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Abstract. We study the asymptotic behavior of the solutions of the time-delayed higher-order
dispersive nonlinear differential equation

ut(x, t) +Au(x, t) + λ0(x)u(x, t) + λ(x)u(x, t− τ) = 0

where

Au = (−1)j+1∂2j+1
x u+ (−1)m∂2m

x u+
1

p+ 1
∂xu

p+1

with m ≤ j and 1 ≤ p < 2j. Under suitable assumptions on the time delay coefficients, we prove
that the system is exponentially stable if the coefficient of the delay term is bounded from below by
a suitable positive constant, without any assumption on the sign of the coefficient of the undelayed
feedback. Additionally, in the absence of delay, general results of stabilization are established in
Hs(R) for s ∈ [0, 2j+1]. Our results generalize several previous theorems for the Korteweg-de Vries
type delayed systems in the literature.

Contents

1. Introduction 2
1.1. Model description 2
1.2. Review of the results in the literature 3
1.3. Main results 5
1.4. Comments and article’s structure 7
2. Well-posedness theory 7
2.1. Linear system 7

2020 Mathematics Subject Classification. 35Q53, 93D15, 93D30, 93C20.
Key words and phrases. KdV-type equation, Damping mechanism, Delayed feedback, Stabilization, Lyapunov

approach.
*Corresponding author.

1



2 CAPISTRANO–FILHO, GALLEGO, AND KOMORNIK

2.2. Non-homogeneous system 9
2.3. Nonlinear estimates 11
2.4. Nonlinear system 12
2.5. Interpolation arguments 22
3. Exponential stabilization: Damping and delayed system 25
3.1. Linear system 25
3.2. Nonlinear system 26
3.3. Indefinite damping case 27
4. Exponential stabilization: Damping system 28
4.1. Stabilization in H2j+1(R) 29
4.2. Stabilization in Hs(R) 31
5. Concluding remarks 31
5.1. Weak versus strong damping mechanism 32
5.2. General framework 32
Acknowledgments 33
Funding 33
References 33

1. Introduction

1.1. Model description. Under suitable assumptions on amplitude, wavelength, wave steepness,
and so on, the study on asymptotic models for water waves has been extensively investigated to
understand the full water wave system; see, for instance, [1, 6, 7] and references therein for a
rigorous justification of various asymptotic models for surface and internal waves.

Formulating the waves as a free boundary problem of the incompressible, irrotational Euler
equation in an appropriate non-dimensional form, one has two non-dimensional parameters δ := h

λ
and ε := a

h , where the water depth, the wavelength and the amplitude of the free surface are
parameterized as h, λ and a, respectively. Moreover, another non-dimensional parameter µ is
called the Bond number, which measures the importance of gravitational forces compared to surface
tension forces. The physical condition δ ≪ 1 characterizes the waves, called long waves or shallow
water waves. In particular, considering the relations between ε and δ, we can have two well-known
regimes:

1. Korteweg-de Vries (KdV): ε = δ2 ≪ 1 and µ ̸= 1
3 . Under this regime, Korteweg and de

Vries [24]1 derived the following well-known equation as a central equation among other
dispersive or shallow water wave models called the KdV equation from the equations for
capillary-gravity waves:

±2ηt + 3ηηx +

(
1

3
− µ

)
ηxxx = 0.

2. Kawahara: ε = δ4 ≪ 1 and µ = 1
3 + νε

1
2 . In connection with the critical Bond number

µ = 1
3 , Hasimoto [16] derived a fifth-order KdV equation of the form

±2ηt + 3ηηx − νηxxx +
1

45
ηxxxxx = 0,

which is nowadays called the Kawahara equation.

In the last years, many authors have been interested to find the behavior of solutions for the
time-delayed KdV equation, time-delayed Kawahara equation, and other time-delayed dispersive
systems see, for instance, [2, 3, 11, 12, 21, 32] and the reference therein. In this article, our goal
is to study general results for a higher-order dispersive equation which in some sense recovers the

1This equation was first introduced by Boussinesq [9], and Korteweg and de Vries rediscovered it twenty years
later.
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equations mentioned in the cited articles. Due to this advance for this type of dispersive equation,
our main focus is to investigate the stabilization of the higher-order extension, for example, of KdV
and Kawahara equations.

To be precise, we will consider the Cauchy problem for the following higher-order KdV-type
equation posed in R:

(1.1)

{
ut(x, t) + (−1)j+1∂2j+1

x u(x, t) + 1
2∂x(u

2) = 0, (t, x) ∈ R× R,
u(0, x) = u0(x), x ∈ R.

Specifically, (1.1) is called KdV and fifth-order KdV–type equation when j = 1 and j = 2, respec-
tively. More generally, we aim to prove the stabilization results of the solutions for a time-delayed
higher-order dispersive system with a strong dissipative term, namely

(1.2)


ut(x, t) + (−1)j+1∂2j+1

x u(x, t) + (−1)m∂2m
x u(x, t) + λ0(x)u(x, t)

+λ(x)u(x, t− τ) + 1
p+1∂xu

p+1(x, t) = 0, in R× (0,∞),

u(x, 0) = u0(x), in R,
u(x, s) = u0(x, s), in R× [−τ, 0],

with m ≤ j, j,m ∈ N, and 1 ≤ p < 2j. Here, the constant τ > 0 is the time delay and the
coefficients are considered with the following regularity

λ0(x), λ(x) ∈ L∞(R).

Thus, our main intention is to furnish sufficient conditions on the coefficients λ, λ0 to have well-
posedness and exponential decay estimates for the model (1.2).

1.2. Review of the results in the literature. Let us briefly discuss the preceding works [2, 3,
11, 12, 21, 32] and the results concerning the well-posedness of (1.1).

The local and global well-posedness of (1.1) has been widely studied. The local well-posedness
result was first proved by Gorsky and Himonas [15] for s ≥ −1

2 , and Hirayama [17] improved this

to s ≥ − j
2 . Both works were based on the standard Fourier restriction norm method. Hirayama

improved the bilinear estimate by using the factorization of the resonant function. The global well-
posedness of (1.1) was established for j = 1, 2 by Colliander et al. [13] and Kato [19], respectively,
via the “I-method”. In [18] the authors extended the results of [13] and [19] to j ≥ 3. Their
method follows the argument in [13] for the periodic KdV equation, while some estimates are
slightly different. They proved that the IVP (1.1) is globally well-posed in Hs(T) for j ≥ 3 and

s ≥ − j
2 .
To our knowledge, the only work concerning the control and stabilization properties for the

system (1.1) was done by the first author with two collaborators in [10]. The authors studied the
local and global control results for (1.1) posed on the unit circle. More precisely, they considered
the system {

∂tu+ (−1)j+1∂2j+1
x u+ 1

2∂x(u
2) = f(t, x), (t, x) ∈ R× T,

u(0, x) = u0(x), x ∈ Hs(T),

posed on a periodic domain T. They showed the globally controllability in Hs(T), for s ≥ 0 by the
forcing term

f(t, x) := g(x)

(
h(t, x)−

∫
T
g(y)h(t, y) dy

)
,

supported in a given open set ω ⊂ T, where g is a given nonnegative smooth function satisfying∫
T
g (x) dx = 1 and ω := {g > 0} ,

and h is the control input.
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Considering the particular cases of the system (1.2), without delay and damping terms, we
recall some results from the literature concerning the asymptotic properties. The well-known
Korteweg–de Vries–Burgers equation

(1.3) ut + uxxx − uxx + uux = 0 in R× (0,∞),

corresponding to the case j = m = 1, was extensively studied. For example, in [4] Amick et. al
proved that the L2-norm of the solutions to (1.3) tends to zero as t → ∞ in a polynomial way,
namely

∥u(·, t)∥2 ≤ Ct−
1
2 for all t > 0,

with a positive constant C. More recently, Cavalcanti et al. [12] studied the following damped
KdV–Burgers equation:

(1.4)

{
ut(x, t) + uxxx(x, t)− uxx(x, t) + λ0(x)u(x, t) + u(x, t)ux(x, t) = 0, in R× (0,∞),

u(x, 0) = u0(x), in R.

Under appropriate conditions on the damping coefficient λ0, the authors established its well-
posedness and exponential stability for indefinite damping λ0(x), giving exponential decay esti-
mates on the L2−norm of solutions. In [14], the results of [12] were extended by generalizing
the nonlinear term of (1.4), and proving the global well-posedness and exponential stabilization of
the generalized KdV-Burger equation under the presence of the localized and indefinite damping.
In [21] the authors consider the KdV-Burgers equation (1.4) in the presence of a delayed feed-
back λ(x)u(x, t − τ). They considered the system with damping and delay feedback, showing the
exponential decay estimates under appropriate conditions on the damping coefficients.

It is important to point out the exponential decay estimates obtained in [26, 29] for the
KdV equation posed in an interval with localized damping. Also, periodic conditions have been
considered in [20, 23] while more general nonlinearities have been considered in [31]. Additionally,
the robustness concerning the delay of the boundary stability of the nonlinear KdV equation has
been studied in [5]. The authors obtain, under an appropriate condition on the feedback, with
and without delay, the local stabilization results for the KdV equation with noncritical length.
Moreover, in [32], the authors extended this result for the nonlinear Korteweg-de Vries equation in
the presence of an internal delayed term.

In two recent articles [2, 3] the authors studied the qualitative and numerical analysis of the
following nonlinear fourth-order delayed dispersive equation in a bounded domain I = [0, L] with
boundary and initial conditions:

(1.5)


ut(x, t)− σuxx(x, t) + µuxxxx(x, t) + u(x, t− τ)ux(x, t) = 0, (x, t) ∈ I × (0,∞),

u(0, t) = u(L, t) = ux(0, t) = ux(L, t) = 0, t > 0,

u(x, h) = f(x, h), (x, h) ∈ I × [−τ, 0].

The well-posedness, as well as the exponential stability of the zero solution of (1.5), was established
in [2]. The main ingredient of the proof was the exploitation of the Schauder Fixed Point Theorem.
This improved an earlier result [3] in the sense that no interior damping control was required.
Additionally, numerical simulations were also presented in this article to illustrate the theoretical
result.

Finally, in a recent paper [11] the authors considered the Kawahara equation posed on a
bounded interval under the presence of localized damping (a (x)u(x, t)) and delay (b(x)u(x, t−h))
terms. They proved its exponential stabilization under suitable assumptions. First, they showed
the Kawahara system is exponentially stable under some restriction of the spatial length of the
domain. Next, they introduced a more general delayed system and suitable energy functions, they
proved, via the Lyapunov approach, the exponential stability for small initial data small, under a
restriction on the spatial length of the domain. Then they used a compactness-uniqueness argument
to remove these hypotheses, thereby obtaining a semi-global stabilization result.
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We end our review with a recent paper [22] where abstract linear and nonlinear evolutionary
systems with feedback were studied. Specifically, the authors considered the system

(1.6)

 U ′(t) = AU(t) + k(t)BU(t− τ) + F (U(t)), in (0,+∞).
U(0) = U0, for t ∈ (0, τ),
BU(t− τ) = f(t),

where A generates an exponentially stable semigroup in a Hilbert space H, B is a continuous linear
operator of H into itself, k(t) ∈ L1

loc(0,+∞) and τ > 0 is a delay parameter, with F : H → H is a
Lipschitz function. The main purpose of [22] was to give a well-posedness result and an exponential
decay estimate for the model (1.6) with a damping coefficient k(t) belonging only to L1

loc. By using
the semigroup approach combined with Gronwall’s inequality, under some mild assumptions on
the involved functions and parameters, the well-posedness of the problem was established and an
exponential decay estimate was obtained.

1.3. Main results. With this state of the art, let us now present our main results which give a
necessary next step to understanding the asymptotic behavior for generalized dispersive systems.

From now on, for the sake of simplicity, the norms in the spaces Lp(R) and L∞(R) will be
denoted by ∥ · ∥p and ∥ · ∥∞, respectively. Furthermore, we introduce the Banach space

Bs,T := C([0, T ];Hs(R)) ∩ L2(0, T ;Hs+j(R))
with the natural norm

∥u∥Bs,T
= ∥u∥C([0,T ];Hs(R)) + ∥∂s+j

x u∥L2(0,T ;L2(R)).

For s = 0 we omit the subscript s, so that BT = B0,T . Our first result ensures that (1.2) is
well-posed in the space Hs(R) for 0 ≤ s ≤ 2j + 1 and 1 ≤ p < 2j.

Theorem 1.1. Let T > 0. Consider 1 ≤ p < 2j, j ≥ 1, and 0 ≤ s ≤ 2j + 1 be given. In
addition, assume that λ0, λ ∈ L∞(R) when s = 0 and λ0, λ ∈ Hj(R) when s > 0. Then, for any
u0 ∈ C([−τ, 0];Hs(R)), the IVP (1.2) admits a unique solution u ∈ Bs,T . Moreover, there exists a
nondecreasing continuous function βs : R+ → R+, such that

∥u∥Bs,T
≤ βs(∥u0∥2)∥u0∥Hs(R).

Remark 1.2. The same result as stated in Theorem 1.1 is obtained when considering the Cauchy
problem described in equation (1.2) without the presence of a time delay, i.e., when the parameter
τ is set to be zero.

Consequently, the subsequent result demonstrates that every mild solution of equation (1.2)
qualifies as a regular solution when the origin is not taken into account.

Corollary 1.3. Under the assumptions of Theorem 1.1, for any u0 ∈ C([−τ, 0];L2(R)), the corre-
sponding solution u of (1.2) belongs to

B2j+1,[ε,T ] := C([ε, T ];H2j+1(R)) ∩ L2(ε, T ;H3j+1(R))
for every T > 0 and 0 < ε < T .

The second main result is related to the exponential stabilization of (1.2). For that, consider
initially the following assumption

(1.7) λ0(x) ≥ γ0 for a.e. x ∈ R
with some positive constant γ0. If the coefficient of the delay term λ satisfies the estimate ∥λ∥∞ < γ0,
we can obtain the exponential decay estimates for the E(t) associated to the solution of the system
(1.2), where

E(t) := E(u(t)) = 1

2

∫
R
u2(x, t)dx+

1

2

∫ t

t−τ

∫
R
e−(t−s)|λ(x)|u2(x, s) dx ds.

