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Abstract
In this work, we are interested in a detailed qualitative analysis of the Kawahara
equation, which models numerous physical phenomena such as magneto-acoustic
waves in a cold plasma and gravity waves on the surface of a heavy liquid. First, we
design a feedback control law, which combines a damping component and another
one of finite memory type. Then, we are capable of proving that the problem is well-
posed under a condition involving the feedback gains of the boundary control and the
memory kernel. Afterward, it is shown that the energy associated with this system
exponentially decays by employing two different methods: the first one utilises the
Lyapunov function and the second one uses a compactness–uniqueness argument
which reduces the problem to prove an observability inequality.
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1 Introduction

1.1 Background and Literature Review

Water wave models have been studied by many scientists from numerous disciplines
such as hydraulic engineering, fluid mechanics engineering, physics as well as math-
ematics. These models are in general hard to derive, and complex to obtain qualitative
information on the dynamics of the waves. This makes their study interesting and
challenging. Recently, appropriate assumptions on the amplitude, wavelength, wave
steepness, and so on, are invoked to investigate the asymptotic models for water waves
and understand the full water wave system (see, for instance, [1, 6, 24] and references
therein for a rigorous justification of various asymptoticmodels for surface and internal
waves).

As a matter of fact, it has been noticed that the water waves can be considered
as a free boundary problem of the incompressible, irrotational Euler equation in an
appropriate non-dimensional form. This means that there are two non-dimensional
parameters δ:= h

λ
and ε:= a

h , where the water depth, the wavelength, and the amplitude
of the free surface are respectively denoted by h, λ and a. On the other hand, the
parameter μ, known as the Bond number, measures the importance of gravitational
forces compared to surface tension forces.We also note that the longwaves (also called
shallow water waves) are mathematically characterized by the condition δ � 1. There
are several long-wave approximations depending on the relation between ε and δ.

The above discussion leads to note that, instead of studying models that do not
give good asymptotic properties, one can rescale the parameters mentioned above to
find systems that reveal asymptotic models for surface and internal waves, like the

Kawahara model. Precisely, letting ε = δ4 � 1, μ = 1
3 + νε

1
2 , and the critical Bond

number μ = 1
3 , the so-called equation Kawahara equation is put forward. Such an

equation was derived by Hasimoto and Kawahara [17, 22] and takes the form

± 2Wt + 3WWx − νWxxx + 1

45
Wxxxxx = 0, (1.1)

or, after re-scaling,

Wt + αWx + βWxxx − Wxxxxx + WWx = 0. (1.2)

The latter is also seen as the fifth-order KdV equation [7], or singularly perturbed KdV
equation [28]. It describes a dispersive partial differential equation with numerous
wave physical phenomena such as magneto-acoustic waves in a cold plasma [23], the
propagation of long waves in a shallow liquid beneath an ice sheet [19], gravity waves
on the surface of a heavy liquid [15], etc.
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Note that valuable efforts in the last decades were made to understand this model in
various research frameworks. For example, numerous works focused on the analytical
and numerical methods for solving (1.2). These methods include the tanh-function
method [4], extended tanh-function method [5], sine-cosine method [33], Jacobi ellip-
tic functions method [18], direct algebraic method and numerical simulations [27],
decompositions methods [21], as well as the variational iterations and homotopy per-
turbations methods [20]. Another direction is the study of the Kawahara equation from
the point of view of control theory and specifically, the controllability and stabilization
problem [3], which is our motivation.

Whereupon, we are interested in the analysis of the dynamics of the solutions to
(1.2) in a bounded interval. More precisely, our primary concern is to analyze the
qualitative properties of solutions to the initial-boundary value problem associated
with the model (1.2) posed on a bounded interval under the presence of damping and
memory-type controls.

Now, we will go over some previous results that dealt with the asymptotic behavior
of solutions for the Kawahara model (1.2) in a bounded domain. One of the first
outcomes is due to Silva and Vasconcellos [30, 31], where the authors studied the
stabilization of global solutions of the linear Kawahara equation, under the effect of
a localized damping mechanism. The second endeavor is completed by Capistrano-
Filho et al. [3], where the generalized Kawahara equation in a bounded domain is
considered, that is, a more general nonlinearityW p∂xW , with p ∈ [1, 4) is taken into
account. It is proved that the energy of the solutions of the Kawahara system decays
exponentially when an internal damping mechanism is applied.

Recently, a new tool for the control properties of the Kawahara operator was pro-
posed in [11]. In this work, the authors treated the so-called overdetermination control
problem for the Kawahara equation. Precisely, a boundary control is designed so that
the solution to the problem under consideration satisfies an integral condition. Fur-
thermore, when the control acts internally in the system, instead of the boundary, the
authors proved that this integral condition is also satisfied.

We conclude the literature review with three recent works. In [10, 14] the stabi-
lization of the Kawahara equation with a localized time-delayed interior control is
considered. Under suitable assumptions on the time delay coefficients, the authors
proved that the solutions of the Kawahara system are exponentially stable. This result
is established using either the Lyapunov method or a compactness–uniqueness argu-
ment. More recently, the Kawahara equation in a bounded interval and with a delay
term in one of the boundary conditions was studied in [8]. The authors used two dif-
ferent approaches to prove that the solutions of (1.2) are exponentially stable under a
condition on the length of the spatial domain. We point out that this is a small sample
of papers that were concernedwith the stabilization problem of the Kawahara equation
in a bounded interval. Of course, we suggest that the reader, who is interested in more
details on the topic, consults the papers cited above and the references therein.

Let us now present the framework of this article.
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1.2 Problem Setting andMain Results

Consider the system (1.2) in a bounded domain 	 = (0, 
), where 
 > 0 is the spatial
length, under the action of the following feedback:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tω(t, x)+α∂xω(t, x) + β∂3xω(t, x) − ∂5xω(t, x)

+ ωp(t, x)∂xω(t, x) = 0,
x ∈ 	, t > 0,

ω(t, 0) = ω(t, 
) = 0, t > 0,

∂xω(t, 0) = ∂xω(t, 
) = 0, t > 0,

∂2xω(t, 
) = F(t), t > 0,

∂2xω(t, 0) = z0(t), t ∈ I,

ω(0, x) = ω0(x), x ∈ 	,

(1.3)

with ω0, z0 are initial data and F(t) is the feedback law that combines damping and
finite memory terms:

F(t):=ν1∂
2
xω(t, 0) + ν2

∫ t−τ1

t−τ2

σ(t − s)∂2xω(s, 0) ds. (1.4)

Here, α > 0 and β > 0 are physical parameters that appear because we can consider

the regime ε = δ4 � 1, μ = 1
3 +νε

1
2 , the critical Bond number μ = 1

3 and re-scaling
the resultant equation (1.1). Moreover, p ∈ {1, 2}, whereas ν1 and ν2 are nonzero real
numbers. In turn, 0 < τ1 < τ2 corresponds to the finitememory interval (t−τ1, t−τ2).
Furthermore, I = (−τ2, 0), and the memory kernel is denoted by σ(s). Of course, the
presence of a memory term is usually ubiquitous in practice. Particularly, memory is
of great importance in systems control as they are governed by equations, where the
past values of one or more variables involved in the system play a crucial role. On the
other hand, the impact of a memory term in some systems can be deleterious as it can
affect their performance [12, 13, 26]. Last but not least, we indicate that the memory
term, that arises in the boundary control (1.4), could reflect the case of a compressible
(or incompressible) viscoelastic fluid. The latter is regarded as the simplest material
with memory [2, 16].

