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a b s t r a c t

The local and global control results for a general higher-order KdV-type operator
posed on the unit circle are presented. Using spectral analysis, we are able to
prove local results, that is, the equation is locally controllable and exponentially
stable. To extend the local results to the global one we captured the smoothing
properties of the Bourgain spaces, the so-called propagation of regularity, which are
proved with a new perspective. These propagation, together with the Strichartz
estimates, are the key to extending the local control properties to the global
one, precisely, higher-order KdV-type equations are globally controllable and
exponentially stabilizable in the Sobolev space Hs(T) for any s ≥ 0. Our results
recover previous results in the literature for the KdV and Kawahara equations and
extend, for a general higher-order operator of KdV-type, the Strichartz estimates
as well as the propagation results, which are the main novelties of this work.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Model description

The full water wave system is too complex to allow to easily derive and rigorously from it relevant
qualitative information on the dynamics of the waves. Alternatively, under suitable assumption on amplitude,
wavelength, wave steepness and so on, the study on asymptotic models for water waves has been extensively
investigated to understand the full water wave system, see, for instance, [1–6] and references therein for a
rigorous justification of various asymptotic models for surface and internal waves.
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Particularly, formulating the waves as a free boundary problem of the incompressible, irrotational Euler
equation in an appropriate non-dimensional form, one has two non-dimensional parameters δ := h

λ and
:= a

h , where the water depth, the wave length and the amplitude of the free surface are parameterized as
, λ and a, respectively. Moreover, another non-dimensional parameter µ is called the Bond number, which
easures the importance of gravitational forces compared to surface tension forces. The physical condition
≪ 1 characterizes the waves, which are called long waves or shallow water waves, but there are several

ong wave approximations according to relations between ε and δ, specially,

(1) Korteweg–de Vries (KdV): ε = δ2 ≪ 1 and µ ̸= 1
3 .

(2) Kawahara: ε = δ4 ≪ 1 and µ = 1
3 + νε

1
2 .

Under the regime for ε, δ, µ given in Item (1), Korteweg and de Vries [7]1 derived the following equation
ell-known as a central equation among other dispersive or shallow water wave models called the KdV
quation from the equations for capillary–gravity waves:

±2ut + 3uux +
(

1
3 − µ

)
uxxx = 0.

n connection with the critical Bond number µ = 1
3 , Hasimoto [9] derived a fifth-order KdV equation of the

orm
±2ut + 3uux − νuxxx + 1

45uxxxxx = 0

in the regime for ε, δ, µ given in Item (2), which is nowadays called the Kawahara equation.
Our main focus is to investigate the higher-order extension of KdV and Kawahara equations. Consider

the Cauchy problem for the following higher-order KdV-type equation posed on the unit circle T:{
∂tu+ (−1)j+1∂2j+1

x u+ 1
2∂x(u2) = 0,

u(0, x) = u0(x) ∈ Hs(T),
(t, x) ∈ R × T, (1.1)

or j ∈ N and u is a real-valued function. Especially, (1.1) is called KdV and Kawahara equation when j = 1
nd j = 2, respectively. These types of equations have conservation laws such as

M [u] =
∫
T
u dx, (Mass)

E[u] =
∫
T
u2 dx,

H[u] =
∫
T

1
2
(
∂jxu

)2 − 1
6u

3 dx, (Hamiltonian).

(1.2)

urthermore, (1.1) is the Hamiltonian equation with respect to H[u] defined in (1.2). In other words, we can
ewrite (1.1) as follows:

ut = ∂x∇uH (u (t)) = ∇ωH (u (t))

where ∇u is the L2 gradient and ∇ω = ∇ω− 1
2

is the symplectic gradient

ω− 1
2

(u, v) :=
∫
T
u∂−1

x vdx.

These three conservation laws play various roles (particularly to determine the global behavior of solutions
and the global control properties of Eq. (1.1)) in the study of the partial differential equations.

1 This equation indeed firstly introduced by Boussinesq [8], and Korteweg and de Vries rediscovered it twenty years later.
2
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1.2. Problems under consideration

In this paper, we prove that the higher-order KdV-type equation2{
∂tu+ (−1)j+1∂2j+1

x u+ 1
2∂x(u2) = f(t, x),

u(0, x) = u0(x) ∈ Hs(T),
(t, x) ∈ R × T, (1.3)

osed on periodic domain T is globally controllable in Hs, for s ≥ 0, when we introduce a forcing term
= f(t, x) added to the equation as a control input. Here, f is assumed to be supported in a given open

et ω ⊂ T. The following control problems are considered:

xact control problem: Given an initial state u0and a terminal state u1in a certain space, can one find
n appropriate control input fso that Eq. (1.3) admits a solution uwhich satisfies u|t=T = u1?

tabilization problem: Can one find a feedback control law f = Ku so that the resulting closed-loop system

∂tu+ (−1)j+1∂2j+1
x u+ 1

2∂x(u2) = Ku, (t, x) ∈ R × T,

s asymptotically stable at an equilibrium point as t → +∞?
The higher-order KdV-type equations keep its mass conserved, see for instance (1.2), thus

d

dt

∫
T
u(t, x) dx = 0,

or any t ∈ R when no control is in action (f ≡ 0). In applications, one would also like to keep the mass
onserved while conducting control. For that purpose, a natural constraint on our control input f is as
ollows: ∫

T
f(t, x) dx = 0, ∀t ∈ R.

hus, as in [10], the natural control input f(t, x) is chosen to be of the form

f(t, x) = [Gh](t, x) := g(x)
(
h(t, x) −

∫
T
g(y)h(t, y) dy

)
, (1.4)

here h is considered as a new control input, and g(x) is a given nonnegative smooth function such that

2π [g] =
∫
T
g (x) dx = 1.

ere, we denote ω by the set ω := {g > 0}, where the control function is effectively acting.