In that case, the delay effect is compensated by the undelayed damping term (cf. [27]), and the
following result holds:
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Theorem 1.4. Let λ0, λ ∈ L∞(R) satisfying (1.7) and

(1.8)
eτ + 1

2
|λ(x)| ≤ γ + β(x) for a.e. x ∈ R

with

(1.9) 0 ≤ γ < γ0 and ∥β∥q <
(γ0 − γ

cq

)1− 1
2q
.

Here,

cq :=
(
1− 1

2q

)(2
q

) 1
2q−1

for 1 ≤ q < ∞.

Thus, the solution of (1.2) is exponentially stable. Moreover, the solution u of (1.2) satisfies

E(t) ≤ C(u0, τ)e
−νt.

Here, ν is defined by

(1.10) ν = min

{
2
(
γ0 − γ − 2q − 1

2q

(2
q

) 1
2q−1 ∥β∥

2q
2q−1
q

)
, 1

}
and

(1.11) C(u0, τ) =
1

2
∥u(0)∥22 +

∫ 0

−τ
es∥λ∥∞∥u(s)∥22ds.

After having restricted ourselves to the case where λ0 is bounded from below by a positive
constant, the next issue is to extend our results to the case where the coefficient of the undelayed
feedback λ0 is indefinite. We have the following result:

Theorem 1.5. Consider λ0, λ ∈ L∞(R) satisfying (1.8) and

(1.12) λ0(x) ≥ γ0 − β0(x) for a.e. x ∈ R,

with β0 satisfying

(1.13) ∥β0∥q <
(γ0
cq

)1− 1
2q

and

(1.14) 0 ≤ γ < γ0 and ∥β0 + β∥q <
(γ0 − γ

cq

)1− 1
2q
.

For every u0 ∈ C([−τ, 0];L2(R)), the system (1.2) has a unique global mild solution. It is exponen-
tially stable, that is,

E(t) ≤ C(u0, τ)e
−ν̃t

with C(u0, τ) > 0 as in (1.11), and ν̃ defined by

(1.15) ν̃ = min

{
2
(
γ0 − γ − 2q − 1

2q

(2
q

) 1
2q−1 ∥β + β0∥

2q
2q−1
q

)
, 1

}
.

As a consequence of Theorem 1.5, we can find information on the solution of the system (1.2)
for any interval [t, t + T ], for T > 0. The next result will be crucial in getting the exponential
stabilization in the space H2j+1(R).

Corollary 1.6. Let T > 0 and u0 ∈ C([−τ, 0];L2(R)). Consider λ0 and λ satisfying (1.8) and
(1.12), respectively. Then, there exists a nondecreasing continuous function α0 : R+ → R+ such
that the corresponding solution u of problem (1.2) with 1 ≤ p < 2j satisfies

∥u∥B0,[t,t+T ]
≤ C2T

{
2C(u0, τ)e

−νt + ∥λ∥∞∥u∥L1(t−τ,t;L2(R)) + ∥λ∥1/2∞ ∥u∥L2(t−τ,t;L2(R))

}
where CT is given by (2.10) below and C(u0, τ) defined by (1.11).
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Considering the general equation (1.2) in theHs-norm, with s ∈ [0, 2j+1] without the presence
of the time-delay term, that is, λ = τ = 0, the previous corollary helps us to prove the following
general theorem about the exponential decay:

Theorem 1.7. Consider λ0 ∈ L∞(R) satisfying (1.7) an (1.8). For λ = τ = 0, the system (1.2)
is exponentially stable. In other words, there exist a time T0 > 0 and a positive function η(s) > 0
such that for every u0 ∈ Hs(R) with s ∈ [0, 2j + 1], 1 ≤ p < 2j, (1.2) has a unique global mild
solution satisfying

(1.16) ∥u(t)∥Hs(R) ≤ γ(∥u0∥2, T0)∥u0∥Hs(R)e
−η(s)t, for t ≥ T0.

Here, γ : (0,∞)× R+ → R+ is a continuous function.

1.4. Comments and article’s structure.

1. It is important to point out that to prove Theorem 1.1 we use a method introduced by
Tartar [33] and adapted by Bona and Scott [8, Theorem 4.3]. This method was first used to
prove the global well-posedness of IVP for the KdV equation on the whole line, and here,
we adapt the spaces for our purpose.

2. Theorems 1.4 and 1.5 generalize the results in [21] for the general differential operator

Au := (−1)j+1∂2j+1
x u(x, t) + (−1)m∂2m

x u(x, t),

that is, considering appropriate values of j, we can recover the results in [21]. Additionally
to that, considering the real line, the results proved here can be seen as extensions of
[2, 3, 11, 12, 32].

3. Note that Theorem 1.7 extends (and recovers) the previous results of [12, 14] by proving
the stabilization in Bs,T for 0 ≤ s ≤ 2j+1 with only a damping term, without the presence
of the time-delay term.

4. The mains results of the paper are summarized in the following table:

Type of the feedback law Well-posedness Exponential stabilizition
Damping (indefined and localized) term Bs,T ∥u(t)∥2 ≤ C(u0, τ)e

−ηt

+ Time Delay term 0 ≤ s ≤ 2j + 1 in L2-norm
Damping term Bs,T ∥u(t)∥Hs(R) ≤ e−ηt∥u0∥Hs(R)
(indefined and localized) 0 ≤ s ≤ 2j + 1 0 ≤ s ≤ 2j + 1

This paper consists of five parts including the introduction. In Section 2 we analyze the
well-posedness of the system (1.2) when the initial data belongs to space C([−τ, 0];Hs(R)), where
s ∈ [0, 2j + 1] under some assumptions of λ0 and λ. Section 3 is devoted to the exponential
stabilization of the system (1.2) in L2(R), that is, to the proof of Theorems 1.4 and 1.5. In Section
4 we prove Theorem 1.7, establishing the exponential stabilization of the system (1.2) without the
presence of time delay term (λ = τ = 0) in the space Hs(R), for s ∈ [0, 2j + 1]. Finally, in Section
5, we conclude the work with some further considerations.

2. Well-posedness theory

In this section, we establish the well-posedness theory inHs(R), for s ∈ [0, 2j+1]. The strategy
is establish the well-posedness results in L2(R) and H2j+1(R), respectively. After that, we will use
interpolation arguments, due to Tartar [33] and adapted by Bona and Scott [8, Theorem 4.3], to
achieve Theorem 1.1.

2.1. Linear system. For simplicity, consider m = j ∈ N in the system (1.2). Let us start studying
the following linear model associated with (1.2), namely

(2.1)


ut(x, t) + (−1)j+1∂2j+1

x u(x, t) + (−1)j∂2j
x u(x, t) + λ0u(x, t)

+λu(x, t− τ) = 0, in R× (0,∞),

u(x, s) = u0(x, s), in R× [−τ, 0].
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This section is devoted to proving the well-posedness via semigroup theory.We first take a look at
the properties of the following operator

(2.2) Aλ0u := −(−1)j+1∂2j+1
x u(x, t)−(−1)j∂2j

x u(x, t)− λ0u.

The following well-posedness result can be proved.

Proposition 2.1. If λ0 ∈ L∞(R), then the operator Aλ0 defined by (2.2) on D(Aλ0) := H2j+1(R)
generates a strongly continuous semigroup in the Hilbert space H := L2(R).

Proof. Note that Aλ0 = A+ Āλ0 , where

Au = −(−1)j+1∂2j+1
x u(x, t)− (−1)j∂2j

x u(x, t)

and

Āλ0 = −λ0u.

It suffices to observe that Āλ0 is a bounded perturbation of the operator A and to prove that
A generates a strongly continuous semigroup in L2(R). Indeed, according to the Lumer-Phillips
theorem it is sufficient to check that A is dissipative and that I − A is onto. The dissipativity
follows by a direct computation: if u0 ∈ H2j+1(R) is real-valued, then u is also real-valued and

(Au, u)H =

∫ ∞

−∞

(
−(−1)j+1∂2j+1

x u−(−1)j∂2j
x u
)
udx = −

∫ ∞

−∞
(∂j

xu)
2dx ⩽ 0,

since we have ∫ ∞

−∞
(−1)j+1(∂2j+1

x u)udx = 0.

Thanks to the fact that ℜAv = A(ℜv) for all v ∈ H2j+1(R), it follows that

ℜ(Au, u)H = −
∫ ∞

−∞
(∂j

xu)
2dx ⩽ 0

for all u0 ∈ H2j+1(R).
It remains to show that for every f ∈ L2(R) there exists u ∈ H2j+1(R) satisfying the equality

−(−1)j+1∂2j+1
x u(x, t)−(−1)j∂2j

x u(x, t) + u = f.

Taking the Fourier transform in the previous equation, it is equivalent to

û(ξ) =
f̂(ξ)

1− ((−1)j+1(iξ)2j+1)−(−1)j(iξ)2j
.

This is possible by the fact that the denominator

h(ξ) := 1− ((−1)j+1(iξ)2j+1)−(−1)j(iξ)2j

never vanishes. Since, moreover, h(ξ) is a continuous function satisfying |h(ξ)| → ∞ as |ξ| → ∞, 1/h
is bounded, and therefore the last equation has a unique solution û ∈ L2(R). Finally, since the
function

1 + |ξ|+ |ξ|2 + |ξ|3 + · · ·+ |ξ|2j+1

|1− ((−1)j+1(iξ)2j+1)−(−1)j(iξ)2j |
tends to 1 as |ξ| → ∞ and hence it is bounded by some constant M on R, we conclude that∣∣(iξ)j û(ξ)∣∣ ⩽ M |f̂(ξ)|, j ∈ N.

Since f̂ ∈ L2(R), this implies the regularity property u ∈ H2j+1(R). □

Let us now use an iterative procedure (see e.g. [28]) and semigroup theory (see e.g. [30]), to
prove that (2.1) is well-posed.

Theorem 2.2. If λ0, λ ∈ L∞(R) and u0 ∈ C([−τ, 0];H), then there exists a unique solution
u ∈ C([−τ,+∞);H) of the problem (2.1).
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Proof. Consider the interval [0, τ ]. Note that (2.1) can be seen as an inhomogeneous Cauchy problem
of the form {

ut(t)−Aλ0u(t) = g0(t), in (0, τ),

u(0) = u0,

with g0(t) = −λu0(t − τ), for t ∈ [0, τ ], which have unique solution u(·) ∈ C([0, τ), H). Now,
considering the interval t ∈ [τ, 2τ ], problem (2.1) can be rewritten as{

ut(t)−Aλ0u(t) = g1(t), in (τ, 2τ),

u(τ) = u(τ−),

where g1(t) = −λu(t− τ). Thanks to the first step of the proof the function u(t), for t ∈ [0, τ ], its
known, thus g1(t) can be considered as a known function for t ∈ [τ, 2τ ]. Therefore, this analysis
yields the existence of a solution u(·) ∈ C([0, 2τ ], H). By a bootstrap argument we get a solution
u ∈ C([0,∞), H). □

2.2. Non-homogeneous system. We are interested in extending the previous results for the
nonlinear system (1.2). In this way, we first consider the corresponding linear inhomogeneous
initial value problem

(2.3)


ut(x, t) + (−1)j+1∂2j+1

x u(x, t) + (−1)j∂2j
x u(x, t) + λ0u(x, t)

+λu(x, t− τ) = f(x, t), in R× (0, T ),

u(x, s) = u0(x, s), in R× [−τ, 0],

for some T > 0. Consider the operator Aλ0 defined by Proposition 2.1. So, we may rewrite (2.3) in
the following way

(2.4)

{
ut(x, t) + λu(x, t− τ) = Aλ0u(x, t) + f(x, t), in R× (0, T ),

u(x, s) = u0(x, s), in R× [−τ, 0].

Since Aλ0 generates a strongly continuous semigroup of contractions in L2(R) by Proposition
2.1, for any given data u0 ∈ C([−τ, 0], H) and f ∈ L1(0, T ;L2(R)), problem (2.4) has a unique mild
solution u ∈ C([−τ, T ];L2(R)), satisfying the following Duhamel’s formula

(2.5) u(t) = S(t)u0(0)−
∫ t

0
S(t− s)λu(s− τ) ds+

∫ t

0
S(t− s)f(s) ds, t ∈ [0, T ].

Therefore, we can prove that the mild solution of (2.4) depends continuously on the initial data.

Proposition 2.3. If u0 ∈ C([−τ, 0], H) and f ∈ L1(0, T ;L2(R)), then the solution of (2.4) satisfies
the following estimate:

(2.6) ∥u(t)∥C([0,T ];L2(R)) ≤ e∥λ∥∞T

(
∥u(0)∥2 + ∥f∥L1(0,T ;L2(R)) + ∥λ∥∞

∫ 0

−τ
∥u(s)∥2 ds

)
and

(2.7) ∥u(t)∥C([−τ,T ];L2(R)) ≤ C
(
∥u0∥C([−τ,0];L2(R)) + ∥f∥L1(0,T ;L2(R))

)
,

where the positive constant C is given by C = C(∥λ∥∞, T, τ).

Proof. The Duhamel’s formula (2.5) give us that

∥u(t)∥2 ≤∥u(0)∥2 + ∥λ∥∞
∫ t

0
∥u(s− τ)∥2 ds+ ∥f∥L1(0,T ;L2(R))

≤∥u(0)∥2 + ∥f∥L1(0,T ;L2(R)) + ∥λ∥∞
∫ 0

−τ
∥u(s)∥2 ds+ ∥λ∥∞

∫ t

0
∥u(s)∥2 ds

=∥u(0)∥2 + ∥f∥L1(0,T ;L2(R)) + ∥λ∥∞
∫ t

−τ
∥u(s)∥2 ds.

Thus, the result follows as a direct application of Gronwall’s lemma. □
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As a consequence of the previous inequality, we have the following proposition.

