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Abstract. In this paper, we consider the Kawahara equation in a bounded interval and with a delay term in one of the
boundary conditions. Using two different approaches, we prove that this system is exponentially stable under a condition
on the length of the spatial domain. Specifically, the first result is obtained by introducing a suitable energy functional and
using Lyapunov’s approach, to ensure that the energy of the Kawahara system goes to 0 exponentially as t → ∞. The second
result is achieved by employing a compactness–uniqueness argument, which reduces our study to prove an observability
inequality. Furthermore, the novelty of this work is to characterize the critical lengths phenomenon for this equation by
showing that the stability results hold whenever the spatial length is related to the Möbius transformations.
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1. Introduction

1.1. Physical motivation and goal

It is well-known that the following fifth-order nonlinear dispersive equation

± 2∂tu + 3u∂xu − ν∂3
xu +

1
45

∂5
xu = 0, (1.1)

models numerous physical phenomena. In fact, considering suitable assumptions on the amplitude, wave-
length, wave steepness and so on, the properties of the asymptotic models for water waves have been
extensively studied in the last years, through (1.1), to understand the full water wave system 1.

In some situations, we can formulate the waves as a free boundary problem of the incompressible,
irrotational Euler equation in an appropriate non-dimensional form with at least two (non-dimensional)
parameters δ := h

λ and ε := a
h , where the water depth, the wavelength and the amplitude of the free

surface are parameterized as h, λ and a, respectively. In turn, if we introduce another non-dimensional
parameter μ, so-called the Bond number, which measures the importance of gravitational forces compared
to surface tension forces, then the physical condition δ � 1 characterizes the waves, which are called long
waves or shallow water waves. On the other hand, there are several long wave approximations depending
on the relations between ε and δ. For instance, if we consider ε = δ4 � 1 and μ = 1

3 + νε
1
2 , and in

connection with the critical Bond number μ = 1
3 , we have the so-called Kawahara equation, represented

by (1.1), and derived by Hasimoto and Kawahara in [26,31].

1 See for instance [1,6,32] and references therein, for a rigorous justification of various asymptotic models for surface
and internal waves.
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In the last years, there has been an extensive mathematical endeavor that focuses on the analytical and
numerical methods for solving the Kawahara equation (1.1). These methods include the tanh-function
method [4], extended tanh-function method [5], sine-cosine method [44], Jacobi elliptic functions method
[27], direct algebraic method [37] as well as the variational iterations and homotopy perturbations methods
[29]. These approaches deal, as a rule, with soliton-like solutions obtained while one considers problems
posed on a whole real line. For numerical simulations, however, there appears the question of cutting-off
the spatial domain [7,8]. This motivates the detailed qualitative analysis of the problem (1.1) in bounded
regions [24].

In this spirit, the main concern of this paper is to deal with the Kawahara equation in a bounded
domain under the action of time-delayed boundary control, namely

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tu(t, x) + a∂xu(t, x) + b∂3
xu(t, x) − ∂5

xu(t, x) + up(t, x)∂xu(t, x) = 0, (t, x) ∈ R
+ × Ω,

u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = 0, t > 0,
∂2

xu(t, L) = F(t, h), t > 0,
∂2

xu(t, 0) = z0(t), t ∈ T ,
u(0, x) = u0(x), x ∈ Ω.

(1.2)

In (1.2), Ω = (0, L), where L > 0, while a > 0 and b > 0 are physical parameters. Moreover, p ∈ [1, 2]
and F(t, h) is the delayed control given by

F(t) = α∂2
xu(t, 0) + β∂2

xu(t − h, 0), (1.3)

in which h > 0 is the time delay, α and β are two feedback gains satisfying the restriction

|α| + |β| < 1. (1.4)

Finally, T = (−h, 0), while u0 and z0 are initial conditions.
Thereafter, the functional energy associated to the system (1.2) and (1.3) is

E(t) =

L∫

0

u2(t, x)dx + h|β|
1∫

0

(∂2
xu(t − hρ, 0))2dρ, t ≥ 0. (1.5)

Now, recall that if α = β = 0, then the term ∂2
xu(t, 0) represents a feedback damping mechanism (see for

instance [2], where a = 1 and [42], where a = 0) but an extra internal damping a(x)u(t, x) is required
to achieve the stability of the solutions. Note that a(x) in is a nonnegative function and positive only on
an open subset of (0, L). Therefore, taking into account the action of the time-delayed boundary control
(1.3) in (1.2), the following issue will be addressed in this article

Does E(t) −→ 0, as t → ∞? If it is the case, can we provide a decay rate?
It is also worth noting that the answer to the above question is crucial in the understanding of the
behavior of the solutions to the Kawahara equation when it is subject to a delayed boundary control
F(t, h). In other words, are the solutions to our problem stable despite the action of the delay? If yes,
then how robust is the stability property of the solutions?
Of course, a time delay is inevitable in practical systems for several reasons and may appear from different
sources. It is particularly abundant for controlled systems, where sensors and actuators are involved. It
is therefore primordial to investigate the impact of a time-delay on the behavior of the solutions to our
Kawahara problem (1.2) and (1.3).

1.2. Historical background

Let us first present a review of the main results available in the literature for the analysis of the Kawahara
equation in a bounded interval. A pioneer work is due by Silva and Vasconcellos [40,41], where the authors
studied the stabilization of global solutions of the linear Kawahara equation in a bounded interval under
the effect of a localized damping mechanism. The second endeavor, in this line, is completed by the same
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authors in [42], where the problem (1.2) and (1.3) is considered with a = α = β = 0, b = p = 1 and under
the action of the a localized interior control a(x)u(t, x). Then, exponential stability results are obtained.
Subsequently, Capistrano-Filho et al. [2] considered the generalized Kawahara equation in a bounded
domain QT = (0, T ) × (0, L) :

⎧
⎨

⎩

∂tu + ∂xu + ∂3
xu − ∂5

xu + up∂xu + a(x)u = 0, in QT ,
u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = ∂2

xu(t, L) = 0, on [0, T ],
u(0, x) = u0(x), in [0, L],

(1.6)

with p ∈ [1, 4). It is proven that the solutions of the above system decay exponentially.
The internal controllability problem has been tackled by Chen [15] for the Kawahara equation with

homogeneous boundary conditions. Using Carleman estimates associated to the linear operator of the
Kawahara equation with an internal observation, a null controllable result is shown when the internal
control is effective in a subdomain ω ⊂ (0, L). In [10], considering the system (1.6) with an internal control
f(t, x) and homogeneous boundary conditions, the equation is shown to be controllable in L2-weighted
Sobolev spaces and, additionally, controllable by regions in L2-Sobolev space.

Recently, a new tool for the control properties for the Kawahara operator was proposed in [12,13].
First, in [12], the authors showed a new type of controllability for the Kawahara equation, what they called
overdetermination control problem. Boundary control is designed so that the solution of the problem under
consideration satisfies an integral condition. Furthermore, when the control acts internally in the system,
instead of the boundary, the authors proved that this integral condition is also satisfied. After that, in [13],
the authors extend this idea to the internal control problem for the Kawahara equation on unbounded
domains. Precisely, under certain hypotheses over the initial and boundary data, the internal control
input is designed so that the solutions of the Kawahara equation satisfy an integral overdetermination
condition, whether the Kawahara equation is posed in the real line, left half-line, or right half-line. We
also note that the existence and uniqueness of solutions as well as their stability are investigated for
the Kawahara-type equation posed in the whole real line [16–19,28], the half-line [20,34], a periodic
domain [25,30], and a non-periodic bounded domain [21,22,33,34]. We conclude the literature review by
mentioning the last works on the stabilization of the Kawahara equation with a localized time-delayed
interior control. In [11,14], under suitable assumptions on the time delay coefficients, the authors are able
to prove that solutions of the Kawahara system are exponentially stable. The results are obtained using
either the Lyapunov approach or a compactness-uniqueness argument.

1.3. Novel contribution of this work

Now, after providing an overview of the results previously obtained in the literature, let us highlight the
novelty and contribution of the present work.

Among the new contributions of this article, we provide a systematic study of the well-posedness
and stability results for the Kawahara equation with a delayed boundary control. To the authors’ best
knowledge, no attempt has been made in this direction. To be more specific, the present work shows
that the existence, uniqueness and stability properties of the solutions of the Kawahara equation with a
boundary delayed control remain “robust” with respect to the presence of a time-delay in the boundary
control.

Not only that, we manage to show that the presence of a time-delayed term in the boundary control
(1.3) may play a dissipation role in the system. This can be explained by the fact although it might be
possible to take α = 0 and β > 0 in (1.4), the solutions to the Kawahara problem (1.2) and (1.3) remain
exponentially stable.

