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Abstract
This work is devoted to presenting Massera-type theorems for the Kawahara system, a
higher-order dispersive equation, posed in a bounded domain. Precisely, thanks to some
properties of the semigroup and the decay of the solutions of this equation, we can prove its
solutions are periodic, quasi-periodic, and almost periodic.
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1 Introduction

1.1 Problem Under Consideration

Results of the existence of periodic solutions for differential equations date back to the 50s,
when in 1950, J.L. Massera published a remarkable paper [17] on the existence of periodic
solutions to ordinary differential equations (ODE) with periodic right-hand sides. Precisely,
the corresponding linear setup Massera’s theorem is as follows: Consider the ODE of the
form

ẋ = A(t)x + b(t), x ∈R
m, (1.1)

with the matrix A(t) and the vector b(t) continuous on R+ and periodic with the same
period τ . Then, the system (1.1) has a periodic solution with period τ if and only if it has a
bounded solution on R+.
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So, in this context, we are interested to prove some periodic properties of the following
Kawahara equation in a bounded domain

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut + uxxx − uxxxxx + uux = 0, (x, t) ∈ I ×R,

u(0, t) = ϕ(t), u(1, t) = ux(1, t) = ux(0, t) = 0, t ∈R,

uxx(1, t) = αuxx(0, t), t ∈R,

u(x,0) = u0(x), x ∈ I,

(1.2)

with a boundary force ϕ(t) in a bounded domain I = (0,1) and a damping term αuxx(0, t),
where |α| < 1. Precisely, we are interested to understand if the system (1.2) has good prop-
erties when we investigate its solutions, considering the context introduced to Massera.
Roughly speaking, we are interested in the study of the existence and qualitative property of
recurrent solutions. This kind of property may be reformulated in the following question.

Question A: Are there periodic solutions for the system (1.2)?

1.2 Physical Motivation

Under suitable assumption on amplitude, wavelength, wave steepness, and so on, the prop-
erties of the asymptotic models for water waves has been extensively studied to understand
the full water wave system.1 In this spirit, formulating the waves as a free boundary problem
of the incompressible, irrotational Euler equation in an appropriate non-dimensional form,
one has two non-dimensional parameters δ := h

λ
and ε := a

h
, where the water depth, the

wavelength and the amplitude of the free surface are parameterized as h, λ and a, respec-
tively. Moreover, another non-dimensional parameter μ is called the Bond number, which
measures the importance of gravitational forces compared to surface tension forces.

The physical condition δ � 1 characterizes the waves, which are called long waves or
shallow water waves, but there are several long-wave approximations according to relations
between ε and δ. So, if we consider

ε = δ4 � 1 and μ = 1

3
+ νε

1
2 ,

and in connection with the critical Bond number μ = 1
3 , we have the so-called Kawahara

equation which is an equation derived by Hasimoto and Kawahara in [12, 14] that take the
form

±2ut + 3uux − νuxxx + 1

45
uxxxxx = 0.

Rescaling this equation, we will study in this paper the following system

ut + uux + uxxx − uxxxxx = 0.

1.3 Historical Background

Before answering the Question A, let us introduce a state of the art related to the Kawahara
equation. As mentioned before, problems related to higher-order dispersive systems are ex-
tensively studied. Precisely, stabilization and control problems have been studied in recent
years.

1See for instance [1, 3, 15] and references therein, for a rigorous justification of various asymptotic models
for surface and internal waves.
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A pioneer work is due to Silva and Vasconcellos [19]. The authors studied the stabiliza-
tion of global solutions of the linear Kawahara equation in a bounded interval under the
effect of a localized damping mechanism. The second work in this way is due Capistrano-
Filho et al. [2]. In this work, the authors considered the Kawahara equation in a bounded
domain QT = (0, T ) × (0,L),

⎧
⎨

⎩

ut + ux + uxxx − uxxxxx + uux = f (t, x), in QT ,

u(t,0) = u(t,L) = ux(t,0) = ux(t,L) = uxx(t,L) = 0, on [0, T ],
u(0, x) = u0(x), in [0,L].

(1.3)

In this article, the authors were able to introduce an internal feedback law in (1.3), consider-
ing general nonlinearity upux , p ∈ [1,4), instead of uux . They proved that under the effect
of the damping mechanism the energy associated with the solutions of the system decays
exponentially.

Related to internal control issues in a bounded domain, Chen [8] presented results con-
sidering the Kawahara equation (1.3) posed on a bounded interval with a distributed control
f (t, x) and homogeneous boundary conditions. She showed the result by taking advantage
of a Carleman estimate associated with the linear operator of the Kawahara equation with
an internal observation. With this in hand, she was able to get a null controllable result when
f is effective in a ω ⊂ (0,L). In [4], considering the system (1.3) with an internal control
f (t, x) and homogeneous boundary conditions, the authors can show that the equation in
consideration is exactly controllable in L2-weighted Sobolev spaces and, additionally, the
Kawahara equation is controllable by regions on L2-Sobolev space.

Recently, a new tool to find control properties for the Kawahara operator was proposed in
[5, 7]. First, in [5], the authors showed a new type of controllability for the Kawahara equa-
tion, what they called overdetermination control problem. They can find a control acting at
the boundary that guarantees that the solution of the problem under consideration satisfies
an integral condition. In addition, when the control acts internally in the system, instead
of the boundary, the authors proved that this condition is also satisfied. After that, in [7],
the authors extend this idea for the internal control problem for the Kawahara equation on
unbounded domains. Precisely, under certain hypotheses over the initial and boundary data,
they can prove that there exists an internal control input such that solutions of the Kawa-
hara equation satisfies an integral overdetermination condition considering the Kawahara
equation posed in the real line, left half-line, and right half-line.

We finish presenting the last works in control theory related to the Kawahara equation. In
[6, 10], under suitable assumptions on the time delay coefficients, the authors can prove that
solutions of the Kawahara system are exponentially stable. The results are obtained using
the Lyapunov approach and compactness-uniqueness argument. We caution that this is only
a small sample of the extant work on control theory for the Kawahara equation.

1.4 Notation and Auxiliary Results

Before presenting the main results of the article, let us introduce some notation and two
auxiliary results. Denote by C1(R) a function space whose elements are continuously dif-
ferentiable complex-valued functions on R and its norm

‖u‖C1(R) := ‖u‖C(R) + ‖ut‖C(R), ∀u ∈ C1(R).

Set

C1
b (R) = {u ∈ C1(R); ‖u‖C1(R) < +∞}.
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Consider by L2(I ) the space of all Lebesgue square integrable complex-valued functions on
I with the following inner product

(u, v) := Re

(∫ 1

0
uvdx

)

, ∀u,v ∈ L2(I ),

where v denotes the conjugate of v. With the previous inner product, we define in L2(I ) the
following norm

‖u‖ = (u,u)
1
2 .

