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In this manuscript, we consider the internal control problem for the fifth-order
KdV type equation, commonly called the Kawahara equation, on unbounded
domains. Precisely, under certain hypotheses over the initial and boundary data,
we can prove that there exists an internal control input such that solutions
of the Kawahara equation satisfy an integral overdetermination condition. This
condition is satisfied when the domain of the Kawahara equation is posed in
the real line, left half-line, and right half-line. Moreover, we are also able to
prove that there exists a minimal time in which the integral overdetermination
condition is satisfied. Finally, we show a type of exact controllability associated
with the “mass” of the Kawahara equation posed in the half-line.
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1 INTRODUCTION

1.1 Model under consideration
Water wave systems are too complex to easily derive and rigorously from it relevant qualitative information on the dynam-
ics of the waves. Alternatively, under suitable assumptions on amplitude, wavelength, wave steepness, and so on, the
study on asymptotic models for water waves has been extensively investigated to understand the full water wave system,
see, for instance, [1–6] and references therein for a rigorous justification of various asymptotic models for surface and
internal waves.

Formulating the waves as a free boundary problem of the incompressible, irrotational Euler equation in an appropri-
ate non-dimensional form, one has two nondimensional parameters 𝛿 ∶= h

𝜆
and 𝜀 ∶= a

h
, where the water depth, the

wavelength, and the amplitude of the free surface are parameterized as h, 𝜆, and a, respectively. Moreover, another nondi-
mensional parameter 𝜇 is called the Bond number, which measures the importance of gravitational forces compared to
surface tension forces. The physical condition 𝛿 ≪ 1 characterizes the waves, which are called long waves or shallow
water waves, but there are several long-wave approximations according to relations between 𝜀 and 𝛿.
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In this spirit, when we consider 𝜀 = 𝛿2 ≪ 1 and 𝜇 ≠ 1
3
, we are dealing with the Korteweg-de Vries (KdV) equation.

Under this regime, Korteweg and de Vries [7]1 derived the following equation well known as a central equation among
other dispersive or shallow water wave models called the KdV equation:

±2ut + 3uux +
(1

3
− 𝜇

)
uxxx = 0.

Another alternative is to treat a new formulation, that is, when 𝜀 = 𝛿4 ≪ 1 and 𝜇 = 1
3
+ 𝜈𝜀

1
2 , and in connection with

the critical Bond number 𝜇 = 1
3
, to generate the so-called equation Kawahara equation. That equation was derived by

Hasimoto and Kawahara [10, 11] as a fifth-order KdV equation and takes the form

±2ut + 3uux − 𝜈uxxx +
1

45
uxxxxx = 0.

Our main focus is to investigate a type of controllability for the higher-order KdV type equation. We will continue working
with an integral overdetermination condition started in [12] however in another framework, to be precise, on an unbounded
domain. To do that, consider the initial boundary value problem (IBVP)

⎧⎪⎨⎪⎩
ut + 𝛼ux + 𝛽uxxx + 𝜉uxxxxx + uux = 𝑓0(t)g(t, x) in [0,T] × R

+,

u(t, 0) = h1(t), ux(t, 0) = h2(t) on [0,T],
u(0, x) = u0(x) in R

+,

(1.1)

where 𝛼, 𝛽, and 𝜉 are real numbers, u = u(t, x), g = g(x, t), and hi = hi(t), for i = 1, 2, are well-known functions, and
𝑓0 = 𝑓0(t) is a control input. It is important to mention that (1.1) is called KdV and Kawahara equation when 𝜉 = 0 and
𝜉 = −1, respectively.

1.2 Framework of the problems
In this work, we will be interested in a kind of internal control property to the Kawahara equation when an integral
overdetermination condition, on an unbounded domain, is required, namely,

∫
R

+
u(t, x)𝜔(x)dx = 𝜑(t), t ∈ [0,T], (1.2)

where 𝜔 and 𝜑 are some known functions. To present the problems under consideration, take the following unbounded
domain Q+

T = (0,T) × R
+, where T is a positive number, consider the boundary functions 𝜇 and 𝜈, and a source term

𝑓 = 𝑓 (t, x) with a special form, to be specified later. Thus, let us deal with the following system

⎧⎪⎨⎪⎩
ut + 𝛼ux + 𝛽uxxx − uxxxxx + uux = 𝑓 (t, x) in [0,T] × R

+,

u(t, 0) = 𝜇(t), ux(t, 0) = 𝜈(t) on [0,T],
u(0, x) = u0(x) in R

+,

(1.3)

Therefore, the goal of the article is concentrated on proving an overdetermination control problem. Precisely, we want
to prove that if 𝑓 take the following special form

𝑓 (t, x) = 𝑓0(t)g(t, x), (t, x) ∈ Q+
T , (1.4)

the solution of (1.3) satisfies the integral overdetermination condition (1.2). In other words, we have the following issue.

Problem : For given functions u0, 𝜇, 𝜈, and g in some appropriate spaces, can we find an internal control 𝑓0 such
that the solution associated with Equation (1.3) satisfies the integral condition (1.2)?

Naturally, another point to be considered is the following one.

1This equation was first introduced by Boussinesq [8], and Korteweg and de Vries rediscovered it 20 years later. Details can be found in [9] and the
reference therein.
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Problem : What assumptions are needed to ensure that the solution u of (1.3) is unique and verifies (1.2) for a
unique 𝑓0?

Finally, with these results in hand, the last problem of this article is related to the existence of a minimal
time for which the integral overdetermination condition (1.2) be satisfied. Precisely, the problem can be
seen as follows.

Problem : Can we find a time T0 > 0, depending on the boundary and initial data, such that if T ≤ T0, there exists
a function 𝑓0, in appropriated space, in that way that the solution u of (1.3) verifies (1.2)?

In summary, the main goal of this manuscript is to prove that these problems are indeed true. There are some features
to be emphasized.

• The integral overdetermination condition is effective and gives good control properties. This kind of condition was first
applied in the inverse problem (see, e.g., [13]) and, more recently, in control theory [12, 14, 15].

• One should be able of controlling the system, when the control acts in [0,T], on an unbounded domain, which is new
for the Kawahara equation.

• We are also able to prove the existence of a minimal T > 0 such that the overdetermination condition is still verified;
however, we believe that this time is not optimal.

1.3 Main results
In this paper, we can present answers to the problems  and  that were first proposed in [16]. Additionally, the results
of this work extend the results presented in [16] for a new framework for the Kawahara equation, that is, the real line,
right half-line, and left half-line. For the sake of simplicity, we will present here the overdetermination control problem in
the right half-line; for details of the results for the real line and left half-line, we invite the reader to read Section 5 at the
end of this article.

In this way, the first result ensures that the overdetermination control problem, that is, the internal control problem with
an integral condition like (1.2) on an unbounded domain, follows for small data, giving answers for Problems  and .

Theorem 1.1. Let T > 0 and p ∈ [2,∞]. Consider 𝜇 ∈ H
2
5 (0,T) ∩ Lp(0,T), 𝜈 ∈ H

1
5 (0,T) ∩ Lp(0,T), u0 ∈ L2 (

R
+)

and 𝜑 ∈ W 1,p(0,T). Additionally, let g ∈ C
(
0,T;L2 (0,T;L2 (

R
+)) and 𝜔 be a fixed function that belongs to the

following set

 =
{
𝜔 ∈ H5 (

R
+) ∶ 𝜔(0) = 𝜔′(0) = 𝜔′′(0) = 0

}
, (1.5)

satisfying

𝜑(0) = ∫
R

+
u0(x)𝜔(x)dx

and ||||∫R
+
g(t, x)𝜔(x)dx

|||| ≥ g0 > 0, ∀t ∈ [0,T],

where g0 is a constant. Then, for each T > 0 fixed, there exists a constant 𝛾 > 0 such that if

c1 = ||u0||L2(R+) + ||𝜇||
H

2
5 (0,T)

+ ||𝜈||
H

1
5 (0,T)

+ ||𝜑′||L2(0,T) ≤ 𝛾,

we can find a unique control input 𝑓0 ∈ Lp(0,T) and a unique solution u of (1.3) satisfying (1.2).

Our second result gives us a small time interval for which the integral overdetermination condition (1.2) holds to the
solutions of (1.3). Precisely, the answer to the Problem  can be read as follows.

Theorem 1.2. Suppose the hypothesis of Theorem 1.1 be satisfied and consider 𝛿 ∶= T
1
5 ∈ (0, 1), for T > 0. Then there

exists T0 ∶= 𝛿
1
5
0 > 0, depending on c1 = c1(𝛿) given by

c1(𝛿) ∶= ||u0𝛿||L2(R+) + ||𝜑′
𝛿||L2(0,T) + ||𝜇𝛿||H

2
5 (0,T)

+ ||𝜈𝛿||H
1
5 (0,T)

,

such that if T ≤ T0, there exists a control function 𝑓0 ∈ Lp(0,T) and a solution u of (1.3) verifying (1.2).
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As a consequence of the previous results, we can give a controllability result for the following system

⎧⎪⎨⎪⎩
ut + 𝛼ux + 𝛽uxxx − uxxxxx + uux = 𝑓0(t)g(t, x) in [0,T] × R

+,

u(t, 0) = ux(t, 0) = 0 on [0,T],
u(0, x) = u0(x) in R

+,

(1.6)

posed in the right half-line. Precisely, we present a control property involving the overdetermination condition (1.2) and
the initial state u0 and final state uT . To do that, consider the following notation

[u(x, t)] = ∫
R

+
u(x, t)d𝜂(x), (1.7)

which one will be called of mass, for some 𝜎-finite measure 𝜂 in R
+. With this in hand, as a consequence of Theorem 1.1,

the following exact controllability in the right half-line holds.