Concerning the main contributions, we have:
(i) The results obtained in this article do not require the presence of localized interior damping control,

which constitutes an improvement of the results in [40–42];
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(ii) Contrary to the works [40–42], where the nonlinearity has the simple form u∂xu, we can extend
the results of these works to the case where the more general nonlinearity term up∂xu, p ∈ [1, 2].
Additionally, unlike these works, where the boundary conditions are all homogeneous, a boundary
delayed control is present in one of our boundary conditions;

(iii) The results of [2] are complemented by taking into consideration a delayed boundary control. Specif-
ically, the stability of the solutions to the Kawahara equations is conserved despite the presence of
a time delay in one of the boundary conditions;

(iv) Our stability result is obtained via two different approaches, namely the energy method and a
compactness argument;

(v) We give a relation between the spatial length L and the Möbius transform (see Sect. 1.5 for more
details about this point).

1.4. Notations and main results

First of all, let us introduce the following notations that we will use throughout this manuscript.
(i) We consider the space of solutions

X(QT ) = C(0, T ;L2(0, L)) ∩ L2(0, T ;H2
0 (0, L))

equipped with the norm

‖v‖X(QT ) = max
t∈(0,T )

‖v(t, ·)‖L2(0,L) +
( T∫

0

‖v(t, ·)‖2H2
0 (0,L)dt

) 1
2

.

(ii) Denote by

H̃ = L2(0, L) × L2(−h, 0)

the Hilbert space equipped with the inner product

〈(u1, z1), (u2, z2)〉H̃ =

L∫

0

u1u2dx + |β|
0∫

−h

z1(s)z2(s) ds,

which yields the following norm

‖(u, z)‖2
H̃

=

L∫

0

u2(x)dx + |β|
0∫

−h

z2(ρ)dρ.

(iii) Throughout all the manuscript, (·, ·)R2 denotes the canonical inner product of R2.
With the above notations in hand, let us state our first main result in this article:

Theorem 1.1. Let α and β be two real constants satisfying (1.4) and suppose that the spatial length L
fulfills

0 < L <

√
3b

a
π. (1.7)

Then, there exists r > 0 sufficiently small, such that for every (u0, z0) ∈ H with ‖(u0, z0)‖H < r, the
energy of system (1.2) and (1.3), denoted by E and defined by (1.5) exponentially decays, that is, there
exist two positive constants κ and λ such that

E(t) ≤ κE(0)e−2λt, t > 0. (1.8)
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Here,

λ ≤ min
{

μ2

2h(μ2 + |β|) ,
3bπ2 − r2L − L2a

2L2(1 + Lμ1)
μ1

}

(1.9)

and

κ ≤
(

1 + max
{

Lμ1,
μ2

|β|

})

,

for μ1, μ2 ∈ (0, 1) sufficiently small.

The second main result gives another answer to the question presented in this introduction. Indeed,
using a different approach based on an observability inequality, we can highlight the critical lengths
phenomenon observed in [2] for the Kawahara equation.

Theorem 1.2. Assume that α and β satisfy (1.4), whereas L > 0 is taken so that the problem (N )
(see Lemma 4.3) has only the trivial solution. Then, there exists r > 0 such that for every (u0, z0) ∈ H
satisfying

‖(u0, z0)‖H ≤ r,

the energy of system (1.2) and (1.3), denoted by E and defined by (1.5), decays exponentially. More
precisely, there exist two positive constants ν and κ such that

E(t) ≤ κE(0)e−νt, t > 0.

1.5. Heuristic of the article and its structure

In this article, we prove that the Kawahara system (1.2) is exponentially stable despite the presence of
the boundary time-delayed control F(t) defined by (1.3).

In order to show Theorem 1.1, we use the idea of the work that treated the delayed wave systems [43]
(see also [35]). More precisely, choosing an appropriate Lyapunov functional associated to the solutions
of (1.2) and (1.3) and with some restrictions on the spatial length L and an appropriate size of the initial
data, that is, L bounded as in (1.7) and

‖(u0, z0)‖H <
2
π

√
3bπ2 − L2a

L
,

the energy (1.5) exponentially decays. The key idea of this analysis is the relation between the linearized
system associated to (1.2) and (1.3) and a transport equation (see Sect. 2 for more details). Let us
mention that such an approach is also used for the Korteweg–de Vries (KdV) with a boundary delayed
control in [3] and for the Kawahara equation with a localized time-delayed interior control [14]. However,
the nonlinearity in [3,14] is u∂xu, which becomes a special case in our study, that is, p = 1 in (1.2).

Note that the KdV equation studied in [3] is of order three, while the Kawahara equation is a fifth-order
equation. Furthermore, in this work, the boundary conditions are two homogeneous Dirichlet boundary
conditions and one Neumann right-end control ∂xu(t, L). This means, unlike in our case, that no second-
order derivative is involved in the boundary conditions. Moreover, the reader can notice that the difference
between the order of the derivative in the equation and the highest order of the derivatives in the boundary
conditions is two, whereas it is three in our problem. These points are the main differences between our
work and [3] although there are similarities in the proof of Theorem 1.1 and [3, Theorem 1].

Concerning the proof of Theorem 1.2, we proceed as in [38], i.e., combining multipliers and compactness
arguments which reduces the problem to show a unique continuation result for the state operator. To
prove the latter, we extend the solution under consideration by zero in R \ [0, L] and take the Fourier
transform. However, due to the complexity of the system, after taking the Fourier transform of the
extended solution u, it is not possible to adopt the same techniques used in [38]. Thus, to prove our main
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result, we invoke the result due Santos et al. [23]. Specifically, after taking the Fourier transform, the
issue is to establish when a certain quotient of entire functions still turns out to be an entire function.
We then pick a polynomial function q : C → C and a family of functions

Nα : C × (0,∞) → C, (1.10)

with α ∈ C
4 \ {0}, whose restriction Nα(·, L) is entire for each L > 0. Next, we consider a family of

functions fα(·, L), defined by

fα(μ,L) =
Nα(μ,L)

q(μ)
, (1.11)

in its maximal domain. The problem is then reduced to determine L > 0, for which there exists α ∈ C
4\{0}

such that fα(·, L) is entire. In contrast with the analysis developed in [38], this approach does not provide
an explicit characterization of the set of critical lengths, if it exists, but only ensures that the roots of f
have a relation with the Möbius transform (see the proof of Lemma 4.3 above). It is also worth recalling
that the proof of Theorem 1.2 is inspired by [38], which in turn has been used in [3]. However, the result
obtained in the last work directly relies on [38]. This is not the case for our Theorem 1.2 as we explained
above. On the other hand, the so-called set of critical lengths of the KdV problem is explicitly known in
[38], and this made the task easier for the exponential stability of the KdV case [3]. It is also important to
point out that the derivation of the set of critical lengths for the Kawahara problem is more challenging,
and we only manage to derive a relation between the length of L and the Möbius transformation, while
an explicit deduction of the critical set phenomena remains an open problem. This happens because the
roots of the function

Nα(ξ, L) = α1iξ − α2iξe
−iξL + α3 − α4e

−iξL

in (1.11) cannot be found explicitly as in the KdV case. Hence, due to these facts, mentioned above, our
problem is more challenging than that of [3,38].

Finally, let us present the outline of our work: First, in Sect. 2, we prove the regularity properties of
the solutions to the linear system associated to (1.2) and (1.3) and then show that the well-posedness
of the problem (1.2) and (1.3). Section 3 is devoted to the proof of the first main result of this article,
namely Theorem 1.1. In Sect. 4, with the help of the result established in [23], we show our second
stability outcome stated in Theorem 1.2. Finally, in Sect. 5, we present some additional comments and
open questions.

2. Well-posedness results

The goal of this section is to prove that the full nonlinear Kawahara system (1.2) and (1.3) is well-posed.
The proof is divided into four parts by using the strategy due to Rosier [38]:

(1) Well-posedness to the linear system associated to (1.2) and (1.3).
(2) Regularity properties of the linear system associated to (1.2) and (1.3).
(3) Well-posedness of the linear system associated to (1.2) and (1.3) with a source term.
(4) Well-posedness of the system (1.2) and (1.3).

2.1. Well-posedness: linear system

We begin by proving the well-posedness of the linearized system
⎧
⎪⎪⎨

⎪⎪⎩

∂tu(t, x) + a∂xu(t, x) + b∂3
xu(t, x) − ∂5

xu(t, x) = 0, (t, x) ∈ R
+ × Ω,

u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = 0, t > 0,
∂2

xu(t, L) = α∂2
xu(t, 0) + β∂2

xu(t − h, 0), t > 0,
u(0, x) = u0(x), x ∈ Ω.

(2.1)
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In order to investigate (2.1), let z(t, ρ) = ∂2
xu(t − ρh, 0), which satisfies the transport equation [43] (see

also [35])
⎧
⎨

⎩

h∂tz(t, ρ) + ∂ρz(t, ρ) = 0, ρ ∈ (0, 1), t > 0,
z(t, 0) = ∂2

xu(t, 0), t > 0,
z(0, ρ) = z0(−hρ), ρ ∈ (0, 1).

