Teoria da Medida e Aplicações

Programa Institucional de Bolsas de Iniciação Científica (Pibic/UFPE/CNPq)

- Projeto: Teoria da Medida e Aplicações
- Orientador: Roberto de A. Capistrano Filho CPF: 008.167.044-30
- Instituição: Universidade Federal de Pernambuco, Campus: Recife.
- Centro: Centro de Ciências Exatas e da Natureza
- Departamento: Departamento de Matemática
- Bolsista: Mateus Ferreira de Melo CPF: 110.588.484-88
- Vigência do projeto: 01/08/2019 a 31/07/2020
- e-mail: capistranofilho@dmat.ufpe.br

RESUMO DO TRABALHO.

Este projeto visa apresentar ao Bolsista Mateus Ferreira de Melo, aluno de Bacharelado em Matemática da UFPE a Teoria da Medida e suas aplicações. Tal teoria foi desenvolvida no final do século 19 por Émile Borel, Henri Lebesgue, Johann Radon e Maurice Fréchet, entre outros; e é a base de assuntos como Teoria Ergódica, Integral de Lebesgue e Teoria da Probabilidade, de modo que o entendimento do aluno no assunto mostra-se útil para seu future acadêmico.

SUMÁRIO (índice)

Conteúdo

SUMÁRIO (índice)	1
OBJETIVOS (geral e específicos)	
METODOLOGIA DO TRABALHO	
RESULTADOS E DISCUSSÃO	
Funções Mensuráveis	
Medidas	
1'ICUIUUJ	

Integral	10
Funções Integráveis	16
Decomposição de Medidas	17
CONCLUSÕES	20
REFERÊNCIAS BIBLIOGRÁFICAS	20
DIFICULDADES ENCONTRADAS	21
ATIVIDADES PARALELAS DESENVOLVIDAS PELO ALUNO	21
INTRODUÇÃO(relevância do trabalho e revisão da literatura)	

Em análise matemática, uma medida é uma maneira sistemática de atribuir um número não negativo (ou ∞) a um subconjunto adequado de um dado conjunto, intuitivamente interpretado como seu tamanho. Neste sentido, uma medida é uma generalização do comprimento, área e volume. Relacionado a esta ideia, encontra-se a integral de Lebesgue, uma generalização da integral de Riemann estudada nos cursos de Cálculo.

A importância destes conceitos deriva do fato de ser uma grande ferramenta no estudo de áreas como Geometria, Teoria da Probabilidade, Teoria Ergódica, entre outras, de modo que o entendimento do aluno no assunto mostra-se útil para seu futuro acadêmico.

OBJETIVOS (geral e específicos)

Do ponto de vista científico, o objetivo deste projeto é o estudo de modelos matemáticos que possuem como representação uma Equação Diferencial Parcial (EDP). Contudo, para um entendimento preciso dessas equações alguns pontos básicos devem ser estudados pelo aluno. A teoria da medida é um ramo da matemática iniciado pelos trabalhos de Émile Borel, mas muito desenvolvido por matemáticos como Henri Lebesgue e Constantin Carathéodory. O problema da teoria da medida se divide basicamente em duas partes:

- Uma medida que associe a cada conjunto de uma família em um dado espaço um valor significativo do seu tamanho.
- Definir uma teoria de integração para as funções que tomam valores neste espaço.

Tal projeto não possui somente objetivos do ponto de vista científico. Do ponto de vista socioeconômico, a ideia do coordenador do projeto é acompanhar o aluno, desde o início da graduação, para consequentemente, ao final de seu curso, tentar compreender quais foram as dificuldades enfrentadas por ele e se este aluno está apto a ingressar em uma pós-graduação. Como, em Recife e região, temos um número baixo de alunos formados em matemática anualmente, a ideia do projeto é acompanhar o aluno bolsista até o final de seu bacharelado e com isso garantir que Recife e região possuam professors mais qualificados e aptos a atuarem em escolas públicas ou privadas, bem como em universidades públicas e privadas da região.

METODOLOGIA DO TRABALHO

Foram realizados seminários semanalmente, que foram discutidos baseando-se fortemente em [1] e [2]. Os demais livros foram usados como leitura complementar para o aluno. Uma apresentação sucinta dos principais temas abordados é:

- Funções mensuráveis, medidas e integral de Lebesgue;
- Lema de Fatou e Teorema da Convergência Monótona de Beppo Levi;
- Teorema da Convergência Dominada de Lebesgue;
- Decomposição de Medidas;

RESULTADOS E DISCUSSÃO

Funções Mensuráveis

Definição 1. A reta estendida é o conjunto $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$, onde os elementos $-\infty, \infty$ satisfazem, para todo $x \in \mathbb{R}$:

- 1) $-\infty < x < \infty$;
- 2) $x + \infty = \infty + x = \infty + \infty = \infty$;
- 3) $x \infty = -\infty + x = -\infty \infty = -\infty$;

4)
$$x \cdot (\pm \infty) = (\pm \infty) \cdot x = \begin{cases} \pm \infty, \sec x > 0; \\ 0, \sec x = 0; \\ \mp \infty, \sec x < 0; \end{cases}$$

- 5) $(\pm \infty) \cdot (\pm \infty) = + \infty$;
- 6) $(\pm \infty) \cdot (\mp \infty) = -\infty$;
- 7) $\frac{x}{+\infty} = 0;$

Note, porém que operações como $\infty - \infty$, $\frac{\infty}{\infty}$ não estão definidas em $\overline{\mathbb{R}}$.

Definição 2. Uma família \mathcal{A} de subconjuntos de um conjunto X é uma σ -álgebra quando

- (i) $\emptyset \in \mathcal{A}$;
- (ii) $A \in \mathcal{A} \Rightarrow X \setminus A \in \mathcal{A}$;
- (iii) Se (A_n) é uma sequência em \mathcal{A} , a união

$$\bigcup A_n$$

pertence a \mathcal{A} .

Um par (X, \mathcal{A}) é chamado *espaço mensurável*. Qualquer conjunto em \mathcal{A} é dito \mathcal{A} -mensurável (ou simplesmente mensurável, quando a σ -álgebra estiver subentendida).