Proposition 2.4. Let u0 ∈ C([−τ, 0], H) and f ∈ L1(0, T ;L2(R)), then the solution of (2.4)
belongs to BT and the following estimates holds true

(2.8) ∥u(t)∥C([−τ,T ];L2(R)) ≤ C(∥λ∥∞, T, τ)
(
∥u0∥C([−τ,0];L2(R)) + ∥f∥L1(0,T ;L2(R))

)
where C = C(∥λ∥∞, T, τ) is a positive constant and

∥u∥BT
≤ CT

{
∥u(0)∥2 + ∥f∥L1(0,T ;L2(R)) + ∥λ∥∞∥u∥L1(−τ,0;L2(R))

+∥λ∥1/2∞ ∥u∥L2(−τ,0;L2(R))

}(2.9)

where

(2.10) CT =

√
3

2

(
1 + e2∥λ∥∞T

)1/2
e(∥λ∥∞+∥λ0∥∞)T .

Moreover, we have that

1

2
∥u(t)∥22 +

∫ t

0
∥∂j

xu∥22ds+
∫ t

0

∫
R
λ0u

2(x, s)dxds+

∫ t

0

∫
R
λu(x, s− τ)u(x, s)dxds

=
1

2
∥u(0)∥22 +

∫ t

0

∫
R
f(x, s)u(x, s)dxds,

(2.11)

for all t ∈ [0, T ],

Proof. Multiplying the equation (2.3) by u and integrating by parts, taking into account that∫
R
(−1)j+1(∂2j+1

x u)udx = 0 and

∫
R
(−1)j∂2j

x u(x, t)udx =

∫
R
(∂j

xu)
2dx,

the relation (2.11) holds. Now, estimate (2.8) follows by relation (2.7).
Let us now prove (2.9). Thanks to (2.6) we infer that

∥u(t)∥22 + 2

∫ t

0
∥∂j

xu∥22ds ≤ ∥u(0)∥22

+ 2∥f∥L1(0,T ;L2(R))e
∥λ∥∞T

(
∥u(0)∥2 + ∥f∥L1(0,T ;L2(R)) + ∥λ∥∞

∫ 0

−τ
∥u(s)∥2 ds

)
+ 2∥λ0∥∞

∫ t

0
∥u(s)∥22ds+ ∥λ∥∞

∫ t

0
∥u(s− τ)∥22ds+ ∥λ∥∞

∫ t

0
∥u(s)∥22ds.

The previous inequality together with the following inequality∫ t

0
∥u(s− τ)∥22 ds ≤

∫ 0

−τ
∥u(s)∥22 ds+

∫ t

0
∥u(s)∥22 ds,

ensures that

∥u(t)∥22 + 2

∫ t

0
∥∂j

xu∥22ds ≤ ∥u(0)∥22 + ∥f∥2L1(0,T ;L2(R))

+ e2∥λ∥∞T
(
∥u(0)∥2 + ∥f∥L1(0,T ;L2(R)) + ∥λ∥∞∥u∥L1(−τ,0;L2(R))

)
2

+ ∥λ∥∞∥u∥2L2(−τ,0;L2(R)) + 2(∥λ∥∞ + ∥λ0∥∞)

∫ t

0
∥u∥22ds.

(2.12)

From (2.12) we have

∥u(t)∥22 + 2

∫ t

0
∥∂j

xu∥22ds ≤ 2(∥λ∥∞ + ∥λ0∥∞)

∫ t

0
∥u∥22ds

+
(
1 + e2∥λ∥∞T

){
∥u(0)∥2 + ∥f∥L1(0,T ;L2(R))

+∥λ∥∞∥u∥L1(−τ,0;L2(R)) + ∥λ∥1/2∞ ∥u∥L2(−τ,0;L2(R))

}2
.

(2.13)
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An application of Gronwall’s Lemma gives the following

∥u(t)∥22 + 2

∫ t

0
∥∂j

xu∥22 ds ≤
(
1 + e2∥λ∥∞T

)
e2(∥λ∥∞+∥λ0∥∞)T×

×
{
∥u(0)∥2 + ∥f∥L1(0,T ;L2(R)) + ∥λ∥∞∥u∥L1(−τ,0;L2(R)) + ∥λ∥1/2∞ ∥u∥L2(−τ,0;L2(R))

}2
,

thus

∥u∥2BT
≤3

2

(
1 + e2∥λ∥∞T

)
e2(∥λ∥∞+∥λ0∥∞)T×

×
{
∥u(0)∥2 + ∥f∥L1(0,T ;L2(R)) + ∥λ∥∞∥u∥L1(−τ,0;L2(R)) + ∥λ∥1/2∞ ∥u∥L2(−τ,0;L2(R))

}2
,

and so

∥u∥BT
≤
√

3

2

(
1 + e2∥λ∥∞T

)1/2
e(∥λ∥∞+∥λ0∥∞)T×

×
{
∥u(0)∥2 + ∥f∥L1(0,T ;L2(R)) + ∥λ∥∞∥u∥L1(−τ,0;L2(R)) + ∥λ∥1/2∞ ∥u∥L2(−τ,0;L2(R))

}
showing (2.9) with CT defined by (2.10). □

2.3. Nonlinear estimates. In this subsection, we present some nonlinear estimates that will be
used to prove Theorem 1.1.

Lemma 2.5. Let 1 ≤ p < 2j with j ≥ 1. Then, there exists a positive constant C, such that, for
any T > 0 and u, v ∈ BT , we have

∥upvx∥L1(0,T ;L2(R)) ≤ 2
p
2CT

2j−p
4j ∥u∥pBT

∥v∥BT
.

Proof. Recall that Hj(R) ↪→ H1(R) ↪→ L∞(R), for j ≥ 1 and that (3.6) holds. On the other hand,

∥upvx∥L1(0,T ;L2(R)) ≤ C

∫ T

0
∥u(t)∥p∞∥vx(t)∥2dt

≤ 2
p
2C

∫ T

0
∥u(t)∥

p
2
2 ∥ux(t)∥

p
2
2 ∥vx(t)∥2dt

≤ 2
p
2C∥u∥

p
2

C([0,T ];L2)

∫ T

0
∥ux(t)∥

p
2
2 ∥vx(t)∥2dt.

Gagliardo-Nirenberg inequality says the following

(2.14) ∥∂m
x u∥2 ≤ C∥∂j

xu∥
m
j

2 ∥u∥
1−m

j

2 , m ≤ j.

Thus, by using (2.14) and Hölder inequality, we obtain

∥upvx∥L1(0,T ;L2(R)) ≤ 2
p
2C∥u∥

p
2

C([0,T ];L2)

∫ T

0
∥∂j

xu(t)∥
p
2j

2 ∥u(t)∥
p
2

(
1− 1

j

)
2 ∥vx(t)∥2dt

≤ 2
p
2C∥u∥

p
2

(
2− 1

j

)
C([0,T ];L2)

(∫ T

0
∥∂j

xu(t)∥
p
2j

. 4j
p

2

) p
4j
(∫ T

0
∥vx(t)∥22dt

) 1
2
(∫ T

0
dt

) 2j−p
4j

≤ 2
p
2CT

2j−p
4j ∥u∥

p
2

(
2− 1

j

)
C([0,T ];L2)

∥∂j
xu∥

p
2j

L2([0,T ];L2)
∥∂xv∥L2([0,T ];L2)

≤ 2
p
2CT

2j−p
4j ∥u∥

p
2

(
2− 1

j

)
BT

∥u∥
p
2j

BT
∥v∥BT

,

proving the result. □

The next lemma gives the estimates for the nonlinear terms.

Lemma 2.6. For any T > 0, 1 ≤ p < 2j, λ0 ∈ L∞(R) and u, v, w ∈ BT , we have

(i) ∥λ0u∥L1(0,T ;L2(R)) ≤ T
1
2 ∥λ0∥∞∥u∥BT

;
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(ii) ∥uwx∥L1(0,T ;L2(R)) ≤ 2
1
2T

1
4 ∥u∥BT

∥w∥BT
;

(iii) ∥u|v|p−1wx∥L1(0,T ;L2(R)) ≤ 2
p
2T

2j−p
4j ∥u∥BT

∥w∥BT
∥v∥p−1

BT
;

(iv) The map
M : BT → L1(0, T ;L2(R)),

defined by Mu := upux, is locally Lipschitz continuous and satisfies

∥Mu−Mv∥|L1(0,T ;L2(R)) ≤2
p
2T

2j−p
4j C

(
∥u∥pBT

+ ∥u∥BT
∥v∥p−1

BT
+ ∥v∥pBT

)
∥u− v∥BT

+ 2
1
2T

1
4C∥u∥BT

∥u− v∥BT
,

for a positive constant C.

Proof. Note that (i) follows using Hölder inequality. For (ii), observe that thanks to (3.6), we have

∥uwx∥L1(0,T ;L2(R)) ≤ 2
1
2T

1
4 ∥u∥BT

∥w∥BT
.

Let us now prove (iii). Note that

∥u|v|p−1wx∥L1(0,T ;L2(R))

≤ 2
p
2 ∥u∥

1
2
BT

∥v∥
p−1
2

BT

∫ T

0
∥∂j

xu(t)∥
1
2j

2 ∥u(t)∥
1
2

(
1− 1

j

)
2 ∥∂j

xv(t)∥
p−1
2j

2 ∥v(t)∥
p−1
2

(
1− 1

j

)
2 ∥wx(t)∥2dt

≤ 2
p
2 ∥u∥

1
2
BT

∥v∥
p−1
2

BT
∥u∥

1
2

(
1− 1

j

)
BT

∥v∥
p−1
2

(
1− 1

j

)
BT

∫ T

0
∥∂j

xu(t)∥
1
2j

2 ∥∂j
xv(t)∥

p−1
2j

2 ∥wx(t)∥2dt

= 2
p
2 ∥u∥

1
2

(
2− 1

j

)
BT

∥v∥
p−1
2

(
2− 1

j

)
BT

∫ T

0
∥∂j

xu(t)∥
1
2j

2 ∥∂j
xv(t)∥

p−1
2j

2 ∥wx(t)∥2dt.

Thus, Hölder inequality ensures that

∥u|v|p−1wx∥L1(0,T ;L2(R))

≤ 2
p
2 ∥u∥

1
2

(
2− 1

j

)
BT

∥v∥
p−1
2

(
2− 1

j

)
BT

(∫ T

0
∥∂j

xu∥22dt
) 1

4j
(∫ T

0
∥∂j

xv∥22dt
) p−1

4j
(∫ T

0
∥wx∥22dt

) 1
2

T
2j−p
4j .

The previous inequality gives

∥u|v|p−1wx∥L1(0,T ;L2(R)) ≤ 2
p
2T

2j−p
4j ∥u∥

1
2

(
2− 1

j

)
BT

∥v∥
p−1
2

(
2− 1

j

)
BT

∥u∥
1
2j

BT
∥v∥

p−1
2j

BT

(∫ T

0
∥∂j

xw∥22dt
) 1

2

≤ 2
p
2T

2j−p
4j ∥u∥BT

∥v∥p−1
BT

∥w∥BT
,

which allows us to get (iii). Finally, using the Mean Valued Theorem, (ii), (iii) and Lemma 2.5, we
have

∥Mu−Mv∥L1(0,T ;L2) ≤C∥(1 + |u|p−1 + |v|p−1)|u− v|ux∥L1(0,T ;L2) + ∥vp(u− v)x∥L1(0,T ;L2)

≤C
{
2

1
2T

1
4 ∥u− v∥BT

∥u∥BT
+ 2

p
2T

2j−p
4j ∥u− v∥BT

∥u∥pBT

+2
p
2T

2j−p
4j ∥u− v∥BT

∥u∥BT
∥v∥p−1

BT
+ 2

p
2T

2−p
4 ∥u− v∥BT

∥v∥pBT

}
,

and (iv) holds. □

2.4. Nonlinear system. We are in a position to considering the nonlinear model (1.2), with
u0 ∈ C([−τ, 0];L2(R)). Before presenting it, let us introduce the following definitions:

Definition 2.7. A mild solution of (1.2) will be a function u ∈ BT , T > 0, which satisfies

u(t) = S(t)u0(0)−
∫ t

0
S(t− s)λu0(s− τ)ds−

∫ t

0
S(t− s)up(s)∂xu(s)ds, t ∈ [0, T ].

A global mild solution of (1.2) will be a function u : [0,∞) → H1(R) whose restriction to every
bounded interval [0, T ] is a mild solution of (1.2).
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2.4.1. Well-posedness theory in L2(R). With these definitions in hand and the previous estimates,
the following result gives the local well-posedness for the higher order dispersive equation and a
priori estimate for the solutions of (1.2).

Proposition 2.8. Let 1 ≤ p < 2j with j ≥ 1, and λ0, λ ∈ L∞(R). For u0 ∈ L2(R), there exist
T > 0 and a unique mild solution u ∈ BT of (1.2), such that

∥u∥BT
≤ CT

{
∥u(0)∥2 + ∥λ∥∞∥u0∥L1(−τ,0;L2(R)) + ∥λ∥1/2∞ ∥u0∥L2(−τ,0;L2(R))

}
.

Here, CT is given by (2.10).

Proof. Let T > 0 be determined later. For each u ∈ BT consider the problem

(2.15)

{
vt = Aλ0v − λv(x, t− τ)−Mu, in R× (0, T ),

v(x, s) = u0(x, s), in R× [−τ, 0].

Since Aλ0 generates a strongly continuous semigroup {S(t)}t≥0 of contractions in L2(R).
Proposition 2.4 allows us to conclude that (2.15) has a unique mild solution v ∈ B0,T , such that

∥v∥BT
≤CT

{
∥u0∥2 + ∥Mu∥L1(0,T ;L2(R))

+∥λ∥∞∥u0∥L1(−τ,0;L2(R)) + ∥λ∥1/2∞ ∥u0∥L2(−τ,0;L2(R))

}(2.16)

where CT is given by (2.10). Moreover, we have that

1

2
∥v(t)∥22 +

∫ t

0
∥∂j

xv∥22ds+
∫ t

0

∫
R
λ0v

2(x, s)dxds+

∫ t

0

∫
R
λv(x, s− τ)v(x, s)dxds

=
1

2
∥u0∥22 +

∫ t

0

∫
R
Mu(x, s)v(x, s)dxds.