(2.2)

Next, we consider the Hilbert space H = L2(0, L) × L2(0, 1) equipped with the following inner product:

〈(u1, z1), (u2, z2)〉H =

L∫

0

u1u2dx + |β|h
1∫

0

z1z2dρ.

Subsequently, one can rewrite (2.1) and (2.2) as follows:
{

Ut(t) = AU(t), t > 0,

U(0) = U0 ∈ H,
(2.3)

where

A =
[

−a∂x − b∂3
x + ∂5

x 0
0 − 1

h∂ρ

]

,

U(t) =
[

u(t, ·)
z(t, ·)

]

, U0 =
[

u0(·)
z0(−h(·))

]

,

and

D(A) = {(u, z) ∈ H5(0, L)∩H2
0 (0, L) × H1(0, 1); ∂2

xu(0) = z(0), ∂2
xu(L) = α∂2

xu(0) + βz(1)}.

The next result ensures the well-posedness for the problem (2.1).

Proposition 2.1. Assume that the constants α and β satisfy (1.4) and that U0 ∈ H. Then, there exists a
unique mild solution U ∈ C([0,+∞),H) for the system (2.1). Additionally, considering U0 ∈ D(A), we
have a classical solution with the following regularity:

U ∈ C([0, + ∞),D(A)) ∩ C1([0,+∞),H).

Proof. As the proof uses standard arguments, only a sketch of it will be provided. Let U = (u, z) ∈ D(A).
Then, integrating by parts and using the boundary conditions of (2.1) and (2.2), we obtain

〈AU(t), U(t)〉H =
1
2

(
α2(∂2

xu(t, 0))2 + 2αβ∂2
xu(t, 0)∂2

xu(t − h, 0)
)

+
1
2

(
β2(∂2

xu(t − h, 0))2 − (∂2
xu(t, 0))2

)

+
1
2

(
−|β|(∂2

xu(t − h, 0))2 + |β|(∂2
xu(t, 0))2

)
=

1
2
(Mη(t), η(t))R2 , (2.4)

where

η =
[

∂2
xu(t, 0)

∂2
xu(t − h, 0))

]

and M =
[

α2 − 1 + |β| αβ
αβ β2 − |β|

]

. (2.5)

Now, observe that adjoint of A, denoted by A∗, is defined by

A∗ =
[

a∂x + b∂3
x − ∂5

x 0
0 1

h∂ρ

]

with

D(A∗) = {(ϕ,ψ) ∈ H5(0, L)∩H2
0 (0, L) × H1(0, 1); ψ(1) =

β

|β|∂
2
xϕ(L), ∂2

xϕ(0) = α∂2
xϕ(L) + |β|ψ(0)}.
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Similarly, we have, for V = (ϕ,ψ) ∈ D(A∗), that

〈A∗V, V 〉H =
1
2

[

(α2 − 1 + |β|2)∂2
xϕ(L) + 2α|β|∂2

xϕ(L)ψ(0) + (|β|2 − |β|)ψ(0)2
]

=
1
2
(M∗η∗, η∗)R2 ,

where

η∗ =
[

∂2
xϕ(L)

ψ(0)

]

and M∗ =
[

α2 − 1 + |β| α|β|
α|β| β2 − |β|

]

. (2.6)

Now, let us check that M and M∗ are negative definite. For this, we will use the following lemma:

Lemma 2.2. Let M = (mij)i,j ∈ M2×2(R) be a symmetric matrix. If m11 < 0 and det(M) > 0, then M
is negative definite.

Proof. It is sufficient to note that for all u = (x y) 
= (0 0), we have

uMu� =m11x
2 + 2xym12 + m22y

2 = m11

(

x +
m12

m11
y

)2

+
(

m11m22 − m2
12

m11

)

y2 < 0,

which completes the proof. �

Now, we are in position to finish the proof of Proposition 2.1. From (2.5), (2.6) and the condition
(1.4), we see that m11 = m∗

11 = α2 − 1 + |β| < 0 and

det M = det M∗ = |β|((|β| − 1)2 − α2) > 0,

where M = (mij)i,j∈{1,2} and M∗ = (m∗
i,j)i,j∈{1,2}. Therefore, by virtue of Lemma 2.2, it follows that M

and M∗ are negative definite and hence both A and A∗ are dissipative in view of (2.4) and (2.6).
Finally, since A and A∗ are densely defined closed linear operators and both A and A∗ are dissipative,

one can use the semigroups theory of linear operators [36] to claim that A is a generator of a C0–semigroups
of contractions on H, together with the statements of Proposition 2.1. �

Remark 2.3. It is important to point out that considering α = β = 0 or α 
= 0 and β = 0, the well
posedness of (2.1) is easily obtained. Indeed, if α = β = 0, the result follows from [2, Lemma 2.1]. In the
case when α 
= 0 and β = 0, we have Au = −a∂x − b∂3

xu + ∂5
xu with domain

D(A) = {u ∈ H5(0, L) : u(0) = u(L) = ∂xu(0) = ∂xu(L) = 0, ∂2
xu(L) = α∂2

xu(0)}.

One can see that A∗v = a∂xv + b∂3
xv − ∂5

xv with domain

D(A∗) = {v ∈ H5(0, L) : v(0) = v(L) = ∂xv(0) = ∂xv(L) = 0, ∂2
xv(0) = α∂2

xv(L)},

and we easily verify that

(Au, u)L2(0,L) =
(α2 − 1)

2
(∂2

xu(0))2 and (A∗v, v)L2(0,L) =
(α2 − 1)

2
(∂2

xv(L))2,

so in this case, it is necessary to take |α| < 1 in order to obtain the well-posedness result.

2.2. Regularity estimates: linear system

In the sequel, let {S(t)}t≥0 be the semigroup of contractions for the operator A. We have some a priori
estimates and regularity estimates for the linear systems (2.1) and (2.2).
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Proposition 2.4. Suppose that (1.4) holds. Then, the application

S : H −→ X(QT ) × C(0, T ;L2(0, 1))
(u0, z0(−h(·))) �−→ S(·)(u0, z0(−h(·))) (2.7)

is well-defined and continuous. Moreover, for every (u0(·), z0(−h(·))) ∈ H, we have

(∂2
xu(·, 0), z(·, 1)) ∈ L2(0, T ) × L2(0, T )

and the following estimates hold:

‖∂2
xu(·, 0)‖2L2(0,T ) + ‖z(·, 1)‖2L2(0,T ) ≤ C

(
‖u0‖2L2(0,L) + ‖z0(−h(·))‖2L2(0,1)

)
, (2.8)

‖u0‖2L2(0,L) ≤ 1
T

‖u‖2L2(0,T ;L2(0,L)) + ‖∂2
xu(·, 0)‖2L2(0,T ), (2.9)

and

‖z0(−h(·))‖2L2(0,1) ≤ ‖z(T, ·)‖2L2(0,1) +
1
h

‖z(·, 1)‖2L2(0,T ), (2.10)

for some constant C > 0 that may depend of a, b, α, β, L, T and h.

Proof. We split the proof into several steps.
Step 1 Main identities.

For every (u0, z0(−h(·))) ∈ H, the semigroups theory gives that

S(·)(u0, z0(−h(·))) ∈ C(0, T ;H),

and due to the fact that A generates a C0-semigroup of contractions, we have that

‖u(t)‖2L2(0,L) + h|β|‖z(t)‖2L2(0,1) ≤ ‖u0‖2L2(0,L) + h|β|‖z0(−h(·))‖2L2(0,1),∀t ∈ [0, T ]. (2.11)

Now, let φ ∈ C∞([0, 1] × [0, T ]), ψ ∈ C∞([0, L] × [0, T ]) and (u, z) ∈ D(A). Then, multiplying (2.2) by
φz and (2.1) by ψu, using integrations by parts and the initial conditions, we have

1∫

0

[φ(T, ρ)z(T, ρ)2 − φ(0, ρ)z0(−hρ)2]dρ − 1
h

T∫

0

1∫

0

[h∂tφ(t, ρ) + ∂ρφ(t, ρ)]z(t, ρ)2dρdt

+
1
h

T∫

0

[φ(t, 1)z(t, 1)2 − φ(t, 0)(∂2
xu(t, 0))2]dt = 0 (2.12)

and

−
T∫

0

L∫

0

[∂tψ(t, x) + a∂xψ(t, x) + b∂3
xψ(t, x) − ∂5

xψ(t, x)]u2(t, x)dxdt

+ 3b

T∫

0

L∫

0

∂xψ(t, x)(∂xu(t, x))2dxdt +

L∫

0

[ψ(T, x)u2(T, x) − ψ(0, x)u0(x)2]dx

+ 5

T∫

0

L∫

0

[∂xψ(t, x)(∂2
xu(t, x))2 − ∂3

xψ(t, x)(∂xu(t, x))2]dxdt

−
T∫

0

ψ(t, L)[α∂2
xu(t, 0) + βz(t, 1)]2dt +

T∫

0

ψ(t, 0)(∂2
xu(t, 0))2dt = 0. (2.13)

Step 2 Proof of (2.8).
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Let us pick φ(t, ρ) = ρ in (2.12) to get

1∫

0

(z(T, ρ)2 − z0(−ρh)2)ρdρ − 1
h

T∫

0

1∫

0

z(t, ρ)2dρdt +
1
h

T∫

0

z(t, 1)2dt = 0.