Additionally, let Hs(I), s ≥ 0, be the classical Sobolev spaces of complex-valued functions
on I with its classical inner product and norm, denoted by ‖ · ‖Hs(I). Finally, consider

Hs
α(I ) = {u ∈ Hs(I) | u(5i)(0) = 0 = u(5i)(1), u(5i+1)(0) = 0 = u(5i+1)(1),

u(5i+2)(1) = αu(5i+2)(0)},
where the derivatives are of order less than or equal to n − 1. The norm and inner product
of Hs

α(I ) are inherited from Hs(I).
The first result is devoted to proving the well-posedness via semigroup theory, which

is the key to proving the other main results of the article. Precisely, we first prove that the
linear Kawahara operator generates {S(t)}t≥0 the C0–semigroup of contraction on L2(I ).

Theorem 1.1 There exists ω > 0 such that for any k = 0,1,2,3,4 and 5, we can find a
positive constant Ck > 0 which the semigroup associated to the linear Kawahara operator
satisfies

‖S(t)u0‖Hk
α (I) ≤ Cke

−ωt‖u0‖Hk
α (I),

for all t > 0.

The previous theorem is the key to proving the existence of the bounded solution for the
Kawahara equation (1.2). For that, pick

X := Cb(R,H 2(I ))

with a norm

‖u‖X := sup
t∈R

‖u(t)‖H 2(I )

and define the following set

Xρ := {u ∈ X | ‖u‖X ≤ ρ}.
The next theorem, thanks to the previous one, ensures that the solutions of (1.2) are bounded.

Theorem 1.2 There exists a constant ε > 0 such that for all ϕ ∈ C1(R) satisfying ‖ϕ‖C1(R) ≤
ε, the system (1.2) admits a unique solution u such that

‖u‖X ≤ Cε,

where C > 0 is a constant independent of ε.
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1.5 Massera-Type Theorems and Structure of the Article

With the previous background in hand it is clear that no results concerning the recurrent
solutions for the Kawahara system are presented in the literature. This manuscript is inter-
esting to fill this gap by giving answers for the Question A before presented. Precisely, the
next three theorems give us Massera-type theorems for a higher-order dispersive system that
is, the result below ensures that the solution of (1.2) is T –periodic.

Theorem 1.3 Let

‖ϕ‖C1(R) ≤ ε,

where ε is the constant determined by Theorem 1.2. If ϕ is a function T –periodic, thus u

solution of (1.2), given by Theorem 1.2, is also a function T –periodic.

Additionally, the next Massera-type theorem gives some property of the periodicity of
the solution to (1.2). The result can be read as follows.

Theorem 1.4 Let

‖ϕ‖C1(R) ≤ ε,

where ε is the constant determined by Theorem 1.2. If ϕ is a quasi-periodic function, the
solution u of (1.2), obtained in Theorem 1.2, is also a quasi-periodic function. Moreover, if
ϕ is ω–quasi-periodic function in t , thus the solution u of (1.2), obtained in Theorem 1.2, is
also ω–quasi-periodic function in t .

Finally, let us present the last result of this work. Precisely, we can prove that the solutions
of (1.2) are almost periodic.

Theorem 1.5 Let ‖ϕ‖C1(R) ≤ ε, where 0 < ε � 1 is obtained via Theorem 1.2. If ϕ, ϕ′ are
functions almost periodic, the solution u of (1.2), given by Theorem 1.2, is also an almost
periodic function.

The remainder of the paper is organized as follows. In Sect. 2, we present the auxiliary
results that are essential for the proof of the Massera-type theorems, precisely, we present
the proof of Theorems 1.1 and 1.2. After that, in Sect. 3, we present the answer for the
question A which is divided into three results, that is, we present the proof of Theorems 1.3,
1.4 and 1.5. Further comments are presented in Sect. 4. Finally, in the Appendix, we give
some properties of the energy associated with (1.2).

2 Preliminaries

In this section, we are interested to prove some properties of the following linear Kawahara
system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut + uxxx − uxxxxx = 0, (x, t) ∈ I ×R,

u(0, t) = u(1, t) = ux(1, t) = ux(0, t) = 0, t ∈R,

uxx(1, t) = αuxx(0, t), t ∈R,

u(x,0) = u0(x), x ∈ I,

(2.1)

which are essential for the rest of the article.



    5 Page 6 of 25 R. de A. Capistrano-Filho, I.M. de Jesus

2.1 Well-Posedness: Linear System

From now on C with or without subscripts denotes positive constants whose value may
change on different occasions. We will write the dependence of constant on parameters
explicitly if it is essential. Additionally, we denote λ∗ > 0 is the smallest constant such that
the following inequality holds

‖ux‖2 ≥ λ∗‖u‖2, u ∈ H 1
0 (I ).

Consider the following operator A : D(A) ⊂ L2(I ) −→ L2(I ) defined by

Au := −uxxx + uxxxxx,

where

D(A) = {u ∈ H 5(I ) : u(0) = u(1) = ux(0) = ux(1) = 0, uxx(1) = αuxx(0)},
with |α| < 1, and its adjoint A∗v = vxxx − vxxxxx with

D(A∗) = {v ∈ H 5(I ) : v(0) = v(1) = vx(0) = vx(1) = 0, vxx(0) = αvxx(1)}.
Thus, the following property holds.

Proposition 2.1 A generates a C0 semigroup of contractions on L2(I ).

Proof Since A is a continuous linear operator, using the closed graph theorem, A has the
closed graph. Moreover, as D(A) is dense in L2(I ), if we prove that A and A∗ are dissipa-
tive, thanks to [18, Corollary 4.4] we have that A generates a C0 semigroup of contractions
on L2(I ). To do this, by using the definitions of A and A∗, we get, integrating by parts that

(Au,u) = 1

2
(α2 − 1)(uxx(0))2 ≤ 0

and

(A∗v, v) = 1

2
(α2 − 1)(vxx(1))2 ≤ 0,

that is, A and A∗ are dissipative, and so the proof is finished. �

From now on, denote by {S(t)}t≥0 the C0-semigroup associated with A, so u(t) = S(t)u0

is the mild solution of the linearized system (2.1). The next result ensures some properties
of the solution of the linear Kawahara system.

Proposition 2.2 Let u solution of (2.1). Then, we have for all T > 0 that

(i) ‖u(·, T )‖ ≤ ‖u0‖;

(ii) (1 − α2)

∫ T

0
u2

xx(0, t)dt ≤ ‖u0‖2;

(iii) ‖u‖L2(0,T ;H 2(I )) ≤
√

1

3

(
1

1 − α2
+ 4T

)

‖u0‖.
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Proof Since {S(t)}t≥0 is a C0-semigroup of contractions, item (i) follows. Now, observe that

d

dt

(
‖u(t)‖2

L2(I )

)
= 2(ut , u) = 2(Au,u) = (α2 − 1)(uxx(0))2,

and integrating in (0, T ) we get (ii).
Now, multiplying (2.1) by xu, integrating by parts, and using the boundary condition we

have that

d

dt

(∫

I

xu2dx

)

=2
∫

I

xuutdx = −2
∫

I

xuuxxxdx + 2
∫

I

xuuxxxxxdx

=
∫

I

u2dx − 3
∫

I

(ux)
2dx + α2(uxx(0, t))2 − 5

∫

I

(uxx)
2dx.