Thus, we can define the operator Γ : BT −→ BT given by Γ(u) = v. Thanks to the Lemma 2.5 and
(2.16), we have

∥Γu∥BT
≤ CT {∥u0∥2 + 2p/2CT

2j−p
4j ∥u∥p+1

BT
+ ∥λ∥∞∥u0∥L1(−τ,0;L2(R)) + ∥λ∥1/2∞ ∥u0∥L2(−τ,0;L2(R))},

and, for u ∈ BR(0) := {u ∈ BT : ∥u∥BT
≤ R}, it follows that

∥Γu∥BT
≤ CT {∥u0∥2 + 2p/2CT

2j−p
4j Rp+1 + ∥λ∥∞∥u0∥L1(−τ,0;L2(R)) + ∥λ∥1/2∞ ∥u0∥L2(−τ,0;L2(R))}.

Choosing

R = 2CT

(
∥u0∥2 +

(
∥λ∥∞∥u0∥L1(−τ,0;L2(R)) + ∥λ∥1/2∞ ∥u0∥L2(−τ,0;L2(R))

)
∥u0∥L2(−τ,0;L2(R))

)
,

we obtain the following estimate

∥Γu∥0,T ≤
(
K1 +

1

2

)
R,

where K1 = K1(T ) = 2p/2CTCT
2j−p
4j Rp. On the other hand, note that Γu− Γw is solutions of{

vt = Aλ0v − (Mu−Mv), in R× (0, T ),

v(x, s) = 0, in R× [−τ, 0].

We will now prove that Γ has a unique fixed point. To do that, note that thanks to Proposition
2.4, we have

∥Γu− Γw∥BT
≤ CT ∥Mu−Mw∥L1(0,T ;L2).

Lemma 2.6, precisely estimate (iv), allows us to conclude that

∥Γu− Γw∥BT
≤ CTC

{
2

p
2T

2j−p
4j

(
∥u∥pBT

+ ∥u∥BT
∥w∥p−1

BT
+ ∥w∥pBT

)
+ 2

1
2T

1
4 ∥u∥BT

}
∥u− w∥BT

.
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Suppose that u,w ∈ BR(0) defined above. Then,

∥Γu− Γw∥BT
≤ K2∥u− w∥BT

,

where

K2 = K2(T ) = CTC{2
1
2T

1
4R+ 3(2

p
2 )T

2j−p
4j Rp}.

Since K1 ≤ K2, we can choose T > 0 to obtain K2 <
1
2 ,

∥Γu∥BT
≤ R and ∥Γu− Γw∥BT

<
1

2
∥u− w∥BT

,

for all u,w ∈ BR(0) ⊂ B0,T . Hence, Γ : BR(0) → BR(0) is a contraction and, by Banach fixed
point theorem, we obtain a unique u ∈ BR(0), such that Γ(u) = u and consequently, the local
well-posedness result for 0 < T ≤ τ small enough to the system. Thus, u is a unique local mild
solution to the problem, and estimate (2.8) holds. □

We are now able to present this subsection’s main result.

Theorem 2.9. Consider λ0, λ ∈ L∞(R). Therefore, the system (1.2) admits a unique global mild
solution for every initial data u0 ∈ C([−τ, 0];L2(R)) satisfying

1

2
∥u(0)∥22 =

1

2
∥u(t)∥22 +

∫ t

0
∥ux∥22 ds+

∫ t

0

∫
R
λ0u

2(x, s)dxds

+

∫ t

0

∫
R
λu(x, s− τ)u(x, s)dxds,

(2.17)

for all t ≥ 0. Moreover, there exists a non-decreasing continuous function β0 : R+ → R+, such that
the solution u (1.2) satisfies

∥u∥BT
≤ CT

{
∥u(0)∥2 + ∥λ∥∞∥u0∥L1(−τ,0;L2(R)) + ∥λ∥1/2∞ ∥u0∥L2(−τ,0;L2(R))

}
and

∥u∥BT
≤ β0(∥u0∥2)∥u0∥C([−τ,0];L2(R)),

with β0 = CT

(
1 +

(
∥λ∥∞τ1/2 + ∥λ∥1/2∞

))
and CT given by (2.10).

Proof. To prove the global well-posedness we need to prove that the norms of the solutions of (1.2)
remain bounded in the existence time interval. To do that, let us consider the functional

(2.18) E(t) := E(u(t)) = 1

2

∫
R
u2(x, t)dx+

1

2

∫ t

t−τ

∫
R
e−(t−s)|λ(x)|u2(x, s) dx ds.

Taking the time derivative in time of this function, we have that

dE
dt

(t) =

∫
R
u(t)((−1)j∂2j

x u(t)− λ0u(t)− λu(t− τ) + up(t)ux(t))dx+
1

2

∫
R
|λ|u2(t)dx

− 1

2
e−τ

∫
R
|λ|u2(t− τ)dx− 1

2

∫ t

t−τ

∫
R
e−(t−s)|λ|u2(x, s)dxds.

Integrating by parts, using the Young inequality and taking into account the hypothesis (1.7), (1.8),
and (1.9) we get that

dE
dt

(t) ≤−
∫
R
(∂j

xu)
2(t)dx− γ0

∫
R
u2(t)dx+

eτ + 1

2

∫
R
|λ(x)|u2(t)dx

− 1

2

∫ t

t−τ

∫
R
e−(t−s)|λ|u2(x, s)dxds

≤−
∫
R
(∂j

xu)(t)dx− (γ0 − γ)

∫
R
u2(t)dx+

∫
R
β(x)u2(t)dx ≤ 0.

Here, we have used that the third integral in the previous inequality can be handled as in the proof
of Theorem 3.1, so, here, we omitted the details. Therefore, this inequality ensures that ∥u(t)∥2
remains bounded for t ∈ [0, T ].
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Finally, thanks to the estimate (2.17), we deduce that ∥u∥BT
remains bounded for t ∈ [0, T ],

and so, the local solution u given by Proposition 2.8 can be extended on [0, τ ]. Now, once we have a
solution u ∈ Bτ we can apply the same arguments as we did on Theorem 2.2 to prove the existence
of a global mild solution of (1.2). Finally, note that the proof of Proposition 2.8 guarantees the
function β0 is given by

β0(s) = CT

(
1 +

(
∥λ∥∞τ1/2 + ∥λ∥1/2∞

))
,

showing the result. □

2.4.2. Well-posedness theory in H2j+1(R). We will analyze the well-posedness in B2j+1,T , with
1 ≤ p < 2j with j ≥ 1. To do that, let us first consider the following linearized problem

(2.19)


vt + (−1)j+1∂2j+1

x v + (−1)m∂2m
x v + ∂x(u

pv)

+λ0(x)v + λ(x)v(x, t− τ) = 0, in R× (0,∞),

v(x, s) = v0(x, s), in R× [−τ, 0].

Then, we can establish the following proposition:

Proposition 2.10. For T > 0, λ0, λ ∈ L∞(R), and u ∈ BT , if v0 ∈ C([−τ, 0];L2(R)), then system
(2.19) admits a unique solution v ∈ B0,T , such that

(2.20) ∥v(t)∥C([−τ,T ];L2(R)) ≤ C(∥λ∥∞, T, τ)
(
∥v0∥C([−τ,0];L2(R)) + (p+ 1)∥u∥pBT

∥v∥BT

)
,

where C(∥λ∥∞, T, τ) is a positive constant and

(2.21) ∥v∥BT
≤ CT

{
∥v(0)∥2 + ∥u∥pBT

+ ∥λ∥∞∥v0∥L1(−τ,0;L2(R)) + ∥λ∥1/2∞ ∥v0∥L2(−τ,0;L2(R))

}
and

(2.22) ∥v∥BT
≤ σ(∥u∥BT

, T )
{
∥v(0)∥2 + ∥λ∥∞∥v0∥L1(−τ,0;L2(R)) + ∥λ∥1/2∞ ∥v0∥L2(−τ,0;L2(R))

}
.

Here, 1 ≤ p < 2j, with j ≤ 1, and σ : R+ × R+ → R+ is a non-decreasing continuous function.

Proof. The existence of a solution follows the same steps as done in Proposition 2.8 and Theorem
2.9, so we will omit it. Let us prove inequality (2.22). Thanks to (2.8) and (2.9), we deduce (2.20)
and

∥v∥BT
≤CT

{
∥v(0)∥2 + ∥(upv)x∥L1(0,T ;L2(R))

+∥λ∥∞∥v0∥L1(−τ,0;L2(R)) + ∥λ∥1/2∞ ∥v0∥L2(−τ,0;L2(R))

}
.

Lemma 2.6 and Young inequality imply that there exist a constant C > 0 such that

∥v(t)∥C([−τ,T ];L2(R)) ≤ e∥λ∥∞T
(
∥v(0)∥2 + (p+ 1)∥u∥pBT

∥v∥BT

)
and

∥v∥BT
≤ CCT

{
∥v(0)∥2 + ∥u∥pBT

+ ∥λ∥∞∥v0∥L1(−τ,0;L2(R)) + ∥λ∥1/2∞ ∥v0∥L2(−τ,0;L2(R))

}
,

giving (2.21). On the other hand, following the same ideas as done in Proposition 2.4, from (2.13)
we infer that

∥v(t)∥22 + 2

∫ t

0
∥∂j

xv∥22ds ≤2(∥λ∥∞ + ∥λ0∥∞)

∫ t

0
∥v∥22ds

+
(
1 + e2∥λ∥∞T

){
∥v(0)∥2 + ∥∂x(upv)v∥L1(0,t;L2(R))

+ ∥λ∥∞∥v∥L1(−τ,0;L2(R)) + ∥λ∥1/2∞ ∥v∥L2(−τ,0;L2(R))

}2
.
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Gagliardo-Nerinberg inequality ensures that

∥∂x(upv)v∥L1(0,t;L2(R)) = ∥upvxv∥L1(0,t;L2(R)) ≤
∫ t

0
∥up(s)vx(s)v(s)∥2ds

≤ ∥u∥pBT

∫ t

0
∥vx(s)∥2∥v(s)∥∞ds ≤ 2

1
2 ∥u∥pBT

∫ t

0
∥vx(s)∥

3
2
2 ∥v(s)∥

1
2
2 ds

≤ 2
1
2C∥u∥pBT

∫ t

0
∥v(s)∥

3
2

(
1− 1

j

)
2 ∥∂j

xv(s)∥
3
2j

2 ∥v(s)∥
1
2
2 ds

= 2
1
2C∥u∥pBT

∫ t

0
∥v(s)∥

4j−3
2j

2 ∥∂j
xv(s)∥

3
2j

2 ds

and using young inequality, we have that∫ t

0
∥v(s)∥

4j−3
2j

2 ∥∂j
xv(s)∥

3
2j

2 ds ≤ (4j − 3)

4jη
4j

4j−3

∫ t

0
∥v(s)∥22ds+

3η
4j
3

4j

∫ t

0
∥∂j

xv(s)∥22ds

where η =

[
4j

3
√
2C(1+e2∥λ∥∞T )∥u∥pBT

] 3
4j

. Hence, it yields that

∥v(t)∥22 +
∫ t

0
∥∂j

xv∥22ds ≤ρ(∥u∥BT
)

∫ t

0
∥v(s)∥22ds+

(
1 + e2∥λ∥∞T

){
∥v(0)∥2

+ ∥λ∥∞∥v∥L1(−τ,0;L2(R)) + ∥λ∥1/2∞ ∥v∥L2(−τ,0;L2(R))

}2
,

where

ρ(∥u∥BT
) =2(∥λ∥∞ + ∥λ0∥∞)

+ (1 + e2∥λ∥∞T )2
1
2C∥u∥pBT

(4j − 3)

4j

[
4j

3
√
2C(1 + e2∥λ∥∞T )∥u∥pBT

]− 3
4j−3

=2(∥λ∥∞ + ∥λ0∥∞)

+ (4j − 3)

[
3
√
2C(1 + e2∥λ∥∞T )∥u∥pBT

4j

] 4j
4j−3

.

Finally, we have that

∥v(t)∥22 +
∫ t

0
∥∂j

xv∥22ds ≤ρ(∥u∥BT
)

∫ t

0

(
∥v(s)∥22 +

∫ s

0
∥∂j

xv(t)∥22dr
)
ds

+
(
1 + e2∥λ∥∞T

){
∥v(0)∥2 + ∥λ∥∞∥v∥L1(−τ,0;L2(R))

+ ∥λ∥1/2∞ ∥v∥L2(−τ,0;L2(R))

}2
.

Employing Gronwall’s inequality, we conclude

∥v(t)∥22 +
∫ t

0
∥∂j

xv∥22ds ≤
(
1 + e2∥λ∥∞T

)
eρ(∥u∥BT

)t
{
∥v(0)∥2 + ∥λ∥∞∥v∥L1(−τ,0;L2(R))

+ ∥λ∥1/2∞ ∥v∥L2(−τ,0;L2(R))

}2
.

Estimate (2.22) follows directly from the above inequality. □

We now give the existence of a solution to the problem (1.2).

Theorem 2.11. Let T > 0, λ0, λ ∈ Hj(R) and 1 ≤ p < 2j, with j ≥ 1. For u0(x, t − τ) ∈
C([−τ, 0];H2j+1(R)), there exists a unique mild solution u ∈ B2j+1,T of (1.2) such that

∥u∥B2j+1,T
≤ β2j+1(∥u0∥2)∥u0∥C([−τ,0];H2j+1(R)),
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where β2j+1 : R+ → R+ is a non-decreasing continuous function.

Proof. We will split the proof into several steps.

Step 1: u ∈ L2(0, T ;H2j+1(R)).
Since u0 ∈ H2j+1(R) ↪→ L2(R), by Theorem 2.9, there exists a unique solution u ∈ BT , such

that

(2.23) ∥u∥BT
≤ β0(∥u0∥2)∥u0∥C([−τ,0];L2(R)).