Owing to (2.11), the latter gives

‖z(·, 1)‖2L2(0,T ) ≤ (T + 1)
(

1 +
1

h|β|

)(

‖u0‖2L2(0,L) + ‖z0(−h(·))‖2L2(0,1)

)

. (2.14)

Now, choosing ψ(t, x) = 1 in (2.13) yields

L∫

0

[u2(t, x) − u0(x)2]dx +

T∫

0

(∂2
xu(t, 0))2dt −

T∫

0

[α∂2
xu(t, 0)2 + βz(t, 1)]2dx = 0,

which implies

T∫

0

(∂2
xu(t, 0))2dt ≤

T∫

0

(α∂2
xu(t, 0) + βz(t, 1))2dt + ‖u0‖2L2(0,L). (2.15)

Since

(α∂2
xu(t, 0) + βz(t, 1))2 ≤ (α2 + β2)((∂2

xu(t, 0))2 + (z(t, 1))2), (2.16)

it follows from (2.15) and (2.16) that

T∫

0

(
1 − (α2 + β2)

)
(∂2

xu(t, 0))2dt ≤
T∫

0

(α2 + β2)z(t, 1)2dt + ‖u0‖2L2(0,L).

In view of (2.14) and (1.4), the last estimate yields

‖∂2
xu(·, 0)‖2L2(0,T ) ≤ (T + 1)

1
1 − (α2 + β2)

(

1 +
1

h|β|

)(

‖u0‖2L2(0,L) + ‖z(−h(·)))‖2L2(0,1)

)

. (2.17)

Combining (2.17) and (2.14), the estimate (2.8) follows.
Step 3 The map (2.7) is well-defined and continuous.

Letting ψ(t, x) = x in (2.13) gives

−a

T∫

0

L∫

0

u2(t, x)dxdt + 3b

T∫

0

L∫

0

(∂xu(t, x))2dxdt + 5

T∫

0

L∫

0

(∂2
xu(t, x))2dxdt

+

L∫

0

x[u2(T, x) − u0(x)2]dx − L

T∫

0

[α∂2
xu(t, 0) + βz(t, 1)]2dt = 0.

which implies, using (2.11) and (2.16), that

3b

T∫

0

L∫

0

(∂xu(t, x))2dxdt+5

T∫

0

L∫

0

(∂2
xu(t, x))2dxdt ≤ a

(
‖u0‖2L2(0,L) + h|β|‖z0(−h(·))‖2L2(0,1)

)

+ L‖u0‖2L2(0,L) + L(α2 + β2)
(
‖∂2

xu(·, 0)‖2L2(0,T ) + ‖z(·, 1)‖2L2(0,T )

)
.
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In light of (2.8), we deduce that

‖∂xu‖2L2(0,T ;L2(0,L)) + ‖∂xxu‖2L2(0,T,L2(0,L)) ≤ a

min{3b, 5}
(
‖u0‖2L2(0,L) + h|β|‖z0(−h(·))‖2L2(0,1)

)

+ (T + 1)
2 − (α2 + β2)
1 − (α2 + β2)

(

1 +
1

h|β|

)
L

min{3b, 5} (α2 + β2)

×
(
‖u0‖2L2(0,L) + ‖z0(−h(·))‖2L2(0,1)

)
+

L

min{3b, 5}‖u0‖2L2(0,L)

≤C0(T + 1)
(
‖u0‖2L2(0,L) + ‖z0(−h(·))‖2L2(0,1)

)
, (2.18)

where

C0 = max
{

a

min{3b, 5} ,
a

min{3b, 5} |β|h,

(
2 − (α2 + β2)
1 − (α2 + β2)

(

1 +
1

h|β|

)
L

min{3b, 5} (α2 + β2)
)}

.

Combining (2.18) and (2.11), we obtain the desired result.
Step 4 Proof of (2.9) and (2.10).

In order to show these inequalities, choose ψ = T − t in (2.13) and φ(t, ρ) = 1 in (2.12), respectively.
Performing similar computations as we did in step 2, the result follows. Moreover, owing to the density
of D(A) in H, the proof of Proposition 2.4 is achieved. �

2.3. Well-posedness: linear system with a source term

Now, we consider the linear system with a source term
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tu(t, x) + a∂xu(t, x) + b∂3
xu(t, x) − ∂5

xu(t, x) = f(t, x), (t, x) ∈ R
+ × Ω,

u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = 0, t > 0,
∂2

xu(t, L) = α∂2
xu(t, 0) + β∂2

xu(t − h, 0), t > 0,
∂2

xu(t, 0) = z0(t), t > 0,
u(0, x) = u0(x), x ∈ Ω.

(2.19)

Then, we have the following result.

Proposition 2.5. Let |α| and |β| satisfying (1.4). For every (u0, z0) ∈ H and f ∈ L2(0, T ;L2(0, L)), there
exists a unique mild solution (u, ∂2

xu(t − h., 0)) ∈ X(QT ) × C(0, T ;L2(0, 1)) to (2.19). Moreover, there
exists a constant C > 0 such that

‖(u, z)‖C(0,T ;H) ≤ C

(

‖(u0, z0(−h(·)))‖H + ‖f‖L1(0,T ;L2(0,L))

)

(2.20)

and

‖∂2
xu‖2L2(0,T ;L2(0,L)) ≤ C

(

‖(u0, z0(−h(·)))‖2H + ‖f‖2L1(0,T ;L2(0,L))

)

. (2.21)

Proof. This proof is analogous to that of [3, Proposition 2] and hence we omit it. �

2.4. Well-posedness of the nonlinear system (1.2) and (1.3)

Let us now prove that system (1.2) and (1.3) is well-posed. To do so, we first deal with the properties of
the nonlinearities through the following lemma.
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Lemma 2.6. Let u ∈ L2(0, T ;H2(0, L)) = L2(H2). Then, u∂xu and u2∂xu belong to L1(0, T ;L2(0, L)).
Besides, there exist positives constants C0 and C1, depending of L, such that for every u, v ∈ L2(0, T ;
H2(0, L)), one has

T∫

0

‖u∂xu − v∂xv‖L2(0,L)dt ≤ C0(‖u‖L2(H2) + ‖v‖L2(H2))‖u − v‖L2(H2) (2.22)

and
T∫

0

‖u2∂xu − v2∂xv‖L2(0,L)dt ≤ C0(1 + T
1
2 )

(
‖u‖2X(QT ) + ‖v‖2X(QT )

)
‖u − v‖X(QT ). (2.23)

Proof. Observe that (2.22) follows from [42, Lemma 2.1, p. 106]. Concerning (2.23), note that

sup
x∈(0,L)

|u(x)2| ≤ ‖u‖2L2(0,L) + ‖u‖L2(0,L)‖∂xu‖L2(0,L),

for u ∈ H1(0, L). Let u, z ∈ X(QT ), then

‖u2(∂xu − ∂xv)‖L1(0,T ;L2(0,L)) =

T∫

0

‖u(t, ·)‖2L∞(0,L)‖(∂xu − ∂xv)(t, ·)‖L2(0,L)dt

≤ T
1
2 ‖u‖2L∞(0,T ;L2(0,L))‖u − v‖L2(0,T ;H2(0,L))

+ ‖u‖L∞(0,T ;L2(0,L))‖u‖L2(0,T ;H2(0,L))‖u − v‖L2(0,T ;H2(0,L)).

On the other hand, we have

‖(u2 − v2)∂xv‖L1(0,T ;L2(0,L)) =

T∫

0

⎛

⎝

L∫

0

|u + v|2|u − v|2|∂xv|2dx

⎞

⎠

1
2

dt

≤
T∫

0

⎛

⎝‖(u + v)(t, ·)‖2L∞(0,L)‖(u − v)(t, ·)‖2L∞(0,L)

L∫

0

|∂xv|2dx

⎞

⎠

1
2

dt

=

T∫

0

‖(u + v)(t, ·)‖L∞(0,L)‖(u − v)(t, ·)‖L∞(0,L)‖∂xv(t, ·)‖L2(0,L)dt.