Note que $X \in \mathcal{A}$ pois $X = X \setminus \emptyset$. Além disso, podemos mostrar que uma sequência (A_n) pertence à σ -álgebra \mathcal{A} , então $\bigcap A_n$ pertence a \mathcal{A} pois

$$X \backslash \bigcap A_n = \bigcup (X \backslash A_n) \in \mathcal{A}$$

Exemplos

- 1) Dado um conjunto X qualquer, então $\mathcal{P}(X)$ e $\{\emptyset, X\}$ são σ -álgebras.
- 2) Seja E uma coleção não vazia de subconjuntos de X. Existe a menor σ -álgebra que contém E (no sentido de inclusão). Para ver isto, note que a interseção de σ -álgebras é uma σ -álgebra. Então, sendo \mathcal{M} o conjunto

$$\mathcal{M} = \{ \mathcal{A}\sigma \text{-}\text{álgebra} | E \in \mathcal{A} \}$$

(que não é vazio, pois $\mathcal{P}(X) \in \mathcal{M}$), temos que $\bigcap \mathcal{M}$ é tal σ -álgebra, que é denominada σ -álgebra gerada por E.

3) Considerando a reta, seja

$$E = \{(a,b) | a,b \in \mathbb{R}\}$$

A σ -álgebra gerada por E é chamada de álgebra de Borel e denotada por \mathcal{B} .

No que se segue, fixaremos um espaço mensurável (X, \mathcal{A}) .

Definição 3. Uma função $f: X \to \mathbb{R}$ é dita \mathscr{A} -mensurável se, para cada $\alpha \in \mathbb{R}$ o conjunto

$$A_{\alpha} = \{x \in X \mid f(x) > \alpha\}$$

pertence a \mathcal{A} .

Lema 1. As afirmações abaixo são equivalentes para uma função $f: X \to \mathbb{R}$:

- (a) $\forall \alpha \in \mathbb{R}, A_{\alpha} = \{x \in X : f(x) > \alpha\} \in \mathcal{A};$
- (b) $\forall \alpha \in \mathbb{R}, B_{\alpha} = \{x \in X : f(x) \le \alpha\} \in \mathcal{A};$
- (c) $\forall \alpha \in \mathbb{R}, C_{\alpha} = \{x \in X : f(x) \ge \alpha\} \in \mathcal{A};$
- (d) $\forall \alpha \in \mathbb{R}, D_{\alpha} = \{x \in X : f(x) < \alpha\} \in \mathcal{A};$

Demonstração. Basta mostrar que (a) \iff (c) (já que $D_{\alpha} = X \setminus C_{\alpha}$ e $B_{\alpha} = X \setminus A_{\alpha}$).

(\Rightarrow) Se vale (a), então $A_{(\alpha-1/n)} \in \mathcal{A}, \forall n \in \mathbb{Z}^+$ e como

$$C_{\alpha} = \bigcap A_{(\alpha - 1/n)}$$

segue que $C_{\alpha} \in \mathcal{A}$.

$$(\Leftarrow) \operatorname{Como} A_{\alpha} = \bigcup C_{(\alpha+1/n)}$$
, segue que $(c) \Longrightarrow (a)$. \Box

Exemplos

- 1) Toda função constante é mensurável, pois nesse caso ou $A_{\alpha}=\varnothing$ ou $A_{\alpha}=X$.
- 2) Se $E \in \mathcal{A}$, a função característica χ_E dada por

$$\chi_E(x) = \begin{cases} 1, \sec x \in E; \\ 0, \sec x \notin E \end{cases}$$

é mensurável pois temos que A_{α} é dado por X, E ou \varnothing .

- 3) Se $X=\mathbb{R}$ e $\mathscr{A}=\mathscr{B}$, então qualquer função contínua é mensurável na álgebra de Borel. De fato, A_{α} é aberto e portanto união enumerável de intervalos.
- 4) Qualquer função monótona é mensurável em Borel. De fato, supondo, por exemplo, $f:\mathbb{R}\to\mathbb{R}$ crescente, então $A_\alpha=(a,+\infty)$ ou $A_\alpha=[a,+\infty)$, para algum $a\in\mathbb{R}$.

Lema 2. Sejam $f \cdot g : X \to \mathbb{R}$ mensuráveis e $c \in \mathbb{R}$. As funções

(a) cf; (b) f^2 (c) f+g; (d) fg; (e) |f|;

são mensuráveis.

Demonstração.

(a) Se c = 0, a função é constante. Se c > 0, então

$$\{x\in X\,|\, cf(x)>\alpha\}=\{x\in X\,|\, f(x)>\alpha/c\}\in\mathcal{A}$$

O caso c < 0 é similar.

- (b) Se $\alpha < 0$, então $\{x \in X | (f(x))^2 > \alpha\} = X$. Caso $\alpha \ge 0$, temos $\{x \in X | (f(x))^2 > \alpha\} = \{x \in X | f(x) > \sqrt{\alpha}\} \cup \{x \in X | f(x) < -\sqrt{\alpha}\}$
- (c) Por hipótese, dado $r \in \mathbb{Q}$, temos que

$$S_r = \{x \in X \mid f(x) > r\} \cap \{x \in X \mid g(x) > \alpha - r\} \in \mathcal{A}$$

Como

$$\{x \in X \mid (f+g)(x) > \alpha\} = \bigcup \{S_r : r \in \mathbb{Q}\}\$$

segue que f + g é mensurável.

(d) Segue de
$$fg = \frac{1}{2}[(f+g)^2 - (f-g)^2].$$

(e) Se $\alpha < 0$, $\{x \in X : |f(x)| > \alpha\} = X$. Caso $\alpha \ge 0$:

$$\{x \in X : |f(x)| > \alpha\} = \{x \in X : f(x) > \alpha\} \cup \{x \in X : f(x) < -\alpha\}$$

Logo a função |f| é mensurável.

Dada $f: X \to \mathbb{R}$, definimos as funções

$$f^{+}(x) = \sup\{f(x), 0\}, f^{-}(x) = \sup\{-f(x), 0\}$$

Denominamos f^+ e f^- por parte positiva e parte negativa de f, respectivamente. Note que ambas as funções são funções positivas e

$$f = f^+ - f^-, |f| = f^+ + f^-$$

de modo que

$$f^+ = \frac{1}{2}(|f| + f), f^- = \frac{1}{2}(|f| - f)$$

Pelo Lema anterior, temos que f é mensurável se, e somente se f^+, f^- são funções mensuráveis.

