(A∗), then analogously as done previously, we get

(A∗U,U)H ≤− 1

2
u2
xx(L) +

(
−µ1 +

µ2
2h

2ξ

)∫ L

0

a(x)u2(x)dx+
ξ∥a∥∞
2h

∫ L

0

u2(x)dx.

So, the following relation,

µ2 <
ξ

h
⇒ 2µ2 <

2ξ

h
⇒ 2

µ2
<

2ξ

hµ2
2

⇒ µ2
2h

2ξ
<

µ2

2

yields that

(A∗U,U)H ≤− 1

2
u2
xx(L) +

(
−µ1 +

µ2

2

)∫ L

0

a(x)u2(x)dx+
ξ∥a∥∞
2h

∫ L

0

u2(x)dx

≤ ξ∥a∥∞
2h

∫ L

0

u2(x)dx.

Hence,
((A− λI)∗U,U)H ≤ 0,

for all U ∈ D(A∗). Finally, since A− λI is densely defined closed linear operator,
and both A−λI and (A−λI)∗ are dissipative, then A is the infinitesimal generator
of a C0-semigroup on H (see, for instance, [32, Chapter 1, Corollary 4.4] and [32,
Chapter 1, Remark before Corollary 3.8]).

The following theorem gives the existence of solutions for the abstract system
(16).

Theorem 2.3. Assume that a ∈ L∞(Ω) is a nonnegative function and (14) holds.
Then, for each U0 ∈ H there exists a unique mild solution U ∈ C([0,∞),H) for the
system (16). Moreover, if U0 ∈ D(A) the solutions are classical and satisfies the
following regularity

U ∈ C([0,∞),D(A)) ∩ C1([0,∞),H). (21)

Proof. The result is a direct consequence of Proposition 2.2.

For T > 0, L > 0 let us introduce the following set

B = C([0, T ], L2(0, L)) ∩ L2(0, T,H2
0 (0, L)) (22)

endowed with its natural norm

∥y∥B = max
t∈[0,T ]

∥y(·, t)∥L2(0,L) +

(∫ T

0

∥y(·, t)∥2H2(0,L)dt

) 1
2

. (23)
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Next results are devoted to showing a priori and regularity estimates for the
solutions of (16).

Proposition 2.4. Let a ∈ L∞(Ω) be a nonnegative function and consider that
(14) holds. Then, for any mild solution of (16) the energy Eu, defined by (5), is
non-increasing and there exists a positive constant C such that

E′
u(t) ≤ −C

[
u2
xx(0) +

∫ L

0

a(x)u2(x)dx+

∫ L

0

a(x)u2(x, t− h)dx

]
(24)

where C is given by

C = min

{
1

2
, µ1 −

ξ

2h
− µ2

2
,−µ2

2
+

ξ

2h

}
. (25)

Proof. Multiplying (15)1 by u(x, t) = z(x, 0, t) and integrating over (0, L) we infer
that

1

2

d

dt
∥u(t)∥L2(0,L) =− 1

2
u2
xx(0)− µ1

∫ L

0

a(x)u2(x, t)dx

− µ2

∫ L

0

a(x)u(x, t− h)u(x, t)dx.

(26)

Now, multiplying (15)4 by a(x)ξu(x, t − ρh) and integrating over (0, L) × (0, 1)
we obtain,

ξh

2

d

dt

∫ L

0

a(x)

∫ 1

0

u2(x, t− ρh) dρdx =−
∫ L

0

a(x)
ξ

2

∫ 1

0

d

dρ
(z(x, ρ, t))2 dρdx

=−
∫ L

0

a(x)
ξ

2
[(z(x, 1, t))2 − (z(x, 0, t))2] dx

=
ξ

2

∫ L

0

a(x)[(z(x, 0, t))2 − (z(x, 1, t))2] dx.

(27)

From (26), (27) and applying Young’s inequality we obtain

E′
u(t) ≤− 1

2
u2
xx(0)− µ1

∫ L

0

a(x)u2(x, t)dx+
µ2

2

∫ L

0

a(x)u2(x, t)dx

+
µ2

2

∫ L

0

a(x)u2(x, t− h)dx+
ξ

2h

∫ L

0

a(x)u2(x, t)dx

− ξ

2h

∫ L

0

a(x)u2(x, t− h)dx

and the results holds directly from the previous estimate.

Proposition 2.5. Assume that a ∈ L∞(Ω) is a nonnegative function and (14)
holds. Then, the map

(u0, z0(·,−h(·)) 7→ (u, z) (28)
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is continuous from H to B×C([0, T ], L2((0, L)× (0, 1)), and for (u0, z0(·,−h(·))) ∈
H, the following estimates hold

1

2

∫ L

0

u2(x, t)dx+
ξ

2

∫ L

0

∫ 1

0

a(x)u2(x, t− ρh)dρdx

≤ 1

2

∫ L

0

u2
0(x)dx+

ξ

2

∫ L

0

∫ 1

0

a(x)z20(x,−ρh)dρdx

(29)

and

∥u0∥2L2(0,L) ≤
1

T

∫ T

0

∫ L

0

u2dxdt+

∫ T

0

u2
xx(0)dt

+ (2µ1 + µ2)

∫ T

0

∫ L

0

a(x)u2dxdt

+

∫ T

0

∫ L

0

a(x)µ2u
2(x, t− h)dxdt.

(30)

Proof. First, note that (29) follows from (24). Now, let q(x, t) ∈ C∞([0, L]× [0, T ])
and (u0, z0(·,−h(·))). Then multiplying (15)4 by z(x, ρ, t), and using integration by
parts we get

h

∫ 1

0

∫ L

0

z2(x, ρ, T )− z2(x, ρ, 0)dxdρ+

∫ T

0

∫ L

0

z2(x, 1, t)− z2(x, 0, t)dxdt = 0.

which implies that

1

2

∫ T

0

∫ L

0

u2(x, t− h)dxdt ≤1

2

∫ T

0

∫ L

0

u2(x, t)dxdt+
h

2

∫ 1

0

∫ L

0

z20(x,−ρh)dxdρ.

(31)

Now, multiplying (15)1 by q(x, t)u(x, t) and integrating by parts we have

1

2

∫ L

0

q(x, T )u2(x, T )dx− 1

2

∫ L

0

q(x, 0)u2(x, 0)dx

− 1

2

∫ T

0

∫ L

0

(qt + qx + qxxx − qxxxxx)u
2dxdt+

3

2

∫ T

0

∫ L

0

qxu
2
xdxdt

− 5

2

∫ T

0

∫ L

0

qxxxu
2
xdxdt+

5

2

∫ T

0

∫ L

0

qxu
2
xxdxdt+

1

2

∫ T

0

q(0, t)u2
xx(0, t)dt

+

∫ T

0

∫ L

0

a(x)µ1qu
2dxdt+

∫ T

0

∫ L

0

a(x)µ2qu(x, t− h)udxdt = 0.

(32)

Taking q(x, t) = x in (32) follows from (31) that

3

2

∫ T

0

∫ L

0

u2
xdx+

5

2

∫ T

0

∫ L

0

u2
xxdx =

1

2

∫ L

0

x(u2
0(x)− u2(x, T ))dx

+
1

2

∫ T

0

∫ L

0

u2dxdt−
∫ T

0

∫ L

0

xa(x)
(
µ1u

2 − µ2u(x, t− h)u(x, t)
)
dxdt

≤ L

2
∥u0∥2L2(0,L) +

L

2
h∥a∥∞µ2

∫ 1

0

∫ L

0

z20(x,−ρh)dxdρ

+

(
1

2
+ L∥a∥∞(µ1 + µ2)

)
T

(∫ L

0

u2
0(x)dx+ ξ∥a∥∞

∫ L

0

∫ 1

0

z20(x,−ρh)dρdx

)
≤C(a, h, µ1, µ2, ξ, L)(1 + T )∥u0, z0(·,−h(·)∥2L2(0,L)×L2(0,1),
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where

C(a, h, µ1, µ2, ξ, L) =

(
L

2
+

Lhµ2

2ξ
+ 1 + 2L∥a∥∞(µ1 + µ2)

)
.

Finally, choosing q(x, t) = T − t in (32) we obtain

−1

2

∫ L

0

Tu2
0(x)dx+

1

2

∫ T

0

∫ L

0

u2dxdt+
1

2

∫ T

0

(T − t)u2
xx(0)dt

+

∫ T

0

∫ L

0

(T − t)a(x)µ1u
2dxdt+

∫ T

0

∫ L

0

(T − t)a(x)µ2u(x, t)u(x, t− h)dxdt = 0.

Therefore,

∥u0∥2L2(0,L) ≤
1

T

∫ T

0

∫ L

0

u2dxdt+

∫ T

0

u2
xx(0)dt

+ (2µ1 + µ2)

∫ T

0

∫ L

0

a(x)u2dxdt+

∫ T

0

∫ L

0

a(x)µ2u
2(x, t− h)dxdt,

showing (30), and the proof is complete.

2.2. Linear system with source term. Consider the higher-order KdV linear
equation with a source term f(x, t), on the right-hand side:

ut(x, t) + ux(x, t) + uxxx(x, t)− uxxxxx(x, t)

+a (x) (µ1u(x, t) + µ2u(x, t− h)) = f(x, t) x ∈ (0, L), t > 0,

u (0, t) = u (L, t) = 0 t > 0,

ux (0, t) = ux (L, t) = uxx (L, t) = 0 t > 0,

u (x, 0) = u0 (x) x ∈ (0, L),

u(x, t) = z0(x, t) x ∈ (0, L), t ∈ (−h, 0),

(33)

where µ1 > µ2 and a(x) satisfies the same hypothesis of the previous section. The
next result deal with the existence of a solution to this system.