Integrating both side in (0, T ), holds that

3
∫ T

0

∫

I

(ux)
2dxdt + 3

∫ T

0

∫

I

(uxx)
2dxdt

≤
∫

I

x(u0)
2dx +

∫ T

0

∫

I

u2dxdt +
∫ T

0
α2(uxx(0, t))2dt

≤
∫

I

(u0)
2dx +

∫ T

0
‖u0‖2dt +

∫ T

0
α2(uxx(0, t))2dt,

since ‖u(t)‖ ≤ ‖u0‖ for al t ≥ 0. So, using item (ii), we obtain

3
∫ T

0

∫

I

(ux)
2dxdt + 3

∫ T

0

∫

I

(uxx)
2dxdt ≤ (1 + T + α2

1 − α2
)‖u0‖2.

Therefore,

3‖u‖2
H 2(I )

= 3
∫ T

0

∫

I

u2dxdt + 3
∫ T

0

∫

I

(ux)
2dxdt + 3

∫ T

0

∫

I

(uxx)
2dxdt

≤ 3T ‖u0‖2 + (1 + T + α2

1 − α2
)‖u0‖2 =

(
1

1 − α2
+ 4T

)

‖u0‖2,

showing the result. �

The next result ensures the decay of the semigroup associated with the Kawahara opera-
tor. This can be proved by using the results shown in the Appendix.

Proposition 2.3 Existe ω > 0 e C > 0 tal que

‖S(t)u0‖ ≤ Ce−ωt‖u0‖, t ≥ 0.

Proof Consider E(t) = 1

2
‖u‖2(t) the energy associated with (2.1). So, thanks to the Theo-

rem A.2, we have that

‖S(t)u0‖2 = 2E(t) ≤ C‖u0‖2e−μt ,
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and taking the square root of both sides in the previous inequality with ω = μ

2
> 0 the

results holds. �

The next result shows that the solutions of (2.1) are bounded.

Proposition 2.4 There exists C > 0 such that for any t > 0,

‖S(t)u0‖H 2(I ) ≤ C

√
1

1 − α2

1

t
+ 1‖u0‖,

holds for any u0 ∈ L2(I ).

Proof Define the following function

g(t) :=
∫ t

0
‖S(s)u0‖2

H 2(I )
ds.

Applying the mean value theorem we have the existence of τ ∈
(

0,
t

2

)

such that

‖S(τ)u0‖2
H 2(I )

·
(

t

2

)

=
∫ t

2

0
‖S(s)u0‖2

H 2(I )
ds.

Thanks to item (iii) of Proposition 2.2, we get

‖S(τ)u0‖2
H 2(I )

·
(

t

2

)

=
∫ t

2

0
‖S(s)u0‖2

H 2(I )
ds ≤ 1

3

(
1

1 − α2
+ 2t

)

‖u0‖2.

Thus,

‖S(τ)u0‖2
H 2(I )

≤ 1

3

(
1

1 − α2
+ 2t

)(
2

t

)

‖u0‖2 = 4

3

(
1

1 − α2

1

2t
+ 1

)

‖u0‖2

and so,

‖S(τ)u0‖H 2(I ) ≤ 2
√

3

3

√
1

1 − α2

1

2t
+ 1‖u0‖ ≤ 2

√
3

3

√
1

1 − α2

1

t
+ 1‖u0‖.

Finally, semigroup properties ensure that

‖S(t)u0‖H 2(I ) = ‖S(t −τ)S(τ )u0‖H 2(I ) ≤ C1‖S(τ)u0‖H 2(I ) ≤ C1
2
√

3

3

√
1

1 − α2

1

t
+ 1‖u0‖,

and the proof is achieved. �

2.2 Proof of Theorem 1.1

Considering k = 0, thus the result is a consequence of Proposition 2.3. Now, taking
u0 ∈ D(A) = H 5

α (I ), semigroup theory ensures that u = S(t)u0 ∈ D(A) and ut = Au =
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S(t)(Au0), with Au0 ∈ L2(I ). Pick v = ut , we have that v satisfies the following initial
value problem

{
vt = Av, (x, t) ∈ I × (0, T ),

v(x,0) = v0(x) = (Au0)(x) ∈ L2(I ), x ∈ I.
(2.2)

Proposition 2.3 yields that

‖v(·, t)‖ ≤ Ce−ωt‖v0‖ = Ce−ωt‖Au0‖.
Since the following norms ‖u‖+‖Au‖ and ‖u‖D(A) are equivalents in D(A), we ensure the
existence of two constants M1,M2 > 0 such that

M1‖u‖D(A) ≤ ‖u‖ + ‖Au‖ ≤ M2‖u‖D(A).

Thus,

‖S(t)u0‖H 5
α (I) ≤ M−1

1 (‖S(t)u0‖ + ‖A(S(t)u0)‖)
≤ M−1

1 (Ce−ωt‖u0‖ + Ce−ωt‖Au0‖)
≤ M−1

1 CM2e
−ωt‖u0‖H 5

α (I).

The results for k = 1,2,3 and 4, are consequences of an interpolation argument. So, Theo-
rem 1.1 is shown. �

2.3 Well-Posendess: Bounded Solutions for the Nonlinear System

Consider the following initial boundary value problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut + uxxx − uxxxxx + uux = 0, (x, t) ∈ I ×R,

u(0, t) = ϕ(t), u(1, t) = ux(1, t) = ux(0, t) = 0, t ∈R,

uxx(1, t) = αuxx(0, t), t ∈R,

u(x,0) = u0(x), x ∈ I.

(2.3)

Let us study the bounded solution to the system (2.3). To do this, let us consider

y(x, t) := u(x, t) + A(x)ϕ(t),

with the function A defined by

A(x) = α − 1

α + 1
x2 + 2

α + 1
x − 1

and ϕ ∈ C1(R). If we suppose that u satisfies (2.3), so we have that y satisfies

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

yt + yxxx − yxxxxx + yyx + ayx + by = f, (x, t) ∈ I ×R,

y(0, t) = y(1, t) = 0, t ∈ R,

yx(1, t) = αyx(0, t), t ∈ R,

yxx(1, t) = αyxx(0, t) +
(−2(α − 1)2

α + 1

)

ϕ(t) t ∈ R,

(2.4)
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with

yx(0, t) = 2

α + 1
ϕ(t), a(x, t) = −A(x)ϕ(t), b(x, t) = −A′(x)ϕ(t) (2.5)

and

f = A(x)ϕ′(t) − A(x)A′(x)ϕ2(t). (2.6)

Moreover, we consider that y is a mild solution of (2.4) if satisfies the integral equation

y(t) = S(t − r)y(r) +
∫ t

r

S(t − r)(−yyx − ayx − by + f )(s)ds, (2.7)

for all t ≥ r and each r ∈ R. Thus, as y is a mild solution of (2.4), we have that

u(x, t) = y(x, t) − A(x)ϕ(t)

is a mild solution of (2.3). With this in hand, we are in a position to prove our second
auxiliary result.