On the other hand, let us note that the energy associated with the full system (1.3)
is given by

E(t) =
∫

	

ω2(t, x)dx + |ν2|
∫

M
sσ(s)

(∫

	0

(∂2xω)2(t − sφ, 0) dφ

)

ds, t ≥ 0.

(1.5)

Naturally, as we are interested in the behavior of the system (1.3), we need to check
whether the feedback law, given by (1.4), represents a damping mechanism. In other
words, we would like to see if, in the presence of the boundary memory-type feedback
law, the energy of the system (1.5) tends to zero state with some specific decay rate,
when t goes to 0. This situation can be presented in the following question:
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Question Does E(t) −→ 0, as t → ∞? If it is the case, is it possible to come up with
a decay rate?

To answer the previous question for the system (1.3), we will assume, from now on,
that the memory kernel σ obeys the following conditions:

Assumption 1 The function σ ∈ L∞(M), where M:=(τ1, τ2). In turn, we assume
that

σ(s) > 0, a.e. inM.

Moreover, the feedback gains ν1 and ν2 together with the memory kernel satisfy

|ν1| + |ν2|
∫

M
σ(s) ds < 1. (1.6)

Some notations, that we will use throughout this manuscript, are presented below:

(i) We denote by (·, ·)R2 the canonical inner product of R2, whereas 〈·, ·〉 denotes the
canonical inner product of L2(	) whose induced norm is ‖ · ‖.

(ii) For T > 0, consider the space of solutions

YT = C(0, T ; L2(	)) ∩ L2(0, T ; H2
0 (	))

equipped with the norm

‖v‖2YT =
(

max
t∈(0,T )

‖v(t, ·)‖
)2

+
∫ T

0
‖v(t, ·)‖2

H2
0 (	)

dt .

(iii) Let 	0 = (0, 1) and Q:=	0 × M. Then, we consider the spaces

H :=L2(	) × L2(Q), H:=L2(	) × L2(I × M),

respectively equipped with the following inner product:

⎧
⎪⎪⎨

⎪⎪⎩

〈(ω, z), (v, y)〉H = 〈ω, v〉 + |ν2|
∫

M

∫

	0

sσ(s)z(φ, s)y(φ, s) dφds,

〈(ω, z), (v, y)〉H = 〈ω, v〉 + |ν2|
∫

I

∫

M
σ(s)z(r , s)y(r , s) dsdr .

Subsequently, we can state our first main result:

Theorem 1.1 Under the Assumption 1 and assuming that the length 
 fulfills the
smallness condition

0 < 
 < π

√
3β

α
, (1.7)
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there exists r > 0 sufficiently small, such that for every (ω0, z0) ∈ H with
‖(ω0, z0)‖H < r , the energy of the system (1.3), given by (1.5), is exponentially
stable. In other words, there exist two positive constants κ and μ such that

E(t) ≤ κE(0)e−2μt , t > 0, (1.8)

where E(t) is defined by (1.5).

The proof of this result uses an appropriate Lyapunov function, which requires the
condition (1.7) (see Remarks 1.3 below). In turn, such a requirement can be relaxed
by using a compactness–uniqueness argument [29] (see [3, 8, 9, 30, 31]). The proof
is based on the following outcome [8]:

Lemma 1.2 Let 
 > 0 and consider the assertion: There exist ζ ∈ C andω ∈ H2
0 (	)∩

H5(	) such that

{
ζω(x) + ω′(x) + ω′′′(x) − ω′′′′′(x) = 0, x ∈ 	,

ω(x) = ω′(x) = ω′′(x) = 0, x ∈ {0, 
}.

If (ζ, ω) ∈ C × H2
0 (	) ∩ H5(	) is solution of (1.2), then ω = 0.

We have:

Theorem 1.3 Suppose that Assumption 1 hold. Moreover, we choose 
 > 0 so that the
problem in Lemma 1.2 has only the trivial solution. Then, there exists � > 0 such that
for every (ω0, z0) ∈ H satisfying ‖(ω0, z0)‖H ≤ �, the energy (1.5) of the problem
(1.3) decays exponentially.

1.3 Further Comments and Paper’s Outline

As mentioned above, the exponential stability result of the system (1.3) will be estab-
lished using two different methods. The first one evokes a Lyapunov function and
requires an explicit smallness condition on the length of the spatial domain 
. The
second one is obtained via a classical compactness–uniqueness argument, where crit-
ical lengths phenomena appear with a relation with the Möbius transforms (see for
instance [8]). This permits us to answer the question raised in the introduction.

Remarks Let us point out some important comments:

• Considering ν2 = 0 and α = 0, the authors in [9] showed the stabilization property
for (1.3) using the compactness–uniqueness argument. Since they removed the drift
term α∂xω, the critical lengths phenomena did not appear.

• The main concern of this work is to deal with the feedback law of memory type as
in (1.4). One needs to control this term to ensure well-posedness and stabilization
results.

• Our results are valid for the general nonlinearities u p∂xu, p ∈ {1, 2}, and also can
be extended for linearity like c1u∂xu + c2u2∂xu. To draw more attention to the
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first general nonlinearity, the decay rate in (1.8) depends on the values of p since
we have (see Section 3)

μ < min

{
μ2|ν2|e−δτ2δ

2(1 + μ1|ν2|) ,
μ1

2
2(1 + 
μ1)(p + 2)

[
(p + 2)(3π2β − α
2)

−2π2
2−
p
2 r p

] }

.

• It is important to point out two facts about Theorem1.1.Assumption 1 is paramount
to getting the well-posedness results for the system under consideration and is
quite common in the memory type problems (see, for instance, [8, 12]). Finally,
the spatial length 
 fulfilling the condition (1.7) comes from the fact that we are
using the Lyapunov function defined by

E1(t) =
∫

	

xω2(x, t)dx,

where ω is the solution of (1.3). Due to this, condition (1.7) is essential and it
remains an open problem to remove this restriction.

We end our introduction with the paper’s outline: The work consists of three
parts including the Introduction. Section2 discusses the existence of solutions for
the full system (1.3). Section3 is devoted to proving the stabilization results, that is,
Theorem 1.1 and Theorem 1.3.

2 Well-Posedness Theory

In this section,we are interested in analyzing thewell-posedness property of the system
(1.3). The first and the second subsections are devoted to proving the existence of
solutions for the linearized (homogeneous and non-homogeneous) system associated
with (1.3), respectively. The third subsection deals with the well-posedness of the full
system (1.3).

2.1 Linear Problem

As in the literature (see for instance the references [32] and [25]), the homogeneous
linear system associated with (1.3) is:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tω(t, x) + α∂xω(t, x) + β∂3xω(t, x) − ∂5xω(t, x) = 0, (t, x) ∈ R
+ × 	,

s∂t z(t, φ, s) + ∂φz(t, φ, s) = 0, (t, φ, s)∈R
+×	0×M,

ω(t, 0) = ω(t, 
) = ∂xω(t, 0) = ∂xω(t, 
) = 0, t > 0,

∂2xω(t, 
) = ν1∂
2
xω(t, 0) + ν2

∫

M
σ(s)z(t, 1, s) ds, t > 0,

ω(0, x) = ω0(x), x ∈ 	,

z(0, φ, r) = z0(−φr), (φ, r) ∈ 	0 × (0, τ2),

(2.1)
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where z(t, φ, s) = ∂2xω(t − φs, 0) satisfies a transport equation (see (2.1)2). Letting

�(t) =
[

ω(t, ·)
z(t, ·, ·)

]

,�0 =
[

ω0
z0(−φ·)

]

, one can rewrite this system abstractly:

{
�t (t) = A�(t), t > 0,

�(0) = �0 ∈ H ,
(2.2)

where

A =
[−α∂x − β∂3x + ∂5x 0

0 −1

s
∂φ

]

,

whose domain is given by

D(A):=

⎧
⎪⎪⎨

⎪⎪⎩

(ω, z) ∈ H ,

(ω, z) ∈ H5(	) ∩ H2
0 (	),

z ∈ L2
(
M; H1(	0)

)
;

∣
∣
∣
∣

∂2xω(0) = z(0, ·),
∂2xω(
)=ν1∂

2
xω(0)+ν2

∫

M
σ(s)z(1, s) ds

⎫
⎪⎪⎬

⎪⎪⎭

.