Proposition 2.6. Assume that a(x) ∈ L∞(Ω) is a nonnegative function and (14)
holds. For any (u0, z0(·,−h(·)) ∈ H and f ∈ L2(0, T, L2(0, L)), there exists a unique
mild solution for (33) in the class

(u, u(·, t− h(·))) ∈ B × C([0, T ], L2((0, L)× (0, 1))).

Moreover, we have the following estimates

∥(u, z)∥C([0,T ],H) ≤ e
ξ∥a∥∞

2h T
(
∥(u0, z0(·,−h(·)))∥H + ∥f∥L1(0,T,L2(0,L))

)
(34)

and

∥u∥2L2(0,T,H2(0,L)) ≤ C(1+T+e
ξ∥a∥∞

h T )
(
∥(u0, z0(·,−h(·)))∥2H + ∥f∥2L1(0,T,L2(0,L))

)
,

(35)
where

C = C(a, h, µ1, µ2, ξ, L) =

(
3L

2
+

Lhµ2

2ξ
+ 1 + 2L∥a∥∞(µ1 + µ2)

)
.

Proof. Thanks to the fact that A is an infinitesimal generator of a C0-semigroup

(etA) satisfying ∥etA∥L(H) ≤ e
ξ∥a∥∞

2h t and together with the fact that we can rewrite
system (33) as a first order system (see (16)) with source term (f(·, t), 0), we have
that (33) is well-posed in C([0, T ],H). Additionally, the proof of (35) follows the
same steps as the proof of Proposition 2.5. However, we have to be careful to the
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fact that the right-hand side terms are not homogeneous anymore, so, we need to
note that∣∣∣∣∣

∫ T

0

∫ L

0

xf(x, t)u(x, t)dxdt

∣∣∣∣∣ ≤L

2
∥u∥2C([0,T ],L2(0,L)) +

L

2
∥f∥2L1(0,T,L2(0,L)),

and the result is achieved.

2.3. Nonlinear system: Global results. In this section we prove the global
well-posedness result for the nonlinear system (4). The first step is to show that
the nonlinear term uux can be considered as a source term of the linear equation
(33). Precisely, the result is the following.

Proposition 2.7. Let u ∈ B. Then uux ∈ L1(0, T, L2(0, L)) and the map

u ∈ B 7→ uux ∈ L1(0, T, L2(0, L))

is continuous. More precisely, there exists K > 0 (K =
√
2) such that, for any

u, v ∈ B, we have∫ T

0

∥uux − vvx∥L2(0,L)dt ≤ KT
1
4 (∥u∥B + ∥v∥B)∥u− v∥B

Proof. The proof is a variant of [37, Proposition 4.1] so, we just give a sketch of
the proof. First, note that for z ∈ H2

0 (0, L) we have

∥z∥2L∞(0,L) ≤ 2∥z∥L2(0,L)∥z′∥L2(0,L). (36)

From Hölder’s inequality and (36) we obtain

∥z∥L2(0,T,L∞(0,L)) ≤
√
2T

1
4 ∥z∥

1
2

L∞(0,T,L2(0,L))∥z∥
1
2

L∞(0,T,H2
0 (0,L))

(37)

Let u, z ∈ B, then from (37) it follows that

∥uux − vvx∥L1(0,T,L2(0,L))

≤
√
2

2
T

1
4 ∥u∥L2(0,T,H2

0 (0,L))

(
∥u− v∥L∞(0,T,L2(0,L)) + ∥u− v∥L2(0,T,H2

0 (0,L))

)
+

√
2

2
T

1
4 ∥u− v∥L2(0,T,H2

0 (0,L))

(
∥v∥L∞(0,T,L2(0,L)) + ∥v∥L2(0,T,H2

0 (0,L))

)
≤
√
2T

1
4 (∥u∥B + ∥v∥B) ∥u− v∥B,

and the proof is complete.

We are now in a position to prove the global existence of solutions of (4).

Proposition 2.8. Let L > 0 and assume that a(x) ∈ L∞(Ω) and (14) holds. Then,
for every (u0, z0(·,−h(·))) ∈ H, there exists a unique u ∈ B solution of system (4).
Moreover, there exists C > 0 such that

∥ux∥2L2(0,T,L2(0,L)) + ∥uxx∥2L2(0,T,L2(0,L))

≤ C(∥(u0, z0(·,−h(·)))∥2H + ∥(u0, z0(·,−h(·)))∥4H).
(38)

Proof. To prove this result we can follow a standard argument in the literature (see
e.g. [33, 31]). In this way, our goal is to obtain the global existence of solutions
proving the local existence and using the following a priori estimate

∥(u(·, t), u(·, t− h(·)))∥2H ≤ e
ξ∥a∥∞

h t∥(u0, z0(·,−h(·)))∥2H. (39)
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Indeed, using the multiplier ∥a∥∞ξu(x, t− ρh) instead of a(x)ξu(x, t− ρh) as in
(24) we obtain

1

2

d

dt
∥(u(·, t), u(·, t− h(·)))∥2H = −u2

xx(0)− µ1

∫ L

0

a(x)u2(x, t)dx

− µ2

∫ L

0

a(x)u(x, t− h)u(x, t)dx

+
ξ

2h
∥a∥∞

(∫ L

0

u2(x, t)dx−
∫ L

0

u2(x, t− h)dx

)

≤− µ1

∫ L

0

a(x)u2(x, t)dx+
µ2

2

∫ L

0

a(x)u2(x, t)dx

+
µ2

2

∫ L

0

a(x)u2(x, t− h)dx

+
ξ

2h
∥a∥∞

(∫ L

0

u2(x, t)dx−
∫ L

0

u2(x, t− h)dx

)

≤ ξ

2h
∥a∥∞

∫ L

0

u2(x, t)dx.

(40)

Thanks to (40) and Gronwall’s inequality, (39) follows.
Now, we are concentrated to prove the local existence and uniqueness of solutions

to (4). Let (u0, z0(·,−h(·))) ∈ H and u ∈ B, we consider the map Φ : B → B defined
by Φ(u) = ũ where ũ is solution of

ũt(x, t) + ũx(x, t) + ũxxx(x, t)− ũxxxxx(x, t)

+a (x) (µ1ũ(x, t) + µ2ũ(x, t− h)) = −u(x, t)ux(x, t) x ∈ (0, L), t > 0,

ũ (0, t) = ũ (L, t) = 0 t > 0,

ũx (0, t) = ũx (L, t) = ũxx (L, t) = 0 t > 0,

ũ (x, 0) = u0 (x) x ∈ (0, L),

ũ(x, t) = z0(x, t) x ∈ (0, L), t ∈ (−h, 0).

Notice that u ∈ B is a solution of (4) if and only if u is a fixed point of the map
Φ. So, let us prove that the map Φ is a contraction.

In fact, thanks to (34), (35) and Proposition 2.7, we get

∥Φu∥B ≤
√
C(1 +

√
T + e

ξ∥a∥∞
2h T )

(
∥(u0, z0(·,−h(·)))∥H + ∥uux∥L1(0,T,L2(0,L))

)
≤
√
C(1 +

√
T + e

ξ∥a∥∞
2h T )

(
∥(u0, z0(·,−h(·)))∥H +KT

1
4 ∥u∥2B

)
≤
√
C(1 +

√
T + e

ξ∥a∥∞
2h T )∥(u0, z0(·,−h(·)))∥H

+
√
CK(2T

1
4 + T

1
4 e

ξ∥a∥∞
2h T )∥u∥2B,

if T < 1. Moreover, for the same reasons, we have

∥Φ(u1)− Φ(u2)∥B ≤
√
CK(1 +

√
T + e

ξ∥a∥∞
2h T )T

1
4 (∥u1∥B + ∥u2∥B) ∥u1 − u2∥B.

Now, consider Φ restricted to the closed ball {u ∈ B : ∥u∥B ≤ R} with R > 0 to
be chosen later. Then,

∥Φ(u)∥B ≤
√
C(1+

√
T+e

ξ∥a∥∞
2h T )∥(u0, z0(·,−h(·)))∥H+

√
CK(2T

1
4+T

1
4 e

ξ∥a∥∞
2h T )R2
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and

∥Φ(u1)− Φ(u2)∥B ≤ 2
√
CK(1 +

√
T + e

ξ∥a∥∞
2h T )T

1
4R∥u1 − u2∥B.

So, pick R = 4
√
C∥(u0, z0(·,−h(·)))∥H and T > 0 satisfying
√
T + 8

√
CKT

1
4 + 4

√
CKT

1
4 e

ξ∥a∥∞
2h T < 1,

2T
1
4 + T

1
4 e

ξ∥a∥∞
2h T < 1

2
√
CKR

,

T < 1, e
ξ∥a∥∞

2h T < 2,

then ∥Φ(u)∥B < R and ∥Φ(u1) − Φ(u2)∥B ≤ C1∥u1 − u2∥B, with C1 < 1, showing
that Φ is a contraction. Consequently, we can apply the Banach fixed point theorem
and the map Φ has a unique fixed point.

In this last part, let us show (38). Following the same steps of the proof of
Proposition 2.5, that is, multiplying (4) xu, integrating by parts and using (39), we
obtain

3

2

∫ T

0

∫ L

0

u2
xdx+

5

2

∫ T

0

∫ L

0

u2
xxdx

≤ C(1 + T )∥(u0, z0(·,−h(·)))∥2H +
1

3

∫ T

0

∫ L

0

u3(x, t)dxdt.

As H1(0, L) ↪→ C([0, L]) we obtain, by using Cauchy-Schwarz inequality and
(39), that∫ T

0

∫ L

0

|u(x, t)|3dxdt ≤
∫ T

0

∥u∥L∞(0,L)

∫ L

0

u2(x, t)dxdt

≤
√
L

∫ T

0

∥u(·, t)∥H1(0,L)

∫ L

0

u2(x, t)dxdt

≤
√
LT∥u∥2L∞(0,T,L2(0,L))∥u∥L2(0,T,H1(0,L))

≤
√
LT∥(u0, z0(·,−h(·)))∥2H∥u∥L2(0,T,H1(0,L)).