Proof of Theorem 1.2 A straightforward calculation shows that by using integration by parts,
we get

∫ ∞

0
e− ω

2 τ

√
1

τ
dτ =

∫ ∞

0
ωe− ω

2 τ
√

τdτ =
∫ ∞

0
ωe− ω

4 τ e− ω
4 τ

√
τdτ. (2.8)

Pick a function h(τ) = e− ω
2 τ τ , with τ ∈R. Since

h′(τ ) =
(

1 − ω

2
τ
)

e− ω
2 τ = 0 ⇔ τ = 2

ω
,

h′(t) > 0 for τ <
2

ω
and h′(t) < 0 for τ >

2

ω
, yields that

h(τ) ≤ h

(
2

ω

)

= 2e−1

ω
, ∀τ ∈R.

So we have

e− ω
4 τ

√
τ ≤

√

2e−1

ω
.

Therefore,

∫ ∞

0
e− ω

2 τ

√
1

τ
dτ =

∫ ∞

0
ωe− ω

4 τ e− ω
4 τ

√
τdτ

≤ ω

√

2e−1

ω

∫ ∞

0
e− ω

4 τ dτ

= 4

√

2e−1

ω
.

(2.9)
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On the other hand,

∫ ∞

0
e− ω

2 τ dτ = 2

ω
. (2.10)

Thus, Theorem 1.1, Proposition 2.4 and Agmon inequality,2 ensure that

∥
∥
∥
∥

∫ t

−∞
S(t − s)y(·, s)yx(·, s)ds

∥
∥
∥
∥

H 2(I )

≤
∫ t

−∞

∥
∥
∥
∥S

(
t − s

2

)

S

(
t − s

2

)

y(·, s)yx(·, s)
∥
∥
∥
∥

H 2(I )

ds

≤ C2

∫ t

−∞
e− ω

2 (t−s)

∥
∥
∥
∥S

(
t − s

2

)

y(·, s)yx(·, s)
∥
∥
∥
∥

H 2(I )

ds

≤ CC2

∫ t

−∞
e− ω

2 (t−s)

√
1

1 − α2

2

t − s
+ 1‖y(·, s)yx(·, s)‖ds

≤ C

∫ t

−∞
e− ω

2 (t−s)

√
1

1 − α2

2

t − s
+ 1‖y(·, s)‖H 2(I ) ‖yx(·, s)‖ds

≤ C ‖y‖2
X

∫ t

−∞
e− ω

2 (t−s)

√
1

1 − α2

1

t − s
+ 1ds.

Thanks to the previous inequality, taking τ = t − s, we get

∥
∥
∥
∥

∫ t

−∞
S(t − s)y(·, s)yx(·, s)ds

∥
∥
∥
∥

H 2(I )

≤ C ‖y‖2
X

∫ ∞

0
e− ω

2 τ

(√
1

1 − α2

√
1

τ
+ √

1

)

dτ

≤ C ‖y‖2
X

∫ ∞

0
e− ω

2 τ

(√
1

τ
+ 1

)

dτ

≤ C

(
1√
ω

+ 1

ω

)

‖y‖2
X .

(2.11)

Now, considering ϕ ∈ C1(R), we have a, b ∈ X. Therefore, we get, using the same compu-
tations as before, that

∥
∥
∥
∥

∫ t

−∞
S(t − s)a(·, s)yx(·, s)ds

∥
∥
∥
∥

H 2(I )

≤C ‖a‖X ‖y‖X

∫ ∞

0
e− ω

2 τ

(√
1

τ
+ 1

)

dτ

≤C

(
1√
ω

+ 1

ω

)

‖a‖X ‖y‖X

(2.12)

2Agmon inequality in one dimensional case: ‖u‖L∞(I ) ≤ C‖u‖
3
4
L2(I )

‖u‖
1
4
H2(I )

≤ C‖u‖
H2(I )

, I = (0,1).
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and

∥
∥
∥
∥

∫ t

−∞
S(t − s)b(·, s)y(·, s)ds

∥
∥
∥
∥

H 2(I )

≤C ‖b‖X ‖y‖X

∫ ∞

0
e− ω

2 τ

(√
1

τ
+ 1

)

dτ

≤C

(
1√
ω

+ 1

ω

)

‖b‖X ‖y‖X .

(2.13)

Using the change of variable y by y − z in (2.12) and (2.13), respectively, yields that

∥
∥
∥
∥

∫ t

−∞
S(t − s)a(·, s) [y(·, s) − z(·, s)]x ds

∥
∥
∥
∥

H 2(I )

≤ C

(
1√
ω

+ 1

ω

)

‖a‖X ‖y − z‖X (2.14)

and
∥
∥
∥
∥

∫ t

−∞
S(t − s)b(·, s) [y(·, s) − z(·, s)]ds

∥
∥
∥
∥

H 2(I )

≤ C

(
1√
ω

+ 1

ω

)

‖b‖X ‖y − z‖X . (2.15)

Additionally, thanks to Theorem 1.1, we have

∥
∥
∥
∥

∫ t

−∞
S(t − s)f (·, s)ds

∥
∥
∥
∥

H 2(I )

≤
∫ t

−∞
‖S (t − s)f (·, s)‖H 2(I ) ds

≤C2

∫ t

−∞
e−ω(t−s) ‖f (·, s)‖H 2(I ) ds

≤C ‖f ‖X

∫ t

−∞
e−ω(t−s)ds

=C ‖f ‖X

∫ ∞

0
e−ωτ ds = C

ω
‖f ‖X ,

(2.16)

where in the last line we have used the following change of variable τ = t − s. Also, note
that by analogous process yields that

∥
∥
∥
∥

∫ t

−∞
S(t − s) [y(·, s)yx(·, s) − z(·, s)zx(·, s)]ds

∥
∥
∥
∥

H 2(I )

≤
∫ t

−∞

∥
∥
∥
∥S

(
t − s

2

)

S

(
t − s

2

)

[y(·, s)yx(·, s) − z(·, s)zx(·, s)]
∥
∥
∥
∥

H 2(I )

ds

≤ C

∫ t

−∞
e− ω

2 (t−s)

√
1

1 − α2

1

t − s
+ 1

∥
∥
∥
∥

1

2

d

dx
(y2 − z2)(·, s)

∥
∥
∥
∥ds

≤ C

∫ t

−∞
e− ω

2 (t−s)

√
1

1 − α2

1

t − s
+ 1‖(y − z)(·, s)‖H 1(I ) ‖(y + z)(·, s)‖H 1(I ) ds

≤ C ‖y − z‖X ‖y + z‖X

∫ t

−∞
e− ω

2 (t−s)

√
1

1 − α2

1

t − s
+ 1ds

≤ C

(
1√
ω

+ 1

ω

)

‖y − z‖X ‖y + z‖X .