The following result ensures the well-posedness of the linear homogeneous system.

Proposition 2.1 Under the assumption (1), we have:

i. The operator A is densely defined in H and generates a C0-semigroup of con-
tractions et A. Thereby, for each �0 ∈ H, there exists a unique mild solution
� ∈ C([0,+∞), H) for the linear system associated with (1.3). Moreover, if
�0 ∈ D(A), then we have a unique classical solution with the regularity

� ∈ C([0,+∞), D(A)) ∩ C1([0,+∞), H).

ii. Given �0 = (ω0, z0(·)) ∈ H, the following estimates hold:

‖∂2xω(0, ·)‖2L2(0,T )
+
∫ T

0

∫

M
sσ(s)z2(t, 1, s) dsdt ≤ C‖(ω0, z0(·))‖2H ,

(2.3)

‖∂2xω(·)‖2L2(0,T ;L2(	))
≤ C‖(ω0, z0(·))‖2H , (2.4)

‖z0(·)‖2L2(Q)
≤ ‖z(T , ·, ·)‖2L2(Q)

+
∫ T

0

∫

M
σ(s)z2(t, 1, s) dsdt, (2.5)

and

T ‖ω0(·)‖2 ≤ ‖ω‖2L2(0,T ;L2(	))
+ T ‖∂2xω(0)‖2L2(0,T )

. (2.6)
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iii. The map

G : �0 = (ω0, z0(·)) ∈ H → �(·) = e·A�0 ∈ YT × C
(
[0, T ]; L2(Q)

)

is continuous.

Proof of item i. This part can be proved by using the semigroup theory. In fact, note first
that for given � = (ω, z) ∈ D(A), it follows from the Cauchy–Schwarz inequality
that

∫

M
σ(s)z(1, s)ds ≤

(∫

M
σ(s)ds

) 1
2
(∫

M
σ(s)(z(1, s))2ds

) 1
2

. (2.7)

Thus, using integration by parts and (2.7) yields

〈A�,�〉 =1

2

[(

ν1∂
2
xω(0) + ν2

∫

M
σ(s)z(1, s) ds

)2

−
(
∂2xω(0)

)2

−|ν2|
∫

M
σ(s) (z(1, s))2 ds + |ν2|

(
∂2xω(0)

)2
∫

M
σ(s) ds

]

≤1

2

[(
∂2xω(0)

)2
(

ν21 − 1 + |ν2|
∫

M
σ(s) ds

)

+2ν1ν2
(
∂2xω(0)

)(∫

M
σ(s)z(1, s) ds

)

+
(

ν22 − |ν2|
‖√σ(s)‖2

)(∫

M
σ(s)z(1, s) ds

)2
]

= 1

2
〈GX , X〉R2 ,

(2.8)

where

X =
⎛

⎝
∂2xω(0)∫

M
σ(s)z(1, s) ds

⎞

⎠

and

G =
⎛

⎜
⎝

ν21 − 1 + |ν2|
∫

M
σ(s) ds ν1ν2

ν1ν2 ν22 − |ν2|
‖√σ(s)‖2

⎞

⎟
⎠ .

Due to (1.6), we have

detG = |ν2|
(∫

M
σ(s) ds

)−1
{[

1 − |ν2|
(∫

M
σ(s) ds

)]2

− ν21

}

> 0
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and

trG ≤ |ν1|(|ν1| − 1) − |ν1||ν2|
(∫

M
σ(s) ds

)−1

< 0,

since |ν1| < 1. Moreover, it is not difficult to see that G is a negative definite matrix.
Putting this previous information together with (2.8), we have that A is dissipative.
Analogously, considering the adjoint operator of A as follows

A∗(v, y) =
(

α∂xv + β∂3x v − ∂5x v,
1

s
∂φ y

)

with domain

D(A∗):=

⎧
⎪⎪⎨

⎪⎪⎩

(v, y) ∈ H ,

(ω, z) ∈ H5(	) ∩ H2
0 (	),

y ∈ L2
(
M; H1(	0)

)
;

∣
∣
∣
∣
∣
∣
∣
∣

∂2x v(
) = |ν2|
ν2

y(1, s),

∂2x v(0) = ν1∂
2
x v(
) + |ν2|

∫

M
σ(s)y(0, s) ds

⎫
⎪⎪⎬

⎪⎪⎭

,

we have that for (v, y) ∈ D(A∗),

〈A∗(v, y), (v, y)〉 +
[
|ν2|2 − |ν2|‖√σ‖2L2(M)

](∫

M
σ(s)y(0, s)ds

)2

= 1

2
〈G∗Z , Z〉,

(2.9)

where

Z =
(

∂2x v(
)

∫

M
σ(s)y(0, s)ds

)

and

G∗ =
⎛

⎜
⎝

ν21 − 1 + |ν2|
∫

M
σ(s) ds ν1|ν2|

ν1|ν2| ν22 − |ν2|
‖√σ(s)‖2

⎞

⎟
⎠ .

Again, thanks to the relation (1.6), we have detG∗ = det G > 0 and trG∗ = trG < 0,
since |ν1| < 1. Thus, using the fact that G∗ is negative definite in (2.9), we have that
A∗ is also dissipative, showing the item i.

Proof of item ii. First, remember that et A is a contractive semigroup and therefore, for
each �0 = (ω0, z0) ∈ H , the following estimate is valid
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‖(ω(t), z(t, ·, ·))‖2H = ‖ω(t)‖2 + ‖z(t, ·, ·)‖2L2(Q)

≤ ‖ω0‖2 + ‖z0(−·)‖2L2(Q)
,∀t ∈ [0, T ]. (2.10)

Moreover, the following inequality holds

∫ T

0

∫

M
sσ(s) [z(t, 1, s)]2 dsdt ≤ τ2

|ν2|
∫

	0

∫

M
|ν2|sσ(s)

[
z20(−φs)

]
dsdφ

+ τ2

τ1|ν2|
∫ T

0

∫

	0

∫

M
|ν2|sσ(s)z2 dsdφdt .

(2.11)

Indeed, multiplying the second equation of (2.1) by φσ(s)z, rearranging the terms,
integrating by parts and taking into account that s ∈ M = (τ1, τ2), we have

∫ T

0

∫

M
sσ(s) (z(t, 1, s))2 dsdt ≤ τ2

|ν2|
∫ T

0

∫

	0

∫

M
|ν2|σ(s) (z(t, φ, s))2 dsdφdt

+ τ2

|ν2|
∫

	0

∫

M
φ|ν2|σ(s)s (z(0, φ, s))2 dsdφ

− τ2

|ν2|
∫

	0

∫

M
|ν2|φσ(s)s (z(T , φ, s))2 dsdφ

≤ τ2

τ1|ν2|
∫ T

0

∫

	0

∫

M
s|ν2|σ(s) (z(t, φ, s))2 dsdφdt

+ τ2

|ν2|
∫

	0

∫

M
φ|ν2|σ(s)s (z0(−φs))2 dsdφ

This proves the estimate (2.11). As a consequence of (2.10), (2.11) and the hypothesis
of τ1 ≤ s ≤ τ2 and φ ≤ 1, we also have

∫ T

0

∫

M
sσ(s) (z(t, 1, s))2 dsdt ≤ τ2

|ν2|
(
T

τ1
+ 1

)(
‖ω0‖2 + ‖z0(−φs)‖2L2(Q)

)
.

