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Abstract. The purpose of this article is the investigation of the global
control properties of a coupled nonlinear dispersive system posed in the
periodic domain T, a system with the structure of a nonlinear Schrödinger
equation and a nonlinear Korteweg-de Vries equation. Combining esti-
mates derived from Bourgain spaces and using microlocal analysis we
show that this system has global control properties. The main novelty
of this work is twofold. One is that the global results for the nonlinear
system are presented for the first time thanks to the propagation of sin-
gularities. The second one is that these propagation results are shown
to a coupled dispersive system with two equations defined by differential
operators with principal symbols of different orders.
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1. Introduction

1.1. Setting of the problem

Our work is related to the global control properties of a system composed of a
nonlinear Schrödinger equation and a nonlinear Korteweg-de Vries equation

⎧
⎨

⎩

i∂tu + ∂2
xu = i∂xv + β|u|2u, (x, t) ∈ T × R+,

∂tv + ∂3
xv + 1

2∂x

(
v2
)

+ μ∂xv = Re (∂xu) , (x, t) ∈ T × R+,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ T,

(1.1)

where u = u(x, t) is a complex valued function and v = v(x, t) is a real-valued
function. The nonlinear Schrödinger–Korteweg-de Vries system (NLS–KdV)
appears in the study of resonant interaction between short and long capillary-

0123456789().: V,-vol  

http://crossmark.crossref.org/dialog/?doi=10.1007/s00030-023-00867-7&domain=pdf
http://orcid.org/0000-0002-1608-1832


   61 Page 2 of 38 R. de A. Capistrano-Filho and A. B. Pampu NoDEA

gravity waves on water of uniform finite depth, in plasma physics and in a
diatomic lattice system. Here, u represents the short wave, while v stands for
the long wave, see e.g. [1,2,4,14] and the references therein for more details
about the physical motivation for this system.

The first goal of the manuscript is to establish well-posedness results for
the system (1.1). To do so the main ingredient is a fixed point argument in the
Bourgain spaces associated with the linear Schrödinger and linear Korteweg-de
Vries equations. Once we have the global well-posedness of the NLS–KdV
system, we can consider the system (1.1) from a control point of view with
two forcing terms f and g added in each equation

⎧
⎨

⎩

i∂tu + ∂2
xu = i∂xv + β|u|2u + f, (x, t) ∈ T × (0, T ),

∂tv + ∂3
xv + 1

2∂x

(
v2
)

+ μ∂xv = Re (∂xu) + g, (x, t) ∈ T × (0, T ),
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ T,

(1.2)

where f and g are assumed to be supported in a non-empty subset ω ⊂ T. Here,
the main point is to use microlocal analysis to prove results of propagation of
the singularities, which is the key point to proving global control results. The
main difficulty to prove these propagations is related to the fact that we have
a coupled system defined by two differential operators with principal symbols
of different orders.

To the authors’ best knowledge, no global control results for the nonlinear
NLS–KdV system (1.2) exist in the literature. However, for the linear system,
control problems are considered in [3]. Precisely, the authors treated a linear
Schrödinger–Korteweg-de Vries system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

i∂tw + ∂2
xw = a1w + a2y + h1ω in Q

∂ty + ∂3
xy + ∂x(My) = Re (a3w) + a4y + l1ω in Q

w(0, t) = w(1, t) = 0 in (0, T ),
y(0, t) = y(1, t) = ∂xy(1, t) = 0 in (0, T ),
w(x, 0) = w0(x), y(x, 0) = y0(x) in (0, 1)

in a bounded domain Q:=(0, 1) × (0, T ) with a purely real or a purely imagi-
nary control h acting in the Schrödinger equation and the control l acting in
the KdV equation. Thanks to the Carleman estimates they proved an observ-
ability inequality that helps them to achieve the result. However, the following
questions naturally arise:
Control problems: What can be said about the global controllability of the
system ( 1.2)? Could it be possible to find appropriate damping mechanisms
to stabilize this system?

In this way, our work will provide answers to these questions for the
nonlinear NLS–KdV system (1.2). Although these issues are typical in control
theory and have been the subject of study in several single equations over
the past 30 years, the controllability problems involving nonlinear coupled
dispersive systems are still not well understood.
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1.2. Known results for single equations

Let us present a review of the control and stabilization results for the KdV
and NLS equations. We caution that this is only a small sample of the extant
works on these equations.

1.2.1. KdV equation. Russell and Zhang are the pioneers in the study of con-
trol problems for the KdV equation [25,26]. They treated the following KdV
system

ut + uux + uxxx = f , (1.3)

with periodic boundary conditions and an internal control f . Since then, both
controllability and stabilization problems have been intensively studied. We
can cite, for instance, the exact boundary controllability of KdV on a bounded
domain [12,13,16,23,28] and the internal control problem [10], among others.

It is well known that the KdV system (1.3) has at least the following
conserved integral quantities

I1(t) =
∫

T

u(x, t)dx, I2(t) =
∫

T

u2(x, t)dx and

I3(t) =
∫

T

(

u2
x(x, t) − 1

3
u3(x, t)

)

dx.

From the historical origins of the KdV equation involving the behavior of
water waves in a shallow channel, it is natural to think that I1 and I2 express
conservation of volume (or mass) and energy, respectively.

The pioneer work in the periodic case is due to Russel and Zhang [25]
and is purely linear. After some years and the discovery of a subtle smoothing
property of solutions of the KdV equation due to Bourgain [7], the authors
were able to extend their results to the nonlinear system [26]. Precisely, the
authors studied the equation (1.3) assuming f supported in a given open set
ω ⊂ T and taking the control input f(x, t) as follows

f (x, t) = [Gh] (x, t) :=g (x)
(

h (x, t) −
∫

T

g (y) h (y, t) dy

)

, (1.4)

where h is considered as a new control input, and g(x) is a given non-negative
smooth function such that {g > 0} = ω and

2π [g] =
∫

T

g (x) dx = 1.

For the chosen g, it is easy to see that
d

dt

∫

T

u (x, t) dx =
∫

T

f (x, t) dx = 0,

for any t ∈ R and for any solution u = u(x, t) of the system

ut + uux + uxxx = Gh. (1.5)

Thus, the mass of the system is indeed conserved. With this in hand, Russell
and Zhang were able to show the local exact controllability and local expo-
nential stabilizability for the system (1.5). Indeed, the results presented in [26]
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are essentially linear; they are more or less small perturbations of the linear
results. However, Laurent et al. in [19] showed global results for the system
(1.5). The global control results are established with the aid of certain pro-
perties of propagation of compactness and regularity in Bourgain spaces.

1.2.2. NLS equation. Consider the following equation

i∂tu + Δu = λ|u|2u, (x, t) ∈ M × R. (1.6)

The first results for the system (1.6), when M is a compact Riemannian
manifold of dimension two without boundary, is due to Dehman et al. in [15].
The authors considered the stabilization and exact controllability problem for
NLS. Precisely, to prove the control properties, the authors were able to prove
the propagation results in M. However, these properties are shown considering
ω be an open subset of M and the following two assumptions:

(A) ω geometrically controls M; i.e. there exists T0 > 0, such that every
geodesic of M traveling with speed 1 and issued at t = 0, enters the set
ω in a time t < T0.

(B) For every T > 0, the only solution lying in the space C[0, T ],H1(M)) of
the system
{

i∂tu + Δu + b1(x, t)u + b2(x, t)u, (x, t) ∈ M × (0, T ),
u = 0, (x, t) ∈ ω × (0, T ),

where b1(t, x) and b2(t, x) ∈ L∞ (0, T, Lp(M)) for some p > 0 large
enough, is the trivial one u ≡ 0.

Considering the NLS on a periodic domain T with Dirichlet or Neumann
boundary conditions, Laurent [18] applied the method introduced by Dehman
et al. to prove that this system is globally internally controllable.

When a compact Riemannian manifold of dimension d ≥ 3 is considered,
Strichartz estimates do not yield uniform well-posedness results at the energy
level for the NLS equation, a property which seems to be very important to
prove controllability results. In this way, Burq et al. in two works [8,9] managed
to introduce the Bourgain spaces Xs,b on certain manifolds without boundary
where the bilinear Strichartz estimates can be shown and, consequently, they
get the uniform well-posedness for the NLS equation. Taking advantage of
these results, Laurent [17] proved that the geometric control condition (A) is
sufficient to prove the exact controllability for the NLS in Xs,b spaces on some
three-dimensional Riemannian compact manifolds. Similarly in this work, we
mention [24] and [18] where controllability results were studied for the NLS in
Euclidean and periodic domains, respectively, relying on the properties of the
Bourgain spaces.

1.3. Main results

Note that to deal with the nonlinearity associated with the KdV part in (1.2),
we must use appropriated estimates which requires that the mean value of v
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satisfying

[v] =
1
2π

∫

T

v(x, t)dx = 0, ∀t ≥ 0.

If we set μ̃:=[v0], we get from the second equation in (1.2) that

μ̃:=[v0] =
1
2π

∫

T

v(x, 0)dx =
1
2π

∫

T

v(x, t)dx, ∀t > 0.

Thus it is convenient to set ṽ = v − μ̃ and to study the following equivalent
system
⎧
⎨

⎩

i∂tu + ∂2
xu = i∂xṽ + β|u|2u + f, (x, t) ∈ T × (0, T ),

∂tṽ + ∂3
xṽ + 1

2∂x

(
ṽ2
)

+ (μ + μ̃)∂xṽ = Re (∂xu) + r, (x, t) ∈ T × (0, T ),
u(x, 0) = u0(x), v(x, 0) = ṽ0(x), x ∈ T,

where μ ∈ R is a constant.
Now consider a ∈ L∞(T) a real valued function such that

a(x)2 > η > 0, (1.7)

in some non-empty open set ω ⊂ T and the operator G defined as in [25], for
some g ∈ C∞(T) real valued function such that g > 0 in ω ⊂ T, as

Gh(x, t):=g(x)
(

h(x, t) −
∫

T

g(y)h(y, t)dy

)

, (1.8)

where h is any function considered as a control input. In order to stabilize
our system we have chosen f := − ia(x)2u and r:=Gh, with h = −G∗ṽ, so the
following closed-loop system reads
⎧
⎨

⎩

i∂tu + ∂2
xu = i∂xv + β|u|2u − ia(x)2u, (x, t) ∈ T × R+,

∂tṽ + ∂3
xṽ + 1

2∂x

(
ṽ2
)

+ (μ + μ̃)∂xṽ = Re (∂xu) − GG∗ṽ, (x, t) ∈ T × R+,
u(x, 0) = u0(x), ṽ(x, 0) = ṽ0(x), x ∈ T.

(1.9)

In this case we can define the energy of the system as

E(t):=‖u(t)‖2L2(T) + ‖ṽ(t)‖2L2
0(T)

,

and L2
0(T) = {w ∈ L2(T); [w] = 0}. So, multiplying the first equation of (1.9)

by u, the second one by ṽ and integrating by parts we can obtain1

d

dt
E(t) = −2

(
‖a(·)u(t)‖2L2(T) + ‖Gṽ(t)‖2L2

0(T)

)
≤ 0. (1.10)

This indicates that the controls play the role of two damping mechanisms.
So, our result establishes that the system (1.9) is asymptotically exponentially
stable. Precisely, we provide a positive answer to the global stabilization ques-
tion already mentioned at the beginning of the introduction.

1 Actually, by (1.8) and Fubini’s theorem, G is self-adjoint (i.e. G∗ = G), so we shall keep
the notation for the feedback h = −G∗ṽ = −Gṽ throughout.
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Theorem 1.1. Assume that a ∈ L∞(T) satisfies the conditions (1.7) and Gh
given by (1.8). Then, for every R0 > 0, there exist C:=C(R0) > 0 and γ > 0
such that the following inequality holds

‖(u, ṽ)(t)‖L2(T)×L2
0(T)

≤ Ce−γt‖(u0, ṽ0)‖L2(T)×L2
0(T)

, ∀t ≥ 0, (1.11)

for every solution (u, ṽ) of the system (1.9) with initial data (u0, ṽ0) ∈ L2(T)×
L2
0(T) satisfying ‖(u0, ṽ0)‖L2(T)×L2

0(T)
≤ R0.