(2.17)
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Set

(�y)(t) :=
∫ t

−∞
S(t − s)(−yyx − ayx − by + f )(·, s)ds. (2.18)

Now, using (2.11), (2.12), (2.13) and (2.16), we get that

‖�y‖X = sup
t∈R

‖(�y)(t)‖H 2(I ) ≤ ‖(�y)(t)‖H 2(I )

≤
∥
∥
∥
∥

∫ t

−∞
S(t − s)(yyx)(·, s)ds

∥
∥
∥
∥

H 2(I )

+
∥
∥
∥
∥

∫ t

−∞
S(t − s)(ayx)(·, s)ds

∥
∥
∥
∥

H 2(I )

+
∥
∥
∥
∥

∫ t

−∞
S(t − s)(by)(·, s)ds

∥
∥
∥
∥

H 2(I )

+
∥
∥
∥
∥

∫ t

−∞
S(t − s)f (·, s)ds

∥
∥
∥
∥

H 2(I )

≤C

(
1√
ω

+ 1

ω

)

‖y‖2
X + C

(
1√
ω

+ 1

ω

)

‖a‖X ‖y‖X

+ C

(
1√
ω

+ 1

ω

)

‖b‖X ‖y‖X + C

ω
‖f ‖X .

(2.19)

Thanks to (2.14), (2.15) and (2.17), we get that

‖�y − �z‖X = sup
t∈R

‖(�y − �z)(t)‖H 2(I ) ≤ ‖(�y − �z)(t)‖H 2(I )

≤
∥
∥
∥
∥

∫ t

−∞
S(t − s)(yyx − zzx)(·, s)ds

∥
∥
∥
∥

H 2(I )

+
∥
∥
∥
∥

∫ t

−∞
S(t − s) (a(y − z)x) (·, s)ds

∥
∥
∥
∥

H 2(I )

+
∥
∥
∥
∥

∫ t

−∞
S(t − s) (b(y − z)) (·, s)ds

∥
∥
∥
∥

H 2(I )

≤C

(
1√
ω

+ 1

ω

)

‖y − z‖X ‖y + z‖X

+ C

(
1√
ω

+ 1

ω

)

‖a‖X ‖y − z‖X

+ C

(
1√
ω

+ 1

ω

)

‖b‖X ‖y − z‖X .

(2.20)

Moreover, we have that

‖�y‖X ≤ C

(
1√
ω

+ 1

ω

)

ρ2 + C

(
1√
ω

+ 1

ω

)

(‖a‖X + ‖b‖X)ρ + C

ω
‖f ‖X (2.21)

and

‖�y − �z‖X ≤ C

(
1√
ω

+ 1

ω

)

ρ ‖y − z‖X + C

(
1√
ω

+ 1

ω

)

(‖a‖X + ‖b‖X)‖y − z‖X ,

(2.22)
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for y, z ∈ Xρ . By hypothesis

‖ϕ‖C1(R) := max{sup
t∈R

|ϕ(t)|, sup
t∈R

|ϕ′(t)|} ≤ ε,

since a(x, t) = −A(x)ϕ(t) we get

‖a(·, t)‖2
H 2(I )

= (ϕ(t))2
∫ 1

0
(A2 + A2

x + A2
xx)dx = (Cϕ(t))2,

with C2 :=
∫ 1

0
(A2 + A2

x + A2
xx)dx. So

‖a‖X = sup
t∈R

{|ϕ(t)|C} ≤ C‖ϕ‖C1(R) ≤ Cε.

Analogously, taking b(x, t) = −Ax(x)ϕ(t), ensures that

‖b(·, t)‖2
H 2(I )

= (ϕ(t))2
∫ 1

0
(A2

x + A2
xx + A2

xxx)dx = (Cϕ(t))2.

Thus,

‖b‖X = sup
t∈R

{|ϕ(t)|C} ≤ C‖ϕ‖C1(R) ≤ Cε.

As f (x, t) = A(x)ϕ′(t) + A′(x)ϕ(t) − A(x)A′(x)ϕ2(t) and 0 < ε ≤ 1, follows that

‖f ‖X ≤ Cε,

where C > 0 independent of ε.
Finally, thanks to the previous inequality, let us consider

ρ = 3C

ω
‖f ‖X ≤ 3C2

ω
ε.

For ε � 1 small enough we have

ρ � 1,

C

(
1√
ω

+ 1

ω

)

ρ ≤ 1

3
,

and

C

(
1√
ω

+ 1

ω

)

(‖a‖X + ‖b‖X) <
1

3
.

Therefore, thanks to (2.21) and (2.22), the following holds true

‖�y‖X ≤ ρ

and

‖�y − �z‖X ≤ 2

3
‖y − z‖X,
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respectively. Therefore, using the Banach fixed-point theorem, there exists a unique y ∈ Xρ

such that �y = y. Thus, for such y yields that

‖y‖X = ‖�y‖X ≤ ρ

and y is a mild solution for (2.4). As y(x, t) = u(x, t) + A(x)ϕ(t), we get

‖u‖X ≤ Cε,

showing the result. �

3 Massera’s Theorems for the Kawahara Operator

In this section, our goal is to present several Massera’s type theorems associated with the
system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut + uxxx − uxxxxx + uux = 0, (x, t) ∈ I ×R,

u(0, t) = ϕ(t), u(1, t) = ux(1, t) = ux(0, t) = 0, t ∈R,

uxx(1, t) = αuxx(0, t), t ∈R,

u(x,0) = u0(x), x ∈ I.

(3.1)

These theorems ensure that this higher-order dispersive equation has recurrent solutions. Let
us start proving the first result in this way.

3.1 Proof of Theorem 1.3

We have that v(x, t) = u(x, t + T ) is the unique solution of

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

vt + vxxx − vxxxxx + vvx = 0, (x, t) ∈ I ×R,

v(0, t) = ϕ(t + T ) = ϕ(t), t ∈ R,

v(1, t) = vx(1, t) = vx(0, t) = 0, t ∈ R,

vxx(1, t) = αvxx(0, t), t ∈ R.

The system above is exactly (3.1), so the uniqueness of solutions gives us that

u(x, t + T ) = v(x, t) = u(x, t),

for all (x, t) ∈ I ×R, showing the result. �

3.2 Quasi-Periodic Solution

In this section, we are interested in analyzing the quasi-periodic solutions of (3.1). Before
it, we present some definitions necessary for this study.