(41)

Consequently, we obtain

3

2

∫ T

0

∫ L

0

u2
xdx+

5

2

∫ T

0

∫ L

0

u2
xxdx ≤C(1 + T )∥(u0, z0(·,−h(·)))∥2H

+

√
LT

4ε
∥(u0, z0(·,−h(·)))∥4H

+ ε
√
LT∥u∥2L2(0,T,H1(0,L)).

For ε > 0 small enough we obtain

1

2

∫ T

0

∫ L

0

u2
xdx+

5

2

∫ T

0

∫ L

0

u2
xxdx

≤ C(1 + T )∥(u0, z0(·,−h(·)))∥2H +

√
LT

4ε
∥(u0, z0(·,−h(·)))∥4H,

which completes the proof.
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3. Study of the damping–delayed system. In this section we are interested in
studying the time–delayed system (2). In this case, the derivative of the energy E
defined by

Eu(t) =
1

2

∫ L

0

u2(x, t)dx+
h

2

∫ L

0

∫ 1

0

b(x)u2(x, t− ρh)dρdx, (42)

satisfies

d

dt
Eu(t) =− u2

xx(0)−
∫ L

0

a(x)u2(x, t)dx−
∫ L

0

b(x)u(x, t)u(x, t− h)dx

+
1

2

∫ L

0

b(x)u2(x, t)dx− 1

2

∫ L

0

b(x)u2(x, t− h)dx

≤− u2
xx(0)−

∫ L

0

a(x)u2(x, t)dx+
1

2

∫ L

0

b(x)u2(x, t)dx

+
1

2

∫ L

0

b(x)u2(x, t− h)dx+
1

2

∫ L

0

b(x)u2(x, t)dx

− 1

2

∫ L

0

b(x)u2(x, t− h)dx

≤
∫ L

0

b(x)u2(x, t)dx.

The previous inequality means that the energy is not decreasing in general, since
the term b(x) ≥ 0 on (0, L). So, inspired by [41], we consider the following perturbed
system

ut(x, t) + ux(x, t) + uxxx(x, t)− uxxxxx(x, t)

+u(x, t)ux(x, t) + a (x)u(x, t)

+b(x) (u(x, t− h) + ξu(x, t)) = 0 x ∈ (0, L), t > 0,

u (0, t) = u (L, t) = 0 t > 0,

ux (0, t) = ux (L, t) = uxx (L, t) = 0 t > 0,

u (x, 0) = u0 (x) x ∈ (0, L),

u(x, t) = z0(x, t) x ∈ (0, L), t ∈ (−h, 0),

(43)

which is “close” to (2) but with a decreasing energy, with ξ a positive constant. So,
considering the energy defined by

Eu(t) =
1

2

∫ L

0

u2(x, t)dx+
ξh

2

∫ L

0

∫ 1

0

b(x)u2(x, t− ρh)ρdx, (44)

we get, for ξ > 1, that the derivative of the energy Eu(t), for classical solutions of
(43), satisfies

d

dt
Eu(t) ≤− u2

xx(0)−
∫ L

0

a(x)u2(x, t)dx+
1

2

∫ L

0

b(x)u2(x, t)dx

+
1

2

∫ L

0

b(x)u2(x, t− h)dx−
∫ L

0

ξb(x)u2(x, t)dx

+
1

2

∫ L

0

ξb(x)u2(x, t)dx− 1

2

∫ L

0

ξb(x)u2(x, t− h)dx
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≤− u2
xx(0)−

∫ L

0

a(x)u2(x, t)dx+
1

2

∫ L

0

(b(x)− ξb(x))u2(x, t)dx

+
1

2

∫ L

0

(b(x)− ξb(x))u2(x, t− h)dx ≤ 0.

3.1. Local stability: A perturbation argument. In this subsection, before
presenting the main result of this section, we will study the asymptotic stability of
the linear system associated with (43), namely,

ut(x, t) + ux(x, t) + uxxx(x, t)− uxxxxx(x, t)

+b(x)u(x, t− h) + a (x)u(x, t) + ξb(x)u(x, t) = 0 x ∈ (0, L), t > 0,

u (0, t) = u (L, t) = 0 t > 0,

ux (0, t) = ux (L, t) = uxx (L, t) = 0 t > 0,

u (x, 0) = u0 (x) x ∈ (0, L),

u(x, t) = z0(x, t) x ∈ (0, L), t ∈ (−h, 0),

(45)

with ξ > 1. Note that this system can write as the first-order system
∂U

∂t
(t) = AU(t),

U(0) = (u0(x), z0(x,−ρh)).
(46)

where the corresponding operator A is defined by

A = A0 +B

with domain D(A) = D(A0) and the bounded operator B is defined by

B(u, z) = (ξb(x)u, 0) for all (u, z) ∈ H.

Here, A0 is defined by (89). The first result ensures that the system (45) is well-
posed. It is a consequence of the analysis made for an auxiliary system in Appendix
A.

Proposition 3.1. Assume that a(x), b(x) are nonnegative functions in L∞(0, L),

b(x) ≥ b0 > 0 in ω, L < π
√
3 and ξ > 1. Then, for every (u0, z0(·,−h(·))) ∈ H,

there exists a unique mild solution U ∈ C([0,∞),H) for system (45). Additionally,
for every U0 ∈ D(A), the solution is classical and satisfies

U ∈ C([0,∞),D(A)) ∩ C1([0,∞),H).

Proof. Assume that ∥b∥∞ ≤ 1. From Theorem A.1 we have that

((A0 +B)U,U)H ≤ (3ξ + 1)

2
∥U∥2H.

for all U ∈ D(A). In the same way, we obtain(
(A0 +B)

∗
U,U

)
H ≤ (3ξ + 1)

2
∥U∥2H

for all U ∈ D(A∗).

Finally, since for λ = (3ξ+1)
2 , A− λI is a densely defined closed linear operator,

and both A−λI and (A−λI)∗ are dissipative, then A is the infinitesimal generator

of a C0-semigroup on H satisfying ∥etA∥L(H) ≤ e
(3ξ+1)

2 t.
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The next result ensures that the energy

Eu(t) =
1

2

∫ L

0

u2(x, t)dx+
h

2

∫ L

0

∫ 1

0

b(x)u2(x, t− ρh)dρdx, (47)

associated of the system (45) decays exponentially, and it is a consequence of the
analysis made in Appendix A.

Proposition 3.2. Assume that a and b are nonnegative function in L∞(0, L),

b(x) ≥ b0 > 0 in ω, L < π
√
3 and ξ > 1. So, there exists δ > 0 (depending on

ξ, L, h) such that is, ∥b∥∞ ≤ δ then, for every (u0, z0(·,−h(·))) ∈ H the energy
of system Eu, defined in (47), goes to 0 exponentially as t goes to infinity. More
precisely, there exists T0 > 0 and two positive constants ν and C such that

Eu(t) ≤ Ce−νtEu(0), for all t > T0.

Proof. To prove this result, let us consider the two systems

vt(x, t) + vx(x, t) + vxxx(x, t)− vxxxxx(x, t)

+a (x) v(x, t) + b(x)z1(1) + ξb(x)v(x, t) = 0 x ∈ (0, L), t > 0,

v (0, t) = v (L, t) = 0 t > 0,

vx (0, t) = vx (L, t) = vxx (L, t) = 0 t > 0,

v (x, 0) = u0 (x) x ∈ (0, L),

hz1t (x, ρ, t) + z1ρ(x, ρ, t) = 0 x ∈ (0, L), ρ ∈ (0, 1), t > 0,

z1(x, 0, t) = v(x, t) x ∈ (0, L), t > 0,

z1(x, ρ, 0) = v(x,−ρh) = z0(x,−ρh) x ∈ (0, L), ρ ∈ (0, 1)

(48)

and

wt(x, t) + wx(x, t) + wxxx(x, t)− wxxxxx(x, t)

+a (x)w(x, t) + b(x)z2(1) = ξb(x)v(x, t) x ∈ (0, L), t > 0,

w (0, t) = w (L, t) = 0 t > 0,

wx (0, t) = wx (L, t) = wxx (L, t) = 0 t > 0,

w (x, 0) = 0 x ∈ (0, L),

hz2t (x, ρ, t) + z2ρ(x, ρ, t) = 0 x ∈ (0, L), ρ ∈ (0, 1), t > 0,

z2(x, 0, t) = w(x, t) x ∈ (0, L), t > 0,

z2(x, ρ, 0) = 0 x ∈ (0, L), ρ ∈ (0, 1).

(49)
Define u = v + w and z = z1 + z2, then

ut(x, t) + ux(x, t) + uxxx(x, t)− uxxxxx(x, t)

+a (x)u(x, t) + b(x)z(1) = 0 x ∈ (0, L), t > 0,

u (0, t) = u (L, t) = 0 t > 0,

ux (0, t) = ux (L, t) = uxx (L, t) = 0 t > 0,

u (x, 0) = u0 (x) x ∈ (0, L),

hzt(x, ρ, t) + zρ(x, ρ, t) = 0 x ∈ (0, L), ρ ∈ (0, 1), t > 0,

z(x, 0, t) = u(x, t) x ∈ (0, L), t > 0,

z(x, ρ, 0) = z0(x,−ρh) x ∈ (0, L), ρ ∈ (0, 1).

(50)
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Fix 0 < η < 1 and pick

T0 =
1

2γ
ln

(
2ξκ

η

)
+ 1, (51)

so κe−2γT0 < η
2ξ , where κ and γ are given according to Proposition A.2. As we have

that Ev(0) ≤ ξEu(0), we obtain

Ev(T0) ≤ κe−2γT0Ev(0) ≤
η

2ξ
Ev(0) ≤

η

2
Eu(0).

Now, consider ε > 0 such that 0 < η + ε < 1 and

∥b∥∞ ≤ min

{ √
ε√

ξ3κ
1
2 e

(3ξ+1)
2 ( 1

2γ ln( 2ξκ
η )+2)

, 1

}
.