Definição 4. O conjunto das funções $f: X \to \overline{\mathbb{R}}$ mensuráveis é denotado por $M(X, \mathcal{A})$. Se $f \in M(X, \mathcal{A})$, então

$$A = \{x \in X : f(x) = +\infty\} = \bigcap \{x \in X \mid f(x) > n\}$$

$$B = \{x \in X : f(x) = -\infty\} = X \setminus \left[\bigcup \{x \in X \mid f(x) > -n\}\right]$$

de modo que ambos os conjuntos pertecem a \mathcal{A} .

Lema 3. Uma função $f: X \to \overline{\mathbb{R}}$ é mensurável se, e somente se os conjuntos A, B definidos acima são mensuráveis e a função $f_1(x) = \begin{cases} f(x), \text{ se } \notin A \cup B; \\ 0, \text{sex } \in A \cup B \end{cases}$ for mensurável.

Demonstração.(\Leftarrow)Jáfoi visto que se f é mensurável, entãoA e Bsão mensuráveis. Dado $\alpha \geq 0$, temos

$$\{x \in X \mid f_1(x) > \alpha\} = \{x \in X \mid f(x) > \alpha\} \setminus A$$

e se $\alpha < 0$

$$\{x\in X\,|\,f_1(x)>\alpha\}=\{x\in X\,|\,f(x)>\alpha\}\cup B$$

Então f_1 é mensurável.

(\Rightarrow) Supondo A , B e f_1 mensuráveis, temos que

$$\{x \in X \mid f(x) > \alpha\} = \{x \in X \mid f_1(x) > \alpha\} \cup A, \operatorname{se}\alpha \ge 0$$

$$\operatorname{e}\{x \in X \mid f(x) > \alpha\} = \{x \in X \mid f_1(x) > \alpha\} \setminus B, \operatorname{se}\alpha < 0$$

são mensuráveis. \square

Como consequência, segue que as funções do Lema 2 são mensuráveis no caso estendido. No entanto, dadas $f, g \in M(X, \mathcal{A})$ e os conjuntos

$$E_1 = \{ x \in X | f(x) = + \infty eg(x) = -\infty \}$$

$$E_2 = \{ x \in X | f(x) = -\infty eg(x) = +\infty \}$$

definimos (f+g)(x) = 0 em $E_1 \cup E_2$.

Lema 4. Seja (f_n) uma sequência em $M(X, \mathcal{A})$ e defina as funções $f(x) = \inf_n f_n(x), F(x) = \sup_n f_n(x)$ $F^*(x) = \liminf_n f_n(x), F^*(x) = \limsup_n f_n(x)$

Entãof, F, f*, F*pertecem a $M(X, \mathcal{A})$.

Demonstração. Note que

$$\{x \in X \mid f(x) > \alpha\} = \bigcap \{x \in X \mid f_n(x) \ge \alpha\}$$
$$\{x \in X \mid F(x) > \alpha\} = \bigcup \{x \in X \mid f_n(x) > \alpha\}$$

de modo que $f, F \in M(X, \mathcal{A})$. Como

$$f^*(x) = \sup_{n \ge 1} \left\{ \inf_{m \ge n} f_m(x) \right\}$$
$$F^*(x) = \inf_{n \ge 1} \left\{ \sup_{m \ge n} f_m(x) \right\}$$

também vale que $f^*, F^* \in M(X, \mathscr{A})$. \square

Corolário 1. Se (f_n) é uma sequência em $M(X, \mathcal{A})$ que converge pontualmente para f em X, então $f \in M(X, \mathcal{A})$.

Demonstração. Basta ver que, $\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} f_n(x)$. \square

Lema 5. Se f é uma função não-negativa em $M(X, \mathcal{A})$, então existe uma sequência (ϕ_n) em $M(X, \mathcal{A})$ tal que

- (a) $0 \le \phi_n(x) \le \phi_{n+1}(x), \forall x \in X, \forall n \in \mathbb{N};$
- (b) $f(x) = \lim \phi_n(x), \forall x \in X$;
- (c) $Cada\phi_n$ tem um número finito de valores reais.

Demonstração. Seja n um número natural fixo. Se $k = 0, 1, ..., n2^{n-1}$, seja

$$E_{kn} = \{x \in X \mid k2^{-n} \le f(x) \le (k+1)2^{-n}\},\$$

e se $k = n2^n$ seja $E_{kn} = \{x \in X \mid f(x) \ge n\}$. Note que os conjuntos E_{kn} para k = 0,1,..., $n2^n$ são disjuntos dois a dois, e cuja união é igual a X.

Definindo ϕ_n para ser igual a $k \, 2^{-n}$ em E_{kn} , então $\phi_n \in M(X, \mathcal{A})$ e valem[a],[b] e [c]. \Box

Medidas

Definição 5. Uma *medida* em $M(X, \mathcal{A})$ é uma função $\mu : \mathcal{A} \to \overline{\mathbb{R}}$ satisfazendo

- (i) $\mu(\emptyset) = 0$;
- (ii) $\mu(E) \ge 0, \forall E \in \mathcal{A};$
- (iii) $\mu(\bigsqcup E_n) = \sum \mu(E_n)$. (Enumeravelmente aditiva)

Em que o símbolo \sqcup significa união de conjuntos que são disjuntos dois a dois (por exemplo, se $D = A \sqcup B \sqcup C$, então $D = A \cup B \cup C$ e $A \cap B = B \cap C = A \cap C = \emptyset$).

Se $\mu(E_n)<\infty, \forall E\in\mathcal{A}$, dizemos que μ é uma medida finita. Se $X=\bigcup E_n$, com $\mu(E_n)<\infty, \forall n\in\mathbb{N}$, então dizemos que μ é σ -finita.

É válido notar que a propriedade [iii] também é válida no caso de uma quantidade finita de conjuntos. De fato, se $A = \bigsqcup A_k$, então definindo a sequência (E_k) por

$$E_k = \begin{cases} A_k, \sec k \le n \\ \emptyset, \sec k > n \end{cases}$$

então
$$A = \bigsqcup E_k$$
 e $\mu(A) = \sum \mu(E_k) = \sum \mu(A_k)$.

Exemplos

1) Seja $X=\mathbb{N}$ e $\mathscr{A}=\mathscr{P}(\mathbb{N})$. Definimos a medida $\mu\colon\mathscr{A}\to\overline{\mathbb{R}}$ por

$$\mu(E) = \begin{cases} \operatorname{card}(E), \operatorname{se}E\text{\'e finito;} \\ + \infty, \operatorname{se}E\text{\'e infinito.} \end{cases}$$

2) Se $X = \mathbb{R}$ e $\mathcal{A} = \mathcal{B}$, existe uma única medida λ que satisfaz

$$\lambda((a,b)) = b - a$$

Tal medida é chamada medida de Lebesgue, ou medida de Borel.