Now, observe that
‖(u + v)(t, ·)‖L∞(0,L)‖(u − v)(t, ·)‖L∞(0,L)

≤
(
‖(u + v)(t, ·)‖L2(0,L) + ‖(u + v)(t, ·)‖

1
2
L2(0,L)‖(∂xu + ∂xv)(t, ·)‖

1
2
L2(0,L)

)

×
(
‖(u − v)(t, ·)‖L2(0,L) + ‖(u − v)(t, ·)‖

1
2
L2(0,L)‖(∂xu − ∂xv)(t, ·)‖

1
2
L2(0,L)

)

≤ ‖(u + v)(t, ·)‖L2(0,L)‖(u − v)(t, ·)‖L2(0,L) + ‖(u + v)(t, ·)‖L2(0,L)‖(u − v)(t, ·)‖L2(0,L)

+ ‖(u + v)(t, ·)‖L2(0,L)‖(∂xu − ∂xv)(t, ·)‖L2(0,L) + ‖(u − v)(t, ·)‖L2(0,L)‖(u + v)(t, ·)‖L2(0,L)

+ ‖(u − v)(t, ·)‖L2(0,L)‖(∂xu + ∂xv)(t, ·)‖L2(0,L) + ‖(u + v)(t, ·)‖L2(0,L)‖(∂xu − ∂xv)(t, ·)‖L2(0,L)

+ ‖(∂xu + ∂xv)(t, ·)‖L2(0,L)‖(u − v)(t, ·)‖L2(0,L).

Hence,

‖u2∂xu − v2∂xv‖L1(0,T ;L2(0,L)) ≤ (1 + T
1
2 )

(
‖u‖2X(QT ) + ‖v‖2X(QT )

)
‖u − v‖X(QT ),
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and thus (2.23) is proved. �

Note that the arguments used for the proof of Proposition 2.1, one can show after a simple calculation
that the energy E defined by (1.5) is decreasing, that is,

E′(t) = (Mη(t), η(t))R2 ≤ 0, t > 0, (2.24)

where M and η are defined by (2.5). Combining this fact with Lemma 2.6 and Proposition 2.5, one can
use a classical fixed-point argument (see, for instance, [2]) to obtain the following well-posedness result.

Theorem 2.7. Let L > 0, a, b > 0 and α, β ∈ R satisfying (1.4). Assume p ∈ [1, 2] and h > 0. If
u0 ∈ L2(0, L) and z0 ∈ L2(0, 1) are sufficient small, then system (1.2) and (1.3) admits a unique solution
u ∈ X(QT ).

3. A stabilization result via Lyapunov approach

This part of the work aims to prove our first main result presented in Theorem 1.1. Precisely, we will
prove the case p = 2, that is, when the nonlinearity takes the form u2∂xu. The case u∂xu can be shown
similarly, therefore, we will omit its proof.

Proof of Theorem 1.1. First, we choose the following Lyapunov functional:

V (t) = E(t) + μ1V1(t) + μ2V2(t).

Here, μ1, μ2 ∈ (0, 1), V1 is defined by

V1(t) =

L∫

0

xu2(t, x)dx (3.1)

and V2 is given by

V2(t) = h

1∫

0

(1 − ρ)(∂2
xu(t − hρ, 0))2dρ,

for any regular solution of (1.2) and (1.3). Clearly, we have the following

E(t) ≤ V (t), (3.2)

for all t ≥ 0. On the other hand, we have

μ1V1(t) + μ2V2(t) = μ1

L∫

0

xu2(t, x)dx + hμ2

1∫

0

(1 − ρ)(∂2
xu(t − hρ, 0))2dρ

≤ μ1L

L∫

0

u2(t, x)dx + μ2
h

|β| |β|
1∫

0

(1 − ρ)(∂2
xu(t − hρ, 0))2dρ

≤ max
{

μ1L,
μ2

|β|

}

E(t),

that is,

E(t) ≤ V (t) ≤
(

1 + max
{

μ1L,
μ2

|β|

})

E(t), (3.3)

for all t ≥ 0.
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Now, consider a sufficiently regular solution u of (1.2) and (1.3). Differentiating V1(t), using integration
by parts and the boundary conditions of (1.2) and (1.3), it follows that

d

dt
V1(t) = −2

L∫

0

xu(t, x)
[
a∂xu + b∂3

xu − ∂5
xu + u2∂xu

]
(t, x)dx

= a

L∫

0

u2(t, x)dx − 3b

L∫

0

(∂xu(t, x))2dx − 5

L∫

0

(∂2
xu(t, x))2dx +

1
2

L∫

0

u4(t, x)dx

+ L

[

α2(∂2
xu(t, 0))2 + 2αβ∂2

xu(t, 0)∂2
xu(t − h, 0) + β2(∂2

xu(t − h, 0))2
]

. (3.4)

Similarly, in view of (2.2), we have

d

dt
V2(t) = 2h

1∫

0

(1 − ρ)∂2
xu(t − ρh, 0)

d

dt
∂2

xu(t − ρh, 0)dρ

= ∂2
xu(t, 0)2 −

1∫

0

(∂2
xu(t − ρh, 0))2dρ. (3.5)

Consequently, (3.4) and (3.5) imply that for any λ > 0

d
dt

V (t) + 2λV (t) =
(

α2 − 1 + |β| + Lμ1α
2 + μ2

)

(∂2
xu(t, 0))2 +

(

β2 − |β| + Lμ1β
2

)

(∂2
xu(t − h, 0))2

+ 2αβ

(

1 + Lμ1

)

∂2
xu(t, 0)∂2

xu(t − h, 0) + (2λh|β| − μ2)

1∫

0

(∂2
xu(t − ρh, 0))2dρ

+ 2λμ2h

1∫

0

(1 − ρ)(∂2
xu(t − ρh, 0))2dρ + 2λμ1

L∫

0

xu2(t, x)dx +
μ1

2

L∫

0

u4(t, x)dx

+ (μ1a + 2λ)

L∫

0

u2(t, x)dx − 3bμ1

L∫

0

(∂xu(t, x))2dx − 5μ1

L∫

0

(∂2
xu(t, x))2dx,

or equivalently, by reorganizing the terms

d
dt

V (t) + 2λV (t) ≤
(
Mμ2

μ1
η(t), η(t)

)

R2 − 3bμ1

L∫

0

(∂xu(t, x))2dx − 5μ1

L∫

0

(∂2
xu(t, x))2dx

+
(
2λh(μ2 + |β|) − μ2

)
1∫

0

(∂2
xu(t − ρh, 0))2dρ

+
(
μ1a + 2λ(1 + Lμ1)

)
L∫

0

u2(t, x)dx +
μ1

2

L∫

0

u4(t, x)dx, (3.6)

where η(t) = (∂2
xu(t, 0), ∂2

xu(t − h, 0)) and

Mμ2
μ1

=
[

(1 + Lμ1)α2 − 1 + |β| + μ2 αβ(1 + Lμ1)
αβ(1 + Lμ1) β2 − |β| + Lμ1β

2

]

.
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Observe that

Mμ2
μ1

= M + Lμ1

[
α2 αβ
αβ β2

]

+ μ2

[
1 0
0 0

]

,

where M is defined by (2.5). Since M is negative definite (see the proof of Proposition 2.1 and by virtue
of the continuity of the determinant and the trace, one can claim that for μ1 and μ2 > 0 small enough,
the matric Mμ2

μ1
can also be made negative definite.

Finally, taking into account μ1 and μ2 > 0 are small enough and using Poincaré inequality2, we find

d
dt

V (t) + 2λV (t) ≤
(
2λh(μ2 + |β|) − μ2

)
1∫

0

(∂2
xu(t − ρh, 0))2dρ

−5μ1

L∫

0

(∂2
xu(t, x))2dx +

μ1

2

L∫

0

u4(t, x)dx

+
(

L2

π2
(μ1a + 2λ(1 + Lμ1)) − 3bμ1

) L∫

0

(∂xu2(t, x))2dx. (3.7)

Additionally, applying Cauchy–Schwarz inequality and using the facts that the energy E defined by (1.5)
is nonincreasing, together with H1

0 (0, L) ↪→ L∞(0, L), we have

μ1

2

L∫

0

u4(t, x)dx ≤ μ1

2
‖u(t, ·)‖2L∞(0,L)

L∫

0

u2(t, x)dx

≤ μ1

2
L‖∂xu(t, ·)‖2L2(0,L)‖u(t, x)‖2L2(0,L)

≤ Lμ1

2
(
‖u0‖2L2(0,L) + h|β|‖z0(−h(·))‖2L2(0,1)

)
‖∂xu(t, ·)‖2L2(0,L)

≤ Lμ1

2
‖(u0, z0)‖2H‖∂xu(t, ·)‖2L2(0,L) ≤ r2

Lμ1

2
‖∂xu(t, ·)‖2L2(0,L). (3.8)

Combining (3.7) and (3.8) yields
d
dt

V (t) + 2λV (t) ≤ Ξ‖∂2
xu(t, x)‖2L2(0,L) +

(
2λh(μ2 + |β|) − μ2

)
‖∂2

xu(t − ρh, 0)‖2L2(0,1), (3.9)

where

Ξ =
Lμ1

2
r2 +

L2

π2

(
μ1a + 2λ(1 + Lμ1)

)
− 3bμ1.