Definition 3.1 We say that the real numbers ω1,ω2, . . . ,ωk are rationally independent when

m1ω1 + · · · + mkωk = 0,

only happens when m1 = · · ·mk = 0, with m1, . . . ,mk ∈ Q, where Q is the set of all rational
numbers.
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Let f : I ×R−→R be a continuous function and ei a unitary vector of Rk such that the
i-th component is 1 and the others are zero. We have the following definition.

Definition 3.2 A function f (x, t) is denoted by ω–quasi-periodic in t uniformly with respect
to x ∈ I , if there are ω1, . . . ,ωk ∈R rationally independent and a function F(x,u) ∈ C(I ×
R

k,R) such that

f (x, t) = F(x, tω1, tω2, . . . , tωk) = F(x, tω), ∀t ∈R and x ∈ I,

where ω = (ω1, . . . ,ωk) and F(x,u + 2πei) = F(x,u), for all u ∈ R
k and x ∈ I , i =

1,2, . . . , k. The numbers ω1, . . . ,ωk are called basic frequencies of f .

Definition 3.3 We say that ϕ(t) is ω–quasi-periodic in t if there is �(u) ∈ C(Rk,R) such
that

�(u + 2πei) = �(u), ∀u ∈R
k, i = 1, . . . , k

and

ϕ(t) = �(tω) = �(tω1, . . . , tωk) ∀t ∈R.

With these definitions in hand, we prove now the second main result of the work.

Proof of Theorem 1.4 Since ϕ(t) is ω–quasi-periodic function in t , by definition, there exists
�(u) ∈ C(Rk,R) such that

�(u + 2πei) = �(u),∀u ∈R
k, i = 1, . . . , k

and

ϕ(t) = �(tω) = �(tω1, . . . , tωk), ∀t ∈ R.

Set α = (α1, . . . , αk) ∈ R
k and ϕα(t) = �(α + tω). Thanks to the Theorem 1.2, for each

boundary force ϕα(t) the equation (3.1) has unique solution uα ∈ XCε .
Pick now

U(x,α) := uα(x,0). (3.2)

Thus, U is well-defined due to the uniqueness of the solutions. We prove the result by several
claims.

Claim 1 uα(x, t + h) = uα+hω(x, t).

Indeed, noting that

ϕhω+α(t) = �(tω + hω + α) = �((t + h)ω + α) = ϕα(t + h),

we have that uα(x, t + h) and uα+hω(x, t) are solutions of (3.1) with boundary force
ϕhω+α(t). The uniqueness of solutions ensures that

uα(x, t + h) = uα+hω(x, t),

and Claim 1 is proved.
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Claim 2 U(x,α) = U(x,α1, . . . , αk) has period 2π with respect to each argument αi .

In fact, taking t = 0, in Claim 1, we get

uα(x,h) = uα+hω(x,0) = U(x,α + hω), ∀h ∈R.

As h is arbitrary, we have that

uα(x, t) = U(x,α + tω), ∀t ∈R.

So, (3.2) help us to ensure that

U(x,α + 2πei) = uα+2πei
(x,0),

where {e1, . . . , ek} is the standard basis in R
k . Since

ϕα+2πei
(t) = �(ω + α + 2πei) = �(ω + α) = ϕα(t),

holds true, the uniqueness of solution guaranteed by Theorem 1.2, gives

uα+2πei
= uα,

therefore

U(x,α + 2πei) = uα+2πei
(x,0) = uα(x,0) = U(x,α),

and Claim 2 is shown.
Finally, taking α = (0, . . . ,0) ∈ R

k , we have that the external force ϕα(t) = ϕ(t) and
u(x, t) = U(x, tω). Thus, we get u is a ω–quasi-periodic solution in t . �

3.3 Almost Periodic Solution

In this section the goal is to prove that (3.1) have almost periodic solutions. To do that, let
us begin this subsection with the following definition.

Definition 3.4 Let (Y, d) be a separable and complete metric space and f : R −→ Y be a
continuous mapping. The function f is said to be almost periodic if, for every δ > 0, there
exists a constant l(δ) > 0 such that any interval of length l(δ) contains at least a number τ

for which

sup
t∈R

d(f (t + τ), f (t)) < δ.

Now, we are in a position to prove the last result of the work.

Proof of Theorem 1.5 Consider y, a, b and f satisfying (2.4), (2.5) and (2.6). The straight-
forward calculation, thanks to the following change of variable τ = s − σ , shows that

‖y(t + σ) − y(t)‖H 2(I ) =
∥
∥
∥
∥

∫ t+σ

−∞
S(t + σ − s)(−yyx − ayx − by + f )(s)ds

−
∫ t

−∞
S(t − s)(−yyx − ayx − by + f )(s)ds

∥
∥
∥
∥

H 2(I )
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≤
∥
∥
∥
∥

∫ t

−∞
S(t − s) (y(s + σ)yx(s + σ) − y(s)yx(s)) ds

∥
∥
∥
∥

H 2(I )

(3.3)

+
∥
∥
∥
∥

∫ t

−∞
S(t − s) (a(s + σ)yx(s + σ) − a(s)yx(s)) ds

∥
∥
∥
∥

H 2(I )

+
∥
∥
∥
∥

∫ t

−∞
S(t − s) (b(s + σ)y(s + σ) − b(s)y(s)) ds

∥
∥
∥
∥

H 2(I )

+
∥
∥
∥
∥

∫ t

−∞
S(t − s) (f (s + σ) − f (f )) ds

∥
∥
∥
∥

H 2(I )

.

Set z(·, s) = y(·, s + σ) in the expression (2.17), we get

∥
∥
∥
∥

∫ t

−∞
S(t − s) (y(s + σ)yx(s + σ) − y(s)yx(s)) ds

∥
∥
∥
∥

H 2(I )

≤ C

(
1√
ω

+ 1

ω

)

‖y(· + σ) − y(·)‖2
X.

(3.4)

Therefore, follows by (2.14) and (2.12) with a(· + σ) − a(·) instead of a that

∥
∥
∥
∥

∫ t

−∞
S(t − s) (a(s + σ)yx(s + σ) − a(s)yx(s)) ds

∥
∥
∥
∥

H 2(I )

≤ C

(
1√
ω

+ 1

ω

)

‖a‖X‖y(· + σ) − y(·)‖X

+ C

(
1√
ω

+ 1

ω

)

‖a(· + σ) − a(·)‖X‖y‖X.