Since u = v + w we obtain from (47)-(50) the following estimate

Eu(T0) ≤
∫ L

0

v2(x, T0)dx+ hξ

∫ L

0

∫ 1

0

b(x)v2(x, T0 − ρh)dρdx

+

∫ L

0

w2(x, T0)dx+ hξ∥b∥∞
∫ L

0

∫ 1

0

w2(x, T0 − ρh)dρdx

≤2Ev(T0) + ∥(w(·, T0), w(·, T0 − h(·))))∥2H.

Noting that

(w(T0), w(·, T0 − h(·))) =
∫ T0

0

eA(t−s)(ξb(x)v, 0)ds,

we get

∥(w(T0), w(·, T0 − h(·)))∥H ≤
∫ T0

0

e
(3ξ+1)

2 (T0−s)

(∫ L

0

|ξb(x)v|2dx

) 1
2

ds

≤
√
2ξ∥b∥∞

∫ T0

0

e
(3ξ+1)

2 (T0−s)κ
1
2 e−γsE

1
2
v (0)ds

≤
√
2ξ∥b∥∞κ

1
2E

1
2
v (0)

∫ T0

0

e
(3ξ+1)

2 (T0−s)e−γsds,

so

∥(w(T0), w(·, T0 − h(·)))∥2H ≤ 2ξ2∥b∥2∞e(3ξ+1)T0κEv(0),

where we have used that∫ T0

0

e
(3ξ+1)

2 (T0−s)e−γsds =
e

(3ξ+1)
2 T0 − e−γT0

(3ξ+1)
2 + γ

and
(3ξ + 1)

2
+ γ > 2.

Therefore, by the previous inequality, we have

Eu(T0) ≤ ηEu(0) + 2ξ3∥b∥2∞e(3ξ+1)T0κEu(0) < (η + ε)Eu(0).

Finally, for T0 > 0 defined in (51), consider the function v(x, t) solution of (48)
with the initial data v (x, 0) = u (x, T0), with x ∈ (0, L) and y(x, t) solution of (49)
with null initial data, that is, y (x, 0) = 0, with x ∈ (0, L). Here, z1(x, ρ, t) =



DELAYED KDV-TYPE SYSTEM 303

v(x, t − ρh) and z2(x, ρ, t) = w(x, t − ρh). Define w(x, t) = v(x, t) + y(x, t) and
z(x, ρ, t) = z1(x, ρ, t) + z2(x, ρ, t), we get

wt(x, t) + wx(x, t) + wxxx(x, t)− wxxxxx(x, t)

+a (x)w(x, t) + b(x)z(1) = 0 x ∈ (0, L), t > 0,

w (0, t) = w (L, t) = 0 t > 0,

wx (0, t) = wx (L, t) = wxx (L, t) = 0 t > 0,

w (x, 0) = u(x, T0) x ∈ (0, L),

hzt(x, ρ, t) + zρ(x, ρ, t) = 0 x ∈ (0, L), ρ ∈ (0, 1), t > 0,

z(x, 0, t) = w(x, t) x ∈ (0, L), t > 0,

z(x, ρ, 0) = z(x, ρ, T0) x ∈ (0, L), ρ ∈ (0, 1).

(52)
Therefore, w(x, t) = u(x, t + T0) and z(x, ρ, t) = z(x, ρ, t + T0). Thanks to the

fact that Ev(0) ≤ ξEu(T0) it follows that

Eu(2T0) ≤
∫ L

0

v2(x, T0)dx+

∫ L

0

y2(x, T0)dx+ h

∫ L

0

∫ 1

0

b(x)v2(x, T0 − ρh)dρdx

+ h

∫ L

0

∫ 1

0

b(x)y2(x, T0 − ρh)dρdx

≤2Ev(T0) + 2ξ2∥b∥2∞e(3ξ+1)T0κEv(0)

≤η

ξ
Ev(0) + εEu(T0)

≤ηEu(T0) + εEu(T0)

≤(η + ε)2Eu(0).

Proceding analogously, we get

Eu(mT0) ≤ (η + ε)mEu(0),

for all m ∈ N∗. Now, to finish, let t > T0, then there exists m ∈ N∗ such that
t = mT0 + s with 0 ≤ s < T0, we have

Eu(t) ≤e2∥b∥∞(t−mT0)Eu(mT0)

≤e2∥b∥∞s(η + ε)mEu(0)

=e2∥b∥∞se−νmT0Eu(0)

=e2∥b∥∞se−ν(t−s)Eu(0)

≤e(2∥b∥∞+ν)T0e−νtEu(0),

where

ν =
1

T0
ln

(
1

(η + ε)

)
, (53)

showing the proposition.

3.2. Proof of Theorem 1.2. By a classical way (see Section 2.3) we can ensure
that the system (2) is well-posed. Additionally, u satisfies

∥(u(·, t), u(·, t− h(·)))∥2H ≤ e2ξ∥b∥∞t∥(u0, z0(·,−h(·)))∥2H,

which implies that

∥u∥C([0,T ],L2(0,L)) ≤ eξ∥b∥∞T ∥(u0, z0(·,−h(·)))∥H
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and
∥u∥L2(0,T,L2(0,L)) ≤ T

1
2 eξ∥b∥∞T ∥(u0, z0(·,−h(·)))∥H.

Let us now divide the rest of the proof into several steps.

Step 1. First estimate for the linear system associated to (2).

Multiplying the linear system associated to (2) by xu, integrating by parts we
have

3

2

∫ T

0

∫ L

0

u2
xdxdt+

5

2

∫ T

0

∫ L

0

u2
xxdxdt

≤L

2
∥u0∥2L2(0,L) +

1

2
(1 + 2L∥a∥∞ + L∥b∥∞)

∫ T

0

∫ L

0

u2(x, t)dxdt

+
L

2
∥b∥∞

∫ T

0

∫ L

0

u2(x, t− h)dxdt

≤L

2
∥u0∥2L2(0,L) +

1

2
(1 + 2L(∥a∥∞ + ∥b∥∞))

∫ T

0

∫ L

0

u2(x, t)dxdt

+
L

2
(ξ∥b∥∞h)

∫ 1

0

∫ L

0

z20(x,−ρh)dxdρ

≤1

2
(1 + 2L(∥a∥∞ + ∥b∥∞))Te2ξ∥b∥∞T ∥(u0, z0(·,−h(·)))∥2H

+
L

2
∥(u0, z0(·,−h(·)))∥2H

≤1

2
(L+ (1 + 2L(∥a∥∞ + ∥b∥∞))Te2ξ∥b∥∞T )∥(u0, z0(·,−h(·)))∥2H

Step 2. First estimate for the nonlinear system (2).

Now, multiplying the nonlinear system (2) by xu, integrating by parts we have

3

2

∫ T

0

∫ L

0

u2
xdxdt+

5

2

∫ T

0

∫ L

0

u2
xxdxdt

≤ 1

2
(L+ (1 + 2L(∥a∥∞ + ∥b∥∞))Te2ξ∥b∥∞T )∥(u0, z0(·,−h(·)))∥2H

+

∫ T

0

∫ L

0

|u|3dxdt.

Since we have H1(0, L) ↪→ C([0, L]) we obtain, using Hölder’s inequality∫ T

0

∫ L

0

|u(x, t)|3dxdt ≤
√
LT∥u∥2L∞(0,T,L2(0,L))∥u∥L2(0,T,H1(0,L))

≤
√
LTe2ξ∥b∥∞T ∥(u0, z0(·,−h(·)))∥2H∥u∥L2(0,T,H1(0,L)).

Putting the inequalities together and using Cauchy-Schartz inequality yields that

∥u∥2L2(0,T ;H2(0,L))

≤ 3(2 + L+ 2L(∥a∥∞ + ∥b∥∞))(1 + Te2ξ∥b∥∞T )∥(u0, z0(·,−h(·)))∥2H

+

√
LT

2ε
∥(u0, z0(·,−h(·)))∥4H.
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Step 3. Second estimate for the linear system associated to (2).

Multiplying the linear system associated to (2) by xu, integrating by parts we
also have,

3

2

∫ T

0

∫ L

0

u2
xdxdt+

5

2

∫ T

0

∫ L

0

u2
xxdxdt

≤LEu(0) +
1

2
(1 + 2L∥a∥∞ + 2L∥b∥∞)

∫ T

0

∫ L

0

u2(x, t)dxdt

+
Lh

2

∫ L

0

∫ 1

0

b(x)z20(x,−ρh)dρdx

≤(2L+ 1 + 2L∥a∥∞ + 2L∥b∥∞)(1 + Te2∥b∥∞T )Eu(0).

Step 4. Second estimate for the nonlinear system (2).

Multiplying the system (2) by xu, integrating by parts and using the fact that
Eu(0) ≤ 1, yields that

1

2

∫ T

0

∫ L

0

u2
xdxdt+

5

2

∫ T

0

∫ L

0

u2
xxdxdt

≤ (2L+ 1 + 2L∥a∥∞ + 2L∥b∥∞)(1 + Te2∥b∥∞T )Eu(0)

+

√
LT

4ε
e4∥b∥∞TEu(0)

which implies that

1

2

∫ T

0

∫ L

0

u2
xdxdt+

5

2

∫ T

0

∫ L

0

u2
xxdxdt

≤ C3(a, b, h, L)(1 +
√
Te4∥b∥∞T + Te2∥b∥∞T )Eu(0)

where

C3(a, b, h, L) =

(
2L+

√
L

4ε
+ 1 + 2L∥a∥∞ + 2L∥b∥∞

)
.