3) Se $X=\mathbb{R}$, $\mathscr{A}=\mathscr{B}$ e f é uma função contínua monótona crescente, existe uma única medida λ que satisfaz

$$\lambda((a,b)) = f(b) - f(a)$$

Tal medida é chamada *medida de Borel-Stieltjes* gerada por f.

Lema 6. Seja $\mu: \mathcal{A} \to \overline{\mathbb{R}}$ uma medida. Se $E, F \in \mathcal{A}$ e $E \subseteq F$, então $\mu(E) \leq \mu(F)$. Se $\mu(E) < \infty$, então $\mu(F \setminus E) = \mu(F) - \mu(E)$.

Demonstração. Segue do fato de $F = E \sqcup (F \backslash E)$ e $\mu(F \backslash E) \geq 0$. \square

Lema 7. Seja $\mu: \mathcal{A} \to \overline{\mathbb{R}}$ uma medida.

(a) Se (E_n) é uma sequência crescente em \mathcal{A} , então

$$\mu\Big(\bigcup E_n\Big) = \lim \mu(E_n)$$

(b) Se (F_n) é uma sequência decrescente em \mathcal{A} e $\mu(F_1) < \infty$, então

$$\mu\Big(\bigcap F_n\Big) = \lim \mu(F_n)$$

Demonstração.

(a) Se $\mu(E_n) = +\infty$, para algumn, então ambos os lados da igualdade são $+\infty$. Logo, podemos supor $\mu(E_n) < \infty$, $\forall n \in \mathbb{N}$. Defina uma sequência (A_n) em \mathscr{A} por:

$$A_1 = E_1$$

$$A_n = E_n \backslash E_{n-1}, n > 1$$

Então vale que

$$E_n = \bigsqcup A_j, \bigcup E_n = \bigsqcup A_n$$

Como μ é enumeravelmente aditiva, temos

$$\mu\Big(\bigcup E_n\Big) = \mu\Big(\bigsqcup A_n\Big) = \sum \mu(A_n) = \lim_{m \to \infty} \sum \mu(A_n)$$

 $\operatorname{Mas} \mu(A_n) = \mu(E_n) - \mu(E_{n-1}), \operatorname{logo}$

$$\sum \mu(A_n) = \mu(E_m)$$

De modo que a igualdade se verifica.

(b) Seja $E_n = F_1 \backslash F_n$. Como (E_n) é uma sequência crescente, aplicando parte (a), temos

$$\mu\left(\bigcup E_n\right) = \lim \mu(E_n) = \lim [\mu(F_1) - \mu(F_n)]$$
$$= \mu(F_1) - \lim \mu(F_n)$$

Como $\bigcup E_n = F_1 \backslash \bigcap F_n$, segue que

$$\mu\Big(\bigcup E_n\Big) = \mu(F_1) - \mu\Big(\bigcap F_n\Big)$$

E as duas equações acima implicam
$$\mu(\bigcap F_n) = \lim \mu(F_n)$$
.

Definição 6. Um *espaço de medida* é uma tripla (X, \mathcal{A}, μ) onde (X, \mathcal{A}) é um espaço mensurável e $\mu : \mathcal{A} \to \mathbb{R}$ é uma medida.

Observação: Seja P uma propriedade em X. Dizemos que a propriedade P vale em μ -quase todo X (ou q.t.p. = quase todo ponto), se existe um subconjunto $N \in \mathcal{A}$ com $\mu(N) = 0$ tal que vale $P(x), \forall x \in X \setminus N$.

Por exemplo, se f é uma função mensurável, dizemos que f(x) = 0 q.t.p. quando o conjunto

$$\{x \in X \mid f(x) \neq 0\}$$

tem medida nula.

Definição 7. Uma *medida com sinal* ou *carga* em um espaço mensurável (X, \mathcal{A}) é uma função $\lambda \colon \mathcal{A} \to \mathbb{R}$ tal que

1. $\lambda(\emptyset) = 0$;

$$\lambda\Big(\bigsqcup E_n\Big) = \sum \lambda(E_n)$$

Teorema 8. Se $\mu_1, ..., \mu_n$ são medidas em (X, \mathcal{A}) e $\lambda_1, ..., \lambda_n$ são números reais não negativos, a combinação linear $\mu = \sum \lambda_i \mu_i$ determina uma medida em X.

Demonstração. A demonstração é evidente: basta observar que as propriedades [i], [ii] e [iii] são válidas por linearidade. □

Integral

Seja (X, \mathcal{A}, μ) um espaço de medida fixo. Denotamos

$$M^+ = M^+(X, \mathcal{A}) = \{f: X \to \overline{\mathbb{R}} \mid f \text{\'e} \text{ mensur\'avek e n\~ao negativa} \}$$

Definição 8. Uma função de valores reais é dita *simples* se possui apenas uma quantidade finita de valores.

Se ϕ é uma função mensurável simples, então

$$\phi = \sum a_j \chi_{E_j}$$

 $com a_i \in \mathbb{R}$ distintos e $E_i \in \mathcal{A}$ disjuntos.

Definição 9. Se $\phi \in M^+$ é uma função simples na forma acima, a *integral* de ϕ com respeito a μ é

$$\int \phi d\mu = \sum a_j \mu(E_j)$$

Note que como os a_j são negativos, não existem expressões do tipo $\infty - \infty$ na igualdade acima.

Lema 9.

(a)
$$Se \ \phi, \psi$$
 $s \ \tilde{a} \ o \ fun \ \tilde{c} \ \tilde{o} \ es \ simples \ em \ M^+$ $e \ c \ge 0$, $ent \ \tilde{a} \ o$
$$\int c \phi d\mu = c \int \phi d\mu \int (\phi + \psi) d\mu = \int \phi d\mu + \int \psi d\mu$$

(b) Se
$$\lambda : \mathcal{A} \to \overline{\mathbb{R}}$$
 é dada por $\lambda(E) = \int \phi d\mu := \int \phi \chi_E d\mu$ então λ é uma medida em (X, \mathcal{A}) .

Demonstração.