We will show that u ∈ B2j+1,T . Let v = ut. Then, v solves the problem vt + (−1)j+1∂2j+1
x v + (−1)m∂2m

x v + ∂x(u
pv) + λ0(x)v + λ(x)v(x, t− τ) = 0 in R× (0,∞),

v(x, 0) = v0(x) in R,
v(x, s) = v0(x, s) in R× (−τ, 0),

where v0(x) = −(−1)j+1∂2j+1
x u0 + (−1)m∂2m

x u0 − 1
p+1∂x(u

p+1
0 )− λ0(x)u0 − λ(x)u0(x,−τ). We can

bound v0 as follows:

∥v0∥2 ≤ ∥∂2j+1
x u0∥2 + ∥∂2m

x u0∥2 + ∥up0∂xu0∥2 + ∥λ0u0∥2 + ∥λ(x)u0(−τ)∥2

≤ (1 + ∥λ0∥L∞(R))∥u0∥H2j+1(R) + ∥u0∥
p
2∞∥∂xu0∥2 + ∥λ∥∞∥u0(·,−τ)∥2

≤ (1 + ∥λ0∥L∞(R))∥u0∥H2j+1(R) + 2
p
2 ∥u0∥

p
2
2 ∥∂xu0∥

p+2
2

2 + ∥λ∥∞∥u0(·,−τ)∥2.

Using the Gagliardo-Nirenberg inequality, we have

(2.24) ∥∂xu0∥2 ≤ C∥∂2j+1
x u0∥

1
2j+1

2 ∥u0∥
1− 1

2j+1

2 .

Applying (2.24), we ensures that

∥v0∥2 ≤(1 + ∥λ0∥L∞(R))∥u0∥H2j+1(R)

+ 2
p
2C∥∂2j+1

x u0∥
p+2

2(2j+1)

2 ∥u0∥
p+2
2

(
1− 1

2j+1

)
+ p

2

2 + ∥λ∥∞∥u0(·,−τ)∥2.

Then, Young inequality guarantees the following:

∥v0∥2 ≤(1 + ∥λ0∥L∞(R))∥u0∥H2j+1(R) + 2
p(2j+1)
4j−p ∥u0∥

(
p+2
2

(
1− 1

2j+1

)
+ p−2

2

)
2(2j+1)
4j−p

2 ∥u0∥2
+ ∥∂2j+1

x u0∥2 + ∥λ∥∞∥u0(·,−τ)∥2
and, consequently, leader to

∥v0∥2 ≤ C(∥u0∥2)∥u0∥H2j+1(R) + ∥λ∥∞∥u0(·,−τ)∥2(2.25)

≤ C(∥u0∥2)∥u0∥H2j+1(R) + ∥λ∥∞∥u0∥C([−τ,0];L2(R))

≤ (C(∥u0∥2) + ∥λ∥∞)∥u0∥C([−τ,0];H2j+1(R)),

where

C(s) = 2 + ∥λ0∥L∞(R) + 2
p(2j+1)
4j−p s

(
p+2
2

(
1− 1

2j+1

)
+ p−2

2

)
2(2j+1)
4j−p .

Thanks to Proposition 2.10, we see that v ∈ B0,T and

∥v∥BT
≤ σ(∥u∥BT

)∥v0∥C([−τ,0];L2(R)).

Combining (2.23) and (2.25), we get

(2.26) ∥v∥BT
≤ σ(β0(∥u0∥2)∥u0∥2) (C(∥u0∥2) + ∥λ∥∞∥) ∥u0∥C([−τ,0];H2j+1(R)).

which means

(2.27) u, ut ∈ L2(0, T ;Hj(R)).

Therefore,

(2.28) u ∈ C([0, T ];Hj(R)) ↪→ C([0, T ];C(R)).
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On the other hand, note that upux, λ0u and λu(·, t− τ) belong to L2(0, T ;L2(R)). Moreover,

(−1)j+1∂2j+1
x u+ (−1)m∂2m

x u = −ut − upux − λ0u− λu(·, t− τ) in D′(0, T,R).

Hence,

(−1)j+1∂2j+1
x u+ (−1)m∂2m

x u = f ∈ L2(0, T ;L2(R)).
Taking Fourier transform, we have

û =
f̂ + û

[(1− ((−1)j+1(iξ)2j+1)− (−1)j(iξ)2j)]

and,

∥u(t)∥2H2j+1(R) ≤ C
{
∥f(t)∥22 + ∥u(t)∥22

}
(2.29)

where C = supξ∈R
1+|ξ|+|ξ|2+|ξ|3+···+|ξ|2j+1

|1−((−1)j+1(iξ)2j+1)−(−1)j(iξ)2j | . Integrating (2.29) over [0, T ], we deduce that

(2.30) u ∈ L2(0, T ;H2j+1(R)),

achieving step 1.

Step 2: u ∈ C(0, T ;H2j+1(R)
Observe that, according to (2.27), ut ∈ L2(0, T ;H−(2j+1)(R)). Then, considering the Hilbert

triple H2j+1(R) ↪→ H2m(R) ↪→ H−(2j+1)(R), by [34, Chapter III - Lemma 1.2], we have u ∈
C([0, T ];H2m(R)). This implies further

(2.31) ∂2m
x u, λ0u, λu(·, · − τ) ∈ C([0, T ];L2(R)) ∩ L2(0, T ;H1(R)).

On the other hand, note that

∥u(t)pux(t)− u(t0)
pux(t0)∥2 ≤∥[u(t)p − u(t0)

p]ux(t)∥2 + ∥u(t0)p[ux(t)− ux(t0)]∥2
≤C

{
∥(1 + |u(t)|p−1 + |u(t0)|p−1)|u(t)− u(t0)|ux(t)∥2

+∥(1 + |u(t0)|p)|ux(t)− ux(t0)|∥2}
≤C

{
(1 + ∥u(t)∥p−1

∞ + ∥u(t0)∥p−1
∞ )∥u(t)− u(t0)∥∞∥ux(t)∥2

+(1 + ∥u(t0)∥p∞)∥ux(t)− ux(t0)∥2} .

Then, the regularity given in (2.28) ensures that

lim
t→t0

∥u(t)pux(t)− u(t0)
pux(t0)∥2 = 0

and, therefore upux ∈ C([0, T ];L2(R)). The results above also guarantee that

(2.32) upux ∈ C([0, T ];L2(R)) ∩ L2(0, T ;H1(R)).

Indeed, note that (upux)x = pup−1u2x + upuxx, so it is sufficient to combine (2.28), (2.30) and the
following two estimates

∥pup−1u2x∥L2(0,T ;L2(R)) ≤ C
{
(1 + ∥u∥p−1

C([0,T ];C(R)))∥ux∥C([0,T ];C(R))∥ux∥L2([0,T ];L2(R))

}
and

∥upuxx∥L2(0,T ;L2(R)) ≤ C
{
(1 + ∥u∥pC([0,T ];C(R)))∥uxx∥L2([0,T ];L2(R))

}
,

to ensures (2.32).
Now, since

(−1)j+1∂2j+1
x u = −(−1)m∂2m

x u− ut − (upux)− λ0u− λ, u(·, t− τ),(2.33)

from (2.27), (2.31), (2.32), we obtain

(2.34) u ∈ L2(0, T ;H3j+1(R)) ↪→ L2(0, T ;H2j+2(R)).
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Finally, considering the Hilbert triple H2j+2(R) ↪→ H2j+1(R) ↪→ H−(2j+2)(R), [34, Chapter III -
Lemma 1.2] gives

(2.35) u ∈ C([0, T ];H2j+1(R)),

and step 2 is proved. Note that (2.34) and (2.35) imply that u ∈ B2j+1,T .

Step 3: The following estimate holds

∥u∥C([0,T ];H2j+1(R)) ≤ σ1(∥u0∥2)∥u0∥C([−τ,0];H2j+1(R)).

Indeed, according to (2.29), we get

∥u(t)∥H2j+1(R) ≤ C {∥ut(t)∥2 + ∥up(t)ux(t)∥2 + ∥λ0u(t)∥2 + ∥λu(t− τ)∥2 + ∥u(t)∥2} .(2.36)

Now, by using Gagliardo-Nirenberg inequality, we obtain

∥u(t)pux(t)∥2 ≤ 2
1
p ∥u(t)∥

p
2
2 ∥ux(t)∥

p+2
2

2 ≤ 2
1
pC∥u(t)∥

4j(p+1)+p
2(2j+1)

2 ∥u(t)∥
p+2

2(2j+1)

H2j+1(R).

Moreover, Young inequality gives

∥u(t)pux(t)∥2 ≤ C∥u(t)∥
4j(p+1)+p

4j−p

2 +
1

2C
∥u(t)∥H2j+1(R).

Replacing the estimate above into the inequality (2.36), yields that

∥u(t)∥H2j+1(R)) ≤ C

{
∥ut∥BT

+ (1 + ∥λ0∥∞)∥u∥BT
+ ∥u∥

4j(p+1)+p
4j−p

BT
+ ∥λ∥∞∥u(t− τ)∥2

}
.

Then, using (2.23) and (2.26) it follows that

∥u(t)∥H2j+1(R)) ≤C
{
σ(β0(∥u0∥2)∥u0∥2)C(∥u0∥2)∥u0∥H2j+1(R) + (C + ∥λ0∥∞)β0(∥u0∥2)∥u0∥2

+β
4j(p+1)+p

4j−p

0 (∥u0∥2)∥u0∥
4j(p+1)+p

4j−p
−1

2 ∥u0∥2 + ∥λ∥∞∥u(t− τ)∥2
}

≤σ̄1(∥u0∥2)∥u0∥C([−τ,0];H2j+1(R)) + ∥λ∥∞∥u(t− τ)∥2,

where

σ̄1(s) = C

{
σ(β0(s)s)C(s) + (C + ∥b∥∞)β0(s) + (β0(s))

4j(p+1)+p
4j−p s

4j(p+1)+p
4j−p

−1
}
.

Therefore, we obtain that

∥u∥C([0,T ];H2j+1(R))) ≤σ̄1(∥u0∥2)∥u0∥C([−τ,0];H2j+1(R)) + ∥λ∥∞∥u∥C([−τ,T−τ ];L2(R))

≤σ̄1(∥u0∥2)∥u0∥C([−τ,0];H2j+1(R)) + ∥λ∥∞∥u0∥C([−τ,0];L2(R))

+ ∥λ∥∞∥u∥C([0,T−τ ];L2(R))

≤ (σ̄1(∥u0∥2) + ∥λ∥∞) ∥u0∥C([−τ,0];H2j+1(R)) + ∥λ∥∞∥u∥BT
.

Finally, from Theorem 2.9 and the previous inequality, we deduce that

∥u∥C([0,T ];H2j+1(R))) ≤ σ1(∥u0∥2)∥u0∥C([−τ,0];H2j+1(R)),

where σ1(s) = σ̄1(s) + ∥λ∥∞(β0(s) + 1), finishing the step 3.

Step 4: The following estimate is verified

∥∂3j+1
x u∥L2(0,T ;L2(R)) ≤ σ3(∥u0∥2)∥u0∥C([−τ,0];H2j+1(R)).
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In fact, from the equation (2.33), we deduce that

∫ T

0
∥u(t)∥2H3j+1dt =

∫ T

0
∥∂3j+1

x u(t)∥22dt+
∫ T

0
∥u(t)∥22dt

≤
∫ T

0
∥u(t)∥22dt+

∫ T

0
∥∂2m+j

x u(t)∥22dt+
∫ T

0
∥∂j

xut(t)∥22dt

+

∫ T

0
∥∂j

x(u
pux)∥22dt+

∫ T

0
∥∂j

x(λ0u(t))∥22dt+
∫ T

0
∥∂j

x(λ0u(t− τ))∥22dt

≤ CT
(
∥u∥C([0,T ];H2j+1) + ∥u∥C([0,T ];H2m+j)

)
+ ∥ut∥B0,T

+

∫ T

0
∥∂j

x(u
pux)∥22dt+

∫ T

0
∥∂j

x(λ0u(t))∥22dt+
∫ T

0
∥∂j

x(λ0u(t− τ))∥22dt.

Note that H2m+j(R) ⊂ H3j+1(R), thus using step 4 and Proposition 2.10, there exists a function
σ2 such that

∫ T

0
∥u(t)∥2H3j+1dt ≤σ2 (∥u0∥2) ∥u0∥C([−τ,0];H2j+1) +

∫ T

0
∥∂j

x(u
pux)∥22dt

+

∫ T

0
∥∂j

x(λ0u(t))∥22dt+
∫ T

0
∥∂j

x(λ0u(t− τ))∥22dt.
(2.37)

We have to estimate the last three integrals in the RHS of (2.37). For the second and third terms,
observe that

∂j
x(λ0u) =

j∑
k=0

(
j
k

)
∂k
x(λ0)∂

j−k
x (u)

and

∂j
x(λu(·, t− τ)) =

j∑
k=0

(
j
k

)
∂k
x(λ)∂

j−k
x (u(·, t− τ)),

thus we have that

∫ T

0
∥∂j

x(λ0u)(t)∥22dt ≤
j∑

k=0

∫ T

0

(
j
k

)
∥∂k

x(λ0)∂
j−k
x (u)(t)∥22dt

=

∫ T

0
∥λ0∥2∞∥∂j

x(u)(t)∥22dt

+

j∑
k=1

∫ T

0

(
j
k

)
∥∂k

x(λ0)∥22∥∂j−k
x (u)(t)∥2∞dt

≤C∥λ0∥2H1(R)

∫ T

0
∥∂j

x(u)(t)∥22dt

+

j∑
k=1

∫ T

0

(
j
k

)
∥λ0∥2Hk(R)∥u(t)∥

2
H1+j−k(R)dt

≤CT∥λ0∥2Hj(R)∥u∥
2
C([0,T ];H2j+1(R).

(2.38)
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Similarly, it follows that∫ T

0
∥∂j

x(λ0u)(t− τ)∥22dt ≤C∥λ0∥2H1(R)

∫ T

0
∥∂j

x(u)(t− τ)∥22dt

+

j∑
k=1

∫ T

0

(
j
k

)
∥λ0∥2Hk(R)∥u(t− τ)∥2H1+j−k(R)dt

=C∥λ0∥2H1(R)

∫ T−τ

−τ
∥∂j

x(u)(t)∥22dt

+

j∑
k=1

∫ T−τ

−τ

(
j
k

)
∥λ0∥2Hk(R)∥u(t)∥

2
H1+j−k(R)dt

≤CT∥λ0∥2Hj(R)

(
∥u∥2C([0,T ];H2j+1(R) +

∫ 0

−τ
∥u0(t)∥2Hj(R)dt

)
.