Here, we used again that H1(0, L) ↪→ C([0, L]) and so

∫ T

0

∫ L

0

|u(x, t)|3dxdt ≤
√
LTe2∥b∥∞TEu(0)∥u∥L2(0,T,H1(0,L)).

Consequently,

∥u∥2B ≤ 2C3(a, b, h, L)(1 +
√
Te4∥b∥∞T + e2∥b∥∞T + 2Te2∥b∥∞T )Eu(0).

Step 5. Asymptotic behavior of the energy (3).
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Pick the initial data ∥(u0, z0(·,−h(·)))∥H ≤ r, where r to be chosen later. The
solution u of (2) can be written as u = u1 + u2 where u1 is solution of

u1
t (x, t) + u1

x(x, t) + u1
xxx(x, t)− u1

xxxxx(x, t)

+a (x)u1(x, t) + b(x)u1(x, t− h) = 0 x ∈ (0, L), t > 0,

u1 (0, t) = u1 (L, t) = 0 t > 0,

u1
x (0, t) = u1

x (L, t) = u1
xx (L, t) = 0 t > 0,

u1 (x, 0) = u0 (x) x ∈ (0, L),

u1(x, t) = z0(x, t) x ∈ (0, L), t ∈ (−h, 0),

and u2 is solution of

u2
t (x, t) + u2

x(x, t) + u2
xxx(x, t)− u2

xxxxx(x, t)

+a (x)u2(x, t) + b(x)u2(x, t− h) = −u(x, t)ux(x, t) x ∈ (0, L), t > 0,

u2 (0, t) = u2 (L, t) = 0 t > 0,

u2
x (0, t) = u2

x (L, t) = u2
xx (L, t) = 0 t > 0,

u2 (x, 0) = 0 x ∈ (0, L),

u2(x, t) = 0 x ∈ (0, L), t ∈ (−h, 0).

Fix η ∈ (0, 1), thanks to the Proposition 3.2, there exists T1 > 0 such that

e(2∥b∥∞+ν)T0−νT1 <
η

2
⇐⇒ T1 > −1

ν
ln
(η
2

)
+

(
2∥b∥∞

ν
+ 1

)
T0

with ν defined by (53) satisfying

Eu1(T1) ≤
η

2
Eu1(0).

Thus, we have thanks to the previous inequality that

Eu(T1) ≤
∫ L

0

|u1(x, T1)|2dx+

∫ L

0

|u2(x, T1)|2dx

+ h

∫ L

0

∫ 1

0

b(x)|u1(x, T1 − ρh)|2dρdx

+ h

∫ L

0

∫ 1

0

b(x)|u2(x, T1 − ρh)|2dρdx

≤2Eu1(T1) +

∫ L

0

|u2(x, T1)|2dx+ h∥b∥∞
∫ L

0

∫ 1

0

|u2(x, T1 − ρh)|2dρdx

≤ηEu(0) + ∥(u2(T1, u
2(·, T1 − h(·))))∥2H

(54)

So, with (54) in hand together with the estimates of steps 1, 2, 3, and 4, we get

Eu(T1) ≤ηEu(0) + e(3ξ+1)T1∥uux∥2L1(0,T1,L2(0,L)

≤ηEu(0) + e(3ξ+1)T12T
1
2
1 ∥u∥4B

≤Eu(0)(η +Rr).

where

R = e(3ξ+1)T1T
1
2
1 4C2

3 (a, b, h, L)(1 +
√
T1e

4∥b∥∞T1 + e2∥b∥∞T1 + 2T1e
2∥b∥∞T1)2.
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Therefore, given ε > 0 such that η+ ε < 1, we can take r > 0 small enough such
that

r <
ε

e(3ξ+1)T1T
1
2
1 4C2

3 (a, b, h, L)(1 +
√
T1e4∥b∥∞T1 + e2∥b∥∞T1 + 2T1e2∥b∥∞T1)2

,

in order to have
Eu(T1) ≤ (η + ε)Eu(0), (55)

with η + ε < 1.
Finally, the solution to the problem

vt(x, t) + vx(x, t) + vxxx(x, t)− vxxxxx(x, t)

+a (x) v(x, t) + b(x)v(x, t− h) + v(x, t)vx(x, t) = 0 x ∈ (0, L), t > 0,

v (0, t) = v (L, t) = 0 t > 0,

vx (0, t) = vx (L, t) = vxx (L, t) = 0 t > 0,

v (x, 0) = u(x, T1) x ∈ (0, L),

v(x, t) = u(x, T1 + t) x ∈ (0, L), t ∈ (−h, 0),

can be written as u1 + u2, where u1 is a solution of

u1
t (x, t) + u1

x(x, t) + u1
xxx(x, t)− u1

xxxxx(x, t)

+a (x)u1(x, t) + b(x)u1(x, t− h) = 0 x ∈ (0, L), t > 0,

u1 (0, t) = u1 (L, t) = 0 t > 0,

u1
x (0, t) = u1

x (L, t) = u1
xx (L, t) = 0 t > 0,

u1 (x, 0) = u (x, T1) x ∈ (0, L),

u1(x, t) = u(x, T1 + t) x ∈ (0, L), t ∈ (−h, 0),

and u2 is a solution of

u2
t (x, t) + u2

x(x, t) + u2
xxx(x, t)− u2

xxxxx(x, t)

+a (x)u2(x, t) + b(x)u2(x, t− h) = −v(x, t)vx(x, t) x ∈ (0, L), t > 0,

u2 (0, t) = u2 (L, t) = 0 t > 0,

u2
x (0, t) = u2

x (L, t) = u2
xx (L, t) = 0 t > 0,

u2 (x, 0) = 0 x ∈ (0, L),

u2(x, t) = 0 x ∈ (0, L), t ∈ (−h, 0),

From the uniqueness of solutions, we obtain that v(x, t) = u(x, T1 + t) and
v(x, t − ρh) = u(x, t + T1 − ρh) with ρ ∈ (0, 1). Moreover, analogously as we did
before

Eu(2T1) ≤ηEu1(0) + ∥(u2(T1, u
2(·, T1 − h(·))))∥2H

So, by the previous inequality, using again steps 1, 2, 3, 4 and (55), we have

Eu(2T1) ≤ηEu(T1) + e(3ξ+1)T1∥vvx∥2L1(0,T1,L2(0,L)

≤ηEu(T1) + e(3ξ+1)T12T
1
2
1 ∥v∥4B

≤ηEu(T1) +RE2
v(0)

≤η(η + ε)Eu(0) +
ε

r
E2

u(T1)

≤η(η + ε)Eu(0) +
ε

r
(η + ε)2E2

u(0)

≤(η + ε)2Eu(0).
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Following the same steps as it was done in Proposition 3.2, we obtain

Eu(t) ≤ C ′e−νtEu(0), for all t > T ∗, (56)

where

T ∗ = − 1

µ
ln
(η
2

)
+

(
2∥b∥∞

µ
+ 1

)
T0,

with 0 < η < 1, µ = 1
T0

ln
(

1
(η+ε)

)
, T0 = 1

2γ ln
(

2ξκ
η

)
+ 1 and the constants γ and κ

are given as in Proposition A.2.
From estimate

d

dt
Eu(t) ≤

∫ L

0

b(x)u2(x, t)dx ≤ 2∥b∥∞Eu(t),

we obtain (for ∥b∥∞ < δ)

Eu(t) ≤ e2δtEu(0) for all t ≥ 0. (57)

Combining (56) and (57) it follows that

Eu(t) ≤ Ce−νtEu(0), for all t ≥ 0, (58)

where C = max{C ′, e(2δ+ν)T∗}, so Theorem 1.2 is achieved.

4. Asymptotic behavior of µi− system. Let us return to study the behavior
of the solution of µi−system. The task of this section is to prove the exponential
stability for the solution of (4).

4.1. Proof of Theorem 1.3. We prove the local stability result which is based on
the appropriate choice of Lyapunov functional. We start proving that the energy,
associated to the solutions of (4), when (6) is verified, decays exponentially. To do
it let us consider the following Lyapunov functional

V (t) = E(t) + αV1(t) + βV2(t), (59)

where α and β are positive constants that will be fixed small enough later on and
E(t) is the energy defined by (5). Here, V1 and V2 are defined by

V1(t) =

∫ L

0

xu2(x, t)dx (60)

and

V2(t) =
ξ

2

∫ L

0

∫ 1

0

(1− ρ)a(x)u2(x, t− ρh)dρdx, (61)

respectively. It is clear that the two functional E and V are equivalent in the sense
that

E(t) ≤ V (t) ≤ (1 + max {2αL, β})E(t). (62)

Now, let u be a solution of (4) with (u0, z0(·,−h(·))) ∈ D(A) satisfying
∥(u0, z0(·,−h(·)))∥H ≤ r. Differentiating (60), using the equation (4) and inte-
grating by parts, we obtain that

d

dt
V1(t) =

∫ L

0

u2(x, t)dx− 3

∫ L

0

u2
x(x, t)dx− 2

∫ L

0

xu(x, t)a(x)µ1u(x, t)dx

− 2

∫ L

0

xa(x)µ2u(x, t− h)u(x, t)dx

+
2

3

∫ L

0

u3(x, t)dx− 5

∫ L

0

u2
xx(x, t)dx.

(63)
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Moreover, by differentiating (61) and using integration by parts, we have

d

dt
V2(t) = ξ

∫ L

0

∫ 1

0

(1− ρ)a(x)u(x, t− ρh)ut(x, t− ρh)dρdx

=
ξ

2h

∫ L

0

a(x)u2(x, t)dx− ξ

2h

∫ L

0

∫ 1

0

a(x)u2(x, t− ρh)dρdx,

(64)

since

2

∫ 1

0

(1− ρ)u(x, t− ρh)uρ(x, t− ρh)dρ = −u2(x, t) +

∫ 1

0

u2(x, t− ρh)dρ.