.3. Review of the results in the literature

The local and global well-posedness of (1.1) were widely studied. For the local well-posedness result,
orsky and Himonas [11] firstly proved this problem for s ≥ − 1

2 and Hirayama [12] improved for s ≥ − j
2 .

oth works are based on the standard Fourier restriction norm method. Hirayama improved the bilinear
stimate by using the factorization of the resonant function.

2 One may generalize Eq. (1.3) as

∂tu +
j∑

m=0

αm∂
2m+1
x u +

1
2
∂x(u2) = f,

here αm ∈ R. However, main analyses in the paper are almost analogous without additional difficulties, thus Eq. (1.3) does
ot lose the generality in a sense of the aim in this paper. See Remark 2.
3
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The results of the global well-posedness for (1.1), when j = 1, 2, were proved by Colliander et al. [13] and
ato [14], respectively, via “I-method”. In [15] the authors extend the results of [13] and [14] for j ≥ 3. The
ethod basically follows the argument in [13] for periodic KdV equation, while some estimates are slightly
ifferent. More precisely, they showed that for j ≥ 3 and s ≥ − j

2 , the IVP (1.1) is globally well-posed in
s(T).
Regarding the control theory, when j = 1, the system (1.3) has good control properties. The study of the

ontrollability and stabilization to the KdV equation started with the work of Russell and Zhang [16] for
he linear system

ut + uxxx = f , (1.5)

ith periodic boundary conditions and an internal control f . Since then, both controllability and stabiliza-
ion problems have been intensively studied.

It is well-known that (1.5) with f = −uux allows an infinite set of conserved integral quantities, for
instance, M [u] and E[u], defined in (1.2). From the historical origins of the KdV equation involving the
behavior of water waves in a shallow channel [7,8,17], it is natural to think of M [u] and E[u] as expressing
onservation of volume (or mass) and energy, respectively.

The Russell and Zhang’s work [16] is purely linear. In fact, until Bourgain [18] discovered a subtle
moothing property of solutions of the KdV equation posed on a periodic domain, no results of the nonlinear
roblems were solved. This novelty, discovered by Bourgain, has played a crucial role in the proof of the
esults in [10].

Specifically, in [10] the authors studied the nonlinear equation associated to (1.5) from a control point of
iew with a forcing term f = f(t, x) added to the equation as a control input:

ut + uxxx + uux = f, (t, x) ∈ R × T. (1.6)

ith this in hand, Russell and Zhang were able to show the local exact controllability and local exponential
tabilizability for the system (1.6). Indeed, the results presented in [10] are essentially linear; they are more
r less small perturbations of the linear results. After these works, Laurent, Rosier and Zhang [19] show
hat still it is possible to guide the system (1.6) from a given initial state u0 to a given terminal state u1
hen u0 and u1 have large amplitude by choosing an appropriate control input. Furthermore, they showed

hat the large amplitude solutions of the closed-loop system (1.6) decay exponentially as t → ∞. Hence,
he authors in [19] proved global exact controllability and global exponential stabilizability extending the
esults obtained by Russell and Zhang in [10]. These global results are established with the aid of certain
f propagation of compactness and regularity in Bourgain spaces for the solutions of the associated linear
ystem of (1.6).

Considering j = 2 the system (1.3) is the so-called Kawahara equation

∂tu− ∂5
xu+ 1

2∂x(u2) = f, (t, x) ∈ R × T. (1.7)

ecently, the first author, in [20], studied the stabilization problem and conjectured a critical set phenomenon
or Kawahara equations as occurs with the KdV equation [21,22] and Boussinesq KdV–KdV system [23], for
xample. Moreover, as far as we know, the control problem was, first, studied in [24,25] when the authors
onsidered the Kawahara equation on a periodic domain T with a distributed control of the form (1.4). First,

the authors were able to prove the local controllability results for this equation in [24]. Aided by smoothing
properties of the system in Bourgain spaces, they were able to show that the Kawahara equation is globally
exactly controllable and globally exponentially stabilizable (see [25]).

We caution that this is only a small sample of the extant equations with the similar structure to the
system (1.3), (1.5) and (1.7). For an extensive review of the physical meanings of these equations, as well
as well-posedness and controllability results the authors suggest the following nice Refs. [12,26–28] and the
references therein.
4
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1.4. Notation and main results

Let us introduce some notation and present the main results of the manuscript. For x, y ∈ R+, x ≲ y

enotes x ≤ Cy for some C > 0 and x ∼ y means x ≲ y and y ≲ x. Also, x ≪ y denotes x ≤ cy for a small
positive constant c. Let us consider the Fourier and inverse Fourier transforms with respect to the spatial
variable x ∈ T,

Fx(f)(k) = f̂(k) := 1√
2π

∫
T
e−ikxf(x) dx and F−1

x (f)(x) = 1√
2π

∑
k∈Z

eikxf(k),

espectively. Additionally, the space–time Fourier and inverse Fourier transforms are

F(f)(τ, k) = f̃(τ, k) := 1
2π

∫
R×T

e−itτe−ikxf(x) dx dt

nd
F−1(f)(t, x) = 1

2π

∫
R

∑
k∈Z

eitτeikxf(τ, k) dτ,

espectively.
Consider now the Hs(T) := Hs space with the inner product as

(f, g)Hs = (f, g)s :=
∑
k∈Z

⟨k⟩2sf̂(k)ĝ(k),

where ⟨·⟩ = (1+ | · |2) 1
2 . We simply denote the H0 := L2 inner product by (·, ·). It naturally defines Hs norm

as ∥f∥Hs =
√

(f, f)Hs . We will use Hs
0(T) as the subspace of Hs(T) whose elements obey the mean zero

ondition, i.e.,

Hs
0(T) =

{
f ∈ Hs(T) :

∫
T
f = 0

}
.