Once we have established the global stabilization result, the answer for
the global exact controllability problem will be a consequence of the following
local null controllability theorem.

Theorem 1.2. Let ω be any nonempty set of T. Then there exist δ > 0 and T >
0 such that for every (u0, ṽ0) ∈ L2(T) × L2

0(T) with ‖(u0, ṽ0)‖L2(T)×L2
0(T)

< δ,
we can find f ∈ C([0, T ];L2(T)) and h ∈ C([0, T ];L2(T)), f and h compactly
supported in ]0, T [×ω, such that, the unique solution (u, ṽ) ∈ C([0, T ];L2(T)×
L2(T)) of the system (1.9) satisfies (u, ṽ)(x, T ) = (0, 0).

Finally, with the previous local controllability result in hand, combining
it with the global stabilization result we get the global controllability result,
which can be read as follows.

Theorem 1.3. Let ω ⊂ T be a nonempty open set and R0 > 0. Then, there exist
T :=T (R0) > 0 such that, for every (u0, v0), (u1, v1) ∈ L2(T) × L2(T) with

‖(u0, v0)‖L2(T)×L2(T) ≤ R0 and ‖(u1, v1)‖L2(T)×L2(T) ≤ R0,

and [v0] = [v1] one can find control inputs f ∈ C([0, T ];L2(T)) and h ∈
C([0, T ];L2

0(T)), with f and h supported in ω×(0, T ), such that the unique solu-
tion (u, v) ∈ C([0, T ];L2(T)×L2(T)) of the system (1.2) satisfies (u, v)(x, T ) =
(u1(x), v1(x)).

1.4. Heuristic and outline of the manuscript

In this work, global control results are proved by combining estimates derived
from Bourgain spaces and using microlocal analysis. To our knowledge, this is
the first time that this method is used in a coupled dispersive system with two
equations defined by differential operators with principal symbols of different
orders and more importantly, a key feature in this contribution is that we
are able to prove global control results for the nonlinear system in a bounded
domain. This represents an improvement with respect to the previous paper
[3] where the control problem, for the linear system, is considered. The key
ingredients of this work are:

• Strichartz, bilinear and multilinear estimates associated to the solution
of the problem under consideration;

• Microlocal analysis to prove propagation of the regularity and compact-
ness for two equations defined by differential operators with principal
symbols of different orders;

• Unique continuation property which is a consequence of the Carleman
estimates for each equation, KdV and Schrödinger equations.
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The proof of the Theorem 1.1 is equivalent to proving an observability
inequality, which one, by using contradiction arguments, relies on to prove a
unique continuation property for the system (1.9). This property is achieved
thanks to the propagation results using the smooth properties of the Bour-
gain spaces. The main difficulty to prove the propagation results arises from
the fact that the system (1.9) is defined by two differential operators with
principal symbols of different orders. To overcome this difficulty we employ
the estimates, proved in Sect. 2, for the solution of our problem in Bourgain
spaces.

The strategy to prove Theorem 1.2 is to consider the control operator for
the nonlinear problem as a perturbation of the control operator for the linear
system associated with (1.9), the perturbation argument is due to Zuazua
[29]. Additionally, the control result for large data (Theorem 1.3) will be a
combination of a global stabilization result (Theorem 1.1) and the local control
result (Theorem 1.2), as is usual in control theory.

It is important to point out that the dissipation laws in (1.9) are intrin-
sically linked with the physical problems modeled by the Schrödinger and the
KdV equations. For these equations, the same dissipation laws were
already considered in [18,24], for the NLS equation, and in [19,26], for the
KdV equation.

Lastly, since we are working with a coupled system with the structure of
the nonlinear Schrödinger equation and nonlinear Korteweg-de Vries equation
it is natural to adapt the approach introduced by [18,19], however, a direct
application of these results is not enough to get the main results of our article.
The first novelty of this manuscript is to deal with the coupled terms, here it
is necessary estimates these terms in the Bourgain spaces (see Lemma 2.5 and
Proposition 2.6) to be able to perform with the fixed point argument, which
is necessary to prove the well-posedness and the controllability results for the
nonlinear system. A second and important point is to treat the nonlinear
case, instead of the linear one (see [3]), to deal with a nonlinear problem it is
necessary to prove propagation of compactness and regularity results, and also,
a unique continuation property for the solution of the system (1.2). This was
achieved thanks to the estimates in the Bourgain spaces, which are paramount
and the key to dealing with the nonlinear terms.

Our manuscript is outlined as follows. Section 2 is to establish estimates
needed in our analysis, Strichartz, bilinear and multilinear estimates. With
these estimates, we are can prove the existence of solutions for the nonlinear
NLS–KdV system with source and damping terms in Sect. 3. Next, Sects. 4
and 5, are aimed to present the proof of the stabilization and controllability
theorems, respectively. We also present in Sect. 6 concluding remarks and open
problems. Finally, Appendixes A and B are devoted to proving the propagation
results and the unique continuation property, respectively.

2. Fourier transform restriction

In this section, we present definitions, some properties of the Bourgain spaces
associated with the system (1.1), and estimates which will be essential to
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prove our main results. It is well known that Bourgain [6] discovered a subtle
smoothing property of solutions of the Schrödinger and KdV equations in R

and T.

2.1. Definitions and notations

Let us now define the Bourgain spaces Xk,b and Y s,b associated with the
linear operators of the Schrödinger and KdV equations, respectively. For given
k, b, s ∈ R, functions u : T × R → C and v : T × R → R, in S(T × R), and
μ ∈ R define the quantities

‖u‖Xk,b =

(
∑

n∈Z

∫ +∞

−∞
〈n〉2k

〈
τ + n2

〉2b |f̂(n, τ)|2dτ

)1/2

and

‖v‖Y s,b =

(
∑

n∈Z

∫ +∞

−∞
〈n〉2s

〈
τ − n3 + μn

〉2b |ĝ(n, τ)|2dτ

)1/2

,

where f̂ is the Fourier transform of f with respect to the variables x and t,

with 〈·〉 =
√

1 + | · |2. The Bourgain spaces Xk,b and Y s,b associated with
Schrödinger and KdV operators are the completion of the Schwartz space
S (T × R) under the norm ‖u‖Xk,b and ‖v‖Y s,b , respectively.

Considering the time interval I ⊂ R, we define Xk,b(I) and Y s,b(I) as
the restriction spaces of Xk,b and Y s,b, respectively, to the interval I with the
norm

‖f‖Xk,b(I) = inf
f̃|

I
=f

‖f̃‖Xk,b and ‖g‖Y s,b(I) = inf
g̃|I=g

‖g̃‖Y s,b . (2.1)

We shall also consider the smaller spaces X̃k and Ỹ k defined by the norms

‖u‖X̃k :=‖u‖Xk,1/2 +
∥
∥〈n〉kû(n, τ)

∥
∥

l2nL1
τ

and ‖v‖Ỹ s :=‖v‖Y s,1/2 + ‖〈n〉sv̂(n, τ)‖l2nL1
τ

(2.2)

and the restriction spaces X̃k(I) and Ỹ k(I) as in (2.1). The companion spaces
will be defined as Zk and W s via the norms

‖u‖Zk = ‖u‖Xk,−1/2 +
∥
∥
∥
∥

〈n〉kû(n, τ)
〈τ + n2〉

∥
∥
∥
∥

L1
τ l2n

and

‖v‖W s = ‖v‖Y s,−1/2 +
∥
∥
∥
∥

〈n〉sv̂(n, τ)
〈τ − n3 + μn〉

∥
∥
∥
∥

L1
τ l2n

,

respectively.
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2.1.1. Notations. If I = (0, T ), we denote Xk,b(I) (resp. Y s,b(I), X̃k,b(I)
and Ỹ s,b(I)) by Xk,b

T (resp. Y s,b
T , X̃k,b

T and Ỹ s,b
T ). Denote from now on ψ ∈

C∞
0 (R) a non-negative function supported in [−2, 2] with ψ ≡ 1 on [−1, 1] and

ψδ(t):=ψ (t/δ), for any δ > 0. We also denote

Hs
0(T) = {u ∈ Hs(T); [u] = 0} and L2

0(T) =
{
u ∈ L2(T); [u] = 0

}
.

Finally, for any a ∈ R, a+ (resp. a−) is a number slightly larger (resp. smaller)
than a, more precisely, a+ = a + ε, for some ε > 0 as small as we want. We
shall also denote by Dr the operator defined on D′(T) by

D̂ru(k) =
{ |k|rû(k) if k �= 0,

û(0) if k = 0.
(2.3)

The following properties of Xk,b
T and Y s,b

T , k, s, b ∈ R, can be verified.

(i) Xk,b
T and Y s,b

T are Hilbert spaces.

(ii) Let δ, δ1 ≥ 0, then Xk+δ,b+δ1
T is continuously embedded in Xk,b

T and if
δ > 0 and δ1 > 0 we have a compact embedding. Similar result holds for
Y s,b

T spaces.

(iii) The spaces X̃k
T and Ỹ s

T are continuously embedded in C([0, T ];Hk(T))
and C([0, T ];Hs(T)), respectively.

2.2. Overview of the estimates

This part of the work is dedicated to present estimates for the linear group
associated with Schrödinger and KdV equations. Additionally, we will present
the trilinear and bilinear estimates associated with the nonlinearities involved
in our problem, which are the key to proving the global control results in this
manuscript. These results will be borrowed from [2,18,19].

Let U(t) = eit∂2
x and V (t) = e−t(∂3

x+μ∂x) be the unitary groups associated
to the linear Schrödinger and the Airy equations, respectively. So, the following
linear estimates are verified and the proofs were made in [2, Lemma 4.1.], [19,
Lemma 3.4.] and [18, Lemma 1.2.], respectively, so we will omit them.

Proposition 2.1. Let u0 ∈ Hk(T) and v0 ∈ Hs(T), then

(i) ‖ψ1(t)eit∂2
xu0‖Xk,b ≤ C‖u0‖Hk and
∥
∥
∥
∥ψT (t)

∫ t

0

ei(t−t′)∂2
xF (t′)dt′

∥
∥
∥
∥

Xk, 12

≤ C‖F‖Zk .

(ii) ‖ψ1(t)e−t(∂3
x+μ∂x)v0‖Y s,b ≤ C‖v0‖Hs and

∥
∥
∥
∥ψT (t)

∫ t

0

e(t−t′)(∂3
x+μ∂x)G(t′)dt′

∥
∥
∥
∥

Y s, 12

≤ C‖G‖W s .

(iii) Let −1 ≤ b ≤ 1, s ∈ R and ϕ ∈ C∞(T). Then, for every u ∈ Y s,b,
ϕ(x)u ∈ Y s−|b|,b. Similarly, the multiplication ϕ maps Y s,b

T into Y
s−|b|,b
T .

(iv) Let −1 ≤ b ≤ 1, k ∈ R and ϕ ∈ C∞(T). Then, for every u ∈ Xk,b,
ϕ(x)u ∈ Xk−|b|,b. Similarly, the multiplication ϕ maps Xk,b

T into X
k−|b|,b
T .
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The next proposition, shown in [2, Lemma 4.2.] and [19, Lemma 3.3.],
concerns the trilinear estimates for the term |u|2u and bilinear estimates for
the term ∂xv2, respectively.

Proposition 2.2. The following estimates hold true.
(i) For any k ≥ 0,

‖ψ(t)uvw̄‖Zk � ‖u‖Xk,3/8‖v‖Xk,3/8‖w‖Xk,3/8 . (2.4)

(ii) For any s ≥ 0, T ∈ (0, 1) and v1, v2 ∈ Y s, 12 x-periodic functions having
zero x-mean for all t, that is [v1] = [v2] = 0, there exist two constants
θ > 0 and C > 0, such that

‖ψT (t)∂x (v1v2)‖W s ≤ CT θ ‖v1‖Y s,1/2 ‖v2‖Y s,1/2 , (2.5)

where C is independent of T , v1 and v2.

At this point, we present an elementary lemma concerning the stability
of Bourgain’s spaces with respect to time localization which was proved in
[2, Lemma 4.4.].