(3.5)

Analogously, we get

∥
∥
∥
∥

∫ t

−∞
S(t − s) (b(s + σ)y(s + σ) − b(s)y(s)) ds

∥
∥
∥
∥

H 2(I )

≤ C

(
1√
ω

+ 1

ω

)

‖b‖X‖y(· + σ) − y(·)‖X

+ C

(
1√
ω

+ 1

ω

)

‖b(· + σ) − b(·)‖X‖y‖X,

(3.6)

where we have used (2.15) and (2.13) with b(· + σ) − b(·) instead of b. Due to the Theo-
rem 1.1 and using the change of variables τ = t − s, yields that

∥
∥
∥
∥

∫ t

−∞
S(t − s) (f (·, s + σ) − f (·, s)) ds

∥
∥
∥
∥

H 2(I )

≤ C

ω
‖f (· + σ) − f (·)‖X . (3.7)
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Now, replacing (3.4), (3.5), (3.6) and (3.7) into (3.3), we ensures that

‖y(· + σ) − y(·)‖X

≤ C

(
1√
ω

+ 1

ω

)

‖y(· + σ) − y(·)‖2
X

+ C

(
1√
ω

+ 1

ω

)

(‖a‖X + ‖b‖X)‖y(· + σ) − y(·)‖X

+ C

(
1√
ω

+ 1

ω

)

(‖a(· + σ) − a(·)‖X + ‖b(· + σ) − b(·)‖X)‖y‖X

+ C

ω
‖f (· + σ) − f (·)‖X .

(3.8)

Thus, taking y ∈ Xρ and 0 < ε � 1 in the proof of Theorem 1.2 such that

2C

(
1√
ω

+ 1

ω

)

ρ <
1

3

and

C

(
1√
ω

+ 1

ω

)

(‖a‖X + ‖b‖X) <
1

3
,

we have that Theorem 1.2 is still valid and also is verified that

C

(
1√
ω

+ 1

ω

)

‖y(· + σ) − y(·)‖2
X ≤ 2ρC

(
1√
ω

+ 1

ω

)

‖y(· + σ) − y(·)‖X

<
1

3
‖y(· + σ) − y(·)‖X.

Finally, applying it in (3.8) we have

‖y(· + σ) − y(·)‖X

≤ 2ρC

(
1√
ω

+ 1

ω

)

‖y(· + σ) − y(·)‖X

+ C

(
1√
ω

+ 1

ω

)

(‖a‖X + ‖b‖X)‖y(· + σ) − y(·)‖X

+ Cρ

(
1√
ω

+ 1

ω

)

(‖a(· + σ) − a(·)‖X + ‖b(· + σ) − b(·)‖X)

+ C

ω
‖f (· + σ) − f (·)‖X

≤ 1

3
‖y(· + σ) − y(·)‖X + 1

3
‖y(· + σ) − y(·)‖X

+ 1

3
(‖a(· + σ) − a(·)‖X + ‖b(· + σ) − b(·)‖X)

+ C

ω
‖f (· + σ) − f (·)‖X

(3.9)
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and follows that

‖y(· + σ) − y(·)‖X ≤‖a(· + σ) − a(·)‖X + ‖b(· + σ) − b(·)‖X

+ 3C

ω
‖f (· + σ) − f (·)‖X .

(3.10)

Since a, b, and f are almost periodic functions, y is also an almost periodic function. Ac-
cording to the fact that

y(x, t) := u(x, t) − A(x)ϕ(t),

we obtain that u is also an almost periodic function. Thus, u is almost a periodic solution of
(3.1), and the Theorem is achieved. �

4 Further Comments

In this work were able to present properties for a higher-order dispersive system, namely,
the Kawahara equation, posed on a bounded domain. Many results in the literature, as we
saw in the introduction, treated this equation from a control point of view. Here, we provide
periodic properties for the following initial boundary value problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut + uxxx − uxxxxx + uux = 0, (x, t) ∈ I ×R,

u(0, t) = ϕ(t), u(1, t) = ux(1, t) = ux(0, t) = 0, t ∈R,

uxx(1, t) = αuxx(0, t), t ∈R,

u(x,0) = u0(x), x ∈ I,

(4.1)

with a forcing boundary term ϕ(t) and a term αuxx(0, t) acting as a damping mechanism.
Thus, we have succeeded to prove Massera-type theorems for the solution of (4.1). Con-
cerning the generality of the work, let us make some additional comments.

• Theorems 1.3, 1.4 and 1.5 can be obtained for more general nonlinearities. Indeed, if
we consider u ∈ B := C(0, T ;L2(0,1)) ∩ L2(0, T ;H 2(0,1)) and the nonlinearity upux ,
p ∈ (2,4], we have that

∫ T

0

∫ 1

0
|up+2|dxdt � C ‖u‖p

C([0,T ];L2(0,1))

∫ T

0
‖ux‖2 dt � C ‖u‖p+2

B ,

by the Gagliardo–Nirenberg inequality. Moreover, recently, Zhou [21] showed the well-
posedness of the following initial boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

ut − uxxxxx = c1uux + c2u
2ux + b1uxuxx + b2uuxxx, x ∈ (0,L), t ∈R

+,

u(t,0) = h1(t), u(t,L) = h2(t), ux(t,0) = h3(t), t ∈R
+,

ux(t,L) = h4(t), uxx(t,L) = h(t), t ∈R
+,

u(0, x) = u0(x), x ∈ (0,L).

(4.2)

Thus, due to the previous inequality and the results proved in [21], when we consider
b1 = b2 = 0 and the combination c1uux + c2u

2ux instead of uux on (4.1), the main results
of this work remains valid.
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• As in the classical framework of Massera’s theorem, a principal point is to prove that the
initial boundary value problem (4.1) admits a bounded solution, to do that, an important
step is the study of the energy associated with the linear system under consideration, this
analysis was made in the Appendix.

• An important point of the previous remark is to deal with the energy of (4.1) we analyze
the Kawahara operator removing the drift term ux . This term presents an extra problem
because a critical set appears, see [2] for details. In this way, to overcome this difficulty
it was necessary to remove the drift term. Thus, an interesting open problem is to extend
the result presented in this paper for the Kawahara equation (4.1) with the drift term
taking into account that this equation, with ϕ(t) = 0, has the critical set phenomena, as
conjectured in [2].

• It is important to point out that the Massera-type theorem has been extended to many
differential equations as we can see in [9, 11, 13, 16, 22] and the references therein. The
method employed in these works is to prove the existence of periodic solutions if the
solution of the equation under consideration is bounded.

• Finally, there are two important points related to the Massera-type theorems for the Kawa-
hara equation. The first one is that we can work with more general nonlinearities, as men-
tioned before. The second one is the strong relationship between the damping mechanism
(stabilization problem) and the Massera-type theorems in our case.

Appendix: Additional Properties

In this appendix, we present some additional properties of the linear Kawahara system. For
the sake of simplicity, we present the results for the linear system, however, the results
obtained here can be also extended for the nonlinear system. Precisely, let us study the
energy properties for the following linear system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut + uxxx − uxxxxx = 0, (x, t) ∈ I ×R,

u(0, t) = u(1, t) = ux(1, t) = ux(0, t) = 0, t ∈R,

uxx(1, t) = αuxx(0, t), t ∈R,

u(x,0) = u0(x), x ∈ I,

(A.1)

where |α| < 1. Note that multiplying (A.1) by u and integrating over (0,L) yields

d

dt

∫ L

0
|u(x, t)|2 dx = 1

2
(α2 − 1)(uxx(0))2 ≤ 0, ∀t ≥ 0. (A.2)

This indicates that the energy E(t) = 1
2‖u‖2(t) associated with (A.1) is not increasing, and

the term αuxx(0, t) designs a damping mechanism. To ensure that this energy decays ex-
ponentially is natural to show an observability inequality associated with the solutions of
(A.1). Before presenting it, let us first prove a weak observability inequality.