The aim of this manuscript is to address the control and stabilization (particularly global) issues. However,
efore presenting the global results, let us present a theorem that shows the exact control result.

heorem 1.1 ([29]). Let T > 0 and s ≥ 0 be given. There exists a δ > 0 such that for any u0, u1 ∈ Hs (T)
ith

∥u0∥Hs(T) ≤ δ and ∥u1∥Hs(T) ≤ δ,

ne can find a control function h ∈ L2 ([0, T ] ;Hs (T)) such that the system

∂tu+ (−1)j+1∂2j+1
x u+ 1

2∂x(u2) = Gh, (t, x) ∈ R × T, (1.8)

here G is defined by (1.4), admits a solution u ∈ C ([0, T ] ;Hs (T)) satisfying

u|t=0 = u0, u|t=T = u1.

Now, due to the advantage of the results proved in [30,31], the local exponential result in Hs(T), for any
≥ 0, can be established.

heorem 1.2 ([29]). Let s ≥ 0 and λ > 0 be given. There exists a bounded linear operator

K : Hs (T) → Hs (T)
λ

5
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such that if one chooses the feedback control h = Kλu in (1.8), then the resulting closed-loop system{
∂tu+ (−1)j+1∂2j+1

x u+ 1
2∂x(u2) = GKλu,

u(0, x) = u0(x),
(t, x) ∈ R × T, (1.9)

s locally exponentially stable in the space Hs (T), for s ≥ 0, that is, there exists a δ > 0 such that for any
0 ∈ Hs (T) with ∥u0∥Hs(T) ≤ δ, the corresponding solution u of (1.9) satisfies

∥u (·, t) − [u0]∥Hs(T) < Ce−λt ∥u0 − [u0]∥Hs(T) , ∀t > 0.

Remark 1. We point out that Theorems 1.1 and 1.2 have already been proved by Zhao and Bai [29]. For
self-containedness, we will also give rigorous proofs of them in Appendices A and C.

These results shown that one can always find an appropriate control input h to guide the system (1.8)
from a given initial state u0 to a given terminal state u1 as long as their amplitudes are small and [u0] = [u1].
However, some natural questions arise.

Question A. Can one still guide the system (1.8) by choosing an appropriate control input h (defined on a
sufficiently long time interval) from a given initial state u0 to a given terminal state u1 when u0 or u1 have
large amplitude?

According to Theorem 1.2, solutions of system (1.8) issued from initial data close to their mean values
converge at a uniform exponential rate to their mean values in the space Hs (T) as t → +∞. One may ask
the following issue:

Question B. Does any solution of the closed-loop system (1.9) converge exponentially to its mean value as
t → +∞?

Thus, additionally to the local results, presented in Theorems 1.1 and 1.2, our work gives a positive answer
to these questions that have a global character. This is possible due to the celebrated results obtained by
Bourgain [18]. One of the main results in this work gives an answer to the Question A, the result ensures
that the system (1.8) is globally exactly controllable.

Theorem 1.3. Let s ≥ 0, R > 0 and µ ∈ R be given. There exists a time T > 0 such that if u0, u1 ∈ Hs (T),
with [u0] = [u1] = µ, satisfies

∥u0∥Hs(T) ≤ R, ∥u1∥Hs(T) ≤ R,

then one can find a control input h ∈ L2 (0, T ;Hs (T)) such that the system (1.8) admits a solution
u ∈ C ([0, T ] , Hs (T)) satisfying

u|t=0 = u0, u|t=T = u1.

As for Question B, we have the following affirmative answer.

Theorem 1.4. Let s ≥ 0 and µ ∈ R. There exists a constant γ > 0 such that for any u0 ∈ Hs (T) with
[u0] = µ, the corresponding solution u of the system (1.8), with h (x, t) = −G∗u (x, t), satisfies

∥u (·, t) − [u0]∥Hs(T) < αs,µ

(
∥u0 − [u0]∥L2(T)

)
Ce−γt ∥u0 − [u0]∥Hs(T) , ∀t ≥ 0,

where α : R+ → R+ is a nondecreasing continuous function depending on s and µ.
s,µ

6



R.de A. Capistrano–Filho, C. Kwak and F.J. Vielma Leal Nonlinear Analysis: Real World Applications 68 (2022) 103695

w
t
t
d
t
S
t

u
d

1.5. Heuristic of the article

In this manuscript our goal is to give answers for two global control problems mentioned in the
previous section. Observe that the results obtained so far are concentrated in a single KdV Eq. (1.6), see
e.g. [10,16], and Kawahara Eq. (1.7), see for instance [24,25]. Moreover, even higher-order KdV type (1.3)
has been studied in the sense of local controllability and stabilization in [29], while global control results
for the generalized higher-order KdV type Eq. (1.3) are still open, so, under this direction, our work is a
generalization of the previous result for KdV and Kawahara equations. Let us describe briefly the main
arguments of the proof of our theorem and give consideration of the importance of the work in the study of
the control theory for general dispersive operators.

The first two results are local, that is, Theorems 1.1 and 1.2. In fact, first, due to the properties of the
operator

Aw = −(−1)j+1∂2j+1
x w, (1.10)

e can use classical theorems of Ingham and Beurling [32,33] to ensure that the linear system associated
o (1.8) has control and stabilization properties. To extend these results for the nonlinear case, one has
o control one derivative in the nonlinear term. However, it is well-known that linear solutions have no
ispersive and no smoothing effect under periodic boundary condition. Due to Bourgain [18,34], by regarding
he linear estimate as multilinear interactions in L2, now, one can recover derivative loss occurring in
obolev inequality, thus the nonlinearity can be controlled. Note that this is not the only way to handle
he nonlinearity, compare [12] with [15]. Here, the main point is to prove the following Strichartz estimates

∥f∥L4(R×T) ≲ ∥f∥X0,b , b >
j + 1

2(2j + 1) , for all j ∈ N.

After that we are able to extend the local solutions for the global one and prove the nonlinear (local) control
results as a perturbation of the linear one. Note that the arguments here are purely linear. In addition, we
emphasize that the exact controllability and stabilizability results of the linear system associated to (1.8)
are valid in Hs(T) for any s ∈ R.