Proposition 2.3. Let Xs,b
τ=h(ξ):=

{
f : 〈τ − h(ξ)〉b〈ξ〉s|f̂(τ, ξ)| ∈ L2

}
. Then,

‖ψ(t)f‖Xs,b
τ=h(ξ)

�ψ,b ‖f‖Xs,b
τ=h(ξ)

for any x, b ∈ R. Furthermore, if − 1
2 < b′ ≤ b < 1

2 , then for any 0 < T < 1 we
have

‖ψT (t)f‖
Xs,b′

τ=h(ξ)
�ψ,b′,b T b−b′‖f‖Xs,−b

τ=h(ξ)

Finally, to end this subsection, we invoke the following result related to
the linear system associated with the KdV equation. Precisely, we present
below the following Strichartz estimate for the KdV equation shown in [19,
Lemma 3.2.].

Proposition 2.4. Let T > 0. The following estimate is verified

‖v‖L4(0,T ;L4(T)) ≤ C‖v‖
Y

0, 13
T

.

In other words, Y
0, 13
T is continuously embedded in L4(0, T ;L4(T)).

2.3. Auxiliary estimates

The next auxiliary lemma helps us to prove the necessary estimates for the
following derivative terms ∂xu and ∂xv in W k

T and Zs
T , k, s ∈ R, respectively.

Lemma 2.5. Let ε > 0 and H : Z × R → R such that

H(n, τ) =
|n|

〈τ − n3 + μn〉 1
2−ε 〈τ + n2〉 1

2−ε
, (n, τ) ∈ Z × R,

then there exists a constant C > 0 such that

H(n, τ) ≤ C, ∀(n, τ) ∈ Z × R.
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Proof. It is enough to prove that, for every (n, τ) ∈ Z × R, with |n| large
enough, there exist α > 0 and C0 > 0 such that

〈τ − n3 + μn〉〈τ + n〉 ≥ C0|n|α, (2.6)

with
(
1
2 − ε

)
α > 1.

Indeed, let us assume that (2.6) is verified. We then split the analysis
into two cases, |n| ≤ C, for some C > 0 large enough, and |n| > C. For the
first case, note that considering a fixed n0 ∈ Z, we get

H(n0, τ) =
|n0|

〈τ − n3
0 + μn0〉

1
2−ε 〈τ + n2

0〉
1
2−ε

≤ |n0|, (2.7)

for all τ ∈ R. On the other hand, (2.6) asserts that there exist C0 > 0 and
α > 0 such that

H(n, τ) ≤ |n|
C0|n|( 1

2−ε)α
≤ 1

C0
,

for every (n, τ) ∈ Z × R, with |n| > C. So, by (2.6) and (2.7),

H(n, τ) ≤ max
{

1
C0

, C

}

, ∀(n, τ) ∈ Z × R,

and the lemma is proved.
Now, to prove (2.6) we start by observing that

〈τ − n3 + μn〉〈τ + n2〉 =
(
1 + |τ − n3 + μn|2)

1
2
(
1 + |τ + n2|)

1
2

≥ 1
4
(1 + |τ − n3 + μn|)(1 + |τ + n2|)

≥ 1
4
(|τ − n3 + μn| + |τ + n2|)

≥ 1
4
|n3 − n2 − μn|

≥ 1
4
(|n|3 − |n2 + μn|)

=
1
2
|n|3 +

1
2
|n|3 − |n2 + μn|

≥ 1
8
|n|3 +

1
8
|n|3 − 1

4
|n|2 − 1

4
|μ||n|.

Since we have that lim
|n|→∞

(
1
8
|n|3 − 1

4
|n|2 − 1

4
|μ||n|

)

= ∞, (2.6) is verified.

�

We are in position to prove the last linear estimates.

Proposition 2.6. Let T > 0. If u ∈ X
k, 12
T and v ∈ Y

s, 12
T , for k, s ∈ R, we have

‖∂xu‖W k
T

� ‖u‖
X

k, 12 −
T

(2.8)
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and

‖∂xv‖Zs
T

� ‖v‖
Y

s, 12 −
T

. (2.9)

Proof. We start observing that

‖∂xu‖W k =
∥
∥
∥〈τ − n3 + μn〉− 1

2 〈n〉k∂̂xu
∥
∥
∥

L2
τ l2n

+

∥
∥
∥
∥
∥

〈n〉k∂̂xu(n, τ)
〈τ − n3 + μn〉

∥
∥
∥
∥
∥

L1
τ l2n

.

Since ∂̂xu(n, τ) = inû(n, τ) and

1
〈τ − n3 + μn〉 1

2
≤ 1

〈τ − n3 + μn〉 1
2−ε

,

for any ε > 0, we have that
∥
∥
∥〈τ − n3 + μn〉− 1

2 〈n〉k∂̂xu
∥
∥
∥

L2
τ l2n

≤
∥
∥
∥
∥

n

〈τ − n3 + μn〉 1
2−ε

〈n〉kû

∥
∥
∥
∥

L2l2

.

Thanks to the Lemma 2.5 and using duality argument, follows that
∥
∥
∥
∥

n

〈τ − n3 + μn〉 1
2−ε

〈n〉kû

∥
∥
∥
∥

L2l2

= sup
‖ϕ‖L2l2≤1

∑

n∈Z

∫ ∞

−∞

|n|
〈τ − n3 + μn〉 1

2−ε
〈n〉kû(n, τ)ϕ̂(n, τ)dτ

= sup
‖ϕ‖L2l2≤1

∑

n∈Z

∫ ∞

−∞
H(n, τ)〈τ + n2〉 1

2−ε〈n〉kû(n, τ)ϕ̂(n, τ)dτ

≤ C sup
‖ϕ‖L2l2≤1

∑

n∈Z

∫ ∞

−∞
〈τ + n2〉 1

2−ε〈n〉kû(n, τ)ϕ̂(n, τ)dτ

≤ C sup
‖ϕ‖L2l2≤1

‖〈τ + n2〉 1
2−ε〈n〉kû‖L2

τ l2n
‖ϕ‖L2

τ l2n

≤ C‖u‖
Xk, 12 −ε .

(2.10)

Finally, using the Cauchy–Schwarz inequality we get
∥
∥
∥
∥
∥

〈n〉k∂̂xu(n, τ)

〈τ − n3 + μn〉

∥
∥
∥
∥
∥

L1
τ l2n

≤
∥
∥
∥
∥
∥

1

〈τ − n3 + μn〉 1
2+ε 〈τ − n3 + μn〉 1

2 −ε
〈n〉k∂̂xu(n, τ)

∥
∥
∥
∥
∥

L1
τ l2n

≤
∥
∥
∥
∥
∥

1

〈τ − n3 + μn〉 1
2 −ε

〈n〉k∂̂xu(n, τ)

∥
∥
∥
∥
∥

L2
τ l2n

≤‖u‖
Xk, 1

2 −ε ,

where the last inequality holds using (2.10). So, (2.8) is verified.
Analogously, we can prove (2.9). In fact, observing that

‖∂xv‖Zs = ‖∂xv‖
Xs,− 1

2
+

∥
∥
∥
∥
∥

〈n〉s∂̂xv(n, τ)
〈τ + n2〉

∥
∥
∥
∥
∥

L1
τ l2n
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and
∥
∥
∥
∥
∥

〈n〉s∂̂xv(n, τ)

〈τ + n2〉

∥
∥
∥
∥
∥

L1
τ

l2
n

=

∥
∥
∥
∥
∥

|n|
〈τ + n2〉 1

2
+ε 〈τ + n2〉 1

2
−ε

〈n〉s
v̂(n, τ)

∥
∥
∥
∥
∥

L1
τ

l2
n

≤
∥
∥
∥
∥
∥

|n|
〈τ + n2〉 1

2
−ε

〈n〉s
v̂(n, τ)

∥
∥
∥
∥
∥

L2
τ

l2
n

=

∥
∥
∥
∥
∥

|n|
〈τ + n2〉 1

2
−ε 〈τ − n3 + μn〉 1

2
−ε

〈
τ − n

3
+ μn

〉 1
2

−ε 〈n〉s
v̂(n, τ)

∥
∥
∥
∥
∥

L2
τ

l2
n

,

we conclude the proof of (2.9) arguing by duality as in (2.10) and so the lemma
is proved. �

3. Existence of solutions for the NLS–KdV system

In this section, we are can prove that the following system
⎧
⎨

⎩

i∂tu + ∂2
xu + iϕ(t)2a(x)2u = i∂xv + β|u|2u, (x, t) ∈ T × R+,

∂tv + ∂3
xv + 1

2∂x

(
v2
)

+ μ∂xv = Re(∂xu) − GG∗v, (x, t) ∈ T × R+,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ T,

(3.1)

where a(x) satisfies (1.7) and Gv is defined in (1.8), is well-posed in Hs, for
s ≥ 0. Precisely, we prove the result for X̃s

T and Ỹ s
T , defined by (2.2). So, the

result of well-posedness can be read as follows.

Theorem 3.1. Let T > 0, s ∈ R+, β, μ ∈ R, a ∈ C∞(T) and ϕ ∈ C∞
0 (R)

taking real values. For a given (u0, v0) ∈ Hs(T) × Hs
0(T) there exists a unique

solution (u, v) ∈ X̃s
T ×
(
Ỹ s

T ∩ L2(0, T ;L2
0(T))

)
of (3.1) and the same result is

valid for s = 0 if a ∈ L∞(T). Additionally, the flow map

F : L2(T) × L2
0(T) → X̃0

T × Ỹ 0
T

(u0, v0) �→ F (u0, v0) = (u, v) (3.2)

is Lipschitz on every bounded set.

Proof. We split the proof into three parts. Precisely, first, we prove the exis-
tence and uniqueness of a local solution. After that, we prove that the solution
of (3.1) is globally defined. Finally, we are able to derive that the flow map
(3.2) is Lipschitz. The idea of the proof is to follow the approach of [18,19]
which was inspired by Bourgain [6,7]. A main difference here is the necessity
of Proposition 2.6 which is essential for the proof of the fixed point theorem.
For the sake of completeness let us present the details of the proof.

(a) Existence and uniqueness of local solution.

Let T > 0 to be determined later and t ∈ [0, T ], system (3.1) is equivalent to
the following Duhamel integral equations

u(t) = eit∂2
xu0 − i

∫ t

0

ei(t−t′)∂2
x
{
i∂xv(t′) + β|u|2u(t′) − iϕ(t′)2a(x)2u(t′)

}
dt′
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and

v(t) = e−t(∂3
x+μ∂x)v0 +

∫ t

0

e−(t−t′)(∂3
x+μ∂x)

{

Re(∂xu)(t′) − GG∗v(t′) − 1
2
∂x(v2)(t′)

}

dt′.

Therefore, to find a solution to the system (3.1) in the class X̃s
T ×
(
Ỹ s

T ∩ L2(0, T ;

L2
0(T))

)
is equivalent to proving the existence of a fixed point to the map

Φ:=(Φ1,Φ2) : X̃s
T ×
(
Ỹ s

T ∩ L2(0, T ;L2
0(T))

)
→ X̃s

T ×
(
Ỹ s

T ∩ L2(0, T ;L2
0(T))

)

where

Φ1(u, v) = eit∂2
xu0 − i

∫ t

0

ei(t−t′)∂2
x
{
i∂xv(t′) + β|u|2u(t′) − iϕ(t′)2a(x)2u(t)

}
dt′

and

Φ2(u, v) = e−t(∂3
x+μ∂x)v0 +

∫ t

0

e−(t−t′)(∂3
x+μ∂x)

{

Re(∂xu)(t′) − 1
2
∂x(v2)(t′) − GG∗v(t′)

}

dt′.