An argument analogous to the one made in Proposition 2.4 yields that

E′
u(t) ≤− 1

2
u2
xx(0) +

(
−µ1 +

ξ

2h
+

µ2

2

)∫ L

0

a(x)u2(x)dx

+

(
µ2

2
− ξ

2h

)∫ L

0

a(x)u2(x, t− h)dx,

(65)

and consequently,

E′
u(t) ≤ −C0

[
u2
xx(0) +

∫ L

0

a(x)u2(x)dx+

∫ L

0

a(x)u2(x, t− h)dx

]
(66)

where C0 > 0 is given by

C0 = min

{
1

2
, µ1 −

ξ

2h
− µ2

2
,−µ2

2
+

ξ

2h

}
for all solutions of system (4). Thus, from (65), (59), (63), (64) and Cauchy-Schwarz
inequality, we have for any γ > 0,

V ′(t) + 2γV (t) =E′(t) + αV ′
1(t) + βV ′

2(t) + 2γE(t) + 2γαV1(t) + 2γβV2(t)

≤− 1

2
u2
xx(0)

+

(
−µ1 +

ξ

2h
+

µ2

2
+ 2αLµ1 + αLµ2 +

βξ

2h

)∫ L

0

a(x)u2(x, t)dx

+

(
µ2

2
− ξ

2h
+ αLµ2

)∫ L

0

∫ 1

0

a(x)u2(x, t− h)dρdx

+

(
−βξ

2h
+ γξ + γξβ

)∫ L

0

∫ 1

0

a(x)u2(x, t− ρh)dρdx

+ (α+ γ + 2γLα)

∫ L

0

u2(x, t)dx− 3α

∫ L

0

u2
x(x, t)dx

+
2α

3

∫ L

0

u3(x, t)dx− 5α

∫ L

0

u2
xx(x, t)dx.

Thanks to Poincaré’s inequality, we get

V ′(t) + 2γV (t) ≤− 1

2
u2
xx(0)− 5α

∫ L

0

u2
xx(x, t)dx

+

(
−µ1 +

ξ

2h
+

µ2

2
+ 2αLµ1 + αLµ2 +

βξ

2h

)∫ L

0

a(x)u2(x, t)dx
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+

(
µ2

2
− ξ

2h
+ αLµ2

)∫ L

0

∫ 1

0

a(x)u2(x, t− h)dρdx

+

(
L2

π2
(α+ γ + 2γLα)− 3α

)∫ L

0

u2
x(x, t)dx+

2α

3

∫ L

0

u3(x, t)dx

+

(
γξβ + γξ − βξ

2h

)∫ L

0

∫ 1

0

a(x)u2(x, t− ρh)dρdx.

Similar argument as in (41), Cauchy-Schwarz inequality, (66) and since H1
0 (0, L)

↪→ C([0, L]), yields that∫ L

0

u3(x, t)dx ≤∥u(·, t)∥2L∞(0,L)

∫ L

0

|u(x, t)|dx

≤L
√
L∥ux(·, t)∥2L2(0,L)∥u(·, t)∥

2
L2(0,L)

≤L
√
L∥ux(·, t)∥2L2(0,L)∥(u0, z0(·,−h(·)))∥H

≤L
3
2 r∥ux(·, t)∥2L2(0,L).

Therefore,

V ′(t) + 2γV (t) ≤

(
L2

π2
(γ(1 + 2Lα) + α)− 3α+

2αL
3
2 r

3

)∫ L

0

u2
x(x, t)dx

+

(
γξβ + γξ − βξ

2h

)∫ L

0

∫ 1

0

a(x)u2(x, t− ρh)dρdx.

Consequently, taking α, β, γ and r as in the statement of proposition we have
that

V ′(t) + 2γV (t) ≤ 0. (67)

Finally, from (62) and (67), we obtain

E(t) ≤ V (t) ≤ e−2γtV (0) ≤ (1 + max {2αL, β}) e−2γtE(0), for all t > 0.

By the density of D(A) in H the result extends to arbitrary (u0, z0(·,−h(·))) ∈
H.

4.2. Proof of Theorem 1.4. Now let us remove the hypotheses of the initial
data being small in Theorem (1.3). To do it, let u be the solution of (4) with
(u0, z0(·,−h(·))) ∈ D(A). Integrating (66) between 0 and T > h, we have

E(T )− E(0) ≤ −C0

(∫ T

0

u2
xx(0, t)dt+

∫ T

0

∫ L

0

a(x)
(
u2(x) + u2(x, t− h)

)
dxdt

)
,

where

C0 = min

{
1

2
, µ1 −

ξ

2h
− µ2

2
,−µ2

2
+

ξ

2h

}
,

which is equivalent to∫ T

0

u2
xx(0, t)dt+

∫ T

0

∫ L

0

a(x)
(
u2(x)dxdt+ u2(x, t− h)

)
dxdt ≤ 1

C0
(E(0)− E(T )).

(68)
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Observe that the proof of Theorem 1.4 is a direct consequence of the following
observability inequality

E(0) ≤ C

(∫ T

0

u2
xx(0, t)dt+

∫ T

0

∫ L

0

a(x)
(
u2(x) + u2(x, t− h)

)
dxdt

)
, (69)

for the solutions of the nonlinear system (4).
In fact, suppose that (69) is verified and, as the energy is non-increasing, we

have, thanks to (68), that

E(T ) ≤C

(∫ T

0

u2
xx(0, t)dt+

∫ T

0

∫ L

0

a(x)
(
u2(x)dxdt+ u2(x, t− h

)
dxdt

)

≤ C

C0
(E(0)− E(T )),

which implies that

E(T ) ≤ γE(0), with γ =
C
C0

1 + C
C0

< 1. (70)

The same argument used on the interval [(m− 1)T,mT ] for m = 1, 2, . . . , yields
that

E(mT ) ≤ γE((m− 1)T ) ≤ · · · ≤ γmE(0).

Thus, we have
E(mT ) ≤ e−νmTE(0)

with

ν =
1

T
ln

(
1 +

C0

C

)
> 0. (71)

For an arbitrary positive t, there exists m ∈ N∗ such that (m − 1)T < t ≤ mT ,
and by the non-increasing property of the energy, we conclude that

E(t) ≤ E((m− 1)T ) ≤ e−ν(m−1)TE(0) ≤ 1

γ
e−νtE(0).

By the density of D(A) in H, we deduce that the exponential decay of the energy
E holds for any initial data in H, showing so Theorem 1.4.

Let us now prove the inequality (69).

Proof of the observability inequality. First, we can obtain, similarly to (30), the fol-
lowing inequality

T

∫ L

0

u2
0(x)dx ≤∥u∥2L2(0,T,L2(0,L)) + T

∫ T

0

u2
xx(0, t)dt

+ T (2µ1 + µ2)

∫ T

0

∫ L

0

a(x)µ1u
2(x, t)dxdt

+ Tµ2

∫ T

0

∫ L

0

a(x)µ2u
2(x, t− h)dxdt

(72)

Now, multiplying (15)4 by ξa(x)z(x, ρ, s) and integrating in (0, L) × (0, 1) we
have that

d

ds

ξ

2

∫ L

0

∫ 1

0

a(x)(z(x, ρ, s))2 dρdx =
ξ

2h

∫ L

0

a(x)
(
(z(x, 0, s))2 − (z(x, 1, s))2

)
dx.

(73)
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Therefore,

ξ

2h

∫ t

0

∫ L

0

a(x)(z2(x, 0, s)− z2(x, 1, s))dxds =

ξ

2

∫ L

0

∫ 1

0

a(x)(z2(x, ρ, t)− z2(x, ρ, 0))dρdx.

(74)

From (74) we obtain,

ξ

2

∫ L

0

∫ 1

0

a(x)z2(x, ρ, 0)dρdx ≤ξ

2

∫ L

0

∫ 1

0

a(x)z2(x, ρ, t)dρdx

+
ξ

2h

∫ t

0

∫ L

0

a(x)z2(x, 1, s)dxds.

(75)

So, integrating (75) from 0 to T yields that

T
ξ

2

∫ L

0

∫ 1

0

a(x)z2(x, ρ, 0)dρdx ≤ξ

2

∫ T

0

∫ L

0

∫ 1

0

a(x)z2(x, ρ, t)dρdxdt

+
Tξ

2h

∫ T

0

∫ L

0

a(x)z2(x, 1, t)dxdt.

(76)

Noting that z(x, ρ, t) = u(x, t− ρh) it follows that

ξ

2

∫ L

0

a(x)

∫ 1

0

(z(x, ρ, 0))2 dρdx =
ξ

2

∫ L

0

a(x)

∫ 1

0

(u(x,−ρh))2 dρdx

=
ξ

2

∫ L

0

a(x)

∫ −h

0

(u(x, s))2
(
− 1

h

)
dsdx

≤ ξ

2h

∫ L

0

a(x)

∫ T

0

(z(x, 1, t))2 dtdx,

(77)

where, in the second equality, we have used the following change of variable s = −ρh.
From (73) and (77) we also have

ξ

2

∫ L

0

a(x)

∫ 1

0

(z(x, ρ, t))2 dρdx ≤ ξ

2h

∫ L

0

a(x)

∫ T

0

(z(x, 1, t))2 dtdx

+
ξ

2h

∫ T

0

∫ L

0

a(x)(z(x, 0, t))2 dxdt,

(78)

Hence, from (76) and (78) we obtain

T
ξ

2

∫ L

0

∫ 1

0

a(x)z2(x, ρ, 0)dρdx ≤
(

ξ

2h
+

Tξ

2h

)∫ T

0

∫ L

0

a(x)u2(x, t− h)dxdt

+
ξ

2h

∫ T

0

∫ L

0

a(x)u2(x, t)dxdt.