(a) A primeira afirmação é trivial. Para provar a segunda, suponha que

$$\phi = \sum a_j \chi_{E_i}, \psi = \sum b_k \chi_{F_k}$$

então

$$\phi + \psi = \sum \sum (a_j + b_k) \chi_{E_j \cap F_k}$$

Mas note que, nesta representação, os $a_j + b_k$ não precisam ser necessariamente distintos. Sejam $c_h, h=1, ..., p$, os números distintos no conjunto

$$\{a_j + b_k : j = 1,..., n, k=1,..., m\}$$

e seja G_h a união dos conjuntos $E_i \cap F_k$ tais que $a_i + b_k = c_h$. Assim

$$\mu(G_h) = \sum \mu(E_j \cap F_k)$$

Segue que a representação padrão de $\phi + \psi$ é

$$\phi + \psi = \sum c_h \chi_{G_h}$$

Temos portanto que

$$\begin{split} \int (\phi + \psi) d\mu &= \sum c_h \mu(G_h) = \sum \sum c_h \mu(E_j \cap F_k) \\ &= \sum \sum (a_j + b_k) \mu(E_j \cap F_k) \\ &= \sum \sum (a_j + b_k) \mu(E_j \cap F_k) \\ &= \sum \sum a_j \mu(E_j \cap F_k) + \sum \sum b_k \mu(E_j \cap F_k) \\ \mathrm{Como}\, X = \bigsqcup E_j = \bigsqcup F_k, \, \mathrm{temos}\, E_j = \bigsqcup (E_j \cap F_k) \, \mathrm{e}\, F_k = \bigsqcup (E_j \cap F_k). \, \mathrm{Assim} \\ \mu(E_j) = \sum \mu(E_j \cap F_k), \, \mu(F_k) = \sum \mu(E_j \cap F_k) \end{split}$$

Segue desta observação que

$$\int (\phi + \psi)d\mu = \sum a_j \mu(E_j) + \sum b_k \mu(F_k)$$
$$= \int \phi d\mu + \int \psi d\mu$$

(b) Como $\phi \chi_E = \sum \chi_{E_j \cap E}$ temos que

$$\lambda(E) = \int \phi \chi_E d\mu = \sum a_j \mu(E_j \cap E)$$

Mas é fácil ver que a função $E\mapsto \mu(E_j\cap E)$ é uma medida, de modo que pelo Teorema 8 segue que λ é uma medida.

Seja $f \in M^+$. Denotamos por H_f o conjunto

$$H_f = \{ \phi \in M^+ \, | \, \phi \text{\'e simples } e \phi(x) \leq f(x), \forall x \in X \}$$

Definição 10. A *integral* de $f \in M^+$ com respeito a μ é

$$\int \! f d\mu = \sup_{\phi \in H_f} \int \! \phi \, d\mu$$

Lema 10.

(a)
$$Sef, g \in M^+ ef \leq g$$
, então $\int f d\mu \leq \int g d\mu$

(b)
$$Sef \in M^+ \ e \ E, F \in \mathcal{A} \ com \ E \subseteq F, \ ent \ alpha o \int f d\mu \leq \int f d\mu$$

Demonstração.

- (a) Se ϕ é uma função simples em M^+ com $\phi \leq f$, então $\phi \leq g$, de modo que $H_f \subseteq H_g$.
- (b) Segue $\det f \chi_E \le f \chi_F$ e da parte (a). \Box

Teorema 11 (Teorema da Convergência Monótona de Beppo Levi). Se (f_n) é uma sequência crescente de funções em M^+ convergindo pontualmente para $f \in M^+$, então $\int f d\mu = \lim \int f_n d\mu$

Demonstração. Note que $f=\lim f_n=\sup f_n$. Assim, pelo Lema 10

$$\int f_n d\mu \leq \int f d\mu, \forall n \in \mathbb{N}$$

Como $\int f_n d\mu$ é uma sequência crescente e limitada em $\mathbb R$, então é convergente e vale

$$\lim \int f_n d\mu \le \int f d\mu$$

Para provar a desigualdade reversa, seja $\alpha \in (0,1)$ arbitrário e seja $\phi \in H_f$ qualquer. Dado $n \in \mathbb{N}$, defina

$$A_n = \{ x \in X | f_n(x) \ge \alpha \phi(x) \}$$

então $A_n\in X$ (já que cada f_n é mensurável), $A_n\subseteq A_{n+1}$ (já que (f_n) é crescente) e $\bigcup A_n=X \text{ (pois } f=\sup f_n \text{). Assim}$

$$\int \alpha \phi d\mu \le \int f_n d\mu \le f_n d\mu$$

Defina $\lambda: A \to \overline{\mathbb{R}}$ por

$$\lambda(E) = \int \phi d\mu$$

Então λ é uma medida pelo Lema 9, e pelo Lema 7 segue que

$$\lim_{n \to \infty} \int \phi \, d\mu = \lim \lambda(A_n) = \lambda \Big(\bigcup A_n\Big) = \lambda(X) = \int \phi \, d\mu$$

De modo que temos

$$\alpha \int \phi d\mu \le \lim \int f_n d\mu$$

Tomando o supremo sobre α , temos

$$\int \! \phi d\mu \leq \lim \int \! f_n d\mu$$

E como $\phi \in H_f$ é arbitrário, obtemos o resultado desejado. \Box

A seguir, apresentamos alguns corolários do Teorema da Convergência Monótona.

Corolário 2.

(a) Se
$$f \in M^+$$
 e $c \ge 0$, então $cf \in M^+$ e $\int cf d\mu = c \int f d\mu$

(b)
$$Sef, g \in M^+$$
, $ent\~aof + g \in M^+e \left[(f+g)d\mu = \left[fd\mu + \left[gd\mu \right] \right] \right]$

Demonstração. Pelo Lema 5, se $f \in M^+$, podemos tomar uma sequência crescente de funções simples em M^+ convergindo para f. Daí podemos aplicar o Teorema11 junto com o Lema 9 para obter o resultado deste corolário. \Box

Lema 12 (Lema de Fatou). $Se(f_n) \in M^+$, $ent\tilde{a}o\int \liminf f_n d\mu \leq \liminf \int f_n d\mu$

Demonstração. Defina $g_m = \inf_{n \ge m} \{f_n\}$, de modo que $g_m \in M^+$ e $g_m \le f_n, \forall n \ge m$. Assim:

$$\int g_m d\mu \le \int f_n d\mu, \forall m \le n$$

de modo que

$$\int g_m d\mu \le \liminf \int f_n d\mu$$

Visto que a sequência (g_n) é crescente e converge para liminf f_n , o Teorema da Convergência Monótona implica

$$\int {\rm liminf} f_n d\mu = {\rm lim} \int g_m d\mu \leq {\rm liminf} \int f_n d\mu$$

Corolário 3. Seja $f \in M^+$ e defina $\lambda : \mathcal{A} \to \overline{\mathbb{R}}$ por $\lambda(E) = \int f d\mu$. Então λ é uma medida.