Our aim is to prove that Φ is a contraction in some ball of X̃s
T ×
(
Ỹ s

T ∩ L2(0, T ;

L2
0(T))

)
. To do so, observe that item (i) of Proposition 2.1, inequalities (2.4)

and (2.5), Proposition 2.3, and estimate (2.8) give us

‖Φ1(u, v)‖
X̃s

T
� ‖u0‖Hs + ‖∂xv‖Zs

T
+ ‖|u|2u‖Zs

T
+ ‖iϕ(t′)2a(x)2u‖Zs

T

� ‖u0‖Hs + ‖∂xv‖
Y

s, 12 −
T

+ ‖u‖3
X

s, 38
T

+ ‖iϕ(t′)2a(x)2u‖
X

s, 12
T

� ‖u0‖Hs + T 0+

(

‖v‖
Y

s, 12
T

+ ‖u‖3
X

s, 12
T

+ ‖u‖
X

s, 12
T

)

(3.3)

and, similarly,

‖Φ1(u, v) − Φ1(ũ, ṽ)‖
X̃s

T
� T 0+‖u − ũ‖

X̃
s, 12
T

(

1 + ‖u‖2
X

s, 12
T

+ ‖ũ‖2
X

s, 12
T

)

+ T 0+‖v − ṽ‖Ỹ s
T
,

(3.4)

for every (u, v), (ũ, ṽ) ∈ X̃s
T ×

(
Ỹ s

T ∩ L2(0, T ;L2
0(T)
)
. On the other hand,

observe that

‖Re(∂xu)‖Ỹ s
T

=
∥
∥
∥
∥

∂xu + ∂xu

2

∥
∥
∥
∥

Ỹ s
T

� ‖∂xu‖Ỹ s
T
,
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then using items (ii) and (iv) of Proposition 2.1, estimates (2.5) and (2.9), we
have the following

‖Φ2(u, v)‖Ỹ s
T

� ‖v0‖Hs + ‖∂xu‖W s
T

+ ‖∂x(v2)‖W s
T

+ ‖GG∗v‖W s
T

� ‖v0‖Hs + T 0+

(

‖u‖
X

s, 12
T

+ ‖v‖2
Y

s, 12
T

) (3.5)

and similarly we get that,

‖Φ2(u, v) − Φ2(ũ, ṽ)‖Ỹ s
T

� T 0+‖u − ũ‖
X̃s

T

+ T 0+

(

‖v‖
Y

s, 12
T

+ ‖ṽ‖
Y

s, 12
T

)

‖v − ṽ‖Ỹ s
T
,

(3.6)

for every (u, v), (ũ, ṽ) ∈ X̃s
T ×
(
Ỹ s

T ∩ L2(0, T ;L2
0(T)
)
. We conclude from these

estimates that if we take T > 0 small enough, the map Φ is a contraction in
some suitable ball of X̃s

T ×
(
Ỹ s

T ∩ L2(0, T ;L2
0(T)
)
, then it has a fixed point.

Now, we prove the uniqueness in the class X̃s
T × Ỹ s

T for the integral
equation Φ1 and Φ2. Set

w(t) = eit∂2
xu0 − i

∫ t

0

ei(t−t′)∂2
x

{
i∂tv (t′) + β|u|2u (t′) − iϕ (t′)2 a(x)2u (t′)

}
dt′

and

z(t) = e−t(∂3
x+μ∂x)v0

+
∫ t

0

e−(t−t′)(∂3
x+μ∂x)

{

Re (∂xu) (t′) − GG∗v (t′) − 1
2
∂x

(
v2
)
(t′)
}

dt′.

Observe that, β|u|2u, ∂xv ∈ X
s,− 1

2
T and 1

2∂x(v2), ∂xu ∈ Y
s,− 1

2
T , hence we infer

that,

∂t

(∫ t

0

e−it′∂2
x
{
i∂xv + β|u|2u − iϕ2a(x)2u

}

(t′) dt′) = e−it∂2
x
(
i∂xv + β|u|2u − iϕ2a2u

)

and

∂t

(∫ t

0

e−t′(∂3
x+μ∂x)

{

Re (∂xu) − GG∗v − 1
2
∂x

(
v2
)
}

(t′) dt′
)

= e−t(∂3
x+μ∂x)

(

Re (∂xu) − GG∗v − 1
2
∂x

(
v2
)
)

,

in the distributional sense. This implies that (w, z) is a solution of
{

i∂tw + ∂2
xw = i∂xv + β|u|2u − iϕ2a(·)2u, (x, t) ∈ T × R+,

∂tz + ∂3
xz + μ∂xz = Re (∂xu) − GG∗v − 1

2∂x

(
v2
)
, (x, t) ∈ T × R+.

Therefore, it follows that, r1(t) = e−it∂2
x(u−w) and r2(t) = e−t(∂3

x+μ∂x)(v − z)
is a solution of ∂tr1 = ∂tr2 = 0 and r1(t) = r2(t) = 0. Thus r1 = r2 = 0 and
(u, v) is the unique solution of the integral equations.
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(b) The solution is globally defined.

In order to prove that our solutions are global, we observe that,

d

dt

(
‖u(t)‖2L2(T) + ‖v(t)‖2L2

0(T)

)
≤0.

Then, integrating over t and using the Gronwall Inequality we get that, the
L2(T) × L2

0(T) norm of (u, v) remains bounded by every t ∈ [0, T ], hence the
local solution of (3.1) can be extended to a global one.

Now we prove that, if (u0, v0) ∈ H2(T) × H3
0 (T) then the solution (u, v)

∈ C([0, T ];H2(T) × H2
0 (T)) of (3.1) can be extended for any T > 0 and then,

by nonlinear interpolation (see, e.g., [5] and [27]), we can get the global well-
posedness for the solution (u, v) ∈ C([0, T ];Hs(T) × Hs

0(T)) of (3.1) with
(u0, v0) ∈ Hs(T) × Hs

0(T) with 0 ≤ s ≤ 2.
Indeed, we start by considering a smooth solution (u, v) of (3.1). Let

(z, w) = (ut, vt) so,
⎧
⎨

⎩

i∂tz + ∂2
xz + ia(x)2z = i∂xw + 2β|u|2z+βu2z, (x, t) ∈ T × R+,

∂tw + ∂3
xw + ∂x (vw) + μ∂xw = Re(∂xz) − GG∗w, (x, t) ∈ T × R+,

z(x, 0) = z0(x), w(x, 0) = w0(x), x ∈ T,

(3.7)

where

z0 = iu0xx + v0x − iβ|u0|2u0 − a2u0 ∈ L2(T) ∈ L2(T)

and

w0 = −v0xxx−μv0x − v0v0x + Re(u0x) − GG∗v0 ∈ L2
0(T).

If we consider T > 0 such that Φ is a contraction in some suitable ball of
X̃0

T × Ỹ 0
T as in (3.4) and (3.6), we have that

‖(u, v)‖
X̃0

T ×Ỹ 0
T

≤ C1,

with C1 = C1(‖u0‖L2(T), ‖v0‖L2
0(T)

) > 0. The same computation as in (3.3)
and (3.4) leads us to

‖z‖
X̃0

T
� ‖z0‖L2(T) + T 0+

(
‖w‖Ỹ 0

T
+ ‖z‖

X̃0
T

+ 2C2
1‖z‖

X̃0
T

)

and

‖w‖Ỹ 0
T

� ‖w0‖L2
0(T)

+ T 0+
(
‖z‖

X̃0
T

+ C1‖w‖Ỹ 0
T

)
,

or equivalently,

‖(z, w)‖
X̃0

T ×Ỹ 0
T

≤ C‖(z0, w0)‖L2(T)×L2
0(T)

.

Therefore, using the previous inequalities, we have

‖(z, w)‖L∞(0,T ;L2(T)×L2
0(T))

≤ ‖(z, w)‖
X̃0

T ×Ỹ 0
T

≤ C‖(z0, w0)‖L2(T)×L2
0(T)

.
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Thanks to the system (3.1), we get that

‖∂3
xv‖L2

0(T)
≤‖w‖L2

0(T)
+ ‖Re(∂xu)‖L2(T) +

1
2
‖v∂xv‖L2

0(T)

+ |μ|‖∂xv‖L2
0(T)

+ ‖GG∗v‖L2
0(T)

≤‖w‖L2
0(T)

+ C‖∂xu‖L∞(T) + ‖v‖L2
0(T)

‖∂xv‖L∞(T) + ‖v‖L2
0(T)

+ |μ|‖∂xv‖L2
0(T)

≤‖w‖L2
0(T)

+ C‖u‖ 1
2
L2(T)‖∂2

xu‖ 1
2
L2(T)

+ C(1 + ‖v‖L2
0(T)

)‖v‖ 1
2
L2

0(T)
‖∂3

xv‖ 1
2
L2

0(T)
+ |μ|‖∂xv‖L2

0(T)

≤1
4
‖(∂2

xu, ∂3
xv)‖L2(T)×L2

0(T)
+ ‖w‖L2

0(T)
+ C(‖v‖L2

0(T)

+ ‖v‖3L2
0(T)

+ ‖u‖L2(T)),

(3.8)

where we have used the Young inequality in this last inequality and

‖∂2
xu‖L2(T) ≤‖z‖L2(T) + ‖∂xv‖L2

0(T)
+ |β|‖u‖L2(T)‖u‖2L∞ + ‖a‖L∞‖u‖L2(T)

≤1
4
‖(∂2

xu, ∂3
xv)‖L2(T)×L2

0(T)
+ ‖z‖L2(T)

+ C|β|‖u‖2L2(T) + ‖a‖L∞(T)‖u‖L2(T),

(3.9)

where, for this last inequality, we have used that H2(T) is embedded in L∞(T),
the interpolation between H2(T) and L2(T) and Young inequality. So adding
up the estimates (3.8) and (3.9) we can conclude that

‖(∂2
xu, ∂3

xv)(t)‖L2(T)×L2
0(T)

≤ C(‖u0‖L2(T), ‖v0‖L2
0(T)

)‖(u0, v0)‖H2(T)×H3
0 (T)

,

from which follows that (u, v) ∈ C(R+;H2(T)×H2
0 (T)). A similar argumenta-

tion can be done for (u0, v0) ∈ H2k(T) × H3k
0 (T), k ∈ N, and for other values

of s ∈ R+ using again nonlinear interpolation.

(c) The flow map is Lipschitz.

Finally, we prove that the map (3.2) is Lipschitz on bounded sets. To do so,
consider (u, v) and (ũ, ṽ) solutions of (3.1) with initial data (u0, v0), (ũ0, ṽ0),
respectively. Arguing as in (3.4) and (3.6) we have that,

‖u − ũ‖
X̃0

T
+ ‖v − ṽ‖Ỹ 0

T
≤ C‖u0 − ũ0‖L2(T) + C‖v0 − ṽ0‖L2

0(T)

+ T 0+
(
1 + ‖u‖

X̃0
T

+ ‖ũ‖
X̃0

T

)
‖u − ũ‖

X̃0
T

+ CT 0+
(
1 + ‖v‖Ỹ 0

T
+ ‖ṽ‖Ỹ 0

T

)
‖v − ṽ‖Ỹ 0

T
.

Then, for T > 0 small enough, depending of the size of (u0, v0), (ũ0, ṽ0), it
follows that

‖u − ũ‖
X̃0

T
+ ‖v − ṽ‖Ỹ 0

T
≤ C‖u0 − ũ0‖L2(T) + C‖v0 − ṽ0‖L2

0(T)
. (3.10)

By iterating process we get that (3.10) is valid for every T , concluding the
proof of Theorem 3.1. �
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4. Stabilization result

In this section, we are able to prove one of the main results of the article,
precisely, we prove that the following system
⎧
⎨

⎩

i∂tu + ∂2
xu + ia(x)2u = i∂xv + β|u|2u, (x, t) ∈ T × R+,

∂tv + ∂3
xv + 1

2∂x

(
v2
)

+ μ∂xv = Re(∂xu) − GG∗v, (x, t) ∈ T × R+,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ T,

(4.1)

where β, μ ∈ R, is asymptotically stable for (u0, v0) ∈ L2(T) × L2
0(T), when

two control inputs are acting in both equation in ω ⊂ T.

4.1. Proof of Theorem 1.1

As usual in the literature using the “Compactness–Uniqueness Argument” due
to Lions [21], under the hypothesis of the Theorem 1.1, the global stabilization
property is equivalent to show the following observability inequality:

For any T > 0 there exists C = C(T ) > 0 such that

‖(u0, v0)‖2L2(T)×L2
0(T)

≤ C

(∫ T

0

‖au(t)‖2L2(T)dt +
∫ T

0

‖Gv(t)‖2L2
0(T)

dt

)

,

(4.2)

for any solution (u, v) of the system (4.1) with initial data (u0, v0) ∈ L2(T) ×
L2
0(T) such that ‖(u0, v0)‖L2(T)×L2

0(T)
≤ R0.