(79)

Gathering (79) with (72), we see that in order to prove the observability inequal-
ity (69) it is sufficient to prove that for any T,R > 0 there exists K := K(R, T ) > 0
such that

∥u∥2L2(0,T,L2(0,L)) ≤K

(∫ T

0

u2
xx(0, t)dt+

∫ T

0

∫ L

0

a(x)u2(x)dxdt

+

∫ T

0

∫ L

0

a(x)u2(x, t− h)dxdt

) (80)
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holds for all solutions of the nonlinear system (4) with ∥(u0, z0(·,−h(·)))∥H ≤ R.
Let us now argue by contradiction. If (80) does not hold, there exists a sequence

{un}n∈N ⊂ B of solutions to system (4) with ∥(un
0 , z

n
0 (·,−h(·)))∥H ≤ R such that

∥un∥2L2(0,T,L2(0,L)) ≥n

(
∥un

xx(0, ·)∥2L2(0,T ) +

∫ T

0

∫ L

0

a(x)|un(x, t)|2dxdt

+

∫ T

0

∫ L

0

a(x)|un(x, t− h)|2dxdt

)
We define λn = ∥un∥L2(0,T,L2(0,L)) and vn = un

λn
. Then, vn satisfies

vnt (x, t) + vnx (x, t) + vnxxx(x, t)− vnxxxxx(x, t)

+λnv
nvnx (x, t) + a (x) (µ1v

n(x, t) + µ2v
n(x, t− h)) = 0 x ∈ (0, L), t > 0,

vn (0, t) = vn (L, t) = 0 t > 0,

vnx (0, t) = vnx (L, t) = vnxx (L, t) = 0 t > 0,

vn (x, 0) =
un
0

λn
(x) x ∈ (0, L),

vn(x, t) =
zn
0

λn
(x, t) x ∈ (0, L), t ∈ (−h, 0),

(81)

∥vn∥L2(0,T,L2(0,L)) = 1 (82)

and

∥vnxx(0, ·)∥2L2(0,T ) +

∫ T

0

∫ L

0

a(x)
(
|vn(x, t)|2 + |vn(x, t− h)|2

)
dxdt → 0 as n → ∞.

(83)

Claim 1. {vn(·, 0)} is bounded in L2(0, L).

Indeed, since ∫ T

0

∫ L

0

(T − t)(vn)2v2xdxdt = 0.

we have, as for the linear case, that

∥vn(x, 0)∥2L2(0,L) ≤
1

T
∥vn∥2L2(0,T,L2(0,L)) + ∥vnxx(0, ·)∥2L2(0,T )

+ (2µ1 + µ2)

∫ L

0

∫ T

0

a(x)|vn(x, t)|2dxdt

+

∫ L

0

∫ T

0

a(x)|vn(x, t− h)|2dxdt.

(84)

Gathering (82), (83) and (84) the Claim 1 follows.

Claim 2. {
√

a(x)vn(·,−h(·))} is bounded in L2((0, L)×(0, 1)) and {λn} is bounded
in R.

In fact, as we have that

T
ξ

2

∫ L

0

∫ 1

0

a(x)|zn0 (x, ρ, 0)|2dρdx ≤
(

ξ

2h
+

Tξ

2h

)∫ T

0

∫ L

0

a(x)|un(x, t− h)|2dxdt

+
ξ

2h

∫ T

0

∫ L

0

a(x)|un(x, t)|dxdt
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it follows that

T
ξ

2

∫ L

0

∫ 1

0

a(x)
1

λ2
n

|zn0 (x, ρ, 0)|2dρdx ≤
(

ξ

2h
+

Tξ

2h

)∫ T

0

∫ L

0

a(x)|vn(x, t− h)|2dxdt

+
ξ

2h

∫ T

0

∫ L

0

a(x)|vn(x, t)|dxdt,

and consequently, {
√
a(x)vn(·,−h(·))} in bounded. Moreover, thanks to (66) we

see that

λ2
n = ∥un∥2L2(0,T,L2(0,L)) ≤ T∥(un

0 (·), zn0 (·,−h(·)))∥2H ≤ TR2,

that is, {λn} is bounded, and so, Claim 2 holds.

Claim 3. {vn} is bounded in L2(0, T,H2(0, L)).

This follows by noting first that, as in the proof of Proposition 2.5, we have that

3

2

∫ T

0

∫ L

0

|vnx (x, t)|2dx+
5

2

∫ T

0

∫ L

0

|vnxx(x, t)|2dx =
1

2

∫ T

0

∫ L

0

|vn(x, t)|2dxdt

+
1

2

∫ L

0

x((vn0 )
2(x)− (vn)2(x, T ))dx−

∫ T

0

∫ L

0

xa(x)µ1|vn(x, t)|2dxdt

−
∫ T

0

∫ L

0

xa(x)µ2v
n(x, t− h)vn(x, t)dxdt

−
∫ T

0

∫ L

0

xλnv
nvnxv

ndxdt.

Now, observe that

−
∫ T

0

∫ L

0

xλnv
nvnxv

ndxdt ≤
√
LTλn∥vn∥2L∞(0,T,L2(0,L))∥v

n∥L2(0,T,H1(0,L))

≤
√
LTλnξ

2
∥vn∥L2(0,T,H1(0,L))

∫ L

0

|vn0 (x)|2dx

+

√
LTλnξ

2
∥vn∥L2(0,T,H1(0,L))

∫ L

0

∫ 1

0

a(x)|vn(x,−ρh)|2dρdx.

Thus, for ε > 0 small enough, we have, putting the two previous inequalities
together, that

∥vn∥2L2(0,T,H2(0,L)) ≤ L∥vn0 ∥2L2(0,L) + ∥vn∥2L2(0,T,L2(0,L))

+ L(2µ1 + µ2)

∫ T

0

∫ L

0

a(x)|vn(x, t)|2dxdt

+ Lµ2

∫ T

0

∫ L

0

a(x)|vn(x, t− h)|2dxdt

+

√
LTλn

4

(∫ L

0

|vn0 (x)|2dx+

∫ L

0

∫ 1

0

a(x)|vn(x,−ρh)|2dρ, dx

)2

showing Claim 3.

Claim 4. {vnvnx} is bounded in L2(0, T, L1(0, L)).

This claim is a direct consequence of the following inequality

∥vnvnx∥L2(0,T,L1(0,L)) ≤ ∥vn∥C([0,T ],L2(0,L))∥vn∥L2(0,T,H2(0,L)),



DELAYED KDV-TYPE SYSTEM 315

where we used Cauchy-Schwarz inequality.
Hence, putting together all these results we showed that

vnt (x, t) =− (vnx (x, t) + vnxxx(x, t)− vnxxxxx(x, t) + λnv
nvnx (x, t)

+a (x) (µ1v
n(x, t) + µ2v

n(x, t− h)))

is bounded in L2(0, T,H−3(0, L)) and using the classical compactness results (see
e.g. [40]), we obtain that {vn} is relatively compact in L2(0, T, L2(0, L)). Thus,
there exists a subsequence of {vn}, still denoted by {vn}, such that

vn −→ v, strongly in L2(0, T, L2(0, L)),

verifying
∥v∥L2(0,T,L2(0,L)) = 1.

Furthermore, by weak lower semicontinuity, we have

v(x, t) = 0 ∈ ω × (0, T ) and vxx(0, t) = 0 in (0, T ).

Since {λn} is bounded, we can also extract a subsequence, still denoted by {λn}
which converges to λ ≥ 0. Consequently, the limit v satisfies

vt(x, t) + vx(x, t) + vxxx(x, t)− vxxxxx(x, t)

+λv(x, t)vx(x, t) = 0 x ∈ (0, L), t > 0,

v (0, t) = v (L, t) = 0 t > 0,

vx (0, t) = vx (L, t) = vxx (L, t) = 0 t > 0,

v(x, t) = 0 x ∈ ω, t ∈ (0, T ),

vxx(0, t) = 0 t ∈ (0, T ),

∥v∥L2(0,T,L2(0,L)) = 1.

(85)

At this moment we shall divide our proof into two cases:

Case (i). λ = 0.

In this case, the system satisfied by v is linear and we can apply Holmgren’s
uniqueness theorem to obtain that v = 0, which contradicts the fact that
∥v∥L2(0,T,L2(0,L)) = 1.

Case (ii). λ > 0.

For that case, we need to prove that v ∈ L2(0, T,H5(0, L)). In this way, let us
consider u = vt. Then, u is a solution of the following equation

ut(x, t) + ux(x, t) + uxxx(x, t)− vxxxxx(x, t)

+λu(x, t)vx(x, t) + λv(x, t)ux(x, t) = 0 x ∈ (0, L), t > 0,

u (0, t) = u (L, t) = 0 t > 0,

ux (0, t) = ux (L, t) = uxx (L, t) = 0 t > 0,

u(x, t) = 0 x ∈ ω, t ∈ (0, T ),

uxx(0, t) = 0 t ∈ (0, T ),

with u(x, 0) = −vx(x, 0) − vxxx(x, 0) − v5x(x, 0) − λv(x, 0)vx(x, 0) ∈ H−5(0, L).
Therefore, u(·, 0) ∈ L2(0, L) and so u = vt ∈ B. It follows from (85) that uxxxxx ∈
L2 ((0, L)× (0, T )) and consequently,

u ∈ L2(0, T ;H5 (0, L)) ∩H1(0, T ;H2 (0, L))

which is sufficient for the unique continuation principle from [39] to be applied.
This gives u ≡ 0 in (0, L)× (0, T ) which completes the proof.
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Appendix A. Study of an auxiliary system. The goal of this appendix is to
treat the system (43) linearized around 0.

ut(x, t) + ux(x, t) + uxxx(x, t)− uxxxxx(x, t)

+a (x)u(x, t) + b(x)u(x, t− h) + ξb(x)u(x, t) = 0 x ∈ (0, L), t > 0,

u (0, t) = u (L, t) = 0 t > 0,

ux (0, t) = ux (L, t) = uxx (L, t) = 0 t > 0,

u (x, 0) = u0 (x) x ∈ (0, L),

u(x, t) = z0(x, t) x ∈ (0, L), t ∈ (−h, 0),

(86)

The results contained herein are essential to prove one of the main results of this
work.