Proposition A.1 Consider u solution of (A.1) belonging in C(0, T ;L2(0,1)) ∩ L2(0, T ;
H 2(0,1)). Thus, we have

1

2
‖u0‖2 ≤ 1

2T

∫ T

0

∫ 1

0
|u(x, t)|2dxdt + 1 − α2

2

∫ T

0
|uxx(0, t)|2dt, (A.3)

for all T > 0.
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Proof We prove the result for the initial data u0 ∈ D(A), the result in L2(0,1) follows by
density. First, multiplying the system (A.1) by (T − t)u, integrating by parts in (0, T )×(0,1)

and using the boundary conditions we have

−T

2
‖u0‖2 + 1

2

∫ T

0

∫ 1

0
u2dxdt + 1

2
(α2 − 1)

∫ T

0
(T − t)(uxx(0, t))2dt = 0,

or equivalently,

1

2

∫ T

0

∫ 1

0
u2dxdt + 1

2
(α2 − 1)

∫ T

0
(T − t)(uxx(0, t))2dt = T

2
‖u0‖2.

Thus, we get

1

2
‖u0‖2 ≤ 1

2T

∫ T

0

∫ 1

0
u2dxdt + (α2 − 1)

2

∫ T

0
|uxx(0, t)|2dt,

showing the proposition. �

Now, we are in a position to prove that the energy associated with (A.1) decays exponen-
tially.

Theorem A.2 There exists C > 0 and μ > 0 such that

E(t) ≤ C‖u0‖2e−μt , (A.4)

for all t ≥ 0 and u solution of (A.1) with u0 ∈ L2(0,1).

Proof This result is a consequence of the following observability inequality

1

2

∫ T

0

∫ 1

0
u2dxdt ≤ c1

∫ T

0
|uxx(0, t)|2dt, (A.5)

for some constant c1 > 0 independent of the solution u.
In fact, replacing (A.5) in (A.3), we get

1

2
‖u0‖2 ≤ 1

2T

∫ T

0

∫ 1

0
|u(x, t)|2dxdt +

(
1 − α2

2

)∫ T

0
|uxx(0, t)|2dt

≤ 1

2T

∫ T

0
|uxx(0, t)|2dt +

(
1 − α2

2

)∫ T

0
|uxx(0, t)|2dt

=C

∫ T

0
|uxx(0, t)|2dt,

(A.6)

where C = C(T ,α) > 0. As we have that

E′(t) = 1

2
(α2 − 1)(uxx(0, t))2 ≤ 0,

integrating in (0, t) the previous equation and multiplying by (1 + C), where C is the same
constant obtained previously, we have that

(1 + C)E(T ) ≤ CE(0). (A.7)
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Thus,

E(T ) ≤ γE(0), where 0 < γ = C

1 + C
< 1,

with γ := γ (T ,α). Now, the same argument used on the interval [(m − 1)T ,mT ] for m =
1,2, . . . , yields that

E(mT ) ≤ γE((m − 1)T ) ≤ · · · ≤ γ mE(0).

Thus, we have

E(mT ) ≤ e−νmT E(0)

with

ν = 1

T
ln

(

1 + 1

C

)

> 0.

For an arbitrary positive t , there exists m ∈ N
∗ such that (m − 1)T < t ≤ mT , and by the

non-increasing property of the energy, we conclude that

E(t) ≤ E((m − 1)T ) ≤ e−ν(m−1)T E(0) ≤ 1

γ
e−νtE(0),

showing the result. �

Let us now prove the observability inequality.

Proof of (A.5) We argue by contradiction. Suppose that (A.5) does not hold. Thus, there
exist a sequence {un}n∈N of (A.1) such that

lim
n−→+∞

∫ T

0

∫ 1

0
u2dxdt

∫ T

0
|uxx(0, t)|2dt

= +∞. (A.8)

Now on, taking λn =
√

∫ T

0

∫ 1

0
|un(x, t)|2dxdt and vn(x, t) = un(x, t)

λn

, we have that

{vn}n∈N is a sequence satisfying (A.1) with initial data vn(x,0) = un(x,0)

λn

and

∫ T

0

∫ 1

0
|vn(x, t)|2dxdt = 1

λ2
n

∫ T

0

∫ 1

0
|un(x, t)|2dxdt = 1. (A.9)
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Thanks to the equation (A.8), we have

lim
n→+∞

∫ T

0
|(vn)xx(0, t)|2dt = lim

n→+∞

∫ T

0
|(un)xx(0, t)|2dt

λ2
n

= lim
n→+∞

∫ T

0
|(un)xx(0, t)|2dt

∫ T

0

∫ 1

0
|un(x, t)|2dxdt

= 0.

(A.10)

Due the relation (A.3), since (A.9) and (A.10) are verified, we have that {vn(x,0)}n∈N is a
sequence bounded in L2(0,1). Therefore, Propositions 2.1 and 2.2 gives the existence of a
constant M > 0 such that

‖vn‖2
L2(0,T ;H 2

0 (0,1))
≤ M, (A.11)

for all n ∈ N. Since H 2
0 (0,1) ↪→ L2(0,1) compactly, we have {vn}n∈N is relatively compact

in L2(0, T ;L2(0,1)). Thus, there exist a subsequence, still denoted by {vn}n∈N, such that

vn ⇀ v weakly in L2(0, T ;H 2
0 (0,1)).

Moreover, since vn,t is bounded in L2(0, T ;H−3(0,1)), so thanks to the Aubin-Lions’s the-
orem we have

vn → v strongly in L2(0, T ;L2(0,1)). (A.12)

By (A.9), we get

‖v‖L2(0,T ;L2(0,1)) = 1, (A.13)

and so using (A.10) and (A.12), verifies that

∫ T

0
|vxx(0, t)|2dt ≤ lim inf

n→+∞

∫ T

0
|(vn)xx(0, t)|2dt = 0, (A.14)

which ensures vxx(0, t) = 0, for all t ∈ (0, T ). Therefore, the function v satisfies

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

vt + vxxx − vxxxxx = 0, (x, t) ∈ I ×R,

v(0, t) = v(1, t) = vx(1, t) = vx(0, t)

= vxx(1, t) = vxx(0, t) = 0, t ∈ R,

v(x,0) = v0, x ∈ I.

(A.15)

The result follows by using [20, Lemma 1.1] that gives us v = 0, contradicting the hypothe-
ses (A.13). Thus, the observability inequality holds. �
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