It is important to point out that Theorems 1.3 and 1.4 have global character. Precisely, the control result
for large data (Theorem 1.3) will be a combination of a global stabilization result (Theorem 1.4) and the
local control result (Theorem 1.1). Indeed, given the initial state u0 ∈ Hs(T) to be controlled, by means of
the damping term Ku = −GG∗u supported in ω ⊂ T, i.e., solving the IVP (1.8) with h = −G∗u, we drive
u0 to a state ũ0 close enough to the mean value µ in a sufficiently large time T1, by Theorem 1.4. Again,
sing this result, we do the same with the final state u1 ∈ Hs(T) by solving the system backwards in time,
ue to the time reversibility of the higher-order KdV-type equation. This process produces two states ũ0 and
ũ1 which are close enough to µ so that the local controllability result (Theorem 1.1) can be applied around
the state u(x) = µ. We can see this mechanism illustrated in Fig. 1.

Lastly, the proof of Theorem 1.4 is equivalent to prove an observability inequality, which one, by using
contradiction arguments, relies on to prove a unique continuation property for the system (1.8). This
property is achieved due to the propagation results using again smooth properties of solution in Bourgain
spaces. The main difficulties to prove the propagation results arise from the fact that the system (1.8) has
a general structure. To overcome this difficulty the Strichartz estimates, for the solution of our problem in
Bourgain Spaces, are essential.

We finish this introduction by mentioning that the global results presented in this article, even the local
results, are not a consequence of the previous results for the KdV and Kawahara equations. Indeed, taking
j = 1 and 2 in our operator A, defined in (1.10), we can recover the previous results in the literature for
these equations, nevertheless, the necessary estimates to treat the operator A as well as the propagation of

regularity are the main novelties of this work. In summary, the key ingredients of this work are:

7
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Fig. 1. The constructive approach of the proof of Theorem 1.3.

1. Strichartz estimates associated to the solution of the problem under consideration;
2. Microlocal analysis to prove propagation of the regularity and compactness;
3. Unique continuation property for the operator A.

.6. Structure of the paper

Some preliminaries are given in Section 2, particularly, spectral property of the operator A in (1.10) is
tudied and Bourgain spaces are introduced. In Section 3, we give a rigorous proof of Strichartz estimate. In
ection 4, we investigate propagation of regularity and unique continuation property. The global stabilization
esult (Theorem 1.4) is proved in Section 5, and in Section 6, some comments and open questions are
resented. In Appendices, as mentioned, some analyses for local results are given. The linear system is
tudied in Appendix A, particularly, we present the linear control problems, which are a consequence of
he spectral analysis. A brief proof of the global well-posedness of the closed loop system is presented in
ppendix B. Finally the proofs of Theorems 1.1 and 1.2 are presented in Appendix C.

. Preliminaries

.1. Spectral property

Consider the operator A denoted by

Aw = −(−1)j+1∂2j+1
x w (2.1)

ith domain D (A) = H2j+1 (T). The operator A generates a continuous unitary operator group W (t) on
he space L2(T), precisely,

W (t)f(x) = 1
2π
∑
k∈Z

eikxeitk
2j+1

f̂(k).

emark that
A∗ = −A and W ∗(−t) = W (t). (2.2)

ne immediately knows that eigenfunctions of the operator A are the orthonormal Fourier bases of L2(T),

ϕk (x) = 1√ eikx, k ∈ Z,

2π

8
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T

w

R

and its corresponding eigenvalues are

λk = ik2j+1, k ∈ Z. (2.3)

We now prove a gap condition which will be used to prove a local controllability result in Appendix A.
The result can be read as follows.

Lemma 2.1 (Gap Condition). Let j ≥ 1 and k ∈ Z. For λk defined as in (2.3), if |k| ≥ j + 1, we have

|λk+1 − λk| ≥ k2, (2.4)

which implies
lim

|k|→+∞
|λk+1 − λk| = ∞. (2.5)

Proof. When j = 1, it is easy to see that

−i(λk+1 − λk) = 3k2 + 3k + 1 = 3
2k

2 + 3
2(k2 + 2k + 1) − 1

2
= k2 + 3

2(k + 1)2 + 1
2(k2 − 1) ≥ k2,

for |k| ≥ 1, which satisfies (2.4), and thus (2.5) follows.
Now, fix j ≥ 2. A straightforward computation yields

2 mk2 + (2j + 1 − 2m+ 1)k > 0, m = 1, 2, . . . , j,

whenever k > 0 or k < − j−m+1
m , which implies(

2j + 1
2m− 1

)
k2 +

(
2j + 1

2m

)
k

=
(
2 mk2 + (2j + 1 − 2m+ 1)k

) (2j + 1)(2j) · · · (2j + 1 − (2m− 1) + 1)
(2 m)!

>
(j + 1)
m

(
2j + 1
2m− 1

)
.

hus, we conclude for |k| ≥ j + 1 that

|λk+1 − λk| =

⏐⏐⏐⏐⏐
2j+1∑
ℓ=1

(
2j + 1
ℓ

)
k2j+1−ℓ

⏐⏐⏐⏐⏐
=

⏐⏐⏐⏐⏐1 +
j∑

m=1

((
2j + 1
2m− 1

)
k2 +

(
2j + 1

2m

)
k

)
k2(j−m)

⏐⏐⏐⏐⏐
> (2j + 1)(j + 1)k2(j−1)

> k2,

hich completes the proof. □

emark 2. Lemma 2.1 ensures that the gap condition is still valid for the (generalized) linear operator

Ã =
j∑

(−1)mαm∂2m−1
x ,
m=0
9
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where αm ≥ 0 with αj ̸= 0. Indeed, we have eigenvalues associated to Ã as

λ̃k = i

j∑
m=0

αmk
2m−1,

nd the gap condition
|λ̃k+1 − λ̃k| ≥ k2 max

m=0,...,j
{αm},

or |k| > j, which gives |λ̃k+1 − λ̃k| → ∞ when |k| → ∞. Additionally, it is not necessary to restrict αm ≥ 0,
owever we do not further discuss about it here.