In view of the constraint (1.7) on the length L, one can choose r small enough to get

0 < r <
2
π

√
3bπ2 − L2a

L
.

Then, we pick λ > 0 such that (1.9) holds to ensure that
d
dt

V (t) + 2λV (t) ≤ 0, (3.10)

for all t > 0. Therefore, integrating (3.10) over (0, t), and thanks to (3.2) and (3.3), yields that

E(t) ≤
(

1 + max
{

μ1L,
μ2

|β|

})

E(0)e−2λt, (3.11)

2‖u‖2
L2(0,L)

≤ L2

π2 ‖∂xu‖L2(0,L) for u ∈ H2
0 (0, L).



   16 Page 16 of 26 R. de A. Capistrano-Filho et al. ZAMP

for all t > 0, which completes the proof. �

4. Second stability result via compactness-uniqueness argument

The second part of this manuscript is devoted to the proof of another stability result of (1.2) and (1.3)
stated in Theorem 1.2. To be more precise, we shall show a generic exponential stability result of the
solutions to (1.2) and (1.3) by attempting to study the phenomenon of critical lengths of the system.

4.1. Stability of the linear system

We first prove that the following observability inequality ensures that the linear system (2.1) is exponen-
tially stable.

Proposition 4.1. Assume that α and β satisfies (1.4) and L > 0. Thus, there exists a constant C > 0,
such that for all (u0, z0) ∈ H

L∫

0

u2
0(x)dx + |β|h

1∫

0

z20(−hρ)dρ≤C

T∫

0

(
(∂2

xu(0, t))2 + z2(1, t)
)
dt (4.1)

where (u, z) = S(.) (u0, z0(−h·)) is the solution of the system (2.1) and (2.2).

Indeed, if (4.1) is true, we get

E(T ) − E(0) ≤ −E(0)
C

⇒ E(T ) ≤ E(0) − E(0)
C

≤ E(0) − E(T )
C

,

where E(t) is defined by (1.5). Thus,

E(T ) ≤ γE(0), where γ =
C

1 + C
< 1. (4.2)

Now, the same argument used on the interval [(m − 1)T,mT ] for m = 1, 2, . . . yields that

E(mT ) ≤ γE((m − 1)T ) ≤ · · · ≤ γmE(0).

Thus, we have

E(mT ) ≤ e−νmT E(0) with ν =
1
T

ln
(

1 +
1
C

)

> 0.

For an arbitrary positive t, there exists m ∈ N
∗ such that (m− 1)T < t ≤ mT , and by the non-increasing

property of the energy, we conclude that

E(t) ≤ E((m − 1)T ) ≤ e−ν(m−1)T E(0) ≤ 1
γ

e−νtE(0),

showing the exponential stability result for the linear system.
For sake of clarity, the proof of Proposition 4.1 will be achieved by steps. Moreover, to be simple and

without loss of generality, we will take a = b = 1.
Step 1: Compactness–uniqueness argument

We argue by contradiction. Suppose that (4.1) does not hold and hence there exists a sequence
((un

0 , zn
0 (−h·)))n ⊂ H such that

L∫

0

(un
0 )2 (x)dx + |β|h

1∫

0

(zn
0 )2 (−hρ)dρ = 1 (4.3)
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and
∥
∥∂2

xun(0, .)
∥
∥2

L2(0,T )
+ ‖zn(1, .)‖2L2(0,T ) → 0 as n → +∞, (4.4)

where (un, zn) = S (un
0 , zn

0 (−h·)).
Owing to Proposition 2.1, (un)n is a bounded sequence in L2

(
0, T,H2(0, L)

)
, and consequently

∂tu
n = −∂xun − ∂3

xun + ∂5
xu is bounded in L2

(
0, T,H−3(0, L)

)
.

Thanks to a result of [39], (un)n is relatively compact in L2
(
0, T, L2(0, L)

)
and we may assume that

(un)n is convergent in L2
(
0, T, L2(0, L)

)
. Moreover, using (2.9) and (4.4), we have that (un

0 )n is a Cauchy
sequence in L2(0, L).

Claim 1. If T > h, then (zn
0 (−h·))n is a Cauchy sequence in L2(0, 1).

In fact, since zn(ρ, T ) = un
xx(0, T − ρh), if T > h, we have

1∫

0

(zn(ρ, T ))2 dρ =

1∫

0

(
∂2

xun(0, T − ρh)
)2

dρ ≤ 1
h

T∫

0

(
∂2

xun(0, t)
)2

dt.

Using (2.10), for T > h yields that

‖zn
0 (−h·)‖2L2(0,1) ≤ 1

h

∥
∥∂2

xun(0, ·)
∥
∥2

L2(0,T )
+

1
h

‖zn(1, ·)‖2L2(0,T ) .

Thus, (zn
0 (−h·))n is a Cauchy sequence in L2(0, 1) by means of (4.4) and hence the Claim 1 is ascertained.

Now, let us pick (u0, z0(−h·)) = limn→∞ (un
0 , zn

0 (−h·)) in H. This, together with (4.3), yields that
L∫

0

u2
0(x)dx + |β|h

1∫

0

z20(−hρ)dρ = 1.

Furthermore, let (u, z) = S(·) (u0, z0(−h·)) , which implies, thanks to Proposition 2.1, that
(
∂2

xu(0, ·), z(1, ·)
)

= lim
n→∞

(
∂2

xun(0, ·), zn(1, ·)
)

in L2(0, T ). Combining the latter with (4.4) gives
(
∂2

xu(0, ·), z(1, .)
)

= 0. As we have z(1, t) = ∂2
xu(0,

t − h) = 0, we deduce that z0 = 0 and z = 0. Consequently, u is solution of
⎧
⎨

⎩

∂tu+∂xu + ∂3
xu − ∂5

xu = 0, x ∈ (0, L), t > 0,
u(0, t) = u(L, t) = ∂xu(L, t) = ∂xu(0, t) = ∂2

xu(L, t) = ∂2
xu(0, t) = 0, t > 0,

u(x, 0) = u0(x), x ∈ (0, L),
(4.5)

with

‖u0‖L2(0,L) = 1. (4.6)

Step 2: Reduction to a spectral problem

Lemma 4.2. For any T > 0, let NT denote the space of the initial state u0 ∈ L2(0, L), such that the
solution of the Kawahara system u(t) = S(t)u0 satisfies (4.5). Then, NT = {0}.
Proof. We argue as in [38, Theorem 3.7]. If NT 
= {0}, then the map u0 ∈ CNT → A (NT ) ⊂ CNT

(CNT denotes the complexification of NT ) has (at least) one eigenvalue. Hence, there exists a pair
(λ, u0) ∈ C × H5(0, L)\{0} such that

{
λu0 + u′

0 + u′′′
0 − u′′′′′

0 = 0, in (0, L),
u0(0) = u0(L) = u′

0(0) = u′
0(L) = u′′

0(0) = u′′
0(L) = 0.

To obtain the contradiction, it remains to prove that such a pair (λ, u0) does not exist. This will be done
in the next step. �



   16 Page 18 of 26 R. de A. Capistrano-Filho et al. ZAMP

Step 3: Möbius transformation
To simplify the notation, henceforth, we denote u0 := u. Moreover, the notation {0, L} means that

the function is applied to 0 and L, respectively.

Lemma 4.3. Let L > 0 and consider the assertion

(N ) : ∃λ ∈ C,∃u ∈ H2
0 (0, L) ∩ H5(0, L) such that

{
λu + u′ + u′′′ − u′′′′′ = 0, on (0, L),
u(x) = u′(x) = u′′(x) = 0, in {0, L}.

If (λ, u) ∈ C × H2
0 (0, L) ∩ H5(0, L) is a solution of (N ), then u = 0.

Proof. Consider the following system:
{

λu + u′ + u′′′ − u′′′′′ = 0, on (0, L),
u(x) = u′(x) = u′′(x) = 0, in {0, L}.

(4.7)

Multiplying equation (4.7) by u and integrating in [0, L], we have that λ is purely imaginary, i.e., λ = ir,
for r ∈ R. Now, extending the function u to R by setting u = 0 for x 
∈ [0, L], we have that the extended
function satisfies

λu + u′ + u′′′ − u′′′′′ = −u′′′′(0)δ
′
0 + u′′′′(L)δ

′
L − u′′′(0)δ0 + u′′′(L)δL,

in S ′(R), where δζ denotes the Dirac measure at x = ζ and the derivatives u′′′′(0), u′′′′(L), u′′′(0) and
u′′′(L) are those of the function u when restricted to [0, L]. Taking the Fourier transform of each term in
the above system and integrating by parts, we obtain

λû(ξ) + iξû(ξ) + (iξ)3û(ξ) − (iξ)5û(ξ) = −(iξ)u′′′(0) + (iξ)u′′′(L)e−iLξ − u′′′′(0) + u′′′′(L)e−iLξ.