Demonstração. Mostraremos que λ é enumeravelmente aditiva, visto que as outras propriedades são evidentes. Suponha que $E= \prod E_k$. Defina f_n por

$$f_n = \sum f \chi_{E_k}$$

Segue que

$$\int f_n d\mu = \sum \int f \chi_{E_k} d\mu = \sum \lambda(E_k)$$

Como (f_n) é uma sequência crescente em M^+ convergindo para $f\chi_E$, o Teorema da Convergência Monótona (Teorema 11) implica que

$$\lambda(E) = \int f \chi_E d\mu = \lim \int f_n d\mu = \sum \lambda(E_k)$$

Corolário 4. Suponha $f \in M^+$. Então f(x) = 0 q.t.p se, e somente se $\int f d\mu = 0$.

$$Demonstração$$
. Se $\int f d\mu = 0$, defina

$$E_n = \{x \in X | f(x) > 1/n\}$$

Então $E_n \in \mathcal{A}$ e $f \geq \frac{1}{n} \chi_{E_n}, \forall n \in \mathbb{N}$, de modo que

$$0 = \int f d\mu \ge \frac{1}{n} \mu(E_n) \ge 0$$

Segue que $\mu(E_n) = 0, \forall n \in \mathbb{N}$. Portanto o conjunto

$$E = \{x \in X \mid f(x) > 0\} = \bigcup E_n$$

também tem medida nula (pois $\mu(E) = \lim \mu(E_n)$ pelo Lema 7). Reciprocamente, suponha que f(x) = 0 q.t.p. em X. Assim, se

$$E = \{x \in X | f(x) > 0\}$$

então $\mu(E) = 0$. Seja $f_n = n\chi_E$. Como $f \leq \liminf_n f_n$ segue pelo Lema de Fatou que

$$0 \leq \int\!\! f d\mu \leq \liminf \int\!\! f_n d\mu = \liminf \!\! n\mu(E) = 0$$

Corolário 5. Seja $f \in M^+$ e defina $\lambda : \mathcal{A} \to \overline{\mathbb{R}}$ como $\lambda(E) = \int_E f d\mu$. Então λ é

absolutamente contínua com respeito a μ (escreve-se $\lambda <<\mu$), ou seja, se $E\in \mathcal{A}$ com $\mu(E)=0$, então $\lambda(E)=0$.

Demonstração. Se $\mu(E)=0$, então $f\chi_E$ se anula q.t.p. emX. Pelo Corolário anterior,

$$\lambda(E) = \int f \chi_E d\mu = 0$$

Corolário 6. Se (f_n) é uma sequência crescente de funções em M^+ que converge q.t.p. para $f \in M^+$, então $\int f d\mu = \lim_n \int f_n d\mu$

Demonstração. Seja $N\in\mathcal{A}$ tal que $\mu(N)=0$ e $f_n(x)\to f(x), \forall x\in M:=X\setminus N$. Então $(f_n\chi_M)$ converge para $f\chi_M$ em X, de modo que o Teorema da Convergência Monótona (Teorema 11) implica que

$$\int f \chi_M d\mu = \lim \int f_n X_M d\mu$$

Mas também vale que $\int f \chi_N d\mu = \int f_n X_N d\mu = 0, \forall n \in \mathbb{N}$, de modo que

$$\int f d\mu = \int (f \chi_M + f \chi_N) d\mu = \lim \int f_n \chi_M d\mu = \lim \int f_n d\mu$$

Corolário 7. Seja (g_n) uma sequência em M^+ . Então $\int \sum g_n d\mu = \sum \int g_n d\mu$

Demonstração. Basta definir a sequência crescente $f_m = \sum g_n$ e usar o Teorema 11. \Box

Funções Integráveis

Definição 11. Dado um espaço de medida (X, \mathcal{A}, μ) , a coleção $L = L(X, \mathcal{A}, \mu)$ de funções integráveis consiste de todas as funções $f: X \to \mathbb{R}$ tais que f^+, f^- possuem integral finita em relação a μ . Neste caso, a integral de f é dada por

$$\int f d\mu = \int f^+ d\mu - \int f^- d\mu, \forall E \in \mathcal{A}$$

Propriedades

• Se $f \in L$ e $\lambda : \mathcal{A} \to \mathbb{R}$ é definida por

$$\lambda(E) = \int f d\mu$$

então λ é uma medida com sinal.

• $f \in L \Leftrightarrow |f| \in L e$

$$|\int f d\mu| \le \int |f| d\mu$$

• Se $f, g \in L$ e $\alpha \in \mathbb{R}$, então $\alpha f, f + g \in L$ e

$$\int \alpha f d\mu = \alpha \int f d\mu, \int (f+g) d\mu = \int f d\mu + \int g d\mu$$

• Se f é mensurável, $g \in L$ e $|f| \le |g|$, então $f \in L$ e $\int |f| d\mu \le \int |g| d\mu$.

Teorema 13 (Teorema da ConvergênciaDominada de Lebesgue). Seja (f_n) uma sequência de funções integráveis convergindo q.t.p. para uma função real f. Se existe uma função integrávelg tal que $|f_n| \le g, \forall n \in \mathbb{N}$, entãof é integrável $e \int f d\mu = \lim_{n \to \infty} \int f_n d\mu$.

Demonstração. Como $|f_n| \le g$, $\forall n \in \mathbb{N}$, então $|f| \le g$ e segue da última propriedade que f é integrável. Podemos assumir que $f_n(x) \to f(x)$, $\forall x \in X$ (caso contrário, o argumento adaptase similarmente à demonstração do Corolário 6). Como $f_n + g \ge 0$, $\forall n \in \mathbb{N}$, aplicamos o Lema de Fatou (Lema 12) para obter

$$\int g d\mu + \int f d\mu = \int (g+f) d\mu \leq \liminf \int (g+f_n) d\mu$$
$$= \int g d\mu + \liminf \int f_n d\mu$$

E segue que $\int f d\mu \leq \liminf \int f d\mu$.