Indeed, it follows from the energy estimate (1.10) that

‖(u, v)(T )‖2L2(T)×L2
0(T)

= ‖(u0, v0)‖2L2(T)×L2
0(T)

−
∫ T

0

‖au(t)‖2L2(T)dt −
∫ T

0

‖Gv(t)‖2L2
0(T)

dt.

Thus, from (4.2), we get that

‖(u, v)(T )‖2L2(T)×L2
0(T)

≤ (1 − C−1)‖(u0, v0)‖2L2(T)×L2
0(T)

,

and since the solution (u, v) of the system (4.1) satisfies the semigroup property
we have, for every m ∈ N, that

‖(u, v)(mT )‖2L2(T)×L2
0(T)

≤ (1 − C−1)m‖(u0, v0)‖2L2(T)×L2
0(T)

,

which yields the desired result.
�

4.2. Proof of the observability inequality

We argue by contradiction. If (4.2) does not occur, there exist T > 0 and a
sequence {(u0n, v0n)}n∈N such that

‖(u0n, v0n)‖L2(T)×L2
0(T)

≤ R0 (4.3)

and
∫ T

0

‖aun(t)‖2L2(T)dt +
∫ T

0

‖Gvn(t)‖2L2
0(T)

dt ≤ 1
n

‖(u0n, v0n)‖2L2(T)×L2
0(T)

.

(4.4)
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Hence if we define αn:=‖(u0n, v0n)‖2
L2(T)×L2

0(T)
we get

αn ≤ R2
0,

so we can extract a subsequence, still denoted by the same index, such that

αn → α,

with α ≥ 0. We split the analysis into two cases:

(i) α > 0 and (ii) α = 0.

(i) α > 0.
It follows from Theorem 3.1 that the corresponding sequence of solutions

{(un, vn)} associated with the initial data {(u0n, v0n)} is bounded in both

spaces L∞(0, T ;L2(T) × L2
0(T)) and X

0, 12
T × Y

0, 12
T then as X

0, 12
T × Y

0, 12
T is a

separable Hilbert space compactly embedded in X
−k, 12−δ

T ×Y
−s, 12−δ1
T , for every

k, s > 0 and δ, δ1 > 0, we can get a subsequence, which will be denoted with
the same index, such that

(un, vn) → (u, v) weakly in X
0, 12
T × Y

0, 12
T

and

(un, vn) → (u, v) strongly in X
−k, 12−δ

T × Y
−s, 12−δ1
T .

Moreover, by (4.4) we deduce that

aun → 0 in L2(0, T ;L2(T))

and

Gvn → 0 = Gv in L2(0, T ;L2
0(T)),

from which follows that u ≡ 0 in ω and v = c(t) in ω.
On the other hand, by Proposition 2.2, we infer that β|un|2un is bounded

in X
0,− 1

2
T and 1

2∂x(v2
n) is bounded in Y

0,− 1
2

T . Moreover, note that (β|un|2un) is

bounded in X0,−b′
T for 3

8 < b′ < 1
2 , which is compactly embedded in X

−1,− 1
2

T ,
then we can extract a subsequence, still denoted by the same index, such that,
for some f ∈ X

−1,− 1
2

T ,

β|un|2un → f strongly in X
−1,− 1

2
T .

As Y
0, 12
T is continuously embedded in L4(T×(0, T )), thanks to the Proposition

2.4, (∂x(v2
n)) is bounded in L2(0, T ;H−1(T)) = Y −1,0

T , so, by interpolation

between those spaces, we get that (∂x(v2
n)) is bounded in Y

−θ,− 1
2+

θ
2

T , θ ∈
(0, 1), which is compactly embedded in Y

−1,− 1
2

T . Therefore, we can extract a

subsequence of
(
1
2∂x(v2

n)
)

in Y
−1,− 1

2
T , which will be denoted by the same index,

such that
1
2
∂x(v2

n) → g̃ strongly in Y
−1,− 1

2
T .
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With these convergences in hand we can pass to the limit in n, to obtain that
(u, v) satisfies

{
i∂tu + ∂2

xu = i∂xv + f, (x, t) ∈ T × (0, T ),
∂tv + ∂3

xv + μ∂xv = Re(∂xu) + g̃, (x, t) ∈ T × (0, T ).

Now, consider wn = un − u, zn = vn − v,

fn = −ia2un + β|un|2un − f

and

gn = −GG∗vn − 1
2
∂x(v2

n) − g̃.

Observe that
∫ T

0

‖Gzn‖2L2
0(T)

dt =
∫ T

0

‖Gvn‖2L2
0(T)

dt

+
∫ T

0

‖Gv‖2L2
0(T)

dt − 2
∫ T

0

(Gvn, Gv)0dt → 0.

On the other hand, we have

Gzn(x, t) = g(x)zn(x, t) +
∫

T

g(y)zn(y, t)dy.

Since zn → 0 weakly in Y
0, 12
T , using Rellich theorem we get that

∫

T
g(y)zn(y, ·)dy

strongly converges to 0 in L2(0, T ), from which follows that
∫ T

0

∫

T

g2(x)zn(x, t)2dxdt → 0.

Thus,
{

i∂twn + ∂2
xwn = i∂xzn + fn, (x, t) ∈ T × (0, T ),

∂tzn + ∂3
xzn + μ∂xzn = Re(∂xwn) + gn, (x, t) ∈ T × (0, T )

with

(wn, zn) → (0, 0) in L2(0, T ;L2(ω̃) × L2
0(ω̃))

and

(fn, gn) → (0, 0) strongly in X
−1,− 1

2
T × Y

−1,− 1
2

T ,

where ω̃ = supp(g) ∩ supp(a).
Now, we are in a position to use the results of the Appendix A and B.

First, using the propagation of compactness, given in Proposition A.1, we have

(zn, wn) → (0, 0) in L2
loc(0, T ;L2(T) × L2

0(T)).

Then we can pick t0 ∈ [0, T ] such that (zn(t0), wn(t0)) → (0, 0) strongly in
L2(T) × L2

0(T). Denote by (ũ, ṽ) the solution of the problem
⎧
⎨

⎩

i∂tũ + ∂2
xũ = i∂xṽ + β|ũ|2ũ, (x, t) ∈ T × (0, T ),

∂tṽ + ∂3
xṽ + μ∂xṽ + ∂x(ṽ2) = Re(∂xũ), (x, t) ∈ T × (0, T ),

(ũ, ṽ)(t0) = (u(t0), v(t0)), t0 ∈ (0, T ).
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Theorem 3.1 gives us that the flow map is Lipschitz on bounded sets, hence
as

(un(t0), vn(t0)) → (u(t0), v(t0)) in L2(T) × L2
0(T),

ia2un → 0 in L2(0, T ;L2(T))

and

Gvn → 0 in L2(0, T ;L2
0(T)),

follows that

(un, vn) → (u, v) in X
0, 12
T × Y

0, 12
T .

Therefore, putting together all these convergences and passing to the limit, we
can conclude that (u, v) solves

⎧
⎪⎪⎨

⎪⎪⎩

i∂tu + ∂2
xu = i∂xv + β|u|2u, (x, t) ∈ T × (0, T ),

∂tv + ∂3
xv + 1

2∂x

(
v2
)

+ μ∂xv = Re (∂xu) , (x, t) ∈ T × (0, T ),
u(x, t) = 0 v(x, t) = c(t), (x, t) ∈ ω × (0, T ),
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ T.

(4.5)

Note that, using the second equation of (4.5) we have that ∂tv = 0 on ω×(0, T ),
hence c(t) ≡ c, with c ∈ R, for all t ∈ (0, T ). Thus thanks to the unique
continuation property given by Corollary B.4, we ensure that (u, v) = (0, 0).
From this, we conclude that

‖(un(0), vn(0))‖L2(T)×L2
0(T)

→ 0,

which is a contradiction with our hypothesis α > 0.
(ii) α = 0.

Observe that we can assume αn > 0 for all n ∈ N. Pick the function as follows
wn = un

αn
and zn = vn

αn
, for all n ≥ 1. Thus,

‖(w0n, z0n)‖2L2(T)×L2
0(T)

= 1

and (wn, zn) satisfies the system
{

i∂twn + ∂2
xwn = i∂xzn + α2

nβ|vn|2vn − ia(x)2wn, (x, t) ∈ T × (0, T ),
∂tzn + ∂3

xzn + α2
n

2 ∂x(v2
n) = Re(∂xwn) − GG∗zn, (x, t) ∈ T × (0, T )

with
∫ T

0

‖a(x)wn(t)‖2L2(T)dt +
∫ T

0

‖Gzn(t)‖2L2
0(T)

dt ≤ 1
n

, ∀n ∈ N.

By a boot-strap argument we conclude that (wn, zn) is bounded in X
0, 12
T ×

Y
0, 12
T . Hence we can extract a subsequence of {(wn, zn)}, still denoted by the

same index, such that

(wn, zn) → (w, z) weakly in X
0, 12
T × Y

0, 12
T

and

(wn, zn) → (w, z) strongly in X
0−,− 1

2
T × Y

0−,− 1
2

T .
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By Proposition 2.2 we have that β|wn|2wn is bounded in X
0,− 1

2
T then

α2
nβ|wn|2wn → 0 strongly in X

0,− 1
2

T ,

as αn → 0. Similarly, due to the fact that {∂x(v2
n)} is bounded in Y

0,− 1
2

T we
have that

αn∂x(v2
n) → 0 strongly in Y

0,− 1
2

T .

Hence, (w, z) solves the following system
⎧
⎨

⎩

i∂tw + ∂2
xw = i∂xz, (x, t) ∈ T × (0, T ),

∂tz + ∂3
xz + μ∂xz = Re(∂zw), (x, t) ∈ T × (0, T ),

w(x, t) = 0, z(x, t) = c, (x, t) ∈ ω × (0, T ).

Again using Corollary B.4 we have that w = z = 0 in (0, T ) × T. Then, by an
application of Proposition A.1

(wn, zn) → (0, 0) in L2
loc(0, T ;L2(T) × L2

0(T)).

So we can conclude the proof as in the first case, showing the observability
inequality (4.2). �

5. Controllability results

In this section, we are interested to prove the exact controllability of the fol-
lowing nonlinear system
⎧
⎨

⎩

i∂tu + ∂2
xu = i∂xv + β|u|2u + f, (x, t) ∈ T × (0, T ),

∂tv + ∂3
xv + 1

2∂x

(
v2
)

+ μ∂xv = Re (∂xu) + Gh, (x, t) ∈ T × (0, T ),
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ T,

(5.1)

where f and h are control functions. Before presenting the result for this
system, we first need to prove the result for the linear system associated with
(5.1),

⎧
⎨

⎩

i∂tu + ∂2
xu = f, (x, t) ∈ T × (0, T ),

∂tv + ∂3
xv + μ∂xv = Gh, (x, t) ∈ T × (0, T ),

u(x, T ) = 0, v(x, T ) = 0, x ∈ T.
(5.2)

In both cases, we take f and h with a special form, that is,

f :=a2ϕ2h1 and h:=G∗h2 = Gh2, (5.3)

with a and G satisfying (1.7) and (1.8), respectively, and h1, h2 in some
appropriated space.

It is classical in the literature that the observability inequality for the NLS
equation holds, precisely, the following proposition related to the observability
inequality for the adjoint system associated with the Schrödinger equation is
verified and for details see, e.g. [20] and [22].
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Proposition 5.1. Let ω ⊂ T. For any a = a(x) ∈ C∞(T) and ϕ = ϕ(t) ∈
C∞(]0, T [) real valued such that a ≡ 1 on ω×]0, T [ and ϕ ≡ 1 on

[
T
3 , 2T

3

]
there

exists C:=C(T ) > 0 such that

‖φ0‖2L2(T) ≤ C

∫ T

0

‖a(x)ϕ(t)eit∂2
xφ0‖2L2(T)dt. (5.4)

Additionally, an observability inequality for the single KdV equation can
be verified, and we cite [25] for more details.