Corollary 1.3. Let T > 0 and p ∈ [2,∞]. Consider u0, uT ∈ L2 (
R

+) and g ∈ C
(
0,T;L2 (0,T;L2 (

R
+)) , satisfying

||||∫R
+
g(t, x)dx

|||| ≥ g0 > 0, ∀t ∈ [0,T], (1.8)

where g0 is a constant. Additionally, consider 𝜔 be a fixed function that belongs to the set  defined in (1.5) and 𝜑 ∈
W 1,p(0,T) satisfying

𝜑(0) = ∫
R

+
u0(x)𝜔(x)dx and 𝜑(T) = ∫

R
+
uT(x)𝜔(x)dx. (1.9)

Then, for each T > 0 fixed, there exists a constant 𝛾 > 0 such that if

||u0||L2(R+) + ||𝜑′||L2(0,T) ≤ 𝛾,

we can find a unique control input 𝑓0 ∈ Lp(0,T), a unique solution u of (1.6) and a 𝜎-finite measure 𝜂 in R
+ such that

[u(T, x)] = [uT(x)]. (1.10)

1.4 Historical background
It is well known that the Cauchy problem and control theory for the Kawahara equation

ut + 𝛼ux + 𝛽uxxx − uxxxxx + uux = 0 (1.11)

has been studied by several mathematicians in recent years in different frameworks: bounded domain of R, on the real
line R, on the torus T, right half-line R

+, and left half-line R
−.

Concerning the well-posedness of the Kawahara equation, the first local result is due to Cui and Tao [17]. The authors
proved a Strichartz estimate for the fifth-order operator and obtained the local well-posedness in Hs(R), for s > 1∕4.
After that, Cui et al. [18] improved the previous result to the negative regularity of Sobolev space Hs(R), s > −1. It is
important to point out that Wang et al. [19] improved to a lower regularity, in this case, s ≥ −7∕5. These papers treated
the problem using the Fourier restriction norm method. In [20] and [21], authors showed the local well-posedness in
Hs(R), s > −7∕4, while their methods are the same, particularly, the Fourier restriction norm method in addition to Tao's
[K;Z]-multiplier norm method. At the critical regularity Sobolev space H−7∕4(R), Chen and Guo [22] proved local and
global well-posedness by using Besov-type critical space and I-method. Kato [23] studied local well-posedness for s ≥ −2
by modifying Xs,b space and the ill-posedness for s < −2 in the sense that the flow map is discontinuous.

Finally, still regarding the well-posedness results, we refer to two recent works that treat the Kawahara equation.
Recently, Cavalcante and Kwak [24] studied the IBVP of the Kawahara equation posed on the right and left half-lines
with the nonlinearity as in (1.11). To be precise, they proved the local well-posedness in the low regularity Sobolev space,
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that is, s ∈
(
− 7

4
,

5
2

)
∖
{

1
2
,

3
2

}
. Additionally, the authors in [25] extended the argument of [24] to fifth-order KdV-type

equations with different nonlinearities, in specific, where the scaling argument does not hold. They are established in
some range of s where the local well-posedness of the IBVP fifth-order KdV-type equations on the right half-line and the
left half-line holds.

Stabilization and control problems (see [26, 27] for details of these kinds of issues) have been studied in recent years
for the Kawahara Equation, however with few results in the literature. A first work concerning the stabilization property
for the Kawahara equation in a bounded domain QT = (0,T) × (0,L),

⎧⎪⎨⎪⎩
ut + ux + uxxx − uxxxxx + uux = 𝑓 (t, x) in QT ,

u(t, 0) = h1(t), u(t,L) = h2(t), ux(t, 0) = h3(t) on [0,T],
ux(t,L) = h4(t), uxx(t,L) = h(t) on [0,T],
u(0, x) = u0(x) in [0,L],

(1.12)

is due to Capistrano-Filho et al. in [26]. In this paper, the authors were able to introduce an internal feedback law in (1.12),
considering general nonlinearity upux, p ∈ [1, 4), instead of uux, and h(t) = hi(t) = 0, for i = 1, 2, 3, 4. To be precise, they
proved that under the effect of the damping mechanism the energy associated with the solutions of the system decays
exponentially.

Now, some references to internal control problems are presented. This problem was first addressed in [28] and after that
in [27]. In both cases, the authors considered the Kawahara equation in a periodic domain T with a distributed control of
the form

𝑓 (t, x) = (Gh)(t, x) ∶= g(x)(h(t, x) − ∫
T

g(𝑦)h(t, 𝑦)d𝑦),

where g ∈ C∞(T) supported in 𝜔 ⊂ T and h is a control input. Here, it is important to observe that the control in
consideration has a different form as presented in (1.4), and the result is proven in a different direction from what we will
present in this manuscript.

Still related to internal control issues, Chen [29] presented results considering the Kawahara equation (1.12) posed
on a bounded interval with distributed control 𝑓 (t, x) and homogeneous boundary conditions. She showed the result by
taking advantage of a Carleman estimate associated with the linear operator of the Kawahara equation with an internal
observation. With this in hand, she was able to get a null controllable result when 𝑓 is effective in a 𝜔 ⊂ (0,L). As the
results obtained by her do not answer all the issues of internal controllability, in a recent article [16], the authors closed
some gaps left in [29]. Precisely, considering the system (1.12) with an internal control 𝑓 (t, x) and homogeneous boundary
conditions, the authors can show that the equation in consideration is exactly controllable in L2-weighted Sobolev spaces,
and additionally, the Kawahara equation is controllable by regions on L2-Sobolev space; for details, see [16].

Finally, concerning a new tool to find control properties for dispersive systems, we can cite a recent work of the first
two authors [12]. In this work, the authors showed a new type of controllability for a dispersive fifth-order equation that
models water waves, what they called overdetermination control problem. Precisely, they can find a control acting at the
boundary that guarantees that the solution of the problem under consideration satisfies an integral overdetermination
condition. In addition, when the control acts internally in the system, instead of the boundary, the authors proved that this
condition is satisfied. These problems give answers that were left open in [16] and present a new way to prove boundary
and internal controllability results for a fifth-order KdV-type equation.

1.5 Heuristic and outline of the article
The goal of this manuscript is to investigate and discuss control problems with an integral condition on an unbounded
domain. Precisely, we study the internal control problem when the solution of the system satisfies (1.2), so we intend to
extend—for unbounded domains—a new way to prove internal control results for the system (1.12), initially proposed in
[14, 15], for KdV equation, and more recently in [12], for Kawahara equation in a bounded domain. Thus, for this type of
integral overdetermination condition, the first results on the solvability of control problems for the IBVP of the Kawahara
equation on unbounded domains are obtained in the present paper.

The first result, Theorem 1.1, is concerning the internal overdetermination control problem. Roughly speaking, we can
find an appropriate control 𝑓0, acting on [0,T] such that integral condition (1.2) it turns out. First, we borrowed the
existence of solutions for the IBVP (1.3) of [24]. With these results in hand, for the special case when s = 0, Theorem
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1.1 is first proved for the linear system associated with (1.3) and after that, using a fixed point argument, extended to
the nonlinear system. The main ingredients are auxiliary lemmas presented in Section 3. In one of these lemmas (see
Lemma 3.3), we can find two appropriate applications that link the internal control term 𝑓0(t) with the overdetermination
condition (1.2), namely,

Λ ∶ Lp(0,T) → W̃ 1,p(0,T)

𝑓0 → (Λ𝑓0)(·) = ∫
R

+
u(·, x)𝜔(x)dx

and

A ∶ Lp(0,T) → Lp(0,T)

𝑓0 → (A𝑓0)(·) =
𝜑′(·)
g1(·)

− 1
g1(·)∫R

+
u(t, x)

(
𝛼𝜔′ + 𝛽𝜔′′′ − 𝜔′′′′′) dx,

where

g1(·) = ∫
L

0
g(·, x)𝜔(x)dx.

So, we prove that such application has an inverse that is continuous, by Banach's theorem, showing the lemma in question,
and so, reaching our goal, to prove Theorem 1.1.

With the previous result in hand, the answer to the Problem  is given by Theorem 1.2. This result gives us a minimal
time in which the integral condition (1.2) is satisfied. To be more precise, Theorem 1.2 is proved in three parts. In the first
part, we give a refinement of Lemma 3.3, namely, Lemma 3.4. With this in hand, we need, in a second moment, to use
the scaling of our Equation (1.3) to produce a “new” Kawahara equation on Q+

T . This gives us the possibility to use the
Theorem 1.1 and, with the help of Lemma 3.4, reach the proof of Theorem 1.2.