A.1. Well-posedness of the auxiliary system. We start showing that system
(86) is well-posed. As in Section 3, setting z(x, ρ, t) = u(x, t−ρh) for any x ∈ (0, L),
ρ ∈ (0, 1) and t > 0, (u(·, t), z(·, ·, t)) satisfies the system

ut(x, t) + ux(x, t) + uxxx(x, t)− uxxxxx(x, t)

+a (x)u(x, t) + b(x)z(1) + ξb(x)u(x, t) = 0 x ∈ (0, L), t > 0,

u (0, t) = u (L, t) = 0 t > 0,

ux (0, t) = ux (L, t) = uxx (L, t) = 0 t > 0,

u (x, 0) = u0 (x) x ∈ (0, L),

hzt(x, ρ, t) + zρ(x, ρ, t) = 0 x ∈ (0, L), ρ ∈ (0, 1), t > 0,

z(x, 0, t) = u(x, t) x ∈ (0, L), t > 0,

z(x, ρ, 0) = z0(x,−ρh) x ∈ (0, L), ρ ∈ (0, 1).

(87)

Consider also the Hilbert space H = L2(0, L)×L2((0, L)× (0, 1)) with the inner
product

((u, z), (v, w))H =

∫ L

0

uvdx+ hξ∥b∥∞
∫ L

0

∫ 1

0

z(x, ρ)w(x, ρ)dxdρ.

Rewriting system (87) as a first order system
∂U

∂t
(t) = A0U(t)

U(0) = (u0(x), z0(x,−ρh)),
(88)

with the unbounded operator A0 : D(A) ⊂ H → H given by

A0(u, z) = (−ux − uxxx + uxxxxx − a(x)u− ξb(x)u− b(x)z(·, 1),−h−1zρ) (89)

with domain

D(A0) =

(u, z) ∈ H :
u ∈ H5(0, L), u(0) = u(L) = 0
ux(0) = ux(L) = uxx(L) = 0,

zρ ∈ L2((0, L)× (0, 1)), z(0) = u,

 (90)

so the following result holds.

Theorem A.1. Assume that a and b are nonnegative functions in L∞(0, L) with
b(x) ≥ b0 > 0 in ω, U0 ∈ H and ξ > 1. Then, there exists a unique mild solution
U ∈ C([0,∞),H) for system (88). Moreover, if U0 ∈ D(A0), then the solution is
classical and satisfies

U ∈ C([0,∞),D(A0)) ∩ C1([0,∞),H).
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Proof. Let U = (u, z) ∈ D(A0), then we have

(A0U,U) ≤ (1 + ξ)

2
∥b∥∞

∫ L

0

∫ L

0

u2(x)dx.

It is not difficult to prove that the adjoint of A0 denoted by A∗
0 is defined by

A∗
0(u, z) = (ux + uxxx − uxxxxx − a(x)u− ξb(x)u+ ξ∥b∥∞z(·, 0), h−1zρ) (91)

with domain

D(A∗
0) =

(u, z) ∈ H :

u ∈ H5(0, L), u(0) = u(L) = 0
ux(0) = ux(L) = uxx(0) = 0,

zρ ∈ L2((0, L)× (0, 1)), z(x, 1) = − b(x)

ξ∥b∥∞
u(x)

 . (92)

Let U = (u, z) ∈ D(A∗
0), then

(A∗
0U,U)H ≤ (1 + ξ)

2
∥b∥∞

∫ L

0

u2(x)dx.

Hence, for λ = (1+ξ)
2 ∥b∥∞,

((A0 − λI)U,U)H ≤ 0 and ((A0 − λI)∗V, V )H ≤ 0,

for all U ∈ D(A0) and V ∈ D(A∗
0). Finally, since A0 − λI is a densely defined

closed linear operator, and both A0 −λI and (A0 −λI)∗ are dissipative, then A0 is
the infinitesimal generator of a C0-semigroup on H (see for instance Corollary 4.4
and remark before Corollary 3.8 in [32]).

A.2. Exponential stability of the auxiliary system. We denote by {eA0t, t ≥
0} the C0-semigroup associated with A0. To prove the exponential stability of the
system (86), we closely follow the Subsection 4.1. Precisely, we choose the following
Lyapunov functional

V (t) = E(t) + αV1(t) + βV2(t), (93)

where α and β are positive constants that will be fixed small enough, later on, E is
the energy defined by (44), V1 is defined by (60) and V2 is defined by

V2(t) =
h

2

∫ L

0

∫ 1

0

(1− ρ)b(x)u2(x, t− ρh)dρdx. (94)

It is clear that the two energies E and V are equivalent, in the sense that

E(t) ≤ V (t) ≤
(
1 + max

{
2αL,

β

ξ

})
E(t). (95)

The following result gives a positive answer for the exponential stability of the
system (86).

Proposition A.2. Assume that a and b are nonnegative function in L∞(0, L),

b(x) ≥ b0 > 0 in ω, L < π
√
3 and ξ > 1. Then, for every (u0, z0(·,−h(·))) ∈ H,

the energy of system (86), denoted by E and defined by (44), decays exponentially.
More precisely, considering

γ = min

{
(3π2 − L2)α

L2(1 + 2αL)
,

β

2h(ξ + β)

}
and κ =

(
1 + max

{
2αL,

β

ξ

})
,

where α is a positive constant such that

α <
ξ − 1

2L(1 + 2ξ)
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and

β = ξ − 1− 2αL(1 + 2ξ),

then

E(t) ≤ κE(0)e−2γt for all t > 0.

Proof. Let u be a solution of (86) with (u0, z0(·,−h(·))) ∈ D(A0). Differentiating
(60) and using the first equation of (86), we have that

d

dt
V1(t) =− 3

∫ L

0

u2
x(x, t)dx+

∫ L

0

u2(x, t)dx

− 5

∫ L

0

u2
xx(x, t)dx− 2

∫ L

0

xa(x)u2(x, t)dx

− 2

∫ L

0

xb(x)
(
u(x, t)u(x, t− h)dx− ξu2(x, t)

)
dx.

Moreover, differentiating (94), using integration by parts, we obtain

d

dt
V2(t) =

1

2

∫ L

0

b(x)u2(x, t)dx− 1

2

∫ L

0

∫ 1

0

b(x)u2(x, t− ρh)dρdx.

Consequently, for any γ > 0, we get

d

dt
V (t) + 2γV (t) ≤1

2

∫ L

0

b(x)(1− ξ + β + 2αL(1 + 2ξ))u2(x, t)dx

+
1

2

∫ L

0

b(x)(1− ξ + 2αL)u2(x, t− h)dx

+

(
L2

π2
(α+ γ + 2αγL)− 3α

)∫ L

0

u2
x(x, t)dx

+

∫ L

0

∫ 1

0

b(x)

(
γξh+ γβh− β

2

)
u2(x, t− ρh)dρdx.

Therefore, for α, β and γ chosen as in the statement of proposition we have

V ′(t) + 2γV (t) ≤ 0. (96)

From (95) and (96), we obtain

E(t) ≤ V (t) ≤ e−2γtV (0) ≤
(
1 + max

{
2αL,

β

ξ

})
e−2γtE(0), for all t > 0.

By the density of D(A) in H the result extends to arbitraty (u0, z0(·,−h(·))) ∈
H.

Remark A.3. Observe that the value of γ can be optimized as a function of α,
that is, we can choose

α ∈
(
0,

ξ − 1

2L(1 + 2ξ)

)
(97)

such that the value of γ is the largest possible, which implies that the decay rate γ
thus obtained is the best one.

Indeed, let us define the functions f, g :
[
0, ξ−1

2L(1+2ξ)

]
−→ R by

f(α) =
(3π2 − L2)α

L2(1 + 2αL)
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and

g(α) =
ξ − 1− 2αL(1 + 2ξ)

2h(2ξ − 1− 2αL(1 + 2ξ))
.

Also, let us consider γ(α) = min{f(α), g(α)}. First, we claim that the function

f is increasing in the interval
[
0, ξ−1

2L(1+2ξ)

)
while the function g is decreasing in this

same interval. In fact, note that

f(α) =
(3π2 − L2)

2L3

(
1− 1

1 + 2αL

)
and

g(α) =
1

2h
−
(

ξ

4hL(1 + 2ξ)

)(
1

ξ
2L(1+2ξ) +

ξ−1
2L(1+2ξ) − α

)
.

If − 1
2L < α, then

f ′(α) =

(
3π2 − L2

)
L2(1 + 2αL)2

> 0.

In particular, f ′(α) > 0 for α ∈
[
0, ξ−1

2L(1+2ξ)

)
. Analogously,

g′(α) = −
(

ξ

4hL(1 + 2ξ)

) 1(
ξ

2L(1+2ξ) +
ξ−1

2L(1+2ξ) − α
)2
 < 0,

since ξ > 1 and α < ξ−1
2L(1+2ξ) , showing our claim. Now, we claim that there exists

only one point satisfying (97) such that f(α) = g(α). In fact, to show the existence

of this point, it is sufficient to note that f(0) = 0, g
(

ξ−1
2L(1+2ξ)

)
= 0 and

f

(
ξ − 1

2L(1 + 2ξ)

)
=

(3π2 − L2)

2L3

(
1− 2ξ + 1

3ξ

)
> 0, g(0) =

1

2h

(
1− ξ

2ξ − 1

)
> 0.

The uniqueness follows from the fact that f is increasing while g is decreasing in
this interval.

Finally, taking into account the above information about f and g, the maximum
value of the function

γ ∈
(
0,

ξ − 1

2L(1 + 2ξ)

)
must be reached at the point α satisfying (97), where f(α) = g(α).
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