.2. Fourier restriction spaces

The function space equipped with the Fourier restriction norm, which is the so-called Xs,b spaces, has
een proposed by Bourgain [18,34] to solve the periodic NLS and generalized KdV. Since then, it has played
crucial role in the theory of dispersive equations, and has been further developed by many researchers, in
articular, Kenig, Ponce and Vega [35] and Tao [36]. In the following, to ensure global control results, the
pace Xs,b will be of paramount importance.

Let f be a Schwartz function, i.e., f ∈ St,x(R × T). f̃ or F(f) denotes the space–time Fourier transform
f f defined by

f̃(τ, n) = 1
2π

∫
R

∫ 2π

0
e−ixne−itτf(t, x) dxdt.

Then, it is known that the (space–time) inverse Fourier transform is naturally defined as

f(t, x) = 1
2π
∑
n∈Z

∫
R
eixneitτ f̃(τ, n) dt.

oreover, we use Fx (or )̂ and Ft to denote the spatial and temporal Fourier transform, respectively.
For given s, b ∈ R, we define the space Xs,b associated to (1.3) as the closure of St,x(R × T) under the

orm
∥f∥2

Xs,b = 1
2π
∑
k∈Z

∫
R

⟨k⟩2s ⟨
τ − k2j+1⟩2b |f̃(τ, k)|

2
dτ,

hich is equivalent to the expression ∥W (−t)f(t, x)∥Hb
tH

s
x
. Note that the definition of Xs,b ensures the trivial

esting property
Xs,b ⊂ Xs′,b′

, whenever s′ ≤ s, b′ ≤ b, (2.6)

and this immersion is continuous. Moreover, it is known (see, for instance, [37, Lemma 2.11]) that Xs,b space
is stable with respect to time localization, that is,

∥η(t)u∥Xs,b ≲b,ψ ∥u∥Xs,b , (2.7)

for any time cutoff function η ∈ St(R).
According to [35, Theorem 1.2], it is necessary to fix the exponent b = 1

2 in Xs,b for the study of the
eriodic KdV equation. Otherwise, one cannot, indeed, obtain one-derivative gain in the high-low non-
esonant interactions to kill the derivative in the nonlinearity. Thereafter, it becomes natural to fix b = 1

2
ven for the other periodic problems, but it is not necessary. For instance, in the higher-order KdV-type
ase, in particular, j ≥ 2, one can obtain min{2bj, (1 − b)j}-derivative gains from the high-low non-resonant
nteractions, which is enough to remove the one derivative in the nonlinearity, whenever 1

2j ≤ b ≤ 1 − 1
2j .

owever, the present paper covers the KdV and Kawahara cases as well, we, thus, fix b = 1
2 , throughout the

aper.

10
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On the other hand, the space Xs, 1
2 is not embedded in the classical solution space CtHs ≡ C(R, Hs(T)).

herefore, this space is not enough to develop the well-posedness theory. Nevertheless, the lack of embedding
roperty can be overcome by defining the space Y s of solutions with the following norm

∥f∥Y s := ∥f∥
X

s, 1
2

+
 ⟨k⟩s f̃


ℓ2
k
L1

τ
.

For a given time interval I, let Xs,b
I (resp. Y sI ) denote the time localization of Xs,b (resp. Y s) on the

nterval I with the norm

∥f∥
X

s,b
I

= inf {∥g∥Xs,b : g = f on I × T}

(
resp. ∥f∥Y s

I
= inf {∥g∥Y s : g = f on I × T}

)
.

or simplicity, we denote Xs,b
I (resp. Y sI ) by Xs,b

T (resp. Y sT ), if I = (0, T ).

.3. Estimates for higher-order KdV-type equation

We summarize well-known estimates, already established in the literature, which will play important roles
n establishing the exact controllability and stabilizability of the system (1.3). For this, we introduce a cut-off
unction η ∈ C∞

c (R) such that η = 1, if t ∈ [−1, 1] and η = 0, if t /∈ (−2, 2).

emma 2.2 (Xs,b Estimates, [12,38]). Let 0 < T < ∞ be given. Then,

(1) For all s ∈ R, we have for u ∈ Y sT

∥u∥CTH
s ≲ ∥u∥Y s

T
.

(2) For all s ∈ R, we have for f ∈ Hs

∥W (t)f∥Y s
T
≲T,η ∥f∥Hs .

If T ≤ 1, then the constant on the right-hand side does not depend on T .
(3) For all s ∈ R, we have for F ∈ Y sT∫ t

0
W (t− τ)F (τ) dτ


Y s

T

≲T,η
F−1

(⟨
τ − k2j+1⟩−1

F̃
)

Y s
T

. (2.8)

If T ≤ 1, then the positive constant involved in (2.8) does not depend on T .
(4) For s ∈ R with s ≥ − j

2 , we have for u, v ∈ Y sTF−1
(⟨
τ − k2j+1⟩−1

∂̃x(uv)
)

Y s
T

≲ ∥u∥Y s
T

∥v∥Y s
T

(5) For all s ∈ R, − 1
2 < b′ ≤ b < 1

2 and 0 < T < 1, we have for u ∈ Xs,b
T

∥u∥
X

s,b′
T

≲ T b−b
′
∥u∥

X
s,b
T

.

emark 3. The right-hand side of (2.8) is simply dominated by ∥F∥L2(0,T ;Hs) due to the definition of Y sT⟨ 2j+1⟩−1
orm, the nesting property (2.6) and the weight τ − k .
11



R.de A. Capistrano–Filho, C. Kwak and F.J. Vielma Leal Nonlinear Analysis: Real World Applications 68 (2022) 103695

L

O

T
c

L

I

P

3. L4-Strichartz estimate

In this section, we provide a rigorous proof of L4-Strichartz estimate for higher-order KdV equation.

emma 3.1 (Strichartz Estimates). The following estimates hold:

∥f∥L4(R×T) ≲ ∥f∥X0,b , b >
j + 1

2(2j + 1) , ∀j ∈ N, (3.1)

where the implicit constant depends on b and j.