(2.39)

Now, we concentrate in estimate the nonlinear term, that is, the first term in the RHS of (2.37).
Observing that

∂j
x(u

pux) =

j∑
k=0

(
j
k

)
∂k
x(u

p)∂j−k
x (ux),

we get ∫ T

0
∥∂j

x(u
pux)(t)∥22dt ≤

j∑
k=0

(
j
k

)∫ T

0
∥∂k

x(u
p)(t)∥2∞∥∂j−k

x (ux)(t)∥22dt

=

j∑
k=0

(
j
k

)∫ T

0
∥∂k

x(u
p)(t)∥2∞∥u(t)∥2H1+j−k(R)dt

≤ C

j∑
k=0

(
j
k

)∫ T

0
∥∂k

x(u
p)(t)∥2∞∥u(t)∥2H2j+1(R)dt.

On the other hand, note that the k-order derivative of the function up can be written in the following
way

∂k
x(u

p) = C0,pu
p−1∂k

xu+

k−1∑
n=1

Cn,pu
p−nFn(u) + Ck,pu

p−kukx,

where Cn,p is a constant given by

Cn,p = Mn

n∏
i=0

(p− i)

with Mn ∈ N and Fn(u) is a differential operator involving sums and products of derivatives of u
with order less than n+ 1. Thanks to this fact, we have the following estimate:

∥∂k
x(u

p)∥∞ ≤ |C0,p|∥u∥p−1
∞ ∥∂k

xu∥∞ +

k−1∑
n=1

|Cn,p|∥u∥p−n
∞ ∥Fn(u)∥∞ + |Ck,p|∥u∥p−k

∞ ∥ux∥k∞

≤ C

(
|C0,p|∥u∥p−1

H2j+1(R)∥u∥Hk+1(R) +

k−1∑
n=1

|Cn,p|∥u∥p−n
H2j+1(R)∥u∥

m(k)
Hn+2(R)

+|Ck,p|∥u∥p−k
H2j+1(R)∥u∥

k
H2(R)

)
,



22 CAPISTRANO–FILHO, GALLEGO, AND KOMORNIK

where m(n) ∈ N and C > 0 is a constant. Since H2j+1(R) ⊂ Hk+1(R), H2j+1(R) ⊂ Hn+1(R) and
H2j+1(R) ⊂ H2(R), it follows that

∥∂k
x(u

p)∥∞ ≤ C

(
|C0,p|∥u∥pH2j+1(R) +

k−1∑
n=1

|Cn,p|∥u∥p−n+m(k)

H2j+1(R) + |Ck,p|∥u∥pH2j+1(R)

)
.

Hence, it yields that∫ T

0
∥∂j

x(u
pux)(t)∥22dt ≤C|C0,p|2

∫ T

0
∥u(t)∥2(p+1)

H2j+1(R)dt

+ C

j∑
k=0

k∑
n=0

(
j
k

)
|Cn,p|2

∫ T

0
∥u(t)∥2(p−n+m(k)+1)

H2j+1(R) dt

+ C

j∑
k=0

(
j
k

)
|Ck,p|2

∫ T

0
∥u(t)∥2(p+1)

H2j+1(R)dt.

Finally, we obtain∫ T

0
∥∂j

x(u
pux)(t)∥22dt ≤CT

(
|C0,p|2∥u∥2(p+1)

C([0,T ];H2j+1(R))

+

j∑
k=0

k∑
n=0

(
j
k

)
|Cn,p|2∥u(t)∥2(p−n+m(k)+1)

C([0,T ];H2j+1(R))

+

j∑
k=0

(
j
k

)
|Ck,p|2∥u(t)∥

2(p+1)

C([0,T ];H2j+1(R))

)
.

(2.40)

Therefore, putting the estimates (2.38), (2.39), and (2.40) together in (2.37), step 3 holds. Conse-
quently, by the previous steps, the theorem is shown. □

2.5. Interpolation arguments. In this part of the work, we present the proof of the well-
posedness result for the system (1.2). To do that, let us introduce an interpolation argument
due to Tartar [33] and adapted by Bona and Scott [8, Theorem 4.3].

Let B0 and B1 be two Banach spaces, where B1 ⊂ B0 with the inclusion map continuous.
Consider f ∈ B0 and define

K(f, t) = inf
g∈B1

{∥f − g∥B0 + t∥g∥B1} ,

for t ≥ 0. For 0 < θ < 1 and 1 ≤ p ≤ +∞, we introduce the set

Bθ,p := [B0, B1]θ,p =

{
f ∈ B0 : ∥f∥θ,p :

(∫ ∞

0
K(f, t)t−θp−1dt

) 1
p

< ∞

}
,

with the usual modification for the case p = ∞. Then, Bθ,p is a Banach space with norm ∥ · ∥θ,p.
Given two pairs (θ1, p1) and (θ2, p2) as above, (θ1, p1) ≺ (θ2, p2) will denote{

θ1 < θ2, or
θ1 = θ3, and p1 > p2.

If (θ1, p1) ≺ (θ2, p2), then Bθ2,p2 ⊂ Bθ1,p1 with the inclusion map continuous. Then, the following
result, proved by [8, Theorem 4.3], holds.

Theorem 2.12. Let Bj
0 and Bj

1 be Banach spaces such that Bj
1 ⊂ Bj

0 with continuous inclusion
mappings, for j = 1, 2. Let α and q lie in the ranges 0 < α < 1 and 1 ≤ q ≤ ∞. Suppose that A is
a mapping satisfying:

(i) A : B1
α,q → B2

0 and, for f, g ∈ B1
α,q,

∥Af −Ag∥B2
0
≤ C0

(
∥f∥B1

α,q
+ ∥g∥B1

α,q

)
∥f − g∥B1

0
.
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(ii) A : B1
1 → B2

1 and, for h ∈ B1
1,

∥Ah∥B2
1
≤ C1

(
∥h∥B1

α,q

)
∥h∥B1

1
,

where Cj : R+ → R+ are continuous nondecreasing functions, for j = 0, 1. Then, if (θ, p) ≥ (α, q),
A maps B1

θ,p into B2
θ,p and, for f ∈ B1

θ,p, we have

∥Af∥B2
θ,p

≤ C
(
∥f∥B1

α,q

)
∥f∥B1

θ,p
,

where C(r) = 4C0(4r)
1−θC1(3r)

θ, with r > 0.

It follows from Theorem 2.9 that, for each fixed T > 0, the solution map

(2.41) A : C([−τ, 0];L2(R)) → B0,T , Au0 = u

is well-defined. Moreover, we have the following result:

Proposition 2.13. The solution map (2.41) is locally Lipschitz continuous, that is, there exists a
continuous function C0 : R+ × (0,∞) → R+, nondecreasing in its first variable, such that, for all
u0, v0 ∈ C([−τ, 0];L2(R)), we have

∥Au0 −Av0∥0,T ≤ C0 (∥u0∥2 + ∥v0∥2, T ) ∥u0 − v0∥C([−τ,0];L2(R)).

Proof. Let 0 < θ ≤ T and n =
[
T
θ

]
. Theorem 2.9 ensures that

(2.42) ∥Au0∥B0,θ
≤ β0(∥u0∥2)∥u0∥C([−τ,0];L2(R)),

where β0(s) is a constant function given by β0 = CT

(
1 +

(
∥λ∥∞τ1/2 + ∥λ∥1/2∞

))
and

∥Au0 −Av0∥0,θ ≤ Cθ

{
∥u0 − v0∥2 + ∥M(Au0)−M(Av0)∥L1(0,θ;L2(R))

}
,

where Cθ = 2eθ∥b∥∞ . Moreover, thanks to the Lemma 2.6 we have

∥Au0 −Av0∥B0,θ
≤Cθ∥u0 − v0∥2 + CθC

{
2

p
2 θ

2j−p
4j

(
∥Au0∥pB0,θ

+ ∥Au0∥B0,θ
∥Av0∥p−1

B0,θ

+∥Av0∥pB0,θ

)
+ 2

1
2 θ

1
4 ∥Au0∥B0,θ

}
∥Au0 −Av0∥B0,θ

.

Now, inequality (2.42) together with the following estimate

∥Au0 −Av0∥0,θ ≤Cθ∥u0 − v0∥2 + CθC
{
2

p
2 θ

2j−p
4j βp

0

(
∥u0∥pC([−τ,0];L2(R))

+∥ u0∥C([−τ,0];L2(R))∥ v0∥p−1
C([−τ,0];L2(R)) + ∥ v0∥pC([−τ,0];L2(R))

)
+2

1
2β0θ

1
4 ∥u0∥C([−τ,0];L2(R))

}
∥Au0 −Av0∥B0,θ

,

yields that

(2.43) ∥Au0 −Av0∥B0,θ
≤ 2CT ∥u0 − v0∥2,

choosing θ small enough. Observe that denoting

B0,[kθ,(k+1)θ] := C
(
[kθ, (k + 1)θ];L2(R)

)
∩ L2(kθ, (k + 1)θ;Hj(R)).

with norm ∥·∥B0,[kθ,(k+1)θ]
, in a analogously way as done to (2.43), we can deduce thanks to estimate

(2.42) that

∥Au0 −Av0∥B0,[kθ,(k+1)θ]
≤Cθ∥u(kθ)− v(kθ)∥2 + CθCβ0

{
2

p
2 θ

2j−p
4j βp

0

(
∥u0∥pC([−τ,0];L2(R))

+∥ u0∥C([−τ,0];L2(R))∥ v0∥p−1
C([−τ,0];L2(R)) + ∥ v0∥pC([−τ,0];L2(R))

)
+2

1
2β0θ

1
4 ∥u0∥C([−τ,0];L2(R))

}
∥Au0 −Av0∥B0,[kθ,(k+1)θ]

.

Lastly, we get

∥Au0 −Av0∥B0,[kθ,(k+1)θ]
≤ 2CT ∥u(kθ)− v(kθ)∥2, k = 0, 1, ..., n− 1.(2.44)
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On the other hand, note that (2.43) and (2.44) imply that

∥Au0 −Av0∥B0,[kθ,(k+1)θ]
≤ 2kCk

T ∥u0 − v0∥2, k = 0, 1, ..., n− 1,

and, therefore,

∥Au0 −Av0∥B0,[kθ,(k+1)θ]
≤ 2nCn

T ∥u0 − v0∥2.

Finally,

∥Au0 −Av0∥B0,T
≤

n−1∑
k=0

∥Au0 −Av0∥B0,[kθ,(k+1)θ]
≤

n−1∑
k=0

2nCn
T ∥u0 − v0∥2

≤ 2nCn
Tn∥u0 − v0∥2 ≤ C0(∥u0∥2 + ∥v0∥2)∥u0 − v0∥C([−τ,0];L2(R)),

where C0(s) = T
θ(s) [2CT ]

T
θ(s) , getting the proposition. □

We are in a position to prove the main result of this section.

Proof of Theorem 1.1. We define

B1
0 = L2(R), B2

0 = B0,T , B1
1 = H2j+1(R) and B2

1 = B2j+1,T .

Thus,

B1
s

2j+1
,2 = [L2(R), H2j+1(R)] s

2j+1
,2 = Hs(R) and B2

s
2j+1

,2 = [B0,T , B2j+1,T ] s
2j+1

,2 = Bs,T .

Combining Proposition 2.13 and Theorem 2.11 we obtain (i) and (ii) in the Theorem 2.12. Then,
Theorem 2.12 gives the existence of the solution to the equation (1.2), and Theorem 1.1 follows. □

Finally, we present the proof of the Corollary 1.3, which establishes that every mild solution
of system (1.2) is indeed a regular solution when the origin is not considered.

Proof of Corollary 1.3. The result is shown by using the bootstrap argument. Consider T > 0 and
0 < ε < T . So, for u0 ∈ C([−τ, 0];L2(R)), it follows from Theorem 1.1 that the problem (1.2) has
a unique solution

u ∈ B0,T = C([0, T ];L2(R)) ∩ L2(0, T ;Hj(R)).

So, we have that u(t) ∈ Hj(R) for almost every t ∈ [0, T ]. Let t0 ∈ (0, ε) such that u(t0) ∈ Hj(R).
Applying Theorem 1.1 and Remark 1.2, with u0 = u(t0), we conclude that the restriction of u to
[t0, T ] is the solution of (1.2) with the initial data u(t0), and belongs to the following class

Bj,[t0,T ] = C([t0, T ];H
j(R)) ∩ L2(t0, T ;H

2j(R)).

So, we have that u(t) ∈ H2j(R) for almost every t ∈ [t0, T ]. Let t1 ∈ (t0, ε) such that u(t1) ∈ H2j(R).
Again, it follows from Theorem 1.1 and Remark 1.2 that the restriction of u to [t1, T ] is the solution
of (1.2), with respect to the initial data u(t1) belongs to

B2j,[t1,T ] = C([t1, T ];H
2j(R)) ∩ L2(t1, T ;H

3j(R)).

Finally, since u(t) ∈ H3j(R) for almost every t ∈ [t1, T ] and H3j(R) ⊂ H2j+1(R), it follows the
same way that for t2 ∈ (t1, ε) such that u(t2) ∈ H2j+1(R), the restriction of u to [t2, T ] is the
solution of (1.2), with respect to the initial data u(t2) belonging to the following set

B2j+1,[t2,T ] := C([t2, T ];H
2j+1(R)) ∩ L2(t2, T ;H

3j+1(R)),

and the corollary holds. □
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3. Exponential stabilization: Damping and delayed system

This section is devoted to proving the exponential stabilization for the system (2.1) in L2(R).
In this way, first, we prove the result for the linear system and, after that, we extend to the nonlinear
one. To do that consider the following Lyapunov functional

(3.1) E(t) := E(u(t)) =
1

2

∫
R
u2(x, t)dx

and, for λ ∈ L∞(R), remember the definition of E(·) which is given by (2.18).

3.1. Linear system. The first result ensures the exponential stability for the linear system (2.1)
with localized damping and delay terms and can be read as follows.

Theorem 3.1. Let λ, λ0 ∈ L∞(R) and λ0 be constants satisfying (1.7). If there is a constant γ > 0
and a function β ∈ Lp(R), for 1 ≤ p < ∞, such that the function λ verifies (1.8) and (1.9), then
the system (2.1) is exponentially stable. Particularly, solutions u of (2.1) satisfies the following
inequality

(3.2) E(t) ≤ C(u0)e
−νt,

where ν and C(u0) are defined by (1.10) and (1.11), respectively.