Finally, as a consequence of Theorem 1.1, we produce a type of exact controllability result (Corollary 1.3). More precisely,
we show that the mass of the system (1.7) is reached on the final time T; that is, (1.10) holds.

Thus, we finish our introduction by showing the structure of the manuscript. Section 2 is devoted to presenting some
preliminaries, which are used throughout the article. Precisely, we present the Fourier restriction spaces related to the
operator of the Kawahara and reviewed the main results of the well-posedness for the fifth-order KdV equation in these
spaces. In Section 3, we present some auxiliary lemmas that help us to prove the internal controllability results. The
overdetermination control results, when the control is acting internally, are presented in Section 4; that is, we present
the proof of the main results of the manuscript, Theorems 1.1 and 1.2 and Corollary 1.3. Finally, in Section 5, we present
some further comments and some conclusions about the generality of the work.

2 PRELIMINARIES

2.1 Fourier restriction spaces
Let 𝑓 be a Schwartz function, that is, 𝑓 ∈ t,x(R×T), 𝑓 or  ( 𝑓 ) denotes the space-time Fourier transform of 𝑓 defined by

𝑓 (𝜏, 𝜉) = 1
2𝜋∫R

2
e−ix𝜉e−it𝜏𝑓 (t, x) dxdt.

Moreover, we use x (or̂ ) and t to denote the spatial and temporal Fourier transform, respectively.
For given s, b ∈ R, we define the space Xs,b associated to (1.3) as the closure of t,x(R × T) under the norm

||𝑓 ||2
Xs,b = ∫

R
2
⟨𝜉⟩2s⟨𝜏 − 𝜉5⟩2b|𝑓 (𝜏, 𝜉)|2d𝜉d𝜏

where ⟨·⟩ = (1 + | · |2)1∕2.



CAPISTRANO FILHO ET AL. 7

As well known, the Xs,b space with b > 1
2

is well adapted to study the IVP of dispersive equations. The function space
equipped with the Fourier restriction norm, which is the so-called Xs,b spaces, has been proposed by Bourgain [30, 31] to
solve the periodic NLS and generalized KdV. Since then, it has played a crucial role in the theory of dispersive equations
and has been further developed by many researchers, in particular, Kenig, Ponce, and Vega [32] and Tao [33].

In our case, to study the IBVP (1.3) is requested to introduce modified Xs,b-type spaces. So, we define the (time-adapted)
Bourgain space Y s,b associated with (1.3) as the completion of  (

R
2) under the norm

||𝑓 ||2
Y s,b = ∫

R
2
⟨𝜏⟩ 2s

5
⟨
𝜏 − 𝜉5⟩2b|𝑓 (𝜏, 𝜉)|2d𝜉d𝜏.

Additionally, due to the study of the IBVP introduced in [24], they used the low frequency localized X0,b-type space with
b > 1

2
in the nonlinear estimates. Hence, we need also define D𝛼 space as the completion of  (

R
2) under the norm

||𝑓 ||2
D𝛼 = ∫

R
2
⟨𝜏⟩2𝛼1{𝜉∶|𝜉|≤1}(𝜉)|𝑓 (𝜏, 𝜉)|2d𝜉d𝜏

where 1A is the characteristic functions on a set A. With this in hand, now we set the solution space denoted by Zs,b,𝛼
1 with

the following norm

||𝑓 ||Zs,b,𝛼
1 (R2) = sup

t∈R
||𝑓 (t, ·)||Hs +

1∑
𝑗=0

sup
x∈R

‖‖‖𝜕𝑗x𝑓 (·, x)‖‖‖H
s+2−𝑗

5
+ ||𝑓 ||Xs,b∩D𝛼 .

The spatial and time restricted space of Zs,b,𝛼
1

(
R

2) is defined by the standard way:

Zs,b,𝛼
1

(
(0,T) × R

+) = Zs,b,𝛼
1

|||(0,T)×R+

equipped with the norm

||𝑓 ||Zg,b,𝛼
1 ((0,T)×R+) = inf

g∈Zs,b,𝛼
1

{||g||Zs,b,𝛼
1

∶ g(t, x) = 𝑓 (t, x) on (0,T) × R
+
}
.

2.2 Overview of the well-posedness results
In this section, we are interested to present the well-posedness results for the Kawahara system, namely,

⎧⎪⎨⎪⎩
ut + 𝛼ux + 𝛽uxxx − uxxxxx = 𝑓 (t, x) in [0,T] × R

+,

u(t, 0) = 𝜇(t), ux(t, 0) = 𝜈(t) on [0,T],
u(0, x) = u0(x) in R

+.

(2.1)

The results presented here are borrowed from [24] and give us good properties of the IBVP (2.1). The first one gives a rela-
tion of the nonlinearity involved in our problem with the Fourier restriction spaces introduce in the previous subsection.
Precisely, we have the nonlinear term 𝑓 = uux that can be controlled in the Xs,−b norm.

Proposition 2.1. For −7∕4 < s, there exists b = b(s) < 1∕2 such that for all 𝛼 > 1∕2, we have

‖𝜕x(uv)‖Xs,−b ≤ c||u||Xs,b∩D𝛼 ||v||Xs,b∩D𝛼 . (2.2)

Proof. See [24, Proposition 5.1]. □

Now on, we will consider the following: s = 0, b(s) = b0, 𝛼(s) = 𝛼0 and Z0,b0,𝛼0
1

(
Q+

T
)
= Z

(
Q+

T
)
. As a consequence of the

previous proposition, we have the following.
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Corollary 2.2. There exists b0 ∈
(

0, 1
2

)
such that for all 𝛼0 >

1
2

, it follows that

||𝜕x(uv)||X0,−b0 (Q+
T) ≤ C||u||Z(Q+

T)||v||Z(Q+
T), (2.3)

for any u, v ∈ Z
(

Q+
T
)

.

Now, we are interested in a special case of the well-posedness result presented in [24]. To be precise, considering
s = 0, [24, Theorem 1.1] gives us the following result.

Theorem 2.3. Let T > 0 and u0 ∈ L2 (
R

+) , 𝜇 ∈ H
2
5 (0,T), 𝜈 ∈ H

1
5 (0,T) and 𝑓 ∈ X0,−b0

(
Q+

T
)

, for b0 ∈
(

0, 1
2

)
. Then

there exists a unique solution u ∶= S(u0, 𝜇, 𝜈, 𝑓 ) ∈ Z
(

Q+
T
)

of (2.1) such that

||u||Z(Q+
T) ≤ C0

(||u0||L2(R+) + ||𝜇||
H

2
5 (0,T)

+ ||𝜈||
H

1
5 (0,T)

+ ||𝑓 ||X0,−b0 (Q+
T)
)

(2.4)

where C0 > 0 is a positive constant depending only of b0, 𝛼0, and T.

3 KEY LEMMAS

In this section, we are interested to prove some auxiliary lemmas for the solutions of the system

⎧⎪⎨⎪⎩
ut + 𝛼ux + 𝛽uxxx − uxxxxx = 𝑓 (t, x) in [0,T] × R

+,

u(t, 0) = 𝜇(t), ux(t, 0) = 𝜈(t) on [0,T],
u(0, x) = u0(x) in R

+.

(3.1)

These lemmas will be the key to proofing the main results of this work.
To do this, consider 𝜔 ∈  defined by (1.5) and define q ∶ [0,T] → R as follows

q(t) = ∫
R

+
u(t, x)𝜔(x)dx, (3.2)

where u ∶= S(u0, 𝜇, 𝜈, 𝑓1 + 𝑓2x) is the solution of (3.1) guaranteed by Theorem 2.3. The next two auxiliary lemmas are the
key point to show the main results of this work. The first one gives that q ∈ W 1,p(0,T) and can be read as follows.

Lemma 3.1. Let T > 0, p ∈ [2,∞] and the assumptions of Theorem 2.3 are satisfied, with 𝑓 = 𝑓1 + 𝑓2x, where
𝑓1 ∈ Lp(0,T;L2 (

R
+)), 𝑓2 ∈ Lp(0,T;L1 (

R
+)) and 𝜇, 𝜈 ∈ Lp(0,T). If u ∈ Z

(
Q+

T
)

is a solution of (2.1) and 𝜔 ∈  ,
defined in (1.5), then the function q ∈ W 1,p(0,T) and the relation

q′(t) = 𝜔′′′(0)𝜈(t) − 𝜔′′′′(0)𝜇(t) + ∫
R

+
𝑓1(t, x)𝜔(x)dx − ∫

R
+
𝑓2(t, x)𝜔′(x)dx

+ ∫
R

+
u(t, x)[𝛼𝜔′(x) + 𝛽𝜔′′′(x) − 𝜔′′′′′(x)]dx

(3.3)

holds for almost all t ∈ [0,T]. In addition, the function q′ ∈ Lp(0,T) can be estimated in the following way:

||q′||Lp(0,T) ≤ C

(
(||u0||L2(R+) + ||𝜇||(

Lp∩H
2
5

)
(0,T)

+ ||𝜈||(
Lp∩H

1
5
)
(0,T)