(2.12)

Now, we are in a position to prove (2.3). Multiplying the first equation of (2.1) by
ω, integrating over [0, T ] × [0, 
], and using the boundary conditions, it follows that

‖∂2xω(0)‖2L2(0,T )
= ‖ω0‖2 +

∫ T

0

(
∂2xω(
)

)2
dt − ‖ω(T )‖2

≤ ‖ω0‖2 +
∫ T

0

(

ν1∂
2
xω(0) + ν2

∫

M
σ(s)z(·, 1, s)ds

)2

dt

:=‖ω0‖2 +
∫ T

0
(I1 + I2)

2 dt . (2.13)
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To estimate the integral (I1 + I2)2 on the right-hand side of (2.13), we use Young’s
inequality together with the Cauchy–Schwartz inequality, to obtain

(I1 + I2)
2 ≤ ν21

(
∂2xω(t, 0)

)2

+2|ν1||ν2|
(
∂2xω(t, 0)

)(∫

M
σ(s)ds

) 1
2
(∫

M
σ(s)z2(·, 1, s)ds

) 1
2

+ν22

((∫

M
σ(s)ds

) 1
2
(∫

M
σ(s)z2(·, 1, s)ds

) 1
2
)2

≤
[

ν21 + ν22

2θ

(∫

M
σ(s)ds

)](
∂2xω(t, 0)

)2

+
[

2θν21 + ν22

(∫

M
σ(s)ds

)](∫

M
σ(s)z2(·, 1, s)ds

)

. (2.14)

Thereafter, inserting (2.14) into (2.13), we find

[

1 − ν21 − ν22

2θ

(∫

M
σ(s)ds

)]

‖∂2xω(0)‖2L2(0,T )

≤ ‖ω0‖2 +
[

2θν21 + ν22

(∫

M
σ(s)ds

)](∫ T

0

∫

M
σ(s)z2(·, 1, s)dsdt

)

.

(2.15)

Thanks to (1.6), one can choose θ > 0 large enough so that

1 − ν21 − ν22

2θ

(∫

M
σ(s)ds

)

> 0. (2.16)

This, together with (2.15) and (2.12), yields

‖∂2xω(0)‖2L2(0,T )
≤ C

(

‖ω0‖2 + 1

τ1

∫ T

0

∫

M
sσ(s)z2(·, 1, s)dsdt

)

≤ C

(

1 + τ2

τ1|ν2|
(
T

τ1
+ 1

))

‖ω0‖2

+ Cτ2

τ1|ν2|
(
T

τ1
+ 1

)

‖z0(−φs)‖2L2(Q)

≤ C
(
‖ω0‖2 + ‖z0(−φs)‖2L2(Q)

)
. (2.17)

Clearly, combining (2.12) and (2.17), we get (2.3).
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Now, let us prove (2.4). Multiplying the equation (2.1) by xω, integrating by parts
over (0, T ) × 	, and isolating the term ‖∂2xω‖2

L2(0,T ;L2(	))
, we obtain

‖∂2xω‖2L2(0,T ;L2(	))
≤
∫

	

x

5
ω2
0(x)dx + α

5
‖ω‖2L2(0,T ;L2(	))

+ 


5

[

ν21 + ν22

2ε

(∫

M
σ(s)ds

)]∫ T

0
(∂2xω(t, 0))2

+ 


5

[

2εν21 + ν22

(∫

M
σ(s)ds

)]∫ T

0

∫

M
σ(s)z2(t, 1, s)dsdt

≤


5
‖ω0‖2 + α

5
‖ω‖2L2(0,T ;L2(	))

+ C1

[∫ T

0
(∂2xω(t, 0))2 +

∫ T

0

∫

M
σ(s)z2(t, 1, s)dsdt

]

,

where (2.14) is used and

C1 = max

{



5

[

ν21 + ν22

2ε

(∫

M
σ(s)ds

)]

,



5

[

2εν21 + ν22

(∫

M
σ(s)ds

)]}

.

Now, taking into account the fact that eAt is a semigroup of contractions and using

(2.3), we obtain (2.4) with the constant C = max

{



5
,
α

5
,C1

}

.

Finally, let us show (2.5) and (2.6), respectively. For (2.5), multiply the second
equation in (2.1) by σ(s)z and integrates by parts over (0, T ) × Q, to obtain

∫

	0

∫

M
sσ(s)z2(0, φ, s) dsdφ ≤

∫

	0

∫

M
sσ(s)z2(T , φ, s) dsdφ

+
∫ T

0

∫

M
σ(s)z2(t, 1, s) dsdt,

showing (2.5). To prove (2.6), we multiply the first equation in (2.1) by 2(T − t)ω and
integrating over [0, T ] × [0, 
], to find

T ‖ω0‖2 ≤ ‖ω‖2L2(0,T ;L2(	))
+ T

∫ T

0

(
∂2xω(0)

)2
dt,

giving (2.6). Last but not least, it is worth mentioning that the above estimates remain
true for solutions stemming from�0 ∈ H , giving item ii, thanks to a density argument.

Proof of item iii. Follows directly from (2.4) and from (2.10). ��
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2.2 Non-Homogeneous Problem

Let us now consider the linear system (2.1) with a source term f ∈ L1(0, T ; L2(	))

in the right-hand side of the first equation. As done in the previous subsection, the
system can be rewritten as follows:

{
�t (t) = A�(t) + (ϕ(t, ·), 0), t > 0,

�(0) = �0 ∈ H ,
(2.18)

where � = (ω, z) and �0 = (ω0, z0(−·)). With this in hand, the following result will
be proved.

Theorem 2.2 Under the Assumption (1), it follows that:

(a) If �0 = (ω0, z0(−·)) ∈ H and ϕ ∈ L1(0, T ; L2(	)), then there exists a unique
mild solution

� = (ω, z) ∈ YT × C([0, T ]; L2(Q))

of (2.18) such that

‖(ω, z)‖2C([0,T ];H) ≤ C
(
‖(ω0, z0(−·))‖2H + ‖ϕ‖2L1(0,T ;L2(	))

)
, (2.19)

and

‖ω‖2YT ≤ C
(
‖(ω0, z0(−·))‖2H + ‖ϕ‖2L1(0,T ;L2(	))

)
, (2.20)

for some constant C > 0, which is independent of �0 and ϕ.

(b) Given

ω ∈ YT = C(0, T ; L2(	)) ∩ L2(0, T ; H2
0 (	))

and p ∈ {1, 2}, we have ωp∂xω ∈ L1(0, T ; L2(	)) and the map

F : ω ∈ YT → ωp∂xω ∈ L1(0, T ; L2(	)) (2.21)

is continuous.