Proof. Using the same argument as done in [12, Theorem 4.7] we consider u0 ∈ H2j+1, then
u ∈ H2j+1. Taking the derivative in t of E(t) we get

dE
dt

(t) =

∫
R
u(t)(−(−1)j∂2j

x u(t)− λ0u(t)− λu(t− τ))dx+
1

2

∫
R
|λ|u2(t)dx

− 1

2
e−τ

∫
R
|λ|u2(t− τ)dx− 1

2

∫ t

t−τ

∫
R
e−(t−s)|λ(x)|u2(x, s)dx ds,

since we have ∫
R
(−1)j+1(∂2j+1

x u)udx = 0. for all u ∈ H2j+1.

So, integrating by parts, and using the Young inequality, remembering that (1.7) and (1.8) are
satisfied, we have

dE
dt

(t) ≤−
∫
R
(∂j

xu)
2(t)dx− γ0

∫
R
u2(t)dx+

eτ + 1

2

∫
R
|λ(x)|u2(t)dx

− 1

2

∫ t

t−τ

∫
R
e−(t−s)|λ(x)|u2(x, s)dxds

≤−
∫
R
(∂j

xu)
2(t)dx− (γ0 − γ)

∫
R
u2(t)dx+

∫
R
β(x)u2(t)dx

− 1

2

∫ t

t−τ

∫
R
e−(t−s)|λ(x)|u2(x, s) dx ds,

thanks to the fact that

(−1)j
∫
R
u∂2j

x udx =

∫
R
(∂j

xu)
2dx.

The Hölder inequality ensures that

(3.3)
dE
dt

(t) ≤ −∥∂j
xu(t)∥22 − (γ0 − γ)∥u(t)∥22 + ∥β∥q∥u∥22q′ −

1

2

∫ t

t−τ

∫
R
e−(t−s)|λ(x)|u2(x, s)dx ds,

with q′ = q
q−1 . Observing that

(3.4) ∥u∥22q′ =
(∫

R
(u(t))2q

′
dx

) 1
q′

=

(∫
R
u2(t)(u(t))

2
q−1dx

) 1
q′

≤ ∥u∥
2
q′
2 ∥u∥

2
q′(q−1)
∞ = ∥u∥

2
q′
2 ∥u∥

2
q
∞
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and using (3.4) in (3.3), yields that

dE
dt

(t) ≤− ∥∂j
xu(t)∥22 − (γ0 − γ)∥u(t)∥22 + ∥β∥q∥u∥

2
q′
2 ∥u(t)∥

2
q
∞

− 1

2

∫ t

t−τ

∫
R
e−(t−s)|λ(x)|u2(x, s)dx ds.

(3.5)

Finally, note that the following inequality holds true

(3.6) ∥v∥2∞ ≤ 2∥v∥2∥∂j
xv∥2,

for all v ∈ Hj(R). Indeed, if v ∈ C∞
c (R) and y ∈ R, then we have the following inequality:∣∣v(y)2∣∣ = ∣∣∣∣∫ y

−∞
2vvxdx

∣∣∣∣ ⩽ 2

∫ ∞

−∞
|v| · |vx| dx ⩽ 2∥v∥2 ∥vx∥2 ,

since for j ≥ 1 we have the following embedding Hj(R) ↪→ H1(R), proving our estimate for smooth
functions. The general case follows by density. So, by Young inequality, from (3.5) and using (3.6),
we have for every fixed δ > 0 the following

dE
dt

(t) ≤− ∥∂j
xu(t)∥22 − (γ0 − γ)∥u(t)∥22 + 21/q∥β∥q∥u∥

2q−1
q

2 ∥ux∥
1
q

2

− 1

2

∫ t

t−τ

∫
R
e−(t−s)|λ(x)|u2(x, s)dxds

≤− ∥∂j
xu(t)∥22 − (γ0 − γ)∥u(t)∥22 +

(1
δ
∥β∥q∥u∥

2q−1
q

2

)(
δ2

1
q ∥∂j

xux∥
1
q

2

)
− 1

2

∫ t

t−τ

∫
R
e−(t−s)|λ(x)|u2(x, s)dxds

≤− ∥∂j
xu(t)∥22 − (γ0 − γ)∥u(t)∥22 +

(
1
δ∥β∥q∥u∥

2q−1
q

2

) 2q
2q−1

2q
2q−1

+

(
δ2

1
q ∥∂j

xux(t)∥
1
q

2

)2q

2q

− 1

2

∫ t

t−τ

∫
R
e−(t−s)|λ(x)|u2(x, s)dxds.

Pick δ > 0 such that 4δ2q = 2q, which gives

dE
dt

(t) ≤−
(
γ0 − γ − 2q − 1

2q

(2
q

) 1
2q−1 ∥β∥

2q
2q−1
p

)
∥u(t)∥22 −

1

2

∫ t

t−τ

∫
R
e−(t−s)|λ(x)|u2(x, s)dxds.

Thus, taking into account (1.9) we have

dE
dt

(t) ≤ −νE(t)

where ν is as in (1.10). To finish, estimate (3.2) is a direct consequence of the Gronwall’s Lemma
considering C(u0) = E(0). □

3.2. Nonlinear system. In this section, we are interested to prove that the higher-order dispersive
system in an unbounded domain is asymptotically stable when we introduce a localized damping
mechanism and a delay term. Precisely, we will use the Lyapunov approach to prove that the
energy E(t) defined by (2.18) tends to 0 as t goes to ∞.

Observe that we can consider the function λ0, λ ∈ L∞(R) satisfying (1.7), (1.8) and (1.9).
Thus, in this case, we have a simple situation that can be easily proved using the arguments done
in the previous section.

Proof of Theorem 1.4. The proof of this result is a consequence of the Lyapunov functional defined
in (3.1) and is analogous to what was done in Theorem 3.1, so we will omit it. □
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3.3. Indefinite damping case. In this section, our issue is to see what happens with general
dissipative damping. To be precise, consider the coefficient λ0 changing sign. Let us assume, that
there exist a number γ > 0 and a function β ∈ Lp(R) for some 1 ≤ p < ∞, such that (1.12) and
(1.13) are satisfied. In this spirit, we can prove the following asymptotic result for the solutions of
the linearized system associated with (1.2), for m = j.

Theorem 3.2. Consider λ, λ0 ∈ L∞(R), with λ0 satisfying (1.12) and (1.13). If there exist a
constant γ > 0 and a function β ∈ Lp(R), with the same p as in (1.13), such that the function λ
satisfies (1.8) and (1.14), so the system

(3.7)


ut(x, t) + (−1)j+1∂2j+1

x u(x, t) + (−1)j∂2j
x u(x, t) + λ0u(x, t)

+λu(x, t− τ) = 0 in R× (0,∞),

u(x, s) = u0(x, s) in R× [−τ, 0]

is exponentially stable. Moreover, the solution of (3.7) satisfy

(3.8) E(t) ≤ C(u0, τ)e
−ν̃t,

with ν̃ defined by (1.15).

Proof. Taking the derivative in time of E(t), using the equation (3.7), after that, integrating by
parts and using the Young inequality we get

dE
dt

(t) ≤−
∫
R
(∂j

xu)
2(t)dx− γ0

∫
R
u2(t)dx+

∫
R
(β0(x) +

eτ + 1

2
|λ(x)|)u2(t)dx

− 1

2

∫ t

t−τ

∫
R
e−(t−s)|λ(x)|u2(x, s)dxds

≤−
∫
R
(∂j

xu)
2(t)dx− (γ0 − γ)

∫
R
u2(t)dx+

∫
R
(β0(x) + β(x))u2(t)dx

− 1

2

∫ t

t−τ

∫
R
e−(t−s)|λ(x)|u2(x, s) dx ds,

Hölder inequality ensures that

dE
dt

(t) ≤− ∥∂j
xu(t)∥22 − (γ0 − γ)∥u(t)∥22

+ ∥β0 + β∥p∥u∥22q −
1

2

∫ t

t−τ

∫
R
e−(t−s)|λ|u2(x, s)dxds,

(3.9)

with q = p
p−1 . Thanks to the inequality (3.9), we deduce that

dE
dt

(t) ≤− ∥∂j
xu(t)∥22 − (γ0 − γ)∥u(t)∥22

+ ∥β + β0∥p∥u(t)∥
2
p
∞∥u∥

2
q

2 − 1

2

∫ t

t−τ

∫
R
e−(t−s)|λ|u2(x, s)dxds.

Remember that (3.6) is still valid, so thanks to the Young inequality, we obtain

dE
dt

(t) ≤− ∥∂j
xu(t)∥22 − (γ0 − γ)∥u(t)∥22 +

(
1
δ∥β0 + β∥p∥u∥

2p−1
p

2

) 2p
2p−1

2p
2p−1

+

(
δ2

1
p ∥∂j

xu∥
1
p

2

)2p

2p

− 1

2

∫ t

t−τ

∫
R
e−(t−s)|λ|u2(x, s)dxds,
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for every fixed δ > 0. Now, taking δ > 0 such that 4δ2p = 2p, yields that

dE
dt

(t) ≤−
(
γ − γ0 −

2p− 1

2p

(2
p

) 1
2p−1 ∥β0 + β∥

2p
2p−1
p

)
∥u(t)∥22

− 1

2

∫ t

t−τ

∫
R
e−(t−s)|λ|u2(x, s)dxds.

(3.10)

Finally, under the assumption (1.14) and taking in consideration (3.10), we get

dE
dt

(t) ≤ −ν̃E(t)

where

ν̃ = 2
(
γ0 − γ − 2p− 1

2p

(2
p

) 1
2p−1 ∥β + β0∥

2p
2p−1
p

)
.

This give us the exponential estimate (3.8) for the solution of (3.7), with C(u0, τ) defined as in
(1.11). □

Directly, we can extend the well-posedness and the stability results for the nonlinear setting
showing Theorem 1.5. This is a consequence of the previous theorem and the results presented in
Subsection 2.4.1. With this in hand, let us prove the Corollary 1.6.

Proof of Corollary 1.6. Note that, after a change of variable, the restriction of u to [t, t + T ] is a
solution to the problem (1.2) concerning the initial data u(t). Observe also that u ∈ C([τ1, t];L

2(R))
for all τ1 ∈ [−τ, t). Thus, by Theorem 2.9, we have

∥u∥B0,[t,t+T ]
≤ Ct+T

{
∥u(t)∥2 + ∥λ∥∞∥u∥L1(t−τ,t;L2(R)) + ∥λ∥1/2∞ ∥u∥L2(t−τ,t;L2(R))

}
,

where Cs is given by

Cs =

√
3

2

(
1 + e2∥λ∥∞s

)1/2
e(∥λ∥∞+∥λ0∥∞))s.

Thus, from Theorem 1.5 it follows that

∥u∥B0,[t,t+T ]
≤ C2T

{
2C(u0, τ)e

−νt + ∥λ∥∞∥u∥L1(t−τ,t;L2(R)) + ∥λ∥1/2∞ ∥u∥L2(t−τ,t;L2(R))

}
where C(u0, τ) is given by (1.11), giving the proof of the corollary. □

4. Exponential stabilization: Damping system

In this section, we establish the exponential stability in the space Hs(R), for s ∈ [0, 2j + 1],
for the general dispersive system (1.2) without the time delay term (τ = λ = 0):

(4.1)


ut(x, t) + (−1)j+1∂2j+1

x u(x, t) + (−1)m∂2m
x u(x, t) + λ0(x)u(x, t)

+ 1
p+1∂xu

p+1(x, t) = 0, in R× (0,∞),

u(x, 0) = u0(x), in R,

with m ≤ j, j,m ∈ N, and 1 ≤ p < 2j.

Remarks 4.1. It is important to point out that:

i. The strategy to obtain the stabilization results in Hs(R), for any s ∈ [0, 2j + 1], will be to
prove the result in L2(R), and after that, to prove the results in the domain of the operator,
that is, H2j+1(R). So, with these two results in hand, we employ the interpolation results
due to J.-L. Lions [25] to get the exponential decay for any s ∈ [0, 2j + 1].

ii. Note that when τ = λ = 0, the stabilization for the system (4.1) in L2(R) holds thanks to
the Theorem 1.4 with localized damping λ0 (see Section 3).
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4.1. Stabilization in H2j+1(R). Note that due to the Remarks 4.1, we will just consider the
stabilization problem associated with the solutions of (4.1) in the space H2j+1(R).

Proposition 4.2. Let T > 0. For 1 ≤ p < 2j, with j ≥ 1 and λ0 satisfying (1.7) or (1.12), there
exist γ > 0, T0 > 0 and a nonnegative continuous function α3 : R+ → R+, such that, for every
u0 ∈ H2j+1(R), the corresponding solution u of (4.1) satisfies

(4.2) ∥u(t)∥H2j+1(R) ≤ α2j+1(∥u0∥2, T0)∥u0∥H2j+1(R)e
−γt, ∀t ≥ T0.

Proof. Firstly, note that there exists a positive constant c such that the following estimate holds

1

c
∥u(t)∥H2j+1(R) ≤ ∥u(t)∥2 + ∥∂2j+1

x u(t)∥2,

thus, from Theorem 1.5, it follows that

(4.3)
1

c
∥u(t)∥H2j+1(R) ≤ 2C(u0, τ)e

−ν̃t + ∥∂2j+1
x u(t)∥2, for all t > 0,

with ν̃ defined by (1.15) and C(u0, τ) > 0 as in (1.11). Since τ = 0, then C(u0, 0) = 1
2∥u0∥

2
2.

The inequality (4.3) shows that we just need to establish an exponential estimate for the 2j + 1
derivative in space of u(t). To do that, observe that

∥∂2j+1
x u(t)∥2 ≤ ∥ut(t)∥+ ∥∂2m

x u(t)∥2 + ∥upux(t)∥2 + ∥λ0u(t)∥2,∀t > 0.

From Gagliardo-Neirenberg inequality, it yields that

∥∂2j+1
x u(t)∥2 ≤ ∥ut(t)∥+ ∥∂2j+1

x u(t)∥
2m

2j+1

2 ∥u(t)∥
1− 2m

2j+1

2 + ∥u(t)∥p∞∥ux(t)∥2 + ∥λ0∥∞∥u(t)∥2.