+ ||𝑓1||Lp(0,T;L2(R+)) + ||𝑓2||Lp(0,T;L1(R+)) + ||𝑓2x||X0,−b0 (Q+
T)
) (3.4)

with C = C(|𝛼|, |𝛽|,T, ||𝜔||R+) > 0 a constant that is non-decreasing with increasing T.
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Proof. Considering 𝜓 ∈ C∞
0 (0,T), multiplying (3.1) by 𝜓𝜔 and integrating by parts in [0,T] × [0,R], for some R > 0,

we get, using the boundary condition of (3.1) and the hypothesis that 𝜔 ∈  , that

−∫
T

0
𝜓 ′(t)q(t)dt = ∫

T

0 ∫
R

+
ut(t, x)𝜓(t)𝜔(x)dxdt

= ∫
T

0
𝜓(t)

(
∫
R

+
u(t, x)

(
𝛼𝜔′(x) + 𝛽𝜔′′′(x) − 𝜔′′′′′(x)

)
dx

+ ∫
R

+
𝑓1(t, x)𝜔(x)dx − ∫

R
+
𝑓2(t, x)𝜔′(x)dx

−𝜔′′′′(0)𝜇(t) + 𝜔′′′(0)𝜈(t)
)

dt

= ∫
T

0
𝜓(t)r(t)dt,

with r ∶ [0,T] → R defined by

r(t) = ∫
R

+
u(t, x)(𝛼𝜔′(x) + 𝛽𝜔′′′(x) − 𝜔′′′′′(x))dx − 𝜔′′′′(0)𝜇(t) + 𝜔′′′(0)𝜈(t)

+ ∫
R

+
𝑓1(t, x)𝜔(x)dx − ∫

R
+
𝑓2(t, x)𝜔′(x)dx

∶= I1 + I2 + I3,

which gives us q′(t) = r(t), where

I1 = ∫
R

+
u(t, x)(𝛼𝜔′(x) + 𝛽𝜔′′′(x) − 𝜔′′′′′(x))dx − 𝜔′′′′(0)𝜇(t) + 𝜔′′′(0)𝜈(t),

I2 = − ∫
R

+
𝑓2(t, x)𝜔′(x)dx,

I3 = ∫
R

+
𝑓1(t, x)𝜔(x)dx.

It remains for us to prove that q′ ∈ Lp(0,T), for p ∈ [2,∞]. To do it, we need to bound each term of (3.3). We will split
this analysis into two steps.

Step 1. 2 ≤ p <∞
Let us first bound I1. To do this, note that, for t ∈ [0,T], we have

||||∫R
+
u(t, x)(𝛼𝜔′(x) + 𝛽𝜔′′′(x) − 𝜔′′′′′(x))dx

||||
≤ (|𝛼|‖‖𝜔′‖‖L2(R+) + |𝛽|‖‖𝜔′′′‖‖L2(R+) + ‖‖𝜔′′′′′‖‖L2(R+)

) ||u(t, ·)||L2(R+).

Moreover, the trace terms are bounded thanks to the fact that 𝜔 ∈  . Thus, this yields that

‖‖‖‖∫R
+
u(t, x)

(
𝛼𝜔(x) + 𝛽𝜔′′′(x) − 𝜔′′′′′(x)

)
dx

‖‖‖‖Lp(0,T)
≤ C

(|𝛼|, |𝛽|, ||𝜔||H5(R+)
) ||u||Lp(0,T;L2(R+)).

Since

||u||Lp(0,T;L2(R+)) ≤ T
1
p ||u||C(0,T;L2(R+)),
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we have that

‖‖‖‖∫R
+
u(t, x)

(
𝛼𝜔(x) + 𝛽𝜔′′′(x) − 𝜔′′′′′(x)

)
dx

‖‖‖‖Lp(0,T)
≤ C

(|𝛼|, |𝛽|, ||𝜔||H5(R+)
)

T
1
p ||u||C(0,T;L2(R+)).

Now, let us estimate I2. In this case, we start observing that

||||∫R
+
𝑓2(t, x)𝜔′(x)dx

|||| ≤ ∫
R

+
|𝑓2(t, x)𝜔′(x)|dx

≤ ‖‖𝜔′‖‖C(R+)||𝑓2(t, ·)||L1(R+)
≤ C‖‖𝜔′‖‖H1(R+)||𝑓2(t, ·)||L1(R+)
≤ C||𝜔||H5(R+)||𝑓2(t, ·)||L1(R+),

where we have used the following continuous embedding

H1 (
R

+) → L∞ (
R

+) ∩ C
(
R

+) .
Therefore, we get that

‖‖‖‖∫R
+
𝑓2(t, x)𝜔′(x)dx

‖‖‖‖Lp(0,T)
≤ C

(||𝜔||H5(R+)
) ||𝑓2||Lp(0,T;L1(R+)).

Similarly, we can bound I3 as

‖‖‖‖∫R
+
𝑓1(t, x)𝜔(x)dx

‖‖‖‖Lp(0,T)
≤ ||𝜔||L2(R+)||𝑓1||Lp(0,T;L2(R+)).

With these estimates in hand and using the hypothesis over 𝜇 and 𝜈, that is, 𝜇 and 𝜈 belonging to Lp(0,T),
we have r ∈ Lp(0,T), which implies that q ∈ W 1,p(0,T) and

||q′||Lp(0,T) ≤ C̃(|𝛼|, |𝛽|,T, ||𝜔||H5(R+))
(||𝜇||Lp(0,T) + ||𝜈||Lp(0,T) + ||u||Z(Q+

T)

+ ||𝑓1||Lp(0,T;L2(R+)) + ||𝑓2||Lp(0,T;L1(R+))
)
.

Finally, using (2.4) in the previous inequality, (3.4) holds.
Step 2. p = ∞

Observe that thanks to the relation (3.3) and the fact that

H1 (
R

+) → (L∞ (
R

+) ∩ C
(
R

+) ,
we get that |q′(t)| ≤ (|𝛼|‖‖𝜔′‖‖L2(R+) + |𝛽|‖‖𝜔′′′‖‖L2(R+) + ‖‖𝜔′′′′′‖‖L2(R+)

) ||u(t, ·)||L2(R+)
+ ||𝜔||L2(R+)||𝑓1(t, ·)||L2(R+) + ‖‖𝜔′‖‖H1(R+)||𝑓2(t, ·)||L1(R+)
+ ||𝜔′′′′(0)|| |𝜇(t)| + ||𝜔′′′(0)|| |𝜈(t)|.

Thus,

||q′||C(0,T) ≤ C
(||u||Z1(QT

+)) + ||𝑓2||C(0,T;L1(R+)) + ||𝑓1||C(0,T;L2(R+)) + ||𝜇||C(0,T) + ||𝜈||C(0,T)

)
,

with C = C(|𝛼|, |𝛽|, ||𝜔||H5(R+), |𝜔′′′′(0)|, |𝜔′′′(0)|) > 0. Thus, Step 2 is achieved using (2.4), and the proof of
the lemma is complete.

□
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Remarks. We will give some remarks in order related to the previous lemma.

i. We are implicitly assuming that 𝑓2x ∈ L1 (0,T;L2 (
R

+)), but it is not a problem, since the function that we will take
for 𝑓2, in our purposes, satisfies that condition.

ii. When p = ∞, the spaces Lp(0,T), Lp (0,T;L2 (
R

+)) and Lp (0,T;L2 (0,T;L1 (
R

+)) are replaced by the spaces
C([0,T]), C([0,T];L2 (

R
+)) and C

(
[0,T];L1 (

R
+)), respectively. So, we can obtain q ∈ C1([0,T]).

Now, consider a special case of the system (3.1), precisely, the following

⎧⎪⎨⎪⎩
ut + 𝛼ux + 𝛽uxxx − uxxxxx = 𝑓 (t, x) in [0,T] × R

+,

u(t, 0) = ux(t, 0) = 0 on [0,T],
u(0, x) = 0 in R

+.

(3.5)

For the solutions of this system, the next lemma holds.

Lemma 3.2. Suppose that 𝑓 ∈ L2(0,T;L2 (
R

+)) and u ∶= S(0, 0, 0, 𝑓 ) is solution of (3.5), then

∫
R

+
|u(t, x)|2dx ≤ 2∫

t

0 ∫
R

+
𝑓 (𝜏, x)u(𝜏, x)dxdt, ∀t ∈ [0,T]. (3.6)

Proof. Consider 𝑓 ∈ C∞
0
(

Q+
T
)

and u = S(0, 0, 0, 𝑓1) a smooth solution of (3.5). Multiplying (3.5) by 2u, integrating by
parts on [0,R], for R > 0, yields that

d
dt ∫

R

0
|u(t, x)|2dx = 2∫

R

0
𝑓 (t, x)u(t, x)dx − 𝛼

(|u(t,R)|2 − |u(t, 0)|2)
+ 𝛽

(|ux(t,R)|2 − |ux(t, 0)|2) + (|uxx(t,R)|2 − |uxx(t, 0)|2)
− 2𝛽(uxx(t,R)u(t,R) − uxx(t, 0)u(t, 0))

+ 2(uxxxx(t,R)u(t,R) − uxxxx(t, 0)u(t, 0))

− 2(uxxx(t,R)ux(t,R) − uxxx(t, 0)ux(t, 0)).