Remark 4. As well-known, the intuition of Lemma 3.1 is as follows: By Sobolev embedding (in both time
and spatial variables), one has

∥f∥L4
t,x

≲ ∥S(−t)f∥
H

1
4

t H
1
4

x

.

n the other hand, from (1.1), one roughly guesses that ∂t ∼ ∂2j+1
x , which transfers spatial derivatives to

temporal derivatives (∂
1
4
x ↦→ ∂

1
4(2j+1)
t ). Hence, one can guess

∥f∥L4
t,x

≲ ∥S(−t)f∥
H

1
4

t H
1
4

x

≲ ∥S(−t)f∥
H

1
4 + 1

4(2j+1)
t L2

x

≲ ∥f∥X0,b , b >
j + 1

2(2j + 1) .

he equality b = j+1
2(2j+1) can also be obtained, but we do not attempt to give it here, in order to avoid

omplicated computations.

The following lemma plays an essential role to prove Lemma 3.1.

emma 3.2. For j ∈ Z and c ∈ R with j ≥ 0 and c > 0, let

hj(x) = x2j+1 + (c− x)2j+1. (3.2)

Then hj satisfies

(1) hj is a symmetry about x = c
2 .

(2) hj(x) > 0 for all x ∈ R.
(3) h′

j( c2 ) = 0.

f j ≥ 1,

(4) h′′
j (x) > 0 for all x ∈ R.

(5) hj has only one absolute minimum value at x = c
2 .

(6) hj can be written as

hj(x) =
(
x− c

2 + α
)(

x− c

2 − α
) j∑
n=1

(
2j + 1

2n

)
hj−n

( c
2

)(n−1∑
ℓ=0

(
x− c

2

)2n−2−2ℓ
α2ℓ

)

+
j∑

n=0

(
2j + 1

2n

)
hj−n

( c
2

)
α2n,

(3.3)

for any α ∈ R.

roof. It is easy to see that

hj

( c
2 + x

)
=
( c

2 + x
)2j+1

+
( c

2 − x
)2j+1

= hj

( c
2 − x

)
,

which satisfies Item (1).

12
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For Item (2), it suffices to show hj(x) > 0 for all x ≥ c
2 due to Item (1). Obviously, hj( c2 ) = c2j+1

22j > 0.
Since

a2j+1 + b2j+1 = (a+ b)
( 2j∑
n=0

(−1)na2j−nbn

)
= (a+ b)

(
j−1∑
m=0

(a− b)a2j−2m−1b2m + b2j

)
,

for x > c
2 , we have

hj(x) = c

(
j−1∑
m=0

(2x− c)x2j−2m−1(c− x)2m + (c− x)2j

)
.

Note that when x = c, we have hj(c) = c2j+1 > 0. Thus, for all x > c
2 with x ̸= c, all terms are strictly

ositive, which proves Item (2).
A direct computation gives

h′
j(x) = (2j + 1)

(
x2j − (c− x)2j) ,

hus h′( c2 ) = 0. This proves Item (3).
In what follows, we fix j ≥ 1. Item (4) follows immediately from Item (2) due to

h′′
j (x) = (2j + 1)(2j)

(
x2j−1 + (c− x)2j−1) .

Item (5) immediately follows from Items (3) and (4).
For Item (6), we first show

hj(x) =
j∑

n=0

(
2j + 1

2n

)
hj−n

( c
2

)(
x− c

2

)2n
. (3.4)

When j = 1, we see that

h1(x) = x3 + (c− x)3 = 3c(x2 − cx) + c3 = 3c
(
x− c

2

)2
+ c3

4 .

ince (
3
0

)
h1

( c
2

)
= 2 ·

( c
2

)3
= c3

4 and
(

3
2

)
h0

( c
2

)
= 3c,

3.4) is true for j = 1. Assume that (3.4) is true for j = m− 1. Then, by the induction hypothesis, we have

h′′
m(x) = (2m+ 1)(2 m)hm−1(x) = (2m+ 1)(2 m)

m−1∑
n=0

(
2m− 1

2n

)
hm−1−n

( c
2

)(
x− c

2

)2n
.

Since h′
m( c2 ) = 0, by integrating from c

2 to x twice, we obtain

hm(x) =
m−1∑
n=0

(2m+ 1)(2 m)
(2n+ 2)(2n+ 1)

(
2m− 1

2n

)
hm−1−n

( c
2

)(
x− c

2

)2n+2
+ hm

( c
2

)
=

m∑
n=0

(
2m+ 1

2n

)
hm−n

( c
2

)(
x− c

2

)2n
.

Thus, by the mathematical induction, we prove (3.4) for all j ≥ 1.
In order to derive (3.3) from (3.4), it suffices to show that for each n ∈ N

(
x− c

2

)2n
=
(
x− c

2 + α
)(

x− c

2 − α
) n−1∑(

x− c

2

)2n−2−2ℓ
α2ℓ + α2n. (3.5)
ℓ=0
13
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Indeed, if (3.5) is true, then we reduce (3.4) as

hj(x) =
j∑

n=0

(
2j + 1

2n

)
hj−n

( c
2

)(
x− c

2

)2n

=
j∑

n=1

(
2j + 1

2n

)
hj−n

( c
2

)((
x− c

2 + α
)(

x− c

2 − α
) n−1∑
ℓ=0

(
x− c

2

)2n−2−2ℓ
α2ℓ + α2n

)

+
(

2j + 1
0

)
hj

( c
2

)
=
(
x− c

2 + α
)(

x− c

2 − α
) j∑
n=1

(
2j + 1

2n

)
hj−n

( c
2

)(n−1∑
ℓ=0

(
x− c

2

)2n−2−2ℓ
α2ℓ

)