Proposition 5.2. Let T > 0 be given. There exists C = C(T ) > 0 such that,

‖ψ0‖2L2
0(T)

≤ C

∫ T

0

‖Ge−t(∂3
x+μ∂x)ψ0‖2L2

0(T)
dt. (5.5)

As a consequence of the previous observability inequality, using the HUM
method introduced by Lions [21], the exact controllability in L2(T) × L2

0(T)
for the linear system (5.2) holds. Indeed, just observe that by combining both
observability estimates (5.4) and (5.5), we get

‖(φ0, ψ0)‖2L2(T)×L2
0(T)

≤ C

(∫ T

0

‖a(·)ϕ(t)u(t)‖2L2(T)dt +
∫ T

0

‖Ge−t(∂3
x+μ∂x)ψ(t)‖2L2

0(T)
dt

)

,

which means that the linear system (5.2) is null controllable, that is, the map

S : L2(T) × L2
0(T) → L2(T) × L2

0(T)
S(ϕ0, ψ0) = (u(0), v(0)),

where (u(0), v(0)) is the initial data associated with (5.2) with f(x, t) and
h(x, t) defined by (5.3), is an isomorphism, and the following linear result is
verified.

Theorem 5.3. Let ω ⊂ T be a nonempty open set and T > 0. Then for
every (u0, v0), (u1, v1) ∈ L2(T) × L2

0(T) one can find two control inputs f ∈
C([0, T ];L2(T)) and h ∈ C([0, T ];L2

0(T)), such that, the unique solution (u, v) ∈
C([0, T ];L2(T) × L2

0(T)) of (5.2) satisfies (u, v)(x, T ) = (u1(x), v1(x)).

Now, we are in a position to prove the Theorem 1.2.

Proof of Theorem 1.2. For T > 0 to be determined, we consider the systems
⎧
⎨

⎩

i∂tφ + ∂2
xφ = 0, (x, t) ∈ T × (0, T ),

∂tψ + ∂3
xψ + μ∂xψ = 0, (x, t) ∈ T × (0, T ),

φ(x, 0) = φ0(x), ψ(x, 0) = ψ0(x), x ∈ T

and
⎧
⎨

⎩

i∂tu + ∂2
xu = i∂xv + β|u|2u + f, (x, t) ∈ T × (0, T ),

∂tv + ∂3
xv + μ∂xv + 1

2∂x(v2) = Re(∂xu) + Gh, (x, t) ∈ T × (0, T ),
(u(·, T ), v(·, T )) = (0, 0), x ∈ T,

with f :=a2ϕ2φ and h:=G∗ψ = Gψ. Let us define the operator

L : L2(T) × L2
0(T)) → L2(T) × L2

0(T)
(φ0, ψ0) �→ L(φ0, ψ0) = (u|t=0, v|t=0) = (u0, v0)
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We split (u, v) into

(u, v) = (uL, vL) + (uNL, vNL)

where (uL, vL) is solution of
⎧
⎨

⎩

i∂tuL + ∂2
xuL = a2ϕ2φ, (x, t) ∈ T × (0, T ),

∂tvL + ∂3
xvL + μ∂xvL = GG∗ψ, (x, t) ∈ T × (0, T ),

(uL, vL)(·, T ) = (0, 0), x ∈ T.

and (uNL, vNL) is solution of
⎧
⎨

⎩

i∂tuNL + ∂2
xuNL = i∂xv + β|u|2u, (x, t) ∈ T × (0, T ),

∂tvNL + ∂3
xvNL + μ∂xvNL = Re(∂xu) − 1

2∂x(v2), (x, t) ∈ T × (0, T ),
(uNL, vNL)(·, T ) = (0, 0), x ∈ T.

Observe that we can follow [15] to construct an isomorphism

S : L2(T) × L2
0(T) → L2(T) × L2

0(T)

such that (uL(0), vL(0)) = SL(φ0, ψ0). Additionally, we can also construct
another application (see e.g. [19, Lemma 2.4])

K : L2(T) × L2
0(T) → L2(T) × L2

0(T)

which satisfies K(φ0, ψ0) = (uNL(0), vNL(0)). With these information in hand,
we have that if (u, v), (uL, vL), (uNL, vNL) ∈ X̃0

T × Ỹ 0
T and

(u, v)(0) = (uL, vL)(0) + (uNL, vNL)(0),

then we can rewrite the previous equality as follows

L(φ0, ψ0) = SL(φ0, ψ0) + K(φ0, ψ0),

where K(φ0, ψ0) = (uNL(0), vNL(0)). So, we have that L(φ0, ψ0) = (u0, v0) is
equivalent to

(φ0, ψ0) = S−1
L (u0, v0) − S−1

L K(φ0, ψ0).

Thus, let us define the following map

B : L2(T) × L2
0(T) → L2(T) × L2

0(T)

by

B(φ0, ψ0) = S−1
L (u0, v0) − S−1

L K(φ0, ψ0).

Therefore, our null controllability problem is reduced to prove that B has a
fixed point, so let us prove it now.

From now on we may fix T < 1. Since SL is an isomorphism of L2(T) ×
L2
0(T), we have,

‖B(φ0, ψ0)‖L2(T)×L2
0(T)

≤ C
(‖K(φ0, ψ0)‖L2(T)×L2

0(T)
+ ‖(u0, v0)‖L2(T)×L2

0(T)

)
.

We are interested to estimate ‖K(φ0, ψ0)‖L2(T)×L2
0(T)

= ‖(uNL(0), vNL

(0))‖L2(T)×L2
0(T)

. To make it we use the Duhamel formula and the X
0, 12
T ×Y

0, 12
T –

estimates, to conclude that
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‖(uNL(0), vNL(0))‖L2(T)×L2
0(T)

≤ ‖(uNL, vNL)‖
X̃0

T ×Ỹ 0
T

≤ C‖|u|2u‖
X

0,− 1
2

T

+ C‖∂xv‖
X

0,− 1
2

T

+ C‖Re(∂xu)‖
Y

0,− 1
2

T

+ C‖∂x(v2)‖
Y

0,− 1
2

T

≤ CT 0+‖u‖3
X

0, 12
T

+ CT 0+‖u‖
X

0, 12
T

+ CT 0+‖v‖
Y

0, 12
T

+ CT 0+‖v‖2
Y 0+

T
,

thanks to the estimates of the Sect. 2. Now, we notice that,

‖(u, v)‖
X

0, 12
T

≤ C‖(ϕ2a2φ,GG∗ψ)‖L2(0,T ;L2(T)×L2
0(T))

≤ C‖(φ0, ψ0)‖L2(T)×L2
0(T)

< Cη

and then,

‖B(φ0, ψ0)‖L2(T)×L2
0(T)

≤ C
(
T 0+η + T 0+η2 + ‖(u0, v0)‖L2(T)×L2

0(T)

)
.

Therefore, taking ‖(u0, v0)‖L2(T)×L2
0(T)

small enough, we can conclude that B

maps the closed ball Bη of L2(T) × L2(T) into itself.
It remains to prove that B is a contraction. We start by considering the

following two systems:
⎧
⎨

⎩

i∂t(u − ũ) + ∂2
x(u − ũ) = i∂x(v − ṽ) + β

(|u|2u − |ũ|2ũ)+ a2ϕ2(φ − φ̃)
∂t(v − ṽ) + ∂3

x(v − ṽ) + μ∂x(v − ṽ) + 1
2∂x(v2 − ṽ2) = Re(∂xu − ∂xũ)

+GG∗(ψ − ψ̃)(u − ũ)(·, T ) = 0, (v − ṽ)(·, T ) = 0.

and
⎧
⎪⎪⎨

⎪⎪⎩

i∂t(uNL − ũNL) + ∂2
x(uNL − ũNL) = β

(|u|2u − |ũ|2ũ)+ i∂x(v − ṽ)
∂t(vNL − ṽNL) + ∂3

x(vNL − ṽNL) + μ∂x(vNL − ṽNL)
= Re(∂xu − ∂xũ) + 1

2

(
∂x(ṽ2 − v2)

)

(uNL − ũNL)(·, T ) = 0, (vNL − ṽNL)(·, T ) = 0.

Again, due to the estimates provided in the Sect. 2, we get

‖B(φ0, ψ0) − B(φ̃0, ψ̃0)‖L2(T)×L2
0(T)

≤ ‖((uNL − ũNL)(0), (vNL − ṽNL)(0))‖L2(T)×L2
0(T)

≤ C‖|u|2u − |ũ|2ũ‖
X

0,− 1
2

T

+ C‖∂xv − ∂xṽ‖
X

0,− 1
2

T

+ C‖∂x(v2) − ∂x(ṽ2)‖
Y

0,− 1
2

T

+ C‖Re(∂xu − ∂xũ)‖
Y

0,− 1
2

T

≤ CT 0+

(

1 + ‖u‖2
X

0, 12
T

+ ‖ũ‖2
X

0, 12
T

)

‖u − ũ‖
X

0, 12
T

+ CT 0+

(

1 + ‖v‖
Y

0, 12
T

+ ‖ṽ‖
Y

0, 12
T

)

‖v − ṽ‖
Y

0, 12
T

≤ C
(
T 0+η2 + T 0+

) ‖u − ũ‖
X

0, 12
T

+
(
T 0+ + T 0+η

) ‖v − ṽ‖
Y

0, 12
T

.
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Considering the system (5.1), we deduce that

‖u − ũ‖
X

0, 12
T

+ ‖v − ṽ‖
Y

0, 12
T

≤ C‖|u|2u − |ũ|2ũ‖
X

0, 12
T

+ C‖∂xv − ∂xṽ‖
X

0, 12
T

+ C‖∂x(v2) − ∂x(ṽ2)‖
Y

0, 12
T

+ ‖Re(∂xu) − Re(∂xũ)‖
Y

0, 12
T

+ C‖ϕ2a2(φ − φ̃)‖L2(T) + ‖GG∗(ψ − ψ̃)‖L2
0(T)

≤ C(T 0+η2 + T 0+)‖u − ũ‖
X

0, 12
T

+ (T 0+ + T 0+η2)‖v − ṽ‖
Y

0, 12
T

+ C‖φ0 − φ̃0‖L2(T) + C‖ψ0 − ψ̃0‖L2
0(T)

.

(5.6)

Then, for η < 1 fixed, we can get a small T > 0 such that,

‖u − ũ‖
X

0, 12
T

+ ‖v − ṽ‖
Y

0, 12
T

≤ C‖φ0 − φ̃0‖L2(T) + C‖ψ0 − ψ̃0‖L2
0(T)

. (5.7)

Thanks to the inequalities (5.6) and (5.7), we get that

‖B(φ0, ψ0) − B(φ̃0, ψ̃0)‖L2(T)×L2
0(T)

≤ C
(
T 0+ + ηT 0+

) ‖(φ0, ψ0) − (φ̃0, ψ̃0)‖L2(T)×L2
0(T)

.

To finish, just choosing

T 0+ + ηT 0+ <
1

2C
,

we conclude that B is a contraction in the closed ball of L2(T) × L2
0(T) and

the local controllability result is verified, and Theorem 1.2 is achieved. �

6. Further comments and open issues

In this work, we showed the stabilization and control issues for the system
⎧
⎨

⎩

i∂tu + ∂2
xu = i∂xv + β|u|2u + f, (x, t) ∈ T × (0, T ),

∂tv + ∂3
xv + 1

2∂x

(
v2
)

+ μ∂xv = Re (∂xu) + g, (x, t) ∈ T × (0, T ),
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ T.

(6.1)

When we introduce two damping mechanisms f :=− ia2(x)u and g:=−GG∗h,
where a satisfies (1.7) and G is defined by (1.8), we are able to prove that
the solutions associated with (6.1) decay exponentially for t large enough.
Moreover, together with a local exact controllability, we are also able to prove
a global exact controllability property, that means, for any initial and final
data, without restrictions on its norms, we can find two control inputs f and r
such that we can drive the initial data to the final data by using these controls.

The strategy employed in the proof of the main results in this manu-
script uses the contradiction argument, which aims to prove an observability
inequality. Observability inequality follows by a combination of propagation of
compactness and regularity, together with a unique continuation property for
the operator associated with the NLS–KdV system, which is proved using the
defect measure.
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6.1. Only one control acting

Control problems of coupled dispersive systems are still not well understood,
most of the results consider single equations,like the KdV equation, Schrŏdinger
equation and others. In our case, we can combine two dispersive equations with
nonlinearities and principal symbols of a different order. One of the main dif-
ficulties in our case arises in the proof of the propagation results, and was
overcome using the smoothing properties of the solutions in Bourgain space.