Proof of item (a). Since A is the infinitesimal generator of a semigroup of contractions
et A and ϕ ∈ L1(0, T ; L2(	)) it follows from semigroups theory that there is a unique
mild solution � = (ω, z) ∈ C([0, T ]; H) of (2.18) such that

�(t) = et A�0 +
∫ t

0
e(t−s)A(ϕ, 0)ds
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and hence, we get

‖(ω, z)‖C([0,T ];H) ≤ C
(‖(ω0, z0(−·))‖H + ‖ϕ‖L1(0,T ;L2(	))

)
.

Young’s inequality gives

‖(ω, z)‖2C([0,T ];H) ≤ 2C2
(
‖(ω0, z0(−·))‖2H + ‖ϕ‖2L1(0,T ;L2(	))

)
,

which proves (2.19). To complete the proof of item (a), we must verify the validity of
(2.20). For this, observe that from (2.19), we have

max
t∈[0,T ] ‖ω‖2 ≤ 2C2

(
‖(ω0, z0(−·))‖2H + ‖ϕ‖2L1(0,T ;L2(	))

)
. (2.22)

In turn, if we multiply the second equation in (2.18) by φσ(s)z, integrating over
[0, T ] × [0, 1] × [τ1, τ2] and arguing as for the proof of (2.11), we obtain

∫ T

0

∫

M
sσ(s) (z(t, 1, s))2 dsdt

≤ τ2

|ν2|
(
T

τ1
+ 1

)(
‖ω0‖2 + ‖z0(−φs)‖2L2(Q)

+ ‖ϕ‖2L1(0,T ;L2(	))

)
.

(2.23)

Now, multiplying the first equation in (2.18) by ω, integrating over [0, T ] × [0, 
],
and thanks to (2.23), we get

‖∂2xω(0)‖2L2(0,T )
≤ ‖ω0‖2 +

∫ T

0

(

ν1∂
2
xω(0) + ν2

∫

M
σ(s)z(·, 1, s)ds

)2

dt

+2

(

max
t∈[0,T ] ‖ω(t, x)‖

)∫ T

0
‖ϕ(t, x)‖ dt . (2.24)

Now, replacing (2.14) in (2.24), we find

‖∂2xω(0)‖2
L2(0,T )

≤ ‖ω0‖2 +
[

ν21 + ν22

2θ

(∫

M
σ(s)ds

)]∫ T

0

(
∂2xω(t, 0)

)2
dt

+
[

2θν21 + ν22

(∫

M
σ(s)ds

)](∫ T

0

∫

M
σ(s)z2(·, 1, s)dsdt

)

+2

(

max
t∈[0,T ] ‖ω(t, x)‖

)∫ T

0
‖ϕ(t, x)‖ dt .

(2.25)
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Isolating ‖∂2xω(0)‖2
L2(0,T )

and using Young’s inequality for the last term of the right-
hand side, we reach

[

1 − ν21 − ν22

2θ

(∫

M
σ(s)ds

)]

‖∂2xω(0)‖2L2(0,T )

≤ ‖ω0‖2 +
[

2θν21 + ν22

(∫

M
σ(s)ds

)](∫ T

0

∫

M
σ(s)z2(·, 1, s)dsdt

)

+
(

max
t∈[0,T ] ‖ω(t, x)‖

)2

+ ‖ϕ‖2L1(0,T ;L2(	))
. (2.26)

Thanks to (1.6), (2.16) and (2.26), the estimate (2.19) becomes

‖∂2xω(0)‖2L2(0,T )
≤C1

(

2 + C2 + τ2

τ1|ν2|
(
T

τ1
+ 1

))

‖ω0‖2

+ C1

(
τ2

τ1|ν2|
(
T

τ1
+ 1

)

+ 1 + C2

)

‖z0(−φs)‖2L2(Q)

+ C1(1 + C2)‖ϕ‖2L1(0,T ;L2(	))

≤C
(
‖(ω0, z0(−φs))‖2H + ‖ϕ‖2L1(0,T ;L2(	))

)
. (2.27)

Now, multiply the Eq. (2.18) by xω and integrate by parts over (0, T ) × (0, 
) and
then perform similar calculations to those of the previous item to get

5

2
‖∂2xω‖2L2(0,T ;L2(	))

≤ 


2
‖ω0‖2 + aT

2
C
(
‖(ω0, z0(−φs))‖2H + ‖ϕ‖2L1(0,T ;L2(	))

)

+ 


2
C
(
‖(ω0, z0(−φs))‖2H + ‖ϕ‖2L1(0,T ;L2(	))

)
+ 


2
‖ϕ‖2L1(0,T ;L2(	))

+ 


2

[

ν21 + ν22

2ε

(∫

M
σ(s)ds

)]

C
(
‖(ω0, z0(−φs))‖2H + ‖ϕ‖2L1(0,T ;L2(	))

)

+ 


2τ1

[

2εν21 + ν22

(∫

M
σ(s)ds

)]
τ2

|ν2|
(
T

τ1
+ 1

)

×
(
‖(ω0, z0(−φs))‖2H + ‖ϕ‖2L1(0,T ;L2(	))

)
, (2.28)

where we have used Cauchy–Schwarz inequality, Young inequality, estimates (2.14),
(2.23), and (2.27). Therefore, taking any ε > 0 in (2.28), there exists C > 0 such that

‖ω‖2
L2(0,T ;H2

0 (	))
= ‖∂2xω‖2L2(0,T ;L2(	))

≤C
(
‖(ω0, z0(−φs))‖2H +‖ϕ‖2L1(0,T ;L2(	))

)
.

(2.29)
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The estimate (2.20) follows directly from the estimates (2.22) and (2.29), and item (a)
is achieved.

Proof of item (b). Given ω, v ∈ YT we have, for p = 1, that

‖ω∂xω‖L1(0,T ;L2(	)) ≤ k
∫ T

0
‖ω‖L2(	)‖∂xω‖dt ≤ k

∫ T

0
‖ω‖2H2(	)

dt

≤ k‖ω‖2YT < ∞, (2.30)

where k is the positive constant of the Sobolev embedding L2(	) ↪→ L∞(	). There-
fore, ω∂xω ∈ L1(0, T ; L2(	)), for each ω ∈ YT . Thus, using the triangle inequality,
together with the Cauchy–Schwarz inequality, we get the classical estimate

‖F(ω) − F(v)‖L1(0,T ;L2(	)) ≤ k‖ω − v‖YT
(‖ω‖YT + ‖v‖YT

)
, for any u, v ∈ YT .

(2.31)

Therefore, the map F is continuous concerning the corresponding topologies. On the
other hand, when p = 2, we have for ω, v ∈ YT that

‖F(ω)‖L1(0,T ;L2(	)) ≤ k‖ω‖C(0,T ;L2(	))

∫ T

0
‖ω‖2H2(	)

dt ≤ k‖ω‖3YT < +∞.

(2.32)

Hence, F(ω) is well-defined and for any u, v in YT , we have

‖F(ω) − F(v)‖L1(0,T ;L2(	)) ≤3k

2

(
‖ω‖2YT + ‖v‖2YT

)
‖ω − v‖YT . (2.33)

Thereby, the map F is continuous for the corresponding topologies. ��

2.3 Nonlinear Problem

We are now in a position to prove the main result of the section. Precisely, the next
result gives the well-posedness for the full system (1.3).

Theorem 2.3 Suppose that (1.6) holds. Then, there exist constants r ,C > 0 such that,
for every�0 = (ω0, z0(−·)) ∈ H with ‖�0‖2H ≤ r , the problem (1.3) admits a unique
global solution ω ∈ YT , which satisfies ‖ω‖YT ≤ C‖�0‖H .