+
j∑

n=1

(
2j + 1

2n

)
hj−n

( c
2

)
α2n +

(
2j + 1

0

)
hj

( c
2

)
,

hich proves (3.3).
We use, again, the mathematical induction to prove (3.5). When n = 1, we obtain(

x− c

2

)2
=
(
x− c

2 − α
)(

x− c

2 + α
)

+ α2. (3.6)

Assume that (3.5) is true for n = m− 1. Then, using (3.6) and the induction hypothesis, we have(
x− c

2

)2m
=
((
x− c

2 − α
)(

x− c

2 + α
)

+ α2
)(

x− c

2

)2m−2

=
(
x− c

2 − α
)(

x− c

2 + α
)(

x− c

2

)2m−2

+ α2

((
x− c

2 + α
)(

x− c

2 − α
)m−2∑
ℓ=0

(
x− c

2

)2m−4−2ℓ
α2ℓ + α2m−2

)

=
(
x− c

2 − α
)(

x− c

2 + α
)m−1∑
ℓ=0

(
x− c

2

)2m−2−2ℓ
α2ℓ + α2m,

which proves (3.5). □

Remark 5. Collecting all information in Lemma 3.2, one can roughly sketch the shape of hj(x) defined by
3.2) as in Fig. 2:

roof of Lemma 3.1. The proof basically follows the proof of Lemma 2.1 in [39] associated with the Airy
flow. Moreover, we refer to [28] for the case when j = 2. Thus, in the proof below, we fix j ≥ 3.

Let f = f1 + f2, where
f̂1(k) = 0, if |k| > 1.

ote that |{k ∈ Z : k ∈ supp(f̂1)}| = 3. Since f2 ≤ 2f2
1 + 2f2

2 , it suffices to treat
f2

1

L2(R×T) and

f2
2

L2(R×T) separately.

f2
1 case. A computation gives

f2
1
2
L2(R×T) ≤

∑∫
R

⏐⏐⏐⏐⏐⏐
∑ ∫

R
|f̃1(τ1, k1)||f̃1(τ − τ1, k − k1)| dτ1

⏐⏐⏐⏐⏐⏐
2

dτ. (3.7)

k∈Z k1∈Z

14
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Fig. 2. Lemma 3.2 describes that hj (x) has a convex and symmetric form, and its slope is strictly increasing if x > c
2 , while strictly

ecreasing otherwise.

rom the support property, the right-hand side of (3.7) vanishes unless |k| ≤ 2j. Let

F̃1(τ, k) =
⟨
τ − k2j+1⟩b |f̃1(τ, k)|.

he Cauchy–Schwarz inequality and the Minkowski inequality, we see that for b > 1
4 ,

RHS of (3.7) ≲
∑
k∈Z

|k|≤2

∫
R

( ∑
k1∈Z

(∫
R

⟨
τ − τ1 − (k − k1)2j+1⟩−2b ⟨

τ1 − k2j+1
1

⟩−2b
dτ1

) 1
2

×
(∫

R
|F̃1(τ1, k1)|

2
|F̃1(τ − τ1, k − k1)|

2
dτ1

) 1
2
)2

dτ

≲
∑
k∈Z

|k|≤2

(∑
k1∈Z

(∫
R2

|F̃1(τ1, k1)|
2
|F̃1(τ − τ1, k − k1)|

2
dτ1dτ

) 1
2
)2

≲ ∥f1∥4
X0,b ≲ ∥f∥4

X0,b .

f2
2 case. Analogous to (3.7), we have

f2
2
2
L2(R×T) ≤

∑
k∈Z

∫
R

⏐⏐⏐⏐⏐⏐
∑
k1∈Z

∫
R

|f̃2(τ1, k1)||f̃2(τ − τ1, k − k1)| dτ1

⏐⏐⏐⏐⏐⏐
2

dτ

=
∑
k∈Z

|k|≤1

∫
R

⏐⏐⏐⏐⏐⏐
∑
k1∈Z

∫
R

|f̃2(τ1, k1)||f̃2(τ − τ1, k − k1)| dτ1

⏐⏐⏐⏐⏐⏐
2

dτ

+
∑
k∈Z

|k|>1

∫
R

⏐⏐⏐⏐⏐⏐
∑
k1∈Z

∫
R

|f̃2(τ1, k1)||f̃2(τ − τ1, k − k1)| dτ1

⏐⏐⏐⏐⏐⏐
2

dτ
=: I1 + I2.

15
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The term I1 can be treated similarly as f2
1 case. For the term I2, we may assume that k1 > 1 and k−k1 > 1

thus, k > 1). Indeed, let f2 = f2,1 + f2,2, where

f̂2,1(k) = 0 if k > 1,

hen
f2

2
2
L2 ≤ 2

f2
2,1
2
L2 + 2

f2
2,2
2
L2 and

f2
2,1

L2 =

f2,1
2

L2

=
f2

2,2

L2 . Similarly as (3.7), we have

I2 ≲
∑
k∈Z
k>1

∫
R

( ( ∑
k1∈Z

k1,k−k1>1

∫
R

⟨
τ − τ1 − (k − k1)2j+1⟩−2b ⟨

τ1 − k2j+1
1

⟩−2b
dτ1

) 1
2

×

(∑
k1∈Z

∫
R

|F̃2(τ1, k1)|
2
|F̃2(τ − τ1, k − k1)|

2
dτ1

) 1
2
)2

dτ

≲ M ∥f2∥4
X0,b ,

where
M = sup

τ∈R,k∈Z
k>1

∑
k1∈Z

k1,k−k1>1

∫
R

⟨
τ − τ1 − (k − k1)2j+1⟩−2b ⟨

τ1 − k2j+1
1

⟩−2b
dτ1.

Thus, it is enough to show that M ≲ 1 whenever b > j+1
2(2j+1) .