So, taking R → ∞, integrating in [0, t] and using the boundary condition of (3.5), we get

∫
R

+
|u(t, x)|2dx ≤ 2∫

t

0 ∫
R

+
𝑓 (𝜏, x)u(𝜏, x)dxd𝜏,

showing (3.6) for smooth solutions. The result for the general case follows by density argument. □

Consider the space

W̃ 1,p(0,T) =
{
𝜑 ∈ W 1,p(0,T);𝜑(0) = 0

}
, p ∈ [2,∞]

and define the following linear operator Q

Q(u)(t) ∶= q(t),

where q(t) is defined by (3.2). Here, we consider the following norm associated to W̃ 1,p(0,T)

||Q(u)||W̃1,p(0,T) = ||q||W̃1,p(0,T) = ||q′||Lp(0,T).

With this in hand, we have the following result.
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Lemma 3.3. Consider 𝜔 ∈  , defined by (1.5), and 𝜑 ∈ W̃ 1,p(0,T), for some p ∈ [2,∞], g ∈ C
(
0,T;L2 (

R
+)). If the

following assumption holds ||||∫R
+
g(t, x)𝜔(x)dx

|||| ≥ g0 > 0, ∀ t ∈ [0,T], (3.7)

then there exist a unique function 𝑓0 = Γ(𝜑) ∈ Lp(0,T), such that for 𝑓 (t, x) ∶= 𝑓0(t)g(t, x) the function u ∶= S(0, 0, 0, 𝑓 )
solution of (3.5) satisfies (1.2). Additionally, the linear operator

Γ ∶W̃ 1,p(0,T) → Lp(0,T)

𝜑 → Γ(𝜑) = 𝑓0
(3.8)

is bounded.

Proof. Consider the function

G ∶ Lp(0,T) → L2 (0,T;L2 (
R

+))
defined by

𝑓0 → G(𝑓0) = 𝑓0g.

By the definition, G is linear. Moreover, we have

||G(𝑓0)||2
L2(0,T;L2(R+)) ≤ ||g||2

C(0,T;L2(R+))||𝑓0||2
L2(0,T)

≤ T
p−2

p ||g||2
C(0,T;L2(R+))||𝑓0||2

Lp(0,T).

Thus,

||G(𝑓0)||L2(0,T;L2(R+)) ≤ T
p−2
2p ||g||C(0,T;L2(R+))||𝑓0||Lp(0,T). (3.9)

Consider the application

Λ = Q◦S◦G ∶ Lp(0,T) → W̃ 1,p(0,T)

which one will be defined by

𝑓0 → Λ(𝑓0) = ∫
R

+
u(t, x)𝜔(x)dx,

where u ∶= S(0, 0, 0, 𝑓 ). Therefore, since Q, S, and G are linear and bounded, we have that Λ is linear and bounded
and have the following property

(Λ𝑓0)(0) = ∫
R

+
u0(x)𝜔(x)dx = 0

that is, Λ is well-defined.
Introduce the operator

Λ = A ∶ Lp(0,T) → Lp(0,T)

by

𝑓0 → A(𝑓0) ∈ Lp(0,T),

where

(A𝑓0)(t) =
𝜑′(t)
g1(t)

− 1
g1(t)∫R

+
u(t, x)

(
𝛼𝜔′ + 𝛽𝜔′′′ − 𝜔′′′′′) dx.
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Here, u = S(0, 0, 0, 𝑓 ) and

g1(t) = ∫
R

+
g(t, x)𝜔(x)dx,

for all t ∈ [0,T]. Observe that, using (3.3), Λ(𝑓0) = 𝜑 if and only if 𝑓0 = A(𝑓0).
Now we show that the operator A is a contraction on Lp(0,T) if we choose an appropriate norm in this space. To

show it, let us split our proof into two cases.

Case one: 2 ≤ p < ∞.
Let 𝑓01, 𝑓02 ∈ Lp(0,T), u1 = (S◦G)𝑓01 and u2 = (S◦G)𝑓02, so thanks to (3.6) we get

||u1(t, ·) − u2(t, ·)||L2(R+) ≤ 2||g||C(0,T;L2(R+))||𝑓01 − 𝑓02||L1(0,t), ∀t ∈ [0,T]. (3.10)

Consider 𝛾 > 0 and t ∈ [0,T], using Hölder inequality, we have

||e−𝛾t ((A𝑓01)(t) − (A𝑓02)(t))|| ≤ e−𝛾t|g1(t)|∫R
+

|||(u1(t, x) − u2(t, x))
(
𝛼𝜔′ + 𝛽𝜔′′′ − 𝜔′′′′′)||| dx

≤ e−𝛾t

g0
‖‖𝛼𝜔′ + 𝛽𝜔′′′ − 𝜔′′′′′‖‖L2(R+)||u1(t, ·) − u2(t, ·)||L2(R+)

≤ 1
g0

||𝜔||H5(R+)e
−𝛾t||u1(t, ·) − u2(t, ·)||L2(R+).

Therefore, now, using (3.10), yields that

||e−𝛾t(A𝑓01 − A𝑓02)||Lp(0,T) ≤
2||𝜔||H5(R+)||g||C(0,T;L2(R+))

g0

(
∫

T

0
e−𝛾pt

(
∫

t

0
|𝑓01(𝜏) − 𝑓02(𝜏)|d𝜏)p

dt

) 1
p

≤ C

(
∫

T

0
e−𝛾pt

(
∫

T

0
|𝑓01(𝜏) − 𝑓02(𝜏)|d𝜏)p

dt

) 1
p

.

Finally, using the last inequality for p ∈ [2,∞), such that 1
p
+ 1

p′ = 1, we have

||e−𝛾t(A𝑓01 − A𝑓02)||Lp(0,T) ≤ c0

(
∫

T

0
e−𝛾pt

(
∫

T

0
|𝑓01(𝜏) − 𝑓02(𝜏)|d𝜏)p

dt

) 1
p

≤ c0‖e−𝛾𝜏 (𝑓01 − 𝑓02)‖Lp(0,T)

[
∫

T

0
e−p𝛾t

(
∫

t

0
ep′𝛾𝜏d𝜏

)p∕p′

dt

]1∕p

≤ c0T1∕p

(p′𝛾)1∕p′
‖‖e−𝛾t (𝑓01 − 𝑓02)‖‖Lp(0,T),

(3.11)

where c0 = c0(||𝜔||H5(R+), g0, ||g||C(0,T;L2(R+))) is defined by

c0 ∶= 2
g0

||g||C([0,T];L2(R+))
(|𝛼|‖‖𝜔′‖‖L2(R+) + |𝛽|‖‖𝜔′′′‖‖L2(R+) + ‖‖𝜔′′′′′‖‖L2(R+)

)
. (3.12)

Therefore, it is enough to take 𝛾 >

(
c0T

1
p
)p′

p′ , and so A is contraction, showing the case one for p ∈ [2,∞).
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Case two: p = ∞.
In this case, we have

‖‖e−𝛾t (A𝑓01 − A𝑓02)‖‖L∞(0,T) ≤ c0 sup
t∈[0,T]

e−𝛾t‖u1(t, ·) − u2(t, ·)‖L2(R+)

≤ c0 sup
t∈[0,T]

e−𝛾t‖𝑓01 − 𝑓02‖L1(0,t)

≤ c0

𝛾
‖‖e−𝛾t (𝑓01 − 𝑓02)‖‖L∞(0,T),

(3.13)

where c0 = c0(T, p, ||𝜔||H5(R+), g0, ||g||C(0,T;L2(R+))) is defined by (3.12). Therefore, taking 𝛾 > c0, we have
that A is contraction, showing case two.

Thus, in both cases, the operator A is a contraction, and so, for any𝜑 ∈ W̃ 1,p(0,T), there exists a unique 𝑓0 ∈ Lp(0,T)
such that 𝑓0 = A(𝑓0), or equivalently, 𝜑 = Λ(𝑓0). Thus, it follows that Λ is invertible. Due to the Banach theorem, its
inverse

Γ ∶ Lp(0,T) → W̃ 1,p(0,T)

is bounded. Particularly,

||Γ𝜑||Lp(0,T) ≤ C(T)||𝜑′||Lp(0,T). (3.14)

□To prove our second main result of this work, we need one refinement of Lemma 3.3.

Lemma 3.4. Under the hypothesis of Lemma 3.3, if c0T ≤ p1∕p∕2, c0 given by (3.12), and p1∕p = 1 for p = +∞, we have
the following estimate

||Γ𝜑||Lp(0,T) ≤ 2
g0

‖‖𝜑′‖‖Lp(0,T)
, (3.15)

for the operator Γ ∶ W̃ 1,p(0,T) → Lp(0,T).

Proof. Since 𝑓0 = A𝑓0 = Γ𝜑, taking 𝛾 = 0, similar as we did in (3.11), we get that

‖‖‖‖𝑓0 −
𝜑′

g1

‖‖‖‖Lp(0,T)
≤ c0

[
∫

T

0

(
∫

t

0
|𝑓0(𝜏)| d𝜏

)p

dt

]1∕p

≤ c0T
p1∕p ‖𝑓0‖Lp(0,T),

and in a way analogous to the one made in (3.13), we also have

‖‖‖‖𝑓0 −
𝜑′

g1

‖‖‖‖L∞(0,T)
≤ c0 ∫

T

0
|𝑓0(𝜏)| d𝜏 ≤ c0T‖𝑓0‖L∞(0,T).