Proof Given �0 = (ω0, z0(−·)) ∈ H such that ‖�0‖2H ≤ r , where r is a positive
constant to be chosen, define a mapping ϒ : YT → YT as follows: ϒ(ω) = y, where
y is the solution of (2.18) with a source term ϕ = ωp∂xω = F(ω), p ∈ {1, 2}. The
mapping ϒ is well defined because of item (a) of Theorem 2.2, from which we obtain
thanks to (2.20) that

‖ϒ(ω)‖2YT ≤ C
(
‖�0‖2H + ‖F(ω)‖2L1(0,T :L2(	))

)
.
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Note that ϒ(ω) − ϒ(v) is a solution of (2.18) with initial condition �0 = (0, 0) ∈ H
and source term ϕ = F(ω) − F(v). It follows from (2.20) that

‖ϒ(ω) − ϒ(v)‖2YT ≤ C‖F(ω) − F(v)‖2L1(0,T :L2(	))
,

where the constant C > 0 above does not depend on �0 and ϕ.

Now, considering p = 1, we have from (2.30) that

‖ϒ(ω)‖2YT ≤ C
(
r + k2‖ω‖4YT

)
, ∀ω ∈ YT ,

while from (2.31), we have that

‖ϒ(ω) − ϒ(v)‖2YT ≤ Ck2
(
‖ω‖2YT + ‖v‖2YT

)2 ‖ω − v‖2YT , ∀ω, v ∈ YT .

Thus, when ‖ω‖2YT ≤ R we get

‖ϒ(ω)‖2YT ≤ C
(
r + k2R2

)
, ∀ω ∈ B,

‖ϒ(ω) − ϒ(v)‖2YT ≤ 4Ck2R2‖ω − v‖2YT , ∀ω, v ∈ B.

(2.34)

Next, pick R = 1√
5k2C

and r = 5R − 1

5C
. For ω ∈ B = {ω ∈ YT ; ‖ω‖2YT ≤ R}, we

have that

‖ϒ(ω)‖2YT ≤ R, ∀ω ∈ B,

‖ϒ(ω) − ϒ(v)‖2YT ≤ 4

5
‖ω − v‖2YT , ∀ω, v ∈ B.

(2.35)

On the other hand, when p = 2, we have from (2.32) that

‖ϒ(ω)‖2YT ≤ C
(
r + k2‖ω‖6YT

)
, ∀ω ∈ YT

and from (2.33), we have that

‖ϒ(ω) − ϒ(v)‖2YT ≤ C

(
3k

2

)2 (
‖ω‖2YT + ‖v‖2YT

)2 ‖ω − v‖2YT , ∀ω, v ∈ YT .

Thus, when ‖ω‖2YT ≤ R, we get

‖ϒ(ω)‖2YT ≤ C
(
r + k2R3

)
, ∀ω ∈ B,

‖ϒ(ω) − ϒ(v)‖2YT ≤ 9Ck2R2‖ω − v‖2YT , ∀ω, v ∈ B.

(2.36)
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Therefore, just take R = 1

4k
√
C

and r = 15

64kC
3
2

and we will have that

‖ϒ(ω)‖2YT ≤ R, ∀ω ∈ B,

‖ϒ(ω) − ϒ(v)‖2YT ≤ 9

16
‖ω − v‖2YT , ∀∀ω, v ∈ B.

(2.37)

Consequently, due to (2.35) and (2.36), the restriction of the map � to B is well-
defined, and � is a contraction on the ball B. As an application of Banach Fixed Point
Theorem, the map� possesses a unique fixed element ω,which is the unique solution
to problem (1.3). Finally, the solution is global thanks to the dissipation property.
Indeed, the energy E(t) (see (1.5)) of the system (1.3) satisfies

E ′(t) ≤ 1

2
〈GX , X〉R2 ≤ 0,

where G and X are given in Proposition 2.1. ��

3 Exponential Stability of Solutions

In this section, we will prove the two main outcomes of our work. The first sta-
bilization result will be proved via the Lyapunov approach. The second one shows
an observability inequality which will be proved by the compactness–uniqueness
argument.

3.1 Proof of Theorem 1.1

Initially, let us remember that the energy of the system (2.18), for ϕ = ωp∂xω, with
p ∈ {1, 2}, is defined by

E(t) = ‖�(t)‖2H = ‖ω(t)‖2 + ‖z(t)‖2L2(Q)
,

where ‖z(t)‖2L2(Q)
= |ν2|

∫

M
sσ(s)

∫ 1

0
z2(t, φ, s)dφds. Thus, using (2.18), we get

E ′(t) = 2〈�t (t),�(t)〉H = 2〈A�(t),�(t)〉H + 2〈(ωp∂xω, 0),�(t)〉H
= 〈GX , X〉R2 + 2

∫

	

ωp+1∂xωdx

= 〈GX , X〉R2 + 2
ωp+2(
)

p + 2
− 2

ωp+2(0)

p + 2
= 〈GX , X〉R2 ≤ 0,

(3.1)

where G and X were given in (2.8). Let us now define a Lyapunov function

�(t) = E(t) + μ1E1(t) + μ2E2(t), t ≥ 0,
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where E1(t) and E2(t) are given by

E1(t) =
∫

	

xω2(x, t)dx and E2(t) = |ν2|
∫

	0

∫

M
se−δφsσ(s)z2(t, φ, s)dsdφ,

μ1 and μ2 are positive constants to be determined and δ > 0 is arbitrary constant.
Note that

μ1E1(t) = μ1

∫

	

xω2(x, t)dx ≤ 
μ1

∫

	

ω2(x, t)dx = 
μ1‖ω‖2

and

μ2E2(t) ≤ μ2|ν2|
∫

	0

∫

M
sσ(s)z2(t, φ, s)dsdφ = μ2‖z(t)‖2
2(Q)

.

Consequently,

μ1E1(t) + μ2E2(t) ≤ max{
μ1, μ2}E(t)

and, therefore

E(t) ≤ �(t) ≤ (1 + max{
μ1, μ2}) E(t). (3.2)

Differentiating E1(t) and E2(t), using integration by parts and the boundary conditions
of (1.3) and (2.1), we get

E ′
1(t) = α‖ω‖2 − 3β‖∂xω‖2 − 5‖∂2xω‖2 + 2

p + 2

∫

	

ωp+2dx

+


[

ν21

(
∂2xω(t, 0)

)2 + 2ν1ν2
(
∂2xω(t, 0)

)(∫

M
σ(s)z(t, 1, s)ds

)

+ν22

(∫

M
σ(s)z(t, 1, s)ds

)2
]

(3.3)

and

E ′
2(t) = −|ν2|

∫

M
e−δsσ(s) (z(t, 1, s))2 ds + |ν2|

(∫

M
σ(s)ds

)(
∂2xω(t, 0)

)2

−|ν2|
∫

M

∫

	0

δse−δφsσ(s)z2dφds. (3.4)
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Thus, for �(t) = E(t) + μ1E1(t) + μ2E2(t), we find that

�′(t) + 2μ�(t) = 〈GX , X〉R2 + αμ1‖ω‖2 − 3βμ1‖∂xω‖2 − 5μ1‖∂2xω‖2

+ 2μ1

p + 2

∫

	

ωp+2dx + 
μ1

[
ν21

(
∂2xω(t, 0)

) 2

+ 2ν1ν2
(
∂2xω(t, 0)

)(∫

M
σ(s)z(t, 1, s)ds

)

+ν22

(∫

M
σ(s)z(t, 1, s)ds

)2
]

− μ2|ν2|
∫

M
e−δsσ(s) (z(t, 1, s))2 ds

+ μ2|ν2|
(∫

M
σ(s)ds

)(
∂2xω(t, 0)

)2

− μ2|ν2|
∫

M

∫

	0

δse−δφsσ(s)z2dφds

+ 2μ‖ω(t)‖2 + 2μ‖z(t)‖2L2(Q)
+ 2μμ1

∫

	

xω2(x, t)dx

+ 2μμ1|ν2|
∫

	0

∫

M
se−δφsσ(s)z(t, φ, s)dsdφ.