Vale ainda que $g - f_n \ge 0, \forall n \in \mathbb{N}$, então podemos novamente aplicar o Lema de Fatou para obter

$$\int g d\mu - \int f d\mu = \int (g - f) d\mu \le \liminf \int (g - f_n) d\mu$$
$$= \int g d\mu - \limsup \int f_n d\mu$$

Daílimsup
$$\int f_n d\mu \leq \int f d\mu$$
 e portantolim $\int f_n d\mu = \int f d\mu$. \Box

Decomposição de Medidas

Seja (X, \mathcal{A}) um espaço mensurável e $\lambda : \mathcal{A} \to \mathbb{R}$ uma carga.

Definição 12. Um subconjunto $P \in \mathcal{A}$ é dito positivo se $\lambda(E \cap P) \geq 0, \forall E \in \mathcal{A}$. Um conjunto N é dito negativo se $\lambda(E \cap N) \leq 0, \forall E \in \mathcal{A}$ e M é dito nulo se $\lambda(E \cap M) = 0, \forall E \in \mathcal{A}$.

Afirmação 1:Um subconjunto de um conjunto positivo é positivo.

De fato, se P_2 é um conjunto positivo e $P_1 \subseteq P_2$, então dado $E \in \mathcal{A}$ temos

$$\lambda(P_1 \cap E) = \lambda(P_2 \cap (P_1 \cap E)) \ge 0$$

Afirmação 2: A união finita de conjuntos positivos é positiva.

Com efeito, se P_1, P_2 são conjuntos positivos e $E \in \mathcal{A}$ qualquer, temos

$$\begin{split} \lambda((P_1 \cup P_2) \cap E) &= \lambda([P_1 \cup (P_2 \backslash P_1)] \cap E) \\ &= \lambda((P_1 \cap E) \cup [(P_2 \backslash P_1) \cap E]) \\ &= \lambda(P_1 \cap E) + \lambda((P_2 \backslash P_1) \cap E) \end{split}$$

e como cada uma das parcelas acima é positiva (visto que $P_2 \backslash P_1$ é subconjunto de P_2), segue o resultado.

As afirmações acima também são válidas para conjuntos negativos e nulos, com demonstrações análogas.

Teorema 14 (Teorema da Decomposição de Hahn). Se λ é uma medida com sinal em (X, \mathcal{A}) existem conjuntos $P, N \in \mathcal{A}$ tais que $X = P \cup N, P \cap N = \emptyset$ com P sendo positivo e N negativo com relação a λ .

Demonstração. Considere a classe \mathscr{P} de todos os conjuntos positivos e seja $\alpha = \sup\{\lambda(A): A \in \mathscr{P}\}$ (mostraremos adiante que $\alpha < \infty$).

Tome (A_n) em $\mathscr P$ tal que $\lim \lambda(A_n) = \alpha$ e seja $P = \bigcup A_n$. Como a união finita de conjuntos positivos é positiva, podemos supor que a sequência (A_n) é crescente. Dado $E \in \mathscr A$, vemos que

$$\lambda(E\cap P) = \lambda\Big(E\cap\bigcup A_n\Big) = \lambda\Big(\bigcup (E\cap A_n)\Big) = \lim \lambda(E\cap A_n) \geq 0$$

de modo que P é positivo. Mais ainda, temos que

$$\alpha = \lim \lambda(A_n) = \lambda(P) < \infty$$

Mostraremos agora que o conjunto $N = X \setminus P$ é negativo. Caso contrário, existiria $E' \in \mathcal{A}$ com $\lambda(E' \cap N) > 0$. Denotemos $E := E' \cap N$.

Tal conjunto E não pode ser positivo, caso contrário, teríamos um conjunto positivo $P \cup E$ tal que $\lambda(P \cup E) > \alpha$, o que contraria a definição de α .

Logo, E contém ao menos um conjunto com carga negativa. Seja n_1 o menor número inteiro positivo tal que E contém um conjunto $E_1 \in \mathcal{A}$ com $\lambda(E_1) \leq 1/n_1$. Assim

$$\lambda(E \setminus E_1) = \lambda(E) - \lambda(E_1) > \lambda(E) > 0$$

Contudo, $E \setminus E_1$ não pode ser um conjunto positivo, pela mesma razão apresentada acima. Portanto, existe algum conjunto de carga negativa em $E \setminus E_1$. Seja n_2 o menor número inteiro positivo tal que $E \setminus E_1$ contém um conjunto E_2 com $\lambda(E_2) < -1/n_2$. Continuando recursivamente, obtemos uma sequência de conjuntos disjuntos $(E_k) \in \mathcal{A}$ e inteiros positivos (n_k) tais que $E_{k+1} \subseteq E \setminus E_k$ e $\lambda(E_k) < -1/n_k$. Pondo $F = \bigcup E_k$, vemos que

$$0 \le \sum \frac{1}{n_k} \le -\sum \lambda(E_k) = -\lambda(F) < -\infty$$

o que mostra que $1/n_k \to 0$.

Afirmação: $E \setminus F$ é um conjunto positivo.

Seja $G \subseteq E \setminus F$ mensurável e suponha por contradição que $\lambda(G) < 0$. Então $\lambda(G) < \frac{-1}{n_k - 1}$, para k suficientemente grande. Mas isto contradiz o fato de que n_k é o menor número natural tal que $E \setminus E$ setminus $E_1 \subset E$ some menor que E_k contém um conjunto de carga menor que E_k .

Como $\lambda(E \backslash F) = \lambda(E) - \lambda(F) > 0$, vemos que $P \cap (E \backslash F)$ é um conjunto positivo com carga excedendo α , o que é uma contradição. Logo N é negativo. \square

Definição 13. Um par P, N de conjunto mensuráveis satisfazendo as conclusões do Teorema anterior é dita formar uma *decomposição de Hahn* de X com respeito a λ .

Note que não há unicidade desta decomposição: se P, N é uma decomposição de Hahn e M é conjunto positivo, então $P \cup M$, $N \setminus M$ também é uma decomposição de Hahn.