Take λ = −ir and let fα(ξ, L) = iû(ξ). The latter gives

fα(ξ, L) =
Nα(ξ, L)

q(ξ)
,

where Nα(·, L) is defined by

Nα(ξ, L) = α1iξ − α2iξe
−iξL + α3 − α4e

−iξL (4.8)

and

q(ξ) = ξ5 + ξ3 − ξ + r,

where αi, for i = 1, 2, 3, 4, are the traces of u′′′ and u′′′′.
For each r ∈ R and α ∈ C

4 \ {0}, let Fαr be the set of L > 0 values, for which the function fα(·, L) is
entire. Now, let us recall the equivalent following statements:
A1 fα(·, L) is entire;
A2 All zeros, taking the respective multiplicities into account, of the polynomial q are zeros of Nα(·, L);
A3 The maximal domain of fα(·, L) is C.

Whereupon, the function fα(·, L) is entire, due to the equivalence between statement A1 and A2, if the
following holds

α1iξi + α3

α2iξi + α4
= e−iLξi ,

where ξi denotes the zeros of q(ξ), for i = 1, 2, 3, 4, 5. Thereafter, let us define, for α ∈ C
4 \ {0}, the

following discriminant

d(α) = α1α3 − α2α4. (4.9)

Then, for α ∈ C
4 \ {0}, such that d(α) 
= 0 the Möbius transformations can be introduced by

M(ξi) = e−iLξi , (4.10)
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for each zero ξi of the polynomial q(ξ).

The next claim describes the behavior of the roots of polynomial q(·):

Claim 2. The polynomial q(·) has exactly one real root with multiplicity 1 and two pairs of complex
conjugate roots.

Indeed, we suppose that r 
= 0 (the case r = 0 will be discussed later). Note that the derivative of q
is given by

q′(ξ) = 5ξ4 + 3ξ2 − 1,

and its zeros are ±z1 and ±z2, where

z1 =

√

−3 −
√

29
10

and z2 =

√

−3 +
√

29
10

.

It is easy to see that z1 belongs to C \ R and z2 belongs to R. Hence, the polynomial q(·) does not have
critical points, which means that q(·) has exactly one real root. Suppose that ξ0 ∈ R is the root of q(·)
with multiplicity m ≤ 5. Consequently,

q(ξ0) = q′(ξ0) = ... = q(m−1)(ξ0) = 0.

Consider the following cases:

(i) If ξ0 has multiplicity 5, it follows that q(ξ0) = 0 and q′′′′(ξ0) = −120ξ0 = 0, implying that ξ0 = 0
and r = 0.

(ii) If ξ0 has multiplicity 4, it follows that q′′′(ξ0) = 60ξ20 + 6 = 0 and thus ξ0 ∈ iR.
(iii) If ξ0 has multiplicity 3, it follows that q(ξ0) = 0 and q′′(ξ0) = 20ξ30 + 6ξ0 = 0 and hence ξ0 = 0 and

r = 0 or ξ0 ∈ iR.
(iv) If ξ0 has multiplicity 2, it follows that q′(ξ0) = 5ξ40 + 3ξ2 − 1 = 0, implying that ξ0 ∈ C \ R.

Note that in all cases, since r 
= 0 and ξ0 ∈ R, we get a contradiction. Consequently, q(·) has exactly one
real root, with multiplicity 1. This means that this polynomial has two pairs of complex conjugate roots.

Now, we assume that r = 0. Then, we obtain that q(ξ) = ξ(ξ4 + ξ2 − 1), whose roots are 0,±ρ and
±k where

ρ =

√√
5 − 1
2

and k = i

√

1 +
√

5
2

(4.11)

Thus, q(·) has two pairs of complex conjugate roots and three real roots, proving Claim 2.
Further to Claim 2, and in order to conclude the proof of Lemma 4.3, we need two additional lemmas

whose proofs are given in [23] (see Lemmas 2.1 and 2.2).

Lemma 4.4. Let non null α ∈ C
4 with d(α) = 0 and L > 0 for d(α) defined in (4.9). Then, the set of the

imaginary parts of the zeros of Nα(·, L) in (4.8) has at most two elements.

Lemma 4.5. For any L > 0, there is no Möbius transformation M , such that

M(ξ) = e−iLξ, ξ ∈ {ξ1, ξ2, ξ̄1, ξ̄2},

with ξ1, ξ2, ξ̄1, ξ̄2 all distinct in C.

We are now in position to prove Lemma 4.3. Let us consider two cases:

(i) d(α) 
= 0;
(ii) d(α) = 0,
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where d(α) was defined in (4.9).
First, supposing that d(α) 
= 0, we can define the Möbius transformation. In fact, suppose by contra-

diction that there exists L > 0 such that the function fa(·, L) is entire. Then, all roots of the polynomial
q(·) must satisfy (4.10), i.e., there exists a Möbius transformation that takes each root ξ0 of q(·) into
e−iLξ0 . However, this contradicts Lemma 4.5 and proves that if (N ) holds, then Fαr = ∅ for all r ∈ R.
On the other hand, suppose that d(α) = 0 and note that by using claim 2, we can conclude that the set
of the imaginary parts of the polynomial q(·) has at least three elements, thus it follows from Lemma 4.4
that Fαr = ∅ for all r ∈ R. Note that in both cases, we have that Fαr = ∅, which implies that (N ) has
only the trivial solution for any L > 0, and the proof of Lemma 4.3 is archived. �
Proof of Proposition 4.1. Notice that (4.6) implies that the solution u cannot be identically zero. However,
from Lemma 4.2, one can conclude that u = 0, which drives us to a contradiction. �

4.2. Proof of theorem 1.2

Let us consider the nonlinear Kawahara system (1.2) and (1.3), with a small initial data ‖(u0, z0)‖H ≤ r,
where r will be chosen later. The solution u of (1.2) and (1.3), with p = 2, can be written as u = u1 +u2,
where u1 is the solution of

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tu1 − ∂5
xu1 + b∂3

xu1 + a∂xu1 = 0, x ∈ (0, L), t > 0,

u1(0, t) = u1(L, t) = ∂xu1(0, t) = ∂xu1(L, t) = 0, t > 0,

∂2
xu1(L, t) = α∂2

xu1(0, t) + β∂2
xu1(0, t − h), t > 0,

∂2
xu1(0, t) = z0(t), t ∈ (−h, 0),

u1(x, 0) = u0(x), x ∈ (0, L),

and u2 is solution of
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tu2 − ∂5
xu2 + b∂3

xu2 + a∂xu2 = −u2∂xu, x ∈ (0, L), t > 0,

u2(0, t) = u2(L, t) = ∂xu2(0, t) = ∂xu2(L, t) = 0, t > 0,

∂2
xu2(L, t) = α∂2

xu2(0, t) + β∂2
xu2(0, t − h), t ∈ (−h, 0),

∂2
xu2(0, t) = 0, x ∈ (0, L),

u2(x, 0) = 0, x ∈ (0, L),

Note that, in this case, u1 is the solution of (2.1) and (2.2) with the initial data (u0, z0) ∈ H and u2 is
solution of (2.19) with null data and right-hand side f = u2∂xu ∈ L1(0, T ;L2(0, L)), as in Lemma 2.6.

Now, thanks to (4.2), Proposition 2.5 and Lemma 2.6, we have that

‖(u(T ), z(T ))‖H ≤
∥
∥
(
u1(T ), z1(T )

)∥
∥

H
+

∥
∥
(
u2(T ), z2(T )

)∥
∥

H

≤γ ‖(u0, z0(−h·))‖H + C ‖upux‖L1(0,T,L2(0,L))

≤γ ‖(u0, z0(−h·))‖H + C‖u‖2L2(0,T,H2(0,L)),

(4.12)

with γ ∈ (0, 1). The goal now is to deal with the least term of the previous inequality. To this end, we
use the multipliers method. First, we multiply the first equation of (1.2) and (1.3) by xu and integrate
by parts to obtain

1
2

L∫

0

x|u(x, T )|2dx +
3b

2

T∫

0

L∫

0

|∂xu(x, t)|2 dxdt +
5
2

T∫

0

L∫

0

∣
∣∂2

xu(x, t)
∣
∣2 dxdt

=
1
a

T∫

0

L∫

0

|u(x, t)|2dxdt +
L

2

T∫

0

(∂2
xu(L, t))2dt +

1
2

L∫

0

x |u0(x)|2 dx +
1
4

T∫

0

L∫

0

|u|4 dxdt.
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Consequently, using the boundary conditions of (1.2), (1.3) and (2.24), we get

3b

T∫

0

L∫

0

|∂xu(x, t)|2 dxdt + 5

T∫

0

L∫

0

∣
∣∂2

xu(x, t)
∣
∣2 dxdt ≤ (aT + L) ‖(u0, z0)‖2H

+ L

T∫

0

(α∂2
xu(0, t) + βz(1, t))2dt +

1
2

T∫

0

L∫

0

|u|4 dxdt.