Next, let

Gμ1 = μ1


(
ν21 ν1ν2

ν1ν2 ν22

)

, Gμ2 = μ2

⎛

⎝ |ν2|
∫

M
σ(s)ds 0

0 0

⎞

⎠

and

X =
⎛

⎝
∂2xω(t, 0)∫

M
σ(s)z(t, 1, s)ds

⎞

⎠ .

Thus, we have that

�′(t) + 2μ�(t) = 〈(G + Gμ1 + Gμ2)X , X〉R2 + (αμ1 + 2μ)‖ω‖2
− 3βμ1‖∂xω‖2 − 5μ1‖∂2xω‖2

+ 2μ1

p + 2

∫

	

ωp+2dx − μ2|ν2|
∫

M
e−δsσ(s) (z(t, 1, s))2 ds

− μ2|ν2|
∫

M

∫

	0

δse−δφsσ(s)z2dφds

+ 2μ‖z(t)‖2L2(Q)
+ 2μμ1

∫

	

xω2(x, t)dx
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+ 2μμ1|ν2|
∫

	0

∫

M
se−δφsσ(s)z(t, φ, s)dsdφ

≤ 〈(G + Gμ1 + Gμ2)X , X〉R2 + (αμ1 + 2μ(1 + μ1
)) ‖ω‖2
− 3βμ1‖∂xω‖2 − 5μ1‖∂2xω‖2

+ 2μ1

p + 2

∫

	

ωp+2dx − μ2|ν2|e−δτ2

∫

M
σ(s) (z(t, 1, s))2 ds

− μ2|ν2|e−δτ2δ

∫

M

∫

	0

sσ(s)z2dφds

+ 2μ‖z(t)‖2L2(Q)
+ 2μμ1|ν2|

∫

	0

∫

M
sσ(s)z(t, φ, s)dsdφ.

Now, observe that

T (μ1, μ2):=G + Gμ1 + Gμ2 = G + μ1


(
ν21 ν1ν2

ν1ν2 ν22

)

+ μ2

( |ν2|
∫

M σ(s)ds 0
0 0

)

is a continuous map of R2 on the vector space of square matrices M2×2(R) and that
the determinant and trace are continuous functions of M2×2(R) over R, we have that
h1(μ1, μ2) = det T (μ1, μ2) and h2(μ1, μ2) = trT (μ1, μ2) are continuous from R

2

over R. Therefore, knowing that h1(0, 0) = detG > 0 and h2(0, 0) = trG < 0,
it follows that for μ1, μ2 small enough, one can claim that h1(μ1, μ2) > 0 and
h2(μ1, μ2) < 0. Thereby, G + Gμ1 + Gμ2 is negative defined for μ1, μ2 small
enough. Moreover, using the Poincaré inequality1, we find

�′(t) + 2μ�(t) ≤
[


2

π2 (αμ1 + 2μ(1 + μ1
)) − 3βμ1

]

‖∂xω‖2 − 5μ1‖∂2xω‖2

+ 2μ1

p + 2

∫

	

ωp+2dx − μ2|ν2|e−δτ2

∫

M
σ(s) (z(t, 1, s))2 ds

+ (
2μ(1 + μ1|ν2|) − μ2|ν2|e−δτ2δ

) ‖z(t)‖2L2(Q)
. (3.5)

Now, we are going to estimate the integral

2μ1

p + 2

∫

	

ωp+2dx .

To do so, applying the Cauchy–Schwarz inequality and using the fact that the energy
of the system E(t) is non-increasing, together with the embedding H1

0 (	) ↪→ L∞(	),
we have, for ‖(ω0, z0)‖H < r , that

2μ1

p + 2

∫

	

ωp+2dx ≤ 2μ1

p + 2
‖ω‖2L∞(	)

∫

	

ωpdx ≤ 2
μ1

p + 2
‖∂xω‖2

∫

	

ωpdx

1 ‖ω‖2 ≤ 
2

π2 ‖∂xω‖2, for ω ∈ H2
0 (	),
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≤ 2
μ1

p + 2
‖∂xω‖2
1− p

2 ‖ω‖p ≤ 2
2−
p
2 μ1

p + 2
‖∂xω‖2‖(ω0, z0)‖p

H

≤ 2
2−
p
2 μ1r p

p + 2
‖∂xω‖2. (3.6)

Combining (3.6) and (3.5) yields

�′(t) + 2μ�(t) ≤
[


2

π2 (αμ1 + 2μ(1 + μ1
)) − 3βμ1

]

‖∂xω‖2 − 5μ1‖∂2xω‖2

+ 2
2−
p
2 μ1r p

p + 2
‖∂xω‖2 − μ2|ν2|e−δτ2

∫

M
σ(s) (z(t, 1, s))2 ds

+ (
2μ(1 + μ1|ν2|) − μ2|ν2|e−δτ2δ

) ‖z(t)‖2L2(Q)

≤
[


2

π2 (αμ1 + 2μ(1 + μ1
)) − 3βμ1 + 2
2−
p
2 μ1r p

p + 2

]

‖∂xω‖2

− 5μ1‖∂2xω‖2 + (
2μ(1 + μ1|ν2|) − μ2|ν2|e−δτ2δ

) ‖z(t)‖2L2(Q)
.

(3.7)

Note that �′(t) + 2μ�(t) < 0 when

2μ(1 + μ1|ν2|) − μ2|ν2|e−δτ2δ < 0

and


2

π2 (αμ1 + 2μ(1 + μ1
)) − 3βμ1 + 2
2−
p
2 μ1r p

p + 2
< 0,

which holds for μ > 0 satisfying, respectively

μ <
μ2|ν2|e−δτ2δ

2(1 + μ1|ν2|)
and

0 < μ <
μ1

2
2(1 + 
μ1)(p + 2)

[
(p + 2)(3π2β − α
2) − 2π2
2−

p
2 r p

]
,

where we need to take r > 0 satisfying

(p + 2)(3π2β − α
2) − 2π2
2−
p
2 r p > 0

or, equivalently, r > 0 must satisfy

r <

(
(p + 2)(3π2β − α
2)

2π2
2−
p
2

) 1
p

.
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Thus, for μ1, μ2 small enough and an arbitrary δ > 0, taking

r <

(
(p + 2)(3π2β − α
2)

2π2
2−
p
2

) 1
p

and

μ < min

{
μ2|ν2|e−δτ2δ

2(1 + μ1|ν2|) ,
μ1

2
2(1 + 
μ1)(p + 2)

×
[
(p + 2)(3π2β − α
2) − 2π2
2−

p
2 r p

]}
,

we get that

�′(t) + 2μ�(t) < 0 ⇐⇒ �(t) ≤ �(0)e−2μt .