Thus, for p ∈ [2,+∞], we get

||Γ𝜑||Lp(0,T) ≤ 1
g0

||𝜑′||Lp(0,T) +
c0T
p1∕p ||Γ𝜑||Lp(0,T),

and the estimate (3.15) holds true. □

4 CONTROL RESULTS

In this section, the overdetermination control problem is studied. Precisely, we will give answers to some questions left at
the beginning of this work. Here, let us consider the full system

⎧⎪⎨⎪⎩
ut + 𝛼ux + 𝛽uxxx − uxxxxx + uux = 𝑓 (t, x) in [0,T] × R

+,

u(t, 0) = 𝜇(t),ux(t, 0) = 𝜈(t) on [0,T],
u(0, x) = u0(x) in R

+.

(4.1)
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First, we prove that when we have the linear system associated with (4.1), the control problem with an integral overde-
termination condition holds. After that, we can extend this result, by using the regularity in Bourgain spaces, to the
nonlinear one. Finally, we give, under some hypothesis, a minimal time such that the solution of (4.1) satisfies (1.2).

4.1 Linear case
In this section, let us present the following result.

Theorem 4.1. Let T > 0, p ∈ [2,∞], u0 ∈ L2 (
R

+) , 𝜇 ∈
(

H
2
5 ∩ Lp

)
(0,T) and 𝜈 ∈

(
H

1
5 ∩ Lp

)
(0,T). Consider

g ∈ C(0,T;L2 (
R

+)), 𝜔 ∈  , defined by (1.5), and 𝜑 ∈ W 1,p(0,T) such that

𝜑(0) = ∫
R

+
u0(x)𝜔(x)dx. (4.2)

Additionally, if ||||∫R
+
g(t, x)𝜔(x)dx

|||| ≥ g0 > 0, ∀t ∈ [0,T], (4.3)

then there exists a unique 𝑓0 ∈ Lp(0,T) such that for 𝑓 (t, x) ∶= 𝑓0(t)g(t, x) + 𝑓2x(t, x), with 𝑓2 ∈ Lp(0,T;L1 (
R

+)) and
𝑓2x ∈ X0,−b0

(
Q+

T
)

, the solution u ∶= S(u0, 𝜇, 𝜈, 𝑓0g + 𝑓2x) of

⎧⎪⎨⎪⎩
ut + 𝛼ux + 𝛽uxxx − uxxxxx = 𝑓 (t, x) in [0,T] × R

+,

u(t, 0) = 𝜇(t),ux(t, 0) = 𝜈(t) on [0,T],
u(0, x) = u0(x) in R

+,

(4.4)

satisfies (1.2).

Proof. Pick v1 = S(u0, 𝜇, 𝜈,−𝑓2x) solution of

⎧⎪⎨⎪⎩
v1t + 𝛼v1x + 𝛽v1xxx − v1xxxxx = −𝑓2x in Q+

T ,

v1(t, 0) = 𝜇(t), v1x(t, 0) = 𝜈(t) on [0,T],
v1(0, x) = u0(x) in R

+.

Define the following function
𝜑1 = 𝜑 − Q(v1) ∶ [0,T] → R

by

𝜑1(t) = 𝜑(t) − ∫
R

+
v1(t, x)𝜔(x)dx.

Since 𝜑 ∈ W 1,p(0,T), using Lemma 3.1 together with (4.2), it follows that 𝜑1 ∈ W̃ 1,p(0,T). Therefore, Lemma 3.3
ensures that there exists a unique Γ𝜑1 = 𝑓0 ∈ Lp(0,T) such that the solution v2 ∶= S(0, 0, 0, 𝑓0g) of

⎧⎪⎨⎪⎩
v2t + 𝛼v2x + 𝛽v2xxx − v2xxxxx = 𝑓0g in Q+

T ,

v2(t, 0) = 0, v2x(t, 0) = 0 on [0,T],
v2(0, x) = 0 in R

+,

satisfies the following integral condition

∫
R

+
v2(t, x)𝜔(x)dx = 𝜑1(t), t ∈ [0,T].
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Thus, taking u = v1 + v2 ∶= S(u0, 𝜇, 𝜈, 𝑓0g − 𝑓2x), we have u solution of (4.10) satisfying

∫
R

+
u(t, x)𝜔(x)dx = ∫

R
+
v1(t, x)𝜔(x)dx + ∫

R
+
v2(t, x)𝜔(x)dx

= ∫
R

+
v1(t, x)𝜔(x)dx + 𝜑1(t)

= ∫
R

+
v1(t, x)𝜔(x)dx + 𝜑(t) − ∫

R
+
v1(t, x)𝜔(x)dx

= 𝜑(t),

for all t ∈ [0,T], that is, (1.2) holds, showing the result. □

4.2 Nonlinear case
We are in a position to prove the first main result of this manuscript, that is, Theorem 1.1. Here, is essential the estimates
in Bourgain space proved by [24] and presented in Section 2.

Proof of Theorem 1.1. Let u, v ∈ Z
(

Q+
T
)
. The following estimate holds, using Hölder inequality,

||u(t, ·)v(t, ·)||L1(R+) ≤ ||u(t, ·)||L2(R+)||v(t, ·)||L2(R+), ∀t ∈ [0,T].

So, we get

||uv||C(0,T;L1(R+)) ≤ ||u||C(0,T;L2(R+))||v||C(0,T;L2(R+)).

Since we have the following embedding C
(
0,T;L1 (

R
+)) → Lp (0,T;L1 (

R
+)) for each p ∈ [2,∞], we can find

||uv||Lp(0,T;L1(R+)) ≤ T
1
p ||u||C(0,T;L2(R+))||v||C(0,T;L2(R+)),

or equivalently,

||uv||Lp(0,T;L1(R+)) ≤ T
1
p ||u||Z(Q+

T)||v||Z(Q+
T), (4.5)

for any u, v ∈ Z
(

Q+
T
)
.

Now, pick 𝑓 = 𝑓1 − 𝑓2x in the following system

⎧⎪⎨⎪⎩
ut + 𝛼ux + 𝛽uxxx − uxxxxx = 𝑓 (t, x) in [0,T] × R

+,

u(t, 0) = 𝜇(t),ux(t, 0) = 𝜈(t) on [0,T],
u(0, x) = u0(x) in R

+.

(4.6)

Consider so 𝑓2 = v2

2
, where v ∈ Z

(
Q+

T
)

and 𝑓1 ∈ L2 (0,T;L2 (
R

+)). The estimate (2.3) yields that 𝑓2x = vvx ∈

X0,−b0
(

Q+
T
)
, for some b0 ∈

(
0, 1

2

)
. Moreover, thanks to (4.5), we have that 𝑓2 ∈ Lp (0,T;L1 (

R
+)).

On the space Z
(

Q+
T
)
, let us define the functional Θ ∶ Z

(
Q+

T
)
→ Z

(
Q+

T
)

by

u ∶= Θv = S (u0, 𝜇, 𝜈,Γ (𝜑 − Q(S(u0, 𝜇, 𝜈,−vvx))) g − vvx) . (4.7)

Note that using Lemma 3.3 and Theorem 4.1, the operator Θ is well-defined.
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Considering p = 2, thanks to (2.4), the embedding L2 (0,T;L2 (
R

+)) → X0,−b0
(

Q+
T
)
, (3.9), (3.14), and (3.4), we get

||Θv||Z(Q+
T) ≤ C

(||u0||L2(R+) + ||𝜇||
H

2
5 (0,T)

+ ||𝜈||
H

1
5 (0,T)

+ ||Γ (𝜑 − Q(S(u0, 𝜇, 𝜈,−vvx))) g − vvx||X0,−b0 (Q+
T)
)

≤ C
(||u0||L2(R+) + ||𝜇||

H
2
5 (0,T)

+ ||𝜈||
H

1
5 (0,T)

+ ||vvx||X0,−b0 (Q+
T)

+ ||Γ (𝜑 − Q(S(u0, 𝜇, 𝜈,−vvx))) g||L2(0,T;L2(R+))
)

≤ C
(||u0||L2(R+) + ||𝜇||

H
2
5 (0,T)

+ ||𝜈||
H

1
5 (0,T)

+ ||vvx||X0,−b0 (Q+
T)

+||g||C(0,T;L2(R+))|| (𝜑 − Q(S(u0, 𝜇, 𝜈,−vvx))) ||W̃1,2(0,T)

)
≤ C(||g||C(0,T;L2(R+)),T)

(||u0||L2(R+) + ||𝜇||
H

2
5 (0,T)

+ ||𝜈||
H

1
5 (0,T)

+‖vvx‖X0,−b0 (Q+
T) + ||𝜑′||L2(0,T) + ||q′||L2(0,T)

)
≤ 2C(|𝛼|, |𝛽|, ||𝜔||H5(R+), ||g||C(0,T;L2(R+)),T)

(
c1 + ‖vvx‖X0,−b0 (Q+

T) + ‖v‖2
L2(0,T;L1(R+))

)
,

or equivalently,

||Θv||Z(Q+
T) ≤ 2C(|𝛼|, |𝛽|, ||𝜔||H5(R+), ||g||C(0,T;L2(R+)),T)

(
c1 + ‖vvx‖X0,−b0 (Q+

T) +
‖‖‖v2‖‖‖L2(0,T;L1(R+))

)
.