This method presented here seems to work well however it has a draw-
back. When we decided to study the nonlinear problem directly, instead of
first the linear problem, we were unable to remove controls, that is, with this
method, the best possible result is to show the control results with a control
in each equation.

It is important to mention that in [3], the authors proved that the fol-
lowing linear Schrödinger–KdV system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

i∂tw + ∂2
xw = a1w + a2y + h1ω in Q

∂ty + ∂3
xy + ∂x(My) = Re (a3w) + a4y + l1ω in Q

w(0, t) = w(1, t) = 0 in (0, T ),
y(0, t) = y(1, t) = ∂xy(1, t) = 0 in (0, T ),
w(x, 0) = w0(x), y(x, 0) = y0(x) in (0, 1),

(6.2)

in a bounded domain Q:=(0, 1) × (0, T ), is controllable. They are not able
to produce any nonlinear results due the to lack of regularity to treat the
nonlinear problem in Sobolev spaces, in this way, our work extends, for the
nonlinear system, the control problems for a more general system. The main
point of dealing with nonlinear structure in this manuscript is to work in
the Bourgain spaces, which helps us to treat the nonlinearities appropriately.
However, we mention that the linear case helps to deal with the system (6.2)
with only a control h1ω. This was possible by using a Carleman estimate
which involves both operators, Schrödinger and KdV operators. However, it is
important to make it clear that in our case we can not use this inequality to
remove one control, since the regularity used in [3, Theorem 1.3.] is not enough
to deal with the nonlinearities involved in the system (6.1).

6.2. Others nonlinearities

Another interesting problem is considering the full physical model of the NLS–
KdV system that appears in [2],

⎧
⎨

⎩

i∂tu + ∂2
xu = αuv + β|u|2u + f, (x, t) ∈ T × (0, T ),

∂tv + ∂3
xv + 1

2∂x

(
v2
)

= γ∂x

(|u|2)+ g, (x, t) ∈ T × (0, T ),
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ T,

(6.3)

to prove controllability results. In this way, we propose the following natural
issue.

Question. A: Is it possible to prove control results for the system (6.3)?

Note that, in this case, to reach the result we need to study some con-
servation laws associated with the solution of the system. In [2, Lemma 5.1.]
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the authors proved that the evolution system (6.3) preserves the following
quantities

M(t):=
∫

T

|u(t)|2dx, Q(t):=
∫

T

{
αv(t)2 + 2γ�

(
u(t)∂xu(t)

)}
dx

and

E(t):=
∫

T

{

αγv(t)|u(t)|2 − α

6
v(t)3 +

βγ

2
|u(t)|4 +

α

2
|∂xv(t)|2 + γ |∂xu(t)|2

}

dx.

These quantities give us only information of about “mass” M(t) associated
with the Schrödinger equation and there is no information about this conver-
sation for the part of the KdV equation. So, it is necessary, before answering
Question A, to solve the following problem.

Question. B: How to deal with the KdV part presented in (6.3) to present some
information for the “mass”?

This problem is an open issue, and it seems that our work opens, from
now on, some possibilities to deal with these types of systems.
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Appendix A: Propagation results in Bourgain spaces

This appendix is dedicated to presenting properties of propagation in Bour-
gain spaces for the linear differential operator associated with the NLS–KdV
system. These results of propagation are the key to proving the global control
results, that some parts were borrowed from [18,19]. For self-contentedness,
we will also give rigorous proof of them. The main ingredient is basically
pseudo-differential analysis. Let us begin with the result of the propagation of
compactness which will ensure strong convergence in appropriate spaces.
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Proposition A.1. [Propagation of compactness]Let T > 0, suppose that (un, vn)

∈ X
0, 12
T × Y

0, 12
T and (fn, gn) ∈ X

−1,− 1
2

T × Y
−1,− 1

2
T , n ∈ N, satisfies

{
i∂tun + ∂2

xun = i∂xvn + fn, (x, t) ∈ T × (0, T ),
∂tvn + ∂3

xvn + μ∂xvn = Re (∂xun) + gn, (x, t) ∈ T × (0, T ).

Assume that there exists a constant C > 0 such that

‖(un, vn)‖
X

0, 12
T ×Y

0, 12
T

≤ C, for n ≥ 1. (A.1)

Additionally, suppose that

(un, vn) → (0, 0) weakly in X
0, 12
T × Y

0, 12
T ,

(fn, gn) → (0, 0) strongly in X
−1,− 1

2
T × Y

−1,− 1
2

T .

and that for some nonempty set ω ⊂ T we have

(un, vn) → (0, 0) in L2(0, T ;L2(ω) × L2
0(ω)).

Then,

(un, vn) → (0, 0) strongly in L2
loc(0, T ;L2(T) × L2

0(T)). (A.2)

Proof. We shall start by proving the following convergence

un → 0 strongly in L2
loc(0, T ;L2(T)). (A.3)

Denote L1:=i∂t +∂2
x the linear Schrödinger operator and consider ϕ ∈ C∞(T)

and ψ ∈ C∞
0 (]0, T [) taking real values to be determined. Define Bu:=ϕ(x)D−1

and A = ψ(t)B and for ε > 0, Aε = Aeε∂2
x = ψ(t)Bε, with D−1 defined by

(2.3). We consider,

αn,ε:= ([Aε, L1]un, un)L2(0,T ;L2(T)) =
(
[Aε, ∂

2
x]un, un

)− i (ψ′(t)Bun, un) .

On the other hand, we also have

αn,ε = (i∂xvn, A∗
εun) − (Aεun, i∂xvn) + (fn, A∗

εun) − (Aεun, fn). (A.4)

Now, observe that using Lemma 2.5 we have

|(i∂xvn, A∗
εun)L2

t,x
| ≤
∑

m∈Z

∫ ∞

−∞

∣
∣
∣ ̂∂xvn(m, τ)

∣
∣
∣

∣
∣
∣Â∗

εun(n, τ)
∣
∣
∣dτ

≤
∑

m∈Z

∫ ∞

−∞
H(τ, n)〈τ −n3+μn〉b′〈n〉−1|v̂n(n, τ)|〈τ +n2〉b′〈n〉1|Â∗

εun(n, τ)|dτ

≤ C

(
∑

m∈Z

∫ ∞

−∞
〈τ − n3 + μn〉2b′〈n〉−2 |v̂n(m, τ)|2dτ

) 1
2

×
(
∑

m∈Z

∫ ∞

−∞
〈τ + n2〉2b′〈n〉2

∣
∣
∣Â∗

εun(n, τ)
∣
∣
∣
2

dτ

) 1
2

≤ C‖vn‖
Y −1,b′

T

‖A∗
εun‖

X1,b′
T

≤ C‖vn‖
Y −1,b′

T

‖un‖
X0,b′

T

.

(A.5)
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Noting that, for b′ = 1
2−, we get

vn → 0 strongly in Y −1,b′
T

and thanks to (A.1) we ensure that ‖un‖
X0,b′

T

is bounded. Since

vn → 0 in Y −1,b′
T ,

yields that

sup
0<ε≤1

|(i∂xvn, A∗
εun)L2

t,x
| → 0,

due to (A.5). Additionally, holds that

| (fn, A∗
εun) | ≤ ‖fn‖

X
−1,− 1

2
T

‖un‖
X

0, 12
T

,

which yields that

sup
1<ε≤0

| (fn, A∗
εun) | → 0, as n → ∞.

The same kind of estimates for the other terms in (A.4) give us the following
limit

sup
1<ε≤0

|αn,ε| → 0, when n → ∞.

Noting that

[A, ∂2
x] = −2ψ(t)(∂xϕ)∂xD−1 − ψ(t)(∂2

x)D−1,

since D−1 commutes with ∂x, and taking the supremum on ε tending to 0, we
conclude that

(
[A, ∂2

x]un, un

)→ 0, as n → ∞.

Putting together these convergences, above mentioned, we may have that

(ψ(t)(∂2
xϕ)D−1un, un) → 0 as n → ∞.

Note that, −i∂xD−1 is the orthogonal projection on the subspace of functions
with û(0) = 0, and ûn(0)(t) tends to 0 in L2([0, T ]) we have

(ψ(t)(∂xϕ)ûn(0)(t), un) → 0, as n → ∞.

Thus we have proved that for any ϕ ∈ C∞(T) and ψ ∈ C∞
0 (]0, T [),

(ψ(t)(∂xϕ)un, un) → 0, as n → ∞.

We conclude the first part of this proof by observing that a function φ ∈ C∞(T)
can be written as ∂xϕ for some ϕ ∈ C∞(T) if and only if

∫

T
ϕdx = 0. Thus

for any χ ∈ C∞
0 (ω) and any x0 ∈ T, φ(x) = χ(x) − χ(· − x0) can be written as

φ = ∂xϕ for some ϕ ∈ C∞(T).
Now we use the hypothesis that un → 0 strongly in L2(0, T ;L2(ω)) to

conclude that

lim
n→∞(ψ(t)χun, un) = 0.

Therefore, for any x0 ∈ T,

lim
n→∞(ψ(t)χ(· − x0)un, un) = 0
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and yields that un → 0 in L2
loc(0, T ;L2(T)) by constructing a partition of the

unity of T involving functions of the form χi(· − xi
0) with χi ∈ C∞(ω) and

xi
0 ∈ T.

To prove that vn → 0 strongly in L2
loc(0, T ;L2

0(T)) we argue analogously,
but in this case considering L2 = ∂t + ∂3

x + μ∂x, B1 = ϕ(x)D−2 and A2 =
ψ(t)B2 and for ε > 0, A2ε = A2e

ε∂2
x . In this situation, we deal with

α̃n,ε = ([A2ε, L2]vn, vn)L2
t,x

the novelty in this case is that

α̃n,ε = (gn, A∗
2εvn) + (A2εvn, gn) + (Re(∂xun), vn) + (vn, Re(∂xun))

and the terms (Re(∂xun), vn) + (vn, Re(∂xun)) can be dealt as in (A.5). The
rest of the proof is then completed following the same steps as the first case
and the proof is complete. �

We now prove the propagation of regularity for the linear operator asso-
ciated with the NLS–KdV system.

Proposition A.2. [Propagation of regularity] Let T > 0, r ∈ R+ and (u, v) ∈
X

r, 12
T × Y

r, 12
T solution of
{

i∂tu + ∂2
xu = i∂xv + f, (x, t) ∈ T × (0, T ),

∂tv + ∂3
xv + μ∂xv = Re (∂xu) + g, (x, t) ∈ T × (0, T ),

with (f, g) ∈ X
r,− 1

2
T × Y

r,− 1
2

T . Assume that there exists a non-empty open set
ω ⊂ T such that

(u, v) ∈ L2
loc(]0, T [;Hr+ρ(ω) × Hr+ρ

0 (ω)),

for some 0 < ρ < 1
4 . Then

(u, v) ∈ L2
loc(]0, T [;Hr+ρ(T) × Hr+ρ

0 (T)).

Proof. We first regularize (u, v) by introducing, for each n ∈ N,

un:=e
1
n ∂2

xu, vn:=e
1
n ∂2

xv,

and

fn:=e
1
n ∂2

xf, gn:=e
1
n ∂2

xg.

In this case, by hypothesis over u and v, we have

‖(un, vn)‖
X

r, 12
T ×Y

r, 12
T

≤ C and ‖(fn, gn)‖
X

r,− 1
2

T ×Y
r,− 1

2
T

≤ C,

for some constant C > 0.
Pick s = r + ρ, ϕ ∈ C∞(T) and ψ ∈ C∞(]0, T [) taking real values. As in

the proof of Proposition A.1 we define B = D2s−1ϕ(x) and A = ψ(t)B, with
D defined in (2.3). Set L1 = i∂t + ∂2

x the Schrödinger operator and

αn:= (L1un, A∗un)L2
t,x

− (Aun, L1un)L2
t,x

=
(
[A, ∂2

x]un, un

)

L2
t,x

− i(ψ′(t)Bun, un)L2
t,x

=i(∂xvn, A∗un)L2
t,x

+ (fn, A∗un)L2
t,x

− (Aun, i∂xvn)L2
t,x

− (Aun, fn)L2
t,x

.
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Notice that, as we choose ρ > 0 small enough, we have r + 2ρ − 1
2 ≤ r. Hence,

we obtain
∣
∣
∣(Aun, fn)L2

t,x

∣
∣
∣ ≤ ‖Aun‖

X
−r, 12
T

‖fn‖
X

r,− 1
2

T

≤ C,∀n ∈ N.