Lastly, from (3.2), we get

E(t) ≤ �(t) ≤ �(0)e−2μt ≤ (1 + max{
μ1, μ2})E(0)e−2μt ≤ κE(0)e−2μt ,

for κ > 1 + max{
μ1, μ2}, proving the theorem. ��

3.2 Proof of Theorem 1.3

First, we deal with the linear system (2.1) and claim that the following observability
inequality holds

‖ω0‖2 + ‖z0‖2L2(Q)
≤ C

∫ T

0

(

(∂2xω(t, 0))2 +
∫

M
sσ(s)z2(t, 1, s) ds

)

dt,

(3.8)

where (ω0, z0) ∈ H and (ω, z)(t) = et A (ω0, z0) is the unique solution of (2.1). This
leads to the exponential stability in H of the solution (ω, z) to (2.1). The proof of this
inequality can be obtained by a contradiction argument. Indeed, if (3.8) is not true,
then there exists a sequence {(ωn

0 , z
n
0

)}n ⊂ H such that

‖ωn
0‖2 + ‖zn0‖2L2(Q)

= 1 (3.9)

and

∥
∥
∥∂

2
xω

n(·, 0)
∥
∥
∥
2

L2(0,T )
+
∫

M
sσ(s)z2(t, 1, s) ds → 0 as n → +∞, (3.10)

where (ωn, zn) (t) = et A
(
ωn
0 , z

n
0

)
. Then, arguing as in [8], we can deduce from

Proposition 2.1 that {ωn}n is convergent in L2
(
0, T , L2(	)

)
. Moreover, {ωn

0}n is
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a Cauchy sequence in L2(	), while {zn0}n is a Cauchy sequence in L2(Q). Thereafter,
let (ω0, z0) = limn→∞

(
ωn
0 , z

n
0

)
in H and hence ‖ω0‖2 + ‖z0‖2L2(Q)

= 1, by virtue

of (3.9). Next, take (ω, z) = e·A (ω0, z0) , and assume, for the sake of simplicity and
without loss of generality, that α = β = 1. This, together with Proposition 2.1 and
(3.10), implies that ω is solution of the system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tω + ∂xω + ∂3xω − ∂5xω = 0, x ∈ 	, t > 0,

ω(0, t) = ω(
, t) = ∂xω(
, t) = ∂xω(0, t)

= ∂2xω(
, t) = ∂2xω(0, t) = 0, t > 0,

ω(x, 0) = ω0(x), x ∈ 	,

with ‖ω0‖L2(	) = 1. The latter contradicts the result obtained in [8, Lemma 4.2],
which states that the above system has only the trivial solution (see also Lemma 1.2).
This proves the observability inequality (3.8).

Now, let us go back to the original system (1.3) and use the same arguments as
in [29]. First, we restrict ourselves to the case p = 1 as the case p = 2 is similar.
Next, consider an initial condition ‖(ω0, z0)‖H ≤ �,where � will be fixed later. Then,
the solution ω of (1.3) can be written as ω = ω1 + ω2, where ω1 is the solution of
(2.1) with the initial data (ω0, z0) ∈ H and ω2 is solution of (2.18) with null data and
right-hand side ϕ = ω∂xω ∈ L1(0, T ; L2(	)), as in Theorem 2.2. In other words, ω1
is the solution of

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂tω1 − ∂5xω1 + ∂3xω1 + ∂xω1 = 0, x ∈ 	, t > 0,

ω1(t, 0) = ω1(t, 
) = ∂xω1(t, 0) = ∂xω1(t, 
) = 0, t > 0,

∂2xω1(t, 
) = ν1∂
2
xω1(t, 0) + ν2

∫ t−τ1

t−τ2

σ(t − s)∂2xω(s, 0) ds, t > 0,

∂2xω1(t, 0) = z0(t), t ∈ (−τ2, 0),

ω1(0, x) = ω0(x), x ∈ 	,

and ω2 is solution of

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂tω2 − ∂5xω2 + ∂3xω2 + ∂xω2 = −ω∂xω, x ∈ 	, t > 0,

ω2(t, 0) = ω2(t, 
) = ∂xω2(t, 0) = ∂xω2(t, 
) = 0, t > 0,

∂2xω2(t, 
) = ν1∂
2
xω2(t, 0) + ν2

∫ t−τ1

t−τ2

σ(t − s)∂2xω(s, 0) ds, t ∈ (−τ2, 0),

∂2xω2(t, 0) = 0, x ∈ 	,

ω2(0, x) = 0, x ∈ 	.

In light of the exponential stability of the linear system (2.1) (see the beginning of this
subsection) and Theorem 2.2, we have

‖(ω(T ), z(T ))‖H ≤ χ ‖(ω0, z0)‖H + C‖ω‖2L2(0,T ,H2(	))
, (3.11)
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in which χ ∈ (0, 1). Subsequently, multiply (1.3) 1 by xω and performing the same
computations as for (3.3), we get

∫

	

xω2(T , x)dx + 3
∫ T

0

∫

	

(∂xω(t, x))2 dxdt + 5
∫ T

0

∫

	

(
∂2xω(t, x)

)2
dxdt

=
∫ T

0

∫

	

ω2(t, x)dxdt + 


∫ T

0

(

ν1∂
2
xω(t, 0) + ν2

∫

M
σ(s)z(t, 1, s) ds

)2

dt

+
∫

	

xω2
0(x)dx + 2

3

∫ T

0

∫

	

ω3(t, x)dxdt . (3.12)

On one hand, multiplying the first equation of (1.3) by ω and arguing as done for (2.3)
(see (2.13)), we get

∫ T

0

(

ν1∂
2
xω(t, 0) + ν2

∫

M
σ(s)z(t, 1, s) ds

)2

dt ≤ C‖(ω0, z0)‖2H .

(3.13)

On the other hand, using Gagliardo–Nirenberg and Cauchy–Schwarz inequalities,
together with the dissipativity of the system (1.3), we deduce that

∫ T

0

∫

	

ω3dxdt ≤ C(T ) ‖(ω0, z0)‖2H ‖ω‖L2(0,T ;H2(	)).

Applying Young’s inequality to the last estimate and combining the obtained result
with (3.12)–(3.13), we reach

‖ω‖2L2(0,T ;H2(	))
≤ C ‖(ω0, z0)‖2H

(
1 + ‖(ω0, z0)‖2H

)
. (3.14)

Finally, recalling that ‖(ω0, z0)‖H ≤ �, and inserting (3.14) into (3.11), we get

‖(ω(T ), z(T ))‖H ≤ ‖(ω0, z0)‖H
(
χ + C� + C�3

)
.

Given η > 0 sufficiently small so that χ + η < 1, one can choose � small such that
� + �3 <

η
C , to obtain

‖(ω(T ), z(T ))‖H ≤ (χ + η) ‖(ω0, z0)‖H .

Lastly, using the semigroup property and the fact that χ + η < 1, we conclude the
exponential stability result of Theorem 1.3. ��

4 Conclusion

This article presented a study on the stability of the Kawahara equation with a
boundary-damping control of finite memory type. It is shown that such a control
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is good enough to obtain the desirable property, namely, the exponential decay of the
system’s energy. The proof is based on two different approaches. The first one invokes
a Lyapunov functional and provides an estimate of the energy decay. In turn, the sec-
ond one uses a compactness–uniqueness argument that reduces the issue to a spectral
problem.

Finally, we would like to point out that our well-posedness result (see Theorem 2.3)
is shown for the nonlinearity ωp∂xω, where p ∈ {1, 2}. Notwithstanding, we believe
that using an interpolation argument, this finding should remain valid if p ∈ (1, 2).
The same remark applies to the second stability result (see Theorem 1.3). It is also
noteworthy that our first stability outcome (see Theorem 1.1) is established for a more
general nonlinearity ωp∂xω, p ∈ [1, 2].
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