Now, using the estimates (4.5) and (2.3), we have that

||Θv||Z(Q+
T) ≤ C

(
c1 +

(
T

1
2 + 1

) ||v||2
Z(Q+

T)
)
. (4.8)

Here, c1 > 0 is a constant depending such that

c1 ∶= ||u0||L2(R+) + ||𝜇||
H

2
5 (0,T)

+ ||𝜈||
H

1
5 (0,T)

+ ||𝜑′||L2(0,T)

and C > 0 is a constant depending of C ∶= C(|𝛼|, |𝛽|, ||𝜔||H5(R+), ||g||C(0,T;L2(R+)),T).
Similarly, using the linearity of the operator S, Q, and Γ, once again thanks to (4.5) and (2.3), we have

||Θv1 − Θv2||Z(Q+
T) ≤ C

(
T

1
2 + 1

)
(||v1||Z(Q+

T) + ||v2||Z(Q+
T))||v1 − v2||Z(Q+

T) (4.9)

Finally, for fixed c1 > 0, take T0 > 0 such that

8C2
T0

(
T

1
2

0 + 1
)

c1 ≤ 1

then, for any T ∈ (0,T0], choose

r ∈
⎡⎢⎢⎢⎣2CTc1,

1(
4CT

(
T

1
2 + 1

))⎤⎥⎥⎥⎦ .
On the other hand, for fixed T > 0, pick

r = 1(
4CT

(
T

1
2 + 1

))
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and

c1 ≤ 𝛾 = 1(
8C2

T

(
T

1
2 + 1

)) .
Therefore,

CTc1 ≤ r
2
, CT

(
T

1
2 + 1

)
r ≤ 1

4
.

So, Θ is a contraction on the ball B(0, r) ⊂ Z
(

Q+
T
)
. Theorem (4.1) ensures that the unique fixed point u = Θu ∈ Z

(
Q+

T
)

is a desired solution for 𝑓0 ∶= Γ (𝜑 − Q(S(u0, 𝜇, 𝜈,−uux))) ∈ Lp(0,T). Thus, the result is achieved.

4.3 Minimal time for the integral condition
We are able now to prove that the integral overdetermination condition (5.2) holds for a minimal time T0. To do that, let
us prove the second main result of this work, namely, Theorem 1.2.

Proof of Theorem 1.2. Without loss of generality, let us assume T ≤ 1. It is well known that the Kawahara equation

⎧⎪⎨⎪⎩
ut − uxxxxx + uux = 𝑓 (t, x) in [0,T] × R

+,

u(t, 0) = 𝜇(t),ux(t, 0) = 𝜈(t) on [0,T],
u(0, x) = u0(x) in R

+.

(4.10)

enjoys the scaling symmetry: If u is a solution to (4.10), u𝛿(t, x) defined by

u𝛿(t, x) ∶= 𝛿4u(𝛿5t, 𝛿x), 𝛿 > 0

is solution of (4.10) as well as. Indeed, let 𝛿 = T
1
5 ∈ (0, 1); thus,

u0𝛿(x) ∶= 𝛿4u0(𝛿x), 𝜇𝛿(t) ∶= 𝛿4𝜇(𝛿5t), 𝜈𝛿(t) ∶= 𝛿4𝜈(𝛿5t)

g𝛿(t, x) ∶= 𝛿g(𝛿5t, 𝛿x), 𝜔𝛿(x) ∶= 𝜔(𝛿x), 𝜑𝛿(t) ∶= 𝛿4𝜑(𝛿5t).

Therefore, if the par (𝑓0,u) is solution of (4.10), a straightforward calculation gives that

{𝑓0𝛿(t) ∶= 𝛿8𝑓0(𝛿5t), u𝛿(t, x) ∶= 𝛿4u(𝛿5t, 𝛿x)}

is solution of ⎧⎪⎨⎪⎩
u𝛿t − u𝛿xxxxx + u𝛿u𝛿x = 𝑓0𝛿(t)g𝛿(t, x) in [0, 1] × R

+,

u𝛿(t, 0) = 𝜇𝛿(t), u𝛿x(t, 0) = 𝜈𝛿(t) on [0, 1],
u𝛿(0, x) = u0𝛿(x) in R

+.

(4.11)

Additionally, we have that (𝑓0,u) satisfies (1.2) if and only if (𝑓0𝛿(t),u𝛿(t, x)) satisfies the following integral condition

∫
R

+
u𝛿(t, x)𝜔𝛿(x)dx = 𝜑𝛿(t), t ∈ [0, 1]. (4.12)

Now, using the change of variables theorem and the definition of 𝛿, we verify that

||u0𝛿||L2(R+) = 𝛿
1
2 𝛿4||u0||L2(R+) ≤ 𝛿

1
2 ||u0||L2(R+)

and

||𝜑′
𝛿||L2(0,1) = 𝛿

1
2 𝛿11||𝜑𝛿||L2(0,T) ≤ 𝛿

1
2 ||𝜑𝛿||L2(0,T).
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Thus, we have that

c1(𝛿) ∶= ||u0𝛿||L2(R+) + ||𝜑′
𝛿||L2(0,1) + ||𝜇𝛿||H

2
5 (0,1)

+ ||𝜈𝛿||H
1
5 (0,1)

≤ 𝛿
1
2 c1.

Moreover, ||g𝛿||C([0,1];L2(R+)) ≤ 𝛿 1
2 ||g||C([0,T];L2(R+)),||||∫R

+
g𝛿(t, x)𝜔𝛿dx

|||| ≥ g0, ∀t ∈ [0, 1]

and ‖‖𝜔′′′′′
𝛿

‖‖L2(R+) ≤ 𝛿
9
2 ‖‖𝜔′′′′′′‖‖L2(R+).

So, as we want that c0𝛿 be one corresponding to c0, which was defined by (3.12), therefore,

c0𝛿 ≤ 𝛿5c0.

Pick 𝛿0 = (2c0)−1∕5, so for 0 < 𝛿 ≤ 𝛿0 we can apply Lemma 3.4, and according to (3.15), the corresponding operator to
Γ, which one will be called of 𝛾𝛿 , satisfies

||Γ𝛿𝜑𝛿||Lp(0,1) ≤ 2
g0

||𝜑′
𝛿||Lp(0,1). (4.13)

Therefore, for Θ𝛿 defined in the same way as in (4.7) and using, similarly as in (4.8) and (4.9), the relation (4.13) we
have that ||Θ𝛿v𝛿||Z(Q+

1 ) ≤ C
(
𝛿

1
2 c1 +

(
T

1
2 + 1

) ||v𝛿||2
Z(Q+

1 )
)

and ||Θ𝛿v1𝛿 − Θ𝛿v2𝛿 ||Z(Q+
1 ) ≤ C

(
T

1
2 + 1

)(||v1𝛿 ||Z(Q+
1 )) + ||v2𝛿 ||Z(Q+

1 )
) ||v1𝛿 − v2𝛿 ||Z(Q+

1 ),

where the constant C is uniform with respect to 0 < 𝛿 ≤ 𝛿0. Taking 𝛿0 small enough, if necessary, to satisfy the
following inequality

𝛿
1
2
0 c1 ≤ 1

8c2
(

T
1
2 + 1

) ,
so using the same arguments as done in Theorem 1.1, the operator Θ𝛿 becomes, at least, locally, a contraction on a
certain ball. Lastly, taking the time T0 defined by T0 ∶= 𝛿5

0, and if T ≤ T0, we have that (1.2) holds, showing the result.

Remark 4.2. Note that the system (4.1) does not admit the scaling symmetry due to the presence of the terms 𝛼ux +
𝛽uxxx. So, in this case, we analyzed Equation (4.10), since in the analysis of Theorem 1.2, the most important term is
of order 5, so we can neglect the terms of order 1 (𝛼ux) and 3 (𝛽uxxx).

4.4 An exact controllability result
The goal of this subsection is to prove the Corollary 1.3, showing that if the overdetermination condition is verified, for
given any initial data u0 and final data uT , the mass (1.7) of the system (1.6) is reached on the time T.

Proof of Corollary 1.3. Thanks to the Theorem 1.1 with 𝜇 = v = 0, there exist 𝑓0 ∈ Lp(0,T) and a unique solution u
of (1.6) such that

𝜑(t) = ∫
R

+
u(t, x)𝜔(x)dx, t ∈ [0,T]. (4.14)
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On the other hand, we know that 𝜔 defined a measure in R
+ given by

𝜂(E) = ∫E
w(x)dx,

for all Lebesgue measure set E of R+ and

∫
R

+
𝑓d𝜂 = ∫

R
+
𝑓 (x)𝜔(x)dx,

for all measurable function 𝑓 in R
+. Hence, from (1.9) and (4.14), we conclude that

[u(T)] = ∫
R

+
u(T)d𝜂 = ∫

R
+
u(T, x)𝜔(x)dx = ∫

R
+
uT(x)𝜔(x)dx = ∫

R
+
uTd𝜂 = [uT],

and the corollary is achieved.