Note that Gagliardo–Nirenberg inequality ensures that

T∫

0

L∫

0

u4dxdt ≤ C

T∫

0

‖u‖3L2(0,L) ‖ux‖L2(0,L) dt

≤ C
1
2ε

T∫

0

‖u‖6L2(0,L)dt + C
ε

2

T∫

0

‖ux‖2L2(0,L) dt

≤ C(T )
1
2ε

‖u‖6L∞(0,T ;L2(0,L)) + C
ε

2
‖u‖2L2(0,T ;H2(0,L))

≤ C(T )
1
2ε

‖(u0, z0)‖6H + C
ε

2
‖u‖2L2(0,T ;H2(0,L)).

Putting together the previous inequalities, we have

3b

T∫

0

L∫

0

|∂xu(x, t)|2 dxdt + 5

T∫

0

L∫

0

∣
∣∂2

xu(x, t)
∣
∣2 dxdt ≤ (aT + L) ‖(u0, z0)‖2H

+ L

T∫

0

(α∂2
xu(0, t) + βz(1, t))2dt + C(T )

1
2ε

‖(u0, z0)‖6H + C
ε

2
‖u‖2L2(0,T ;H2(0,L)).

(4.13)

Now, multiplying the first equation of (1.2) by u and integrating by parts yields that

L∫

0

u2(x, T )dx −
L∫

0

u2
0(x)dx −

T∫

0

(αuxx(0, t) + βz(1, t))2 dt +

T∫

0

u2
x(0, t)dt = 0

Using the same idea as in the proof of (2.8), we have that

T∫

0

(∂2
xu)2(0, t)dt +

T∫

0

z2(1, t)dt ≤ C ‖(u0, z0)‖2H .

Consequently, the previous inequality gives

T∫

0

(
α∂2

xu(0, t) + βz(1, t)
)2

dt ≤ 2C
(
α2 + β2

)
‖(u0, z0)‖2H .

Thus, putting the previous inequality in (4.13), and choosing ε > 0 sufficiently small, there exists C > 0
such that

‖u‖2L2(0,T ;H2(0,L)) ≤ C
(
‖(u0, z0)‖2H + ‖(u0, z0)‖6H

)
. (4.14)
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Finally, gathering (4.12) and (4.14), there exists C > 0 such that the following holds true

‖(u(T ), z(T ))‖H ≤ ‖(u0, z0)‖H

(
γ + C ‖(u0, z0)‖H + C ‖(u0, z0)‖5H

)
,

which implies

‖(u(T ), z(T ))‖H ≤ ‖(u0, z0)‖H

(
γ + Cr + Cr5

)
.

Given ε > 0 small enough such that γ + ε < 1, we can take r small enough such that r + r5 < ε
C , in order

to have

‖(u(T ), z(T ))‖H ≤ (γ + ε) ‖(u0, z0)‖H ,

with γ + ε < 1. Theorem 1.2 follows using the semigroup property as in (4.2). �

5. Further comments and open problems

Our work presents a further step after the work [2] for a better understanding of the stabilization problem
for the Kawahara equation. Indeed, a boundary time-delayed damping control is proposed to stabilize the
equation in contrast to [2], where an interior damping is required and no delay is taken into consideration.
We conclude our paper with a few comments and also some open problems.

Remark 5.1. In what concerns our main results, Theorems 1.1 and 1.2, the following remarks are worth
mentioning:

• Note that the rate λ of the Theorem 1.1 decreases as the delay h increases, since we have the
restriction (1.9).

• A simple calculation shows that taking μ1, μ2 ∈ (0, 1) in Theorem 1.1 such that

μ2 < min
{

1 − |β| − α2,
(|β| − 1)2 − α2

1 − |β| ,
α2 − β2 + |β|

|β|

}

and

μ1 < min
{

1 − |β| − μ2 − α2

Lα2
,
(|β| − 1)2 − α2 − μ2(1 − |β|)

L(α2 − β2 + |β|(1 − μ2))

}

implies that Mμ2
μ1

is negative definite.
• Note that the presence of nonlinearity on the equation yields the restriction about the initial data.

Hence, if we remove it, that is, by considering the linear system, it is possible to obtain the same
result of the Theorem 1.1, with the same process. Nevertheless, the decay rate λ is given by

λ ≤ min
{

μ2

2h(μ2 + |β|) ,
3bπ2 − L2a

2L2(1 + Lμ1)

}

. (5.1)

• For sake of simplicity, we only considered in this article the nonlinearity u2ux. However, Theorems
1.1 and 1.2 are still valid for upux, p ∈ [1, 2), where the proof is very similar and hence omitted.

• Recently, Zhou [45] proved the well-posedness of the following initial boundary value problem
⎧
⎪⎪⎨

⎪⎪⎩

∂tu − ∂5
xu = c1u∂xuu + c2u

2∂xu + b1∂xu∂2
xu + b2u∂3

xu, x ∈ (0, L), t ∈ R
+,

u(t, 0) = h1(t), u(t, L) = h2(t), ∂xu(t, 0) = h3(t), t ∈ R
+,

∂xu(t, L) = h4(t), ∂2
xu(t, L) = h(t), t ∈ R

+,
u(0, x) = u0(x), x ∈ (0, L),

(5.2)

Thus, due to this result, when we consider b1 = b2 = 0 and the combination c1u∂xu + c2u
2∂xu

instead of up∂xu, for p ∈ [1, 2], in (1.2), the main results of our article remain valid.
• We point out that considering a = 0 in (1.2), Theorem 1.1 holds true. Additionally, no restriction

is necessary in the length L > 0, and also Theorem 1.2 is still verified (see, for instance, [9,42]).
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5.1. Open problems

Based on the outcomes of this paper on the dispersive Kawahara equation, some interesting open problems
appear.

5.1.1. Restriction of the Lyapunov approach. Observe that in our first result, Theorem 1.1, since the
outcome is based on the appropriate choice of Lyapunov functional, we have a restriction (1.7) on the
length L. This is due to the choice of the Morawetz multipliers x in the expression of V1 defined by (3.1).
Therefore, the following natural question arises.
Question A: Can we choose another Lyapunov functional, instead of the previous one to remove the
restriction over L?

5.1.2. Set of critical lengths. As observed in [2], considering the following initial boundary value problem
for the Kawahara equation

⎧
⎪⎨

⎪⎩

ut − ux + uxxx − uxxxxx = 0, x ∈ (0, L), t > 0
u(0, t) = u(L, t) = ux(L, t) = ux(0, t) = uxx(L, t) = 0, t > 0,

u(x, 0) = u0(x), x ∈ (0, L),
(5.3)

it is possible to construct a nontrivial steady-state solution to (5.3) with a nonzero initial datum u0(x) 
≡ 0
and homogeneous boundary conditions upon the endpoints of the interval with a critical length. Precisely,
when the authors considered the following constants

a =
√√

5 + 1/2, b =
√√

5 − 1/2, A = C2 + C3, B = C2 − C3

C2 = 1 − e−aL, C3 = eaL − 1, C1 = −
(

1 +
a2

b2

)

A, C4 =
a2

b2
A, C5 = −a

b
B,

they were able to define the set

N =

{

L > 0 : eibL =
(

C4 + iC5

|C4 + iC5|

)2
}

⊂ R
+

and

u(x) = C1 + C2e
ax + C3e

−ax + C4 cos(bx) + C5 sin(bx) 
≡ 0, x ∈ (0, L).

If L ∈ N , then u = u(x) solves −u′′′′′ +u′′′ +u′ = 0, and satisfies u(0) = u′(0) = u′′(0) = u(L) = u′(L) =
u′′(L) = 0.

So, in our context, if we consider a function Nα : C× (0,∞) → C, with α ∈ C
4 \{0}, whose restriction

Nα(·, L), given by (1.10), is entire for each L > 0 and a family of functions fα(·, L), defined by (1.11), in
its maximal domain, the following issue appears.
Question B: Is it possible to find a ∈ C

4 \ {0} such that the function fa(·, L) is an entire function?
Note that the proof of Theorem 1.2 heavily relies on a unique continuation property of the spectral

problem associated to the space operator (see Lemma 4.3). However, due to the structure of the terms ∂3
x

and ∂5
x (see Lemma 4.3), we are unable to study the spectral problem in a direct way as in [38]. Hence,

due to these two different dispersions of third and fifth order, we believe that a new approach is needed
to tackle the previous open question.
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