Young inequality together with Theorem 1.5, when λ = τ = 0, give that

1

2
∥∂2j+1

x u(t)∥2 ≤ ∥ut(t)∥+ C∥u(t)∥2 + 2
p
2 ∥u∥

p
2
2 ∥∂xu∥

p+2
2

2 + ∥λ0∥∞∥u(t)∥2

≤ ∥ut(t)∥+ (C + ∥λ0∥∞) ∥u(t)∥2 + 2
p
2C∥∂2j+1

x u∥
p+2

2(2j+1)

2 ∥u∥
p+2
2

(
1− 1

2j+1

)
+ p

2

2 .

Hence, we obtain

1

4
∥∂2j+1

x u(t)∥2 ≤ ∥ut(t)∥+ (C + ∥λ0∥∞) ∥u(t)∥2 + C∥u∥
(

p+2
2

(
1− 1

2j+1

)
+ p

2

)(
2(2j+1)
4j−p

)
2

≤ ∥ut(t)∥+ 2
1
2C(u0, 0)

1
2 (C + ∥λ0∥∞) e−

ν̃
2
t + 2

1
2C(u0, 0)

1
2 e

− ν̃
2

(
4j(p+1)+p

4j−p

)
t
.(4.4)

Let v = ut. Then, by Proposition 2.10, with λ = τ = 0, v solves linearized equation (2.19) with

initial data v0(x) = −(−1)j+1∂2j+1
x u0 + (−1)m∂2m

x u0 − 1
p+1∂x(u

p+1
0 )− λ0(x)u0 such that

(4.5) ∥v∥BT
≤ σ(∥u∥BT

, T )∥v(0)∥2.

Now, after a change of variable, the restriction of v to [t, t+ T ] is a solution of the system (2.19),
considering λ = τ = 0, concerning the initial data v(t), thus

(4.6) ∥v∥B[t,t+T ]
≤ σ(∥u∥B[t,t+T ]

, T )∥v(t)∥2.

Applying Corollary 1.6, it follows that

∥v∥B[t,t+T ]
≤ σ

(
C2T

{
2C(u0, 0)e

−νt
}
, T
)
∥v(t)∥2.

Therefore, we obtain

∥v∥B[t,t+T ]
≤ γ(u0, t, T )∥v(t)∥2,

where γ(s, t, T ) = σ (2C2TC(s, 0)), T ). On the other hand, the solution v may be written as

v(t) = S(t)v0 −
∫ t

0
S(t− s)[up(s)v(s)]xds
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where S(t) is a C0-semigroup of contraction in L2(R) generated by the operator associated to
system (2.19). Note that v1(t) = S(t)v0 is solution of the problem (2.19) with up = 0. Then,
proceeding as in the proof of Theorem 3.2 with λ = τ = 0, we have

(4.7) ∥v1(t)∥2 ≤ 21/2C(v0, 0)
1/2e−

ν
2
t, ∀t ≥ 0,

with ν defined by (1.15). Denote

v2(t) =

∫ t

0
S(t− s)[up(s)v(s)]xds.

Note that

∥v2(T )∥2 ≤ ∥pup−1uxv∥L1(0,T ;L2(R)) + ∥upvx∥L1(0,T ;L2(R)).

So, thanks to the Lemma 2.6, the following holds

∥v2(T )∥2 ≤ 2
p
2T

2j−p
4j ∥u∥pB0,T

∥v∥B0,T
.(4.8)

Using (4.5), (4.7) and (4.8), we obtain

∥v(T )∥2 ≤ ∥v1(T )∥2 + ∥v1(T )∥2 ≤ 21/2C(v0, 0)
1/2e−

ν
2
t + 2

p
2T

2j−p
4j ∥u∥pB0,T

∥v∥B0,T
.

Let us now consider a sequence yn(·) = v(·, nT ) and introduce wn(·, t) = v(·, t + nT ). For
t ∈ [0, T ], wn solves the problem{

∂twn + (−1)j+1∂2j+1
x wn + (−1)m∂2m

x wn + [u(·+ nT )pwn]x + λ0wn = 0, in R× R+,
wn(0) = yn, in R.

Observe that we can obtain for yn an estimate similar to the one obtained for v(T ), namely

∥yn+1∥2 = ∥wn(T )∥2 ≤ ∥S(T )yn∥2 +
∥∥∥∥∫ T

0
S(T − s)[[u(s+ nT )pwn(s)]xds

∥∥∥∥
2

≤ 21/2C(v(·+ nT ), 0)1/2e−
ν
2
T + 2

p
2T

2j−p
4j ∥u(·+ nT )∥pB0,T

∥wn∥B0,T

≤ 21/2C(v(·+ nT ), 0)1/2e−
ν
2
T + 2

p
2T

2j−p
4j ∥u∥pB0,[nT,(n+1)T ]

∥v∥B0,[nT,(n+1)T ]
.

Thus, (4.6) implies that

∥yn+1∥2 ≤ 21/2C(v(·+ nT ), 0)1/2e−
ν
2
T + 2

p
2T

2j−p
4j ∥u∥pB0,[nT,(n+1)T ]

σ(∥u∥B[nT,(n+1)T ]
, T )∥yn∥2

where

C(v(·+ nT ), 0) =
1

2
∥yn∥22,

getting that

∥yn+1∥2 ≤
(
e−

ν
2
T + 2

p
2T

2j−p
4j ∥u∥pB0,[nT,(n+1)T ]

σ(∥u∥B[nT,(n+1)T ]
, T )
)
∥yn∥2.(4.9)

Moreover, we can choose β > 0, small enough, such that

e−
ν
2
T + 2

p
2T

2j−p
4j βpβσ(β, T ) < 1.

With this choice of β, Corollary 1.6 allows us to pick N > 0, large enough, satisfying

∥u∥0,[nT,(n+1)T ] ≤ 2C2TC(u0, 0)e
−νnT ≤ 2C2TC(u0, 0)e

−νNT ≤ β, ∀n > N.

Thus, from (4.9) we obtain the following estimate

∥yn+1∥2 ≤ r∥yn∥2, ∀n ≥ N, where 0 < r < 1,

which implies

(4.10) ∥v((n+ k)T )∥2 ≤ rk∥v(nT )∥2, ∀n ≥ N.

Now, pick T0 = NT and t ≥ T0. Then, there exists k ∈ N and θ ∈ [0, T ], satisfying

t = (N + k)T + θ.
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Therefore, from (4.6) and (4.10), it is follows that

∥v(t)∥2 ≤ ∥v∥0,[(N+k)T,(N+k+1)T ] ≤ γ(u0, t, T )∥v((N + k)T )∥2

≤ γ(u0, t, T )r
t−NT−θ

T ∥v(T0)∥2

≤ γ(u0, t, T )r
t−NT−θ

T σ((∥u∥BT0
, T0))∥v(0)∥2

≤ η1(∥u0∥)e−δ1t∥v0∥2,

where δ1 =
1
T ln

(
1
r

)
and η1(s) = γ(u0, t, T )σ(β0(s, T0))r

−(N+1). So,

∥ut(t)∥2 ≤ Cη1(∥u0∥2)∥u0∥H2j+1(R)e
−δ1t, ∀t ≥ T0.

Finally, from (4.4) and since C(u0, 0)
1/2 ≤ C∥u0∥H2j+1 , we have

1

4
∥∂2j+1

x u(t)∥2 ≤Cη1(∥u0∥2)∥u0∥H2j+1(R)e
−δ1t

+ (C + ∥λ0∥∞) e−
ν̃
2
t∥u0∥H2j+1 + e

− ν̃
2

(
4j(p+1)+p

4j−p

)
t∥u0∥H2j+1 ,

showing the inequality (4.2). □

4.2. Stabilization in Hs(R). Lastly, let us present the proof of the third main result of this work.

Proof of Theorem 1.7. We already know that there exists a unique solution u of the system (1.2)
in the class Bs,T for every T > 0. Moreover, if 0 < ε < T then it follows from Corollary 1.3,
u ∈ B2j+1,[ε,T ]. On the other hand, from the interpolation inequality [25, inequality (2.43)], we
have

∥u(t)∥Hs(R) = ∥u(t)∥[L2(R),H2j+1(R)]2, s
2j+1

≤ C∥u(t)∥
1− s

2j+1

2 ∥u(t)∥
s

2j+1

H2j+1(R), ∀t ≥ ε,

where C > 0 is a constant that comes from the interpolation argument. Thus, Proposition 4.2 and
Theorems 1.4 and 1.5, with λ = τ = 0, imply the existence of T0 > 0, ν > 0 and γ > 0 such that

∥u(t)∥Hs(R) ≤ Ce
−
(
1− s

2j+1

)
νt∥u0∥

(
1− s

2j+1

)
2 α

s
2j+1

2j+1(∥u(ε)∥2, T0)∥u(ε)∥
s

2j+1

H2j+1(R)e
− s

2j+1
γt
, ∀t ≥ T0.

Hence, (1.16) holds with

η(s) =

(
1− s

2j + 1

)
ν +

s

2j + 1
γ > 0

and

γ(s, T0) = Cs
− s

2j+1α
s

2j+1

3 (∥u(ε)∥2, T0)∥u(ε)∥
s

2j+1

H2j+1 ,

and the result is shown. □

5. Concluding remarks

In this work, we gave a more general framework to treat stabilization problems for a general
higher-order dispersive system, which extends several previous results that appear in the literature.
So, in terms of generality, we can consider the nonlinear general differential operator

(5.1) Vu := (−1)j+1∂2j+1
x u(x, t) + (−1)m∂2m

x u(x, t) +
1

p+ 1
∂xu

p+1(x, t),

with 1 ≤ p < 2j, instead of the typical KdV equation (or co-related systems) as is usual in the
literature2. Thus, summarizing, we studied the asymptotic behavior of the equation (1.2) posed on

2One may generalize the linear operator associated to V as

Vu =

j∑
m=0

αm∂2m+1
x u+

j∑
m=0

βm∂2m
x u,

where αm, βm ∈ R. However, the main analyses in the paper are almost analogous without additional difficulties,
thus the operator (5.1) does not lose the generality in a sense of the aim of this paper.



32 CAPISTRANO–FILHO, GALLEGO, AND KOMORNIK

an unbounded domain R with the constant τ > 0 as a time delay, and with the coefficients

λ0(x), λ(x) ∈ L∞(R) and j,m ∈ N.
Considering p = 1, when we have j = m = 1, in (5.1), we recover the result proved in [21]

for the KdV-Burgers operator. Additionally, when j = 2 and m = 1, we have that the results of
this manuscript are still valid for the fifth order KdV-Burgers type operator. Finally, we can take,
without loss of generality, j = m ∈ N in (5.1). So, we can define Lyapunov functionals associated
with the solution of (1.2)

E(t) := E(u(t)) =
1

2

∫
R
u2(x, t)dx

and, for λ ∈ L∞(R),

E(t) := E(u(t)) = 1

2

∫
R
u2(x, t)dx+

1

2

∫ t

t−τ

∫
R
e−(t−s)|λ(x)|u2(x, s) dx ds.

thanks to the damping mechanism and the delay term, we showed that solutions of (1.2) satisfy

E(t) ≤ C(u0)e
−νt.

Additionally to that, it is important to note that Section 4 extends for the operator (5.1)
and the space Hs, for s ∈ [0, 2j + 1] the results proposed in [12, 14]. As well as, extend for an
unbounded domain the results showed in [11, 32] with appropriated choice of j in the operator
(5.1). However, considering the full system (1.2), that is, the system with damping and delayed
terms, is still an open problem to prove the stabilization result in H2j+1(R). Finally, let us give
some further comments.

5.1. Weak versus strong damping mechanism. Observe that taking β(x) = 0, in the Theorems
1.4 and 1.5, the results are still valid. However, for a more general framework, we keep this term.
Taking in mind that β(x) ̸= 0, additionally, we can consider λ0 and λ are constants such that
|λ| < λ0, and the delay τ is sufficiently small, so Theorem 1.4 gives us the exponential stability for
the solution of (1.2). This is possible using the method introduced in [27] for wave equations. In
fact, in this case, we choose a sufficiently small delay τ and a constant γ such that

eτ + 1

2
|λ| < γ < λ0.

Since now λ0 = γ0 (see (1.7)), the conditions (1.8) and (1.9) are satisfied, and the Theorem 1.4
follows. Note that the same remark applies if λ, λ0 ∈ L∞(R) with λ0 satisfying (1.7), and |λ| < γ0.

With respect to the Theorem 1.5, for a more general framework, if λ0 satisfies (1.12) and
(1.13) instead of λ0(x) ≥ γ0 for a.e. x ∈ R, then for the same function, β satisfying

eτ + 1

2
|λ(x)| ≤ γ + β(x) for a.e. x ∈ R,

we expect a smaller decay rate ν̃ than ν in Theorem 1.5. The explanation for this is the fact
that there is a “good” part γ of λ0 that will compensate for the delay feedback and its indefinite
component β0.

5.2. General framework. One may generalize the system (1.2) as

(5.2)


∂tu(x, t) +

j∑
m=0

αm∂2m+1
x u(x, t) +

n∑
k=1

βk∂
2k
x u(x, t) + λ0(x)u(x, t)

+λ(x)u(x, t− τ) + 1
2∂xu

2(x, t) = 0, in R× (0,∞),

u(x, s) = u0(x, s), in R× [−τ, 0],

where αm, βk ∈ R and j, n ∈ N. The previous system, which depends on the parameters αm and βk,
recovers various delayed dispersive equations. Note that depending on the choice of the constants,
we have:

1. Burgers equation (αm = 0 and n = 1);
2. KdV equation (j = 1 and βk = 0);
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3. Kawahara equation (j = 2, α0 = 1, α1 = −1 and βk = 0);
4. KdV–Burgers equation (j = 1 and n = 1);
5. Kawahara–Burgers equation (j = 2, α0 = 1, α1 = −1 and n = 1);
6. Fourth-order dispersive equation (αm = 0, n = 2, β1 = −1 and β2 = 1).

However, we point out that for the system (5.2) the main analyses in the paper are almost analogous
without additional difficulties, thus the equation (1.2) does not lose the generality in a sense of the
aim of this paper.
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