Arguing as in (A.4) we can similarly get that
∣
∣
∣(∂xvn, Aun)L2

t,x

∣
∣
∣ ≤ C,∀n ∈ N

and also estimate all the other terms in order to get that ([A, ∂2
x]un, un) is

uniformly bounded in n ∈ N.
On the other hand, observe that

[A, ∂2
x] = −2Ψ(t)D2s−1(∂xϕ)∂x − Ψ(t)D2s−1(∂2

xϕ)

and

| (ψ(t)D2s−1(∂xϕ)un, un, un

) | ≤ C‖un‖
X

r, 12
T

‖vn‖
X

r,− 1
2

T

≤ C.

Analogously,

|(ψ(t)D2s−1(∂xϕ)∂xun, un)| ≤ C.

Since, fu ∈ L2
loc(0, T ;Hs(T)) and f∂xu ∈ L2

loc(0, T ;Hs−1(T)) we can conclude
that

fun = e
1
n ∂2

xfu +
[
f, e

1
n ∂2

x

]

is uniformly bounded in L2
loc(0, T ;Hs(T)), since s ≤ r+1. The same reasoning

we get that f∂xu is uniformly bounded in L2
loc(0, T ;Hs−1(T)) thus,

|(ψ(t)D2s−1f∂xu,Dsfun)| ≤ C.

Due to the fact that [Ds, f ] is a pseudo-differential operator of order s−1 and
u ∈ L2(0, T ;Hr(T)), we have

|(ψ(t)Ds−1f∂xun, [Ds, f ]un)|
≤ ‖Ds−1fun‖L2(0,T ;L2(T))‖Dρ[Dρ, f ]un‖L2(0,T ;L2(T))

≤ ‖un‖L2Hr‖un‖L2Hs−1+ρ ≤ C

and finally,

|(ψ(t)D2s−1(∂xϕ)∂xun, un)| ≤ C.

As in proposition A.1, we finish this proof by writing ∂ϕ = f2(·) − f2(· − x0),
with x0 ∈ T, thus

|(ψ(t)D2s−1f2(· − x0)∂xun, un)| ≤ C.

From this calculation we conclude that u ∈ L2
loc(0, T ;Hr+ρ(T)).

To conclude the proof, we argue analogously for the KdV operator L2 =
∂t + ∂3

x + μ∂x, and then we consider

α̃n = ([A,L2]vn, vn)L2(0,T ;L2
0(T))

= (Lvn, A∗vn)L2
t,x

+ (Avn, L2vn)L2
t,x
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and we also have,

α̃n = (Re(∂xun), A∗vn)L2
t,x

+ (Avn, gn)L2
t,x

+ (gn, A∗vn)L2
t,x

+ (Avn, Re(∂xun))L2
t,x

and the main difference from the first equation is the estimate of

(Re(∂xun), A∗vn)L2
t,x

and (Avn,Re(∂xun))L2
t,x

,

which can be dealt as in (A.5), and so the propagation of regularity is proved.
�

Remark A.3. We mention that the main ingredient in the proof of Propositions
A.1 and A.2 is related into estimating the terms

(i∂xvn, A∗
εun)L2

t,x
,

(Re(∂xun), vn) + (vn, Re(∂xun)),

and

(Re(∂xun), A∗vn)L2
t,x

+ (Avn,Re(∂xun))L2
t,x

,

that is, where the coupled terms are analyzed. In this sense Lemma 2.5 is
essential to prove the propagation results for the system under consideration
in this work.

The next result is a consequence of Proposition A.2.

Corollary A.4. Let (u, v) ∈ X
r, 12
T × Y

r, 12
T be a solution of

{
i∂tu + ∂2

xu = i∂xv + β|u|2u, (x, t) ∈ T × (0, T ),
∂tv + ∂3

xv + μ∂xv + 1
2∂x

(
v2
)

+ μ∂xv = Re (∂xu) , (x, t) ∈ T × (0, T ).
(A.6)

Assume that, for some nonempty open set ω ⊂ T, (u, v) ∈ [C∞(ω × (0, T ))]2.
So (u, v) ∈ [C∞(T × (0, T ))]2.

Proof. Note that, we may assume that [v] = 0, thus we can apply the es-

timate (2.5) to conclude that ∂x(v2) ∈ Y
r,− 1

2
T and we have that β|u|2u ∈

X
r,− 1

2
T by estimate (2.4). Then we can apply Proposition A.2 to conclude

that (u, v) ∈ L2
loc(0, T ;Hr+ρ(T) × Hr+ρ(T)). Hence we can get t0 ∈ (0, T )

such that (u(t0), v(t0)) ∈ Hr+ρ(T) × Hr+ρ(T), then solving the equation
with (u(t0), v(t0)) as initial data, it follows that (u, v) ∈ L2(0, T ;Hr+ρ(T) ×
Hr+ρ(T)) and iterating this process we get that if (u, v) ∈ [C∞(T × (0, T ))]2,
showing the result. �

Appendix B: Unique continuation for the NLS–KdV system

We present the unique continuation property for the NLS–KdV system. This
will be proved by taking advantage of Carleman estimates already proved for
the Korteweg-de Vries and Schrödinger operators in [3,11]. For self-contentedness,
we will present below the estimates necessary to demonstrate the result.
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B.1: Carleman estimates

Consider the KdV equation on 2π-periodic conditions
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tq + ∂3
xq = f, (x, t) ∈ (0, 2π) × (0, T ),

q(0, t) = q(2π, t) t ∈ (0, T ),
∂xq(0, t) = ∂xq(2π, t) t ∈ (0, T ),
∂2

xq(0, t) = ∂2
xq(2π, t) t ∈ (0, T ),

q(x, 0) = q0(x), x ∈ (0, 2π).

(B.1)

Then the following Carleman inequality is a consequence of the result proved
in [11, Proposition 3.1].

Proposition B.1. Pick any T > 0. There exist two constants C > 0 and s0 > 0
such that any f ∈ L2(0, T ;L2(0, 2π)), any q0 ∈ L2

0(0, 2π) and any s ≥ s0, the
solution q of (B.1) fulfills
∫ T

0

∫ 2π

0

[sϕ|qxx|2 + (sϕ)3|qx|2 + (sϕ)5|q|2]e−2sϕdxdt ≤ C

∫ T

0

∫ 2π

0

|f |2e−2sϕdxdt

+ C

(∫ T

0

∫

ω

[sϕ|qxx|2 + (sϕ)3|qx|2 + (sϕ)5|q|2]e−2sϕdxdt

)

.

(B.2)

Let us now borrow the results obtained in [3, Theorem 3.2.]. Consider
the Schrödinger equation on 2π-periodic conditions

⎧
⎪⎪⎨

⎪⎪⎩

i∂tp + ∂2
xp = g (x, t) ∈ (0, 2π) × (0, T ).

p(0, t) = p(2π, t) = 0 t ∈ (0, T ),
∂xp(0, t) = ∂xp(2π, t) = 0 t ∈ (0, T ),
p(x, 0) = p0(x) x ∈ (0, 2π).

Thus, the following estimate holds.

Theorem B.2. There exist constants C > 0 and s0 ≥ 1 such that
∫ T

0

∫ 2π

0

[sϕ |px|2 + (sϕ)3|p|2]e−2sϕdxdt ≤
∫ T

0

∫ 2π

0

|g|2e−2sϕdxdt

+ C

∫ T

0

∫

ω

[(sϕ)3|p|2 + (sϕ) |Re (px)|2]e−2sϕdxdt

(B.3)

for all s > s0 and ω ⊂ (0, 2π).

B.2: Unique continuation property

Carleman inequalities with an internal observation for the KdV and Schrödinger
operators ensure the result of the unique continuation.

Theorem B.3. Let T > 0 and V1, V2, V3 ∈ C∞((0, T ) × T)), then the solution
of

⎧
⎨

⎩

i∂tu + ∂2
xu = i∂xv + V1(x, t)u + V2(x, t)u, (x, t) ∈ T × (0, T ),

∂tv + ∂3
xv + μ∂xv = V3(t, x)∂xu + Re(∂xu), (x, t) ∈ T × (0, T ),

u(x, t) = v(x, t) = 0, (x, t) ∈ ω × (0, T ),

with (u, v) ∈ C([0, T ];L2(T)×L2
0(T)), is the trivial one u ≡ v ≡ 0 in T×(0, T ).
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Proof. Putting together (B.2) and (B.3), we have that
∫ T

0

∫ 2π

0

[sϕ̃ |ux|2 + (sϕ̃)3|u|2]e−2sϕ̂dxdt

+
∫ T

0

∫ 2π

0

[sϕ̃|vxx|2 + (sϕ̃)3|vx|2 + (sϕ̃)5|v|2]e−2sϕ̃dxdt

≤
∫ T

0

∫ 2π

0

(|g|2 + |f |2)e−2sϕ̂dxdt

+ C

∫ T

0

∫

ω

[(sϕ)3|u|2 + (sϕ) |Re (ux)|2]e−2sϕdxdt

+ C

(∫ T

0

∫

ω

[sϕ|vxx|2 + (sϕ)3|vx|2 + (sϕ)5|v|2]e−2sϕdxdt

)

,

(B.4)

where ϕ̃ = min ϕ, ϕ̂ = max ϕ, g:=i∂xv+V1(x, t)u+V2(x, t)u and f :=V3(t, x)∂xu
+ Re(∂xu). The properties of the ϕ̃ and ϕ̂ can be seen in [3,11].

Now, note that the zero and first- order terms of the right-hand side of
(B.4) can be absorbed by the left-hand side. Moreover, the second-order term
vxx of the right-hand side (B.4) can be treated as in [11, Lemma 3.7], resulting
in the following estimate

∫ T

0

∫ 2π

0

[(sϕ̃)3|u|2 + (sϕ̃)5|v|2]e−2sϕ̃dxdt

≤ C

∫ T

0

∫

ω

[(sϕ)3|u|2 + (sϕ)5|v|2]e−2sϕdxdt. (B.5)

Therefore, thanks to the hypothesis u ≡ v ≡ 0 in ω × (0, T ), the right-hand
side of (B.5) yields that u ≡ v ≡ 0 in T× (0, T ), and so the result follows. �

As a consequence of this unique continuation property, we have the fol-
lowing result.

Corollary B.4. Let (u, v) ∈ X
0, 12
T × Y

0, 12
T be a solution of

⎧
⎨

⎩

i∂tu + ∂2
xu = i∂xv + β|u|2u, (x, t) ∈ T × (0, T ),

∂tv + ∂3
xv + 1

2∂x

(
v2
)

+ μ∂xv = −Re (∂xu) , (x, t) ∈ T × (0, T ),
u(x, t) = 0, v(x, t) = c, (x, t) ∈ ω × (0, T ),

(B.6)

where ω ⊂ T is a nonempty open set and c is some real constant. Then, there
exists a small T > 0, such that u = 0 on T × (0, T ) and v = c on T × (0, T ).

Proof. First note that using Corollary A.4 we have that u, v ∈ C∞(T× (0, T ))
then, considering (w, z) = (∂tu, ∂tv) we get

⎧
⎨

⎩

i∂tw + ∂2
xw = i∂xz + V1(t, x)w + V2(t, x)w, (x, t) ∈ T × (0, T ),

∂tz + ∂3
xz + μ∂xz + V3(t, x)z = Re(∂xw), (x, t) ∈ T × (0, T ),

z(x, t) = w(x, t) = 0, (x, t) ∈ ω × (0, T ).

Then the unique continuation property given by Theorem B.3 implies that
w = z = 0. In analogous way, we can consider (w̃, z̃) = (∂xu, ∂xv) and then
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we get that ∂xu = ∂xv = 0 in T × (0, T ). Hence we can conclude that both
functions u, and v are constant and the result follows. �
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