5 FURTHER COMMENTS

This work deals with the internal controllability problem with an integral overdetermination condition on unbounded
domains. Precisely, we consider the higher order KdV type equation, the so-called, Kawahara equation on the right
half-line ⎧⎪⎨⎪⎩

ut + 𝛼ux + 𝛽uxxx − uxxxxx + uux = 𝑓 (t, x) in [0,T] × R
+,

u(t, 0) = 𝜇(t), ux(t, 0) = 𝜈(t) on [0,T],
u(0, x) = u0(x) in R

+,

(5.1)

where 𝑓 ∶= 𝑓0(t)g(x, t), with 𝑓0 as a control input. In this case, we prove that given functions u0, 𝜇, 𝜈, and g, the following
integral overdetermination condition

∫
R

+
u(t, x)𝜔(x)dx = 𝜑(t), t ∈ [0,T], (5.2)

holds. Additionally, that condition can be verified for a small time T0. These points answer the previous questions
introduced in [16] and extend to other domains the results of [12].

5.1 Comments about the main results
Let us give some remarks order concerning the generality of this manuscript.

1. Theorems 1.1 and 1.2 can be obtained for more general nonlinearity u2ux. This is possible due to the result of
Cavalcante and Kwak [25] that showed the following:

Theorem 5.1. The following estimates hold.

• For −1∕4 ≤ s, there exists b = b(s) < 1∕2 such that for all 𝛼 > 1∕2, we have

‖𝜕x(uvw)‖Xs,−b ≲ ||u||Xs,b∩D𝛼 ||v||Xs,b∩D𝛼 ||w||Xs,b∩D𝛼 .

• For −1∕4 ≤ s ≤ 0, there exists b = b(s) < 1∕2 such that for all 𝛼 > 1∕2, we have

‖𝜕x(uvw)‖Y s,−b ≲ ||u||Xs,b∩D𝛼 ||v||Xs,b∩D𝛼 ||w||Xs,b∩D𝛼 .

Thus, Theorems 1.1 and 1.2 remain valid for u2ux; however, for the sake of simplicity, we consider only the
nonlinearity as uux.

2. Due to the boundary traces defined in [24, Theorems 1.1 and 1.2], the regularities of the functions involved in this
manuscript are sharp.
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3. The results presented in this manuscript are still valid when we consider the following domains: the real line (R) or
the left half-line (R−). Precisely, let us consider the following systems{

ut + 𝛼ux + 𝛽uxxx − uxxxxx + uux = 𝑓0(t)g(t, x) in [0,T] × R,

u(0, x) = u0(x) on R.
(5.3)

and ⎧⎪⎨⎪⎩
ut + 𝛼ux + 𝛽uxxx − uxxxxx + uux = 𝑓0(t)g(t, x) in [0,T] × R

−,

u(t, 0) = 𝜇(t), ux(t, 0) = 𝜈(t), uxx(t, 0) = h(t) on [0,T],
u(0, x) = u0(x) in R

−.

(5.4)

For given T > 0, 𝜑, 𝜔, and 𝜔−, consider the following integral conditions

∫
R

u(t, x)𝜔(x)dx = 𝜑(t), t ∈ [0,T] (5.5)

and

∫
R

−
u(t, x)𝜔−(x)dx = 𝜑(t), t ∈ [0,T]. (5.6)

Thus, the next two theorems give us answers for the Problems  and , presented at the beginning of the
manuscript, for real line and left half-line, respectively.

Theorem 5.2. Let T > 0 and p ∈ [2,∞]. Consider u0 ∈ L2(R) and 𝜑 ∈ W 1,p(0,T). Additionally, let g ∈
C(0,T;L2(R)) and 𝜔 ∈ H5(R) be a fixed function satisfying

𝜑(0) = ∫
R

u0(x)𝜔(x)dx

and ||||∫R

g(t, x)𝜔(x)dx
|||| ≥ g0 > 0, ∀t ∈ [0,T],

where g0 is a constant. Then, for each T > 0 fixed, there exists a constant 𝛾 > 0 such that if c1 = ||u0||L2(R+||𝜑′||L2(0,T) ≤
𝛾 , we can find a unique control input 𝑓0 ∈ Lp(0,T) and a unique solution u of (5.3) satisfying (5.5).

Theorem 5.3. Let T > 0 and p ∈ [2,∞]. Consider 𝜇 ∈ H
2
5 (0,T) ∩ Lp(0,T), 𝜈 ∈ H

1
5 (0,T) ∩ Lp(0,T), h ∈

Lp(0,T), u0 ∈ L2(R−) and 𝜑 ∈ W 1,p(0,T). Additionally, let g ∈ C(0,T;L2(R−)) and 𝜔− be a fixed function which
belongs to the following set

 = {𝜔 ∈ H5(R−) ∶ 𝜔(0) = 𝜔′(0) = 0} (5.7)

satisfying

𝜑(0) = ∫
R

−
u0(x)𝜔−(x)dx

and ||||∫R
−
g(t, x)𝜔−(x)dx

|||| ≥ g0 > 0, ∀t ∈ [0,T],

where g0 is a constant. Then, for each T > 0 fixed, there exists a constant 𝛾 > 0 such that if

c1 = ||u0||L2(R−) + ||𝜇||
H

2
5 (0,T)

+ ||𝜈||
H

1
5 (0,T)

+ ||h||L2(0,T) + ||𝜑′||L2(0,T) ≤ 𝛾,

we can find a unique control input 𝑓0 ∈ Lp(0,T) and a unique solution u of (5.4) satisfying (5.6).
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4. The difference between the numbers of boundary conditions in (5.1) and (5.4) is motivated by integral identities on
smooth solutions to the linear Kawahara equation

ut + 𝛼ux + 𝛽uxxx − uxxxxx = 0.

5. Theorem 1.2 is also true for the systems (5.3) and (5.4). Additionally, due to the results presented in [24, 25], the
functions involved in Theorems 5.2 and 5.3 are also sharp, and we can introduce a more general nonlinearity like
u2ux in these systems.

6. Corollary 1.3 may be extended for the system (5.3) taking into account the integral condition (5.5). Also for the
system (5.4), with u(t, 0) = ux(t, 0) = uxx(t, 0) = 0 and the integral condition (5.6), this corollary is verified.

5.2 General control result
Finally, we would like to comment on a more general control result. Thanks to the Corollary 1.3 it is possible to obtain
an exact controllability property related to the mass of the system. However, we would like to show the following exact
controllability result:

Exact control problem: Given u0,uT ∈ L2 (
R

+) and g ∈ C(0,T;L2 (
R

+)) satisfying (1.8), can we find a control 𝑓0 ∈
Lp(0,T) such that the solution u of (1.6) satisfies u(T, x) = uT(x)?
A possibility to answer this question is to modify the overdetermination condition (1.2). For example, if Theorem 1.1
is verified for the following integral condition

�̃�(t) = ∫
R

+
u2(t, x)w(x)dx, (5.8)

we are able to get the exact controllability in L2 (
R

+) with internal control 𝑓0 ∈ L2(0,T) by using the same argument as
in Corollary 1.3. However, with the approach used in this manuscript, it is not clear that the Lemma 3.3 can be replied
to for the condition (5.8).
Indeed, if we consider

q(t) = ∫
R

+
u2(t, x)w(x)dx,

analyzing q′(t) for u = S(0, 0, 0, 𝑓0(t)g(t, x)) (see Lemma 3.2) we obtain

q′(t) = ∫
R

+
u2(t, x)

[
𝛼w′(x) + 𝛽w′′(x) − 2w′′′′′(x)

]
dx

+ ∫
R

+
u2

x(t, x)
[
5w′′′(x) − 3𝛽w′(x) − 2w′′′′′(x)

]
dx

− 5∫
R

+
u2

xx(t, x)w′(x)dx + 𝑓0(t)∫
R

+
g(t, x)u(t, x)w(x)dx.

Now, introduce the operator

Ã ∶ Lp(0,T) → Lp(0,T)

defined by

𝑓0 → Ã(𝑓0) ∈ Lp(0,T),

where (
Ã𝑓0

)
(t) = 𝜑′(t) − ∫

R
+
u2(t, x)

[
𝛼w′(x) + 𝛽w′′(x) − 2w′′′′′(x)

]
dx

− ∫
R

+
u2

x(t, x)
[
5w′′′(x) − 3𝛽w′(x) − 2w′′′′′(x)

]
dx + 5∫

R
+
u2

xx(t, x)w′(x)dx.
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If we assume that Λ(𝑓0) = �̃�, we deduce that

(
Ã𝑓0

)
(t) = 𝑓0(t)∫

R
+
g(t, x)u(t, x)w(x)dx.

Note that this expression depends on the solution of the system (1.6), then we do not be able to obtain the
overdetermination control condition for S(0, 0, 0, 𝑓0(t)g(t, x)) by using a fixed point argument for the operator

[
∫
R

+
g(t, x)u(t, x)w(x)dx

]−1 (
Ã𝑓0

)
(t),

as in the proof of Lemma 3.3. Therefore, the exact controllability with internal control does not hold. Hence, the
following open question arises:
Question: Is it possible to prove Theorem 1.1 for the overdetermination condition (5.8)?
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