Lema 15. Se P_1, N_1 e P_2, N_2 são decomposições de Hahn para λ e $E \in \mathcal{A}$, então $\lambda(E \cap P_1) = \lambda(E \cap P_2), \lambda(E \cap N_1) = \lambda(E \cap N_2)$

Demonstração. Visto que $E\cap (P_1\backslash P_2)$ está contido em P_1 e em N_2 , vale que que $\lambda(E\cap (P_1\backslash P_2))=0$. Assim

$$0 = \lambda(E \cap (P_1 \backslash P_2)) = \lambda((E \cap P_1) \backslash (E \cap P_2)) = \lambda(E \cap P_1) - \lambda(E \cap P_2)$$

E de modo análogo mostramos que $\lambda(E \cap N_1) = \lambda(E \cap N_2)$. \square

Definição 14. Seja λ uma carga em X e seja P, N uma decomposição de Hahn para λ . A variação positiva e negativa de λ são, respectivamente, as medidas finitas λ^+, λ^- dadas por

$$\lambda^{+}(E) = \lambda(E \cap P); \lambda^{-}(E) = -\lambda(E \cap N), \forall E \in \mathcal{A}$$

A *variação total* de λ é a medida $|\lambda|$ dada por

$$|\lambda|(E) = \lambda^{+}(E) + \lambda^{-}(E), \forall E \in \mathcal{A}$$

Pelo Lema 15, vemos que a variação positiva e negativa estão bem definidas. Também é claro que

$$\lambda(E) = \lambda(E \cap P) + \lambda(E \cap N) = \lambda^{+}(E) - \lambda^{-}(E), \forall E \in \mathcal{A}$$

Teorema 16 (Teorema da Decomposição de Jordan). Se λ é uma carga em X, então é uma diferença entre duas medidas finitas em X. Mais ainda, se $\lambda = \mu - \nu$, com μ, ν medidas finitas em X, então $\mu(E) \geq \lambda^+(E), \nu(E) \geq \lambda^-(E), \forall E \in \mathcal{A}$

Demonstração. Basta demonstrar a última parte: dado $E \in \mathcal{A}$ temos

$$\lambda^+(E) = \lambda(E \cap P) = \mu(E \cap P) - \nu(E \cap P) \le \mu(E \cap P) \le \mu(E)$$

E analogamente para λ^- . \square

Sabemos que se f é uma função integrável com respeito a uma medida μ em X, e λ é definida por

$$\lambda(E) = \int f d\mu$$

Então λ é uma carga emX. O próximo Teorema determina suas variações.

Teorema 17. Se λ é definida como acima, então

$$\lambda^{+}(E) = \int f^{+}d\mu, \lambda^{-}(E) = \int f^{-}d\mu |\lambda|(E) = \int |f| d\mu$$

 $\begin{array}{ll} \textit{Demonstração}. & \text{Seja } P_f = \{x \in X \,|\, f(x) \geq 0\} & \text{e } N_f = X \backslash P_f. & \text{Se } E \in \mathscr{A} \text{ , então } \\ \lambda(E \cap P_f) \geq 0 & \text{e } \lambda(E \cap N_f) \leq 0. \text{ Logo, } P_f, N_f \text{ \'e uma decomposição de Hahn para } \lambda \text{ e o resultado vale. } \square \end{array}$

Definição 15. Uma medida λ em A é dita absolutamente contínua em relação a uma medida μ se $\mu(E) = 0$ implica $\lambda(E) = 0$, para $E \in \mathcal{A}$. Neste caso, escrevemos $\lambda < \mu$. Uma carga λ é absolutamente contínua à carga μ se $|\lambda| < \mu$.

Teorema 18. Sejam λ , μ medidas finitas em \mathcal{A} . Então $\lambda < \mu$ se e somente se dado $\varepsilon > 0$, existe $\delta > 0$ tal que $E \in \mathcal{A}$ com $\mu(E) < \delta$ implica $\lambda(E) < \varepsilon$.

Demonstração. (\Leftarrow) Se $\mu(E)=0$, dado $\varepsilon>0$ qualquer temos $\lambda(E)<\varepsilon$, donde $\lambda(E)=0$.

(\Rightarrow) Suponha que exista $\varepsilon > 0$ e conjuntos $E_n \in \mathscr{A}$ com $\mu(E_n) < 2^{-n}$ e $\lambda(E_n) \ge \varepsilon$. Seja $F_n := \bigcup E_k$, de modo que $\mu(F_n) < 2^{-n+1}$ e $\lambda(F_n) \ge \varepsilon$ (pois $E_n \subseteq F_n$). Como (F_n) é uma sequência decrescente e μ , λ são finitas:

$$\mu\Big(\bigcap F_n\Big) = \lim \mu(F_n) = 0$$

$$\lambda\Big(\bigcap F_n\Big)=\mathrm{lim}\lambda(F_n)\geq\varepsilon$$

Logo, λ não é absolutamente contínua com respeito a μ .

CONCLUSÕES

O desenvolvimento do presente estudo possibilitou uma assimilação do bolsista a diversos resultados da Teoria da Medida. Como amplo campo de pesquisa, há muito para ser estudado para introduzir o aluno à carreira matemática.

REFERÊNCIAS BIBLIOGRÁFICAS

- [1] BARTLE, R.G. The Elements of Integration and Lebesgue Measure. John Wiley \& Sons, 1995.
- [2] HALMOS, P.R. Measure Theory. Springer, 1950.
- [3] RUDIN, W. Principles of mathematical analysis. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., 1976.

DIFICULDADES ENCONTRADAS

Teoria da Medida e Integração é um amplo ramo que utilize diversos conhecimentos e resultados de outros ramos da Matemática. Neste sentido, umas das principais dificuldades do aluno foi sua incapacidade em compreender assuntos mais avançados. Em especial, nos referimos à necessidade de compreensão básica em Topologia e em Geometria, cursos oferecidos pela graduação em níveis mais avançados. Contudo, com o avanço na tentativa de entender o assunto e suas consequências, vários aspectos mais avançados foram entendidos, aspectos esses que ajudaram a finalizar o período vigente da bolsa com êxito.

ATIVIDADES PARALELAS DESENVOLVIDAS PELO ALUNO

O bolsista participou de dois cursos virtuais durante o ano: um de Sistema dinâmicos oferecido pela USP durante o curso de Inverno e outro de Teoria de Semigrupos e Aplicações oferecido pelo seu orientador para alunos da pós-graduação na UFPE. Ambos os cursos mostraram ao discente aplicações do que se foi estudado e resultados que podem ser abordados no futuro.