A direct computation ∫
R

⟨a⟩−α ⟨b− a⟩−α
da ≲ ⟨b⟩1−2α

,

or 1
2 < α < 1, yields

M ≲ sup
τ∈R,k∈Z

k>1

∑
k1∈Z

k1,k−k1>1

⟨
τ − k2j+1

1 − (k − k1)2j+1
⟩1−4b

.

For each τ ∈ R and k ∈ Z with k > 1, let h(x) := hj(x) − τ , for hj as in (3.2) with c = k. From (3.4), we
know

h(x) =
j∑

n=1

(
2j + 1

2n

)
hj−n

(
k

2

)(
x− k

2

)2n
+ hj

(
k

2

)
− τ.

rom Lemma 3.2 Item (5), we know hj
(
k
2
)

− τ is the absolute minimum value of h. If hj
(
k
2
)

− τ ≥ 0, we
now

⟨h(k1)⟩1−4b ≤

(
(2j + 1)h0

(
k

2

)(
k1 − k

2

)2j
)1−4b

=
(

(2j + 1)k
(
k1 − k

2

)2j
)1−4b

on Ac,

here the set
A =

{
k1 ∈ Z :

⏐⏐⏐⏐k1 − k

2

⏐⏐⏐⏐ ≤ 1
}
. (3.8)

ote that |A| ≤ 3. Thus,

∑
k1∈Z

k1,k−k1>1

⟨
τ − k2j+1

1 − (k − k1)2j+1
⟩1−4b

≲
∑
k1∈A

1 +
∑

k1∈Ac

k1,k−k1>1

(
k

(
k1 − k

2

)2j
)1−4b

≲ 1 +
∑
k>1

k(2j+1)(1−4b) +
∑

|k1− k
2 |>1

⏐⏐⏐⏐k1 − k

2

⏐⏐⏐⏐(2j+1)(1−4b)

≲ 1,

provided that b > j+1 .
2(2j+1)

16
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v
A

W

4

L
φ

On the other hand, if hj
(
k
2
)

− τ < 0, since h is symmetry about x = k
2 and has the absolute minimum

alue at k
2 , there is α > 0 such that k

2 + α and k
2 − α are the only roots of h, i.e., h(k2 + α) = h(k2 − α) = 0.

direct computation gives

0 = h

(
k

2 + α

)
= h

(
k

2 − α

)
=

j∑
n=0

(
2j + 1

2n

)
hj−n

(
k

2

)
α2n − τ.

ith this, by Lemma 3.2 Item (6), we know

h(x) =
(
x− k

2 + α

)(
x− k

2 − α

) j∑
n=1

(
2j + 1

2n

)
hj−n

(
k

2

)(n−1∑
ℓ=0

(
x− k

2

)2n−2−2ℓ
α2ℓ

)
.

Let Ω± be a set of k1 defined by

Ω± =
{
k1 ∈ Z :

⏐⏐⏐⏐k1 − k

2 ± α

⏐⏐⏐⏐} .
Note that |Ω±| ≤ 3. Then, similarly as before, we have

⟨h(k1)⟩1−4b ≤

(
(2j + 1)h0

(
k

2

)(
k1 − k

2 + α

)(
k1 − k

2 − α

)(
k1 − k

2

)2j−2
)1−4b

=
(

(2j + 1)k
⏐⏐⏐⏐k1 − k

2 + α

⏐⏐⏐⏐ ⏐⏐⏐⏐k1 − k

2 − α

⏐⏐⏐⏐ (k1 − k

2

)2j−2
)1−4b

on (Ω+ ∪ Ω− ∪A)c, where the set A is as in (3.8). Therefore, we conclude that∑
k1∈Z

k1,k−k1>1

⟨
τ − k2j+1

1 − (k − k1)2j+1
⟩1−4b

≲
∑
k>1

k(2j+1)(1−4b) +
∑

|k1− k
2 +α|>1

⏐⏐⏐⏐k1 − k

2 + α

⏐⏐⏐⏐(2j+1)(1−4b)

+
∑

|k1− k
2 −α|>1

⏐⏐⏐⏐k1 − k

2 − α

⏐⏐⏐⏐(2j+1)(1−4b)
+

∑
|k1− k

2 |>1

⏐⏐⏐⏐k1 − k

2

⏐⏐⏐⏐(2j+1)(1−4b)

≲ 1,

provided that b > j+1
2(2j+1) . This completes the proof. □

4. Propagation of regularity and unique continuation property

In this section, we provide necessary basic tools that we use to demonstrate the main results of this work.
In what follows, [·, ·] denotes the standard commutator operator defined by [A,B] = AB −BA.

.1. Auxiliary lemmas

We first recall three useful lemmas for our analyses below.

emma 4.1 ([40, Lemma A.1]). A function ϕ ∈ C∞(T) can be written in the form ∂xφ for some function
∞ ∫
∈ C (T) if and only if T ϕ(x) dx = 0.
17
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Lemma 4.2 ([41, Lemma A.1.]). Let s, r ∈ R. Let f denote the operator of multiplication by f ∈ C∞(T).
Then, [Dr, f ] maps any Hs into Hs−r+1, where Dr operator is defined on distributions D′(T) by

D̂rf(n) =
{

sgn(n)|n|rf̂(n), if n ̸= 0,
f̂(0), if n = 0.

Lemma 4.3 ([41, Lemma A.3.]). Let s ∈ R. Let f ∈ C∞(T) and ρε = eε
2∂2

x with 0 ≤ ε ≤ 1. Then, [ρε, f ] is
uniformly bounded as an operator from Hs into Hs+1.

We end this subsection with the multiplication property of Xs,b spaces.

Lemma 4.4 (Multiplication Property). Let −1 ≤ b ≤ 1, s ∈ R and φ ∈ C∞(T). Then, φu ∈ Xs−2j|b|,b, for
any u ∈ Xs,b. Moreover, the map u ↦→ φu from Xs,b

T into Xs−2j|b|,b
T is bounded.

Proof. Since Xs,b space is stable with respect to time localization (see (2.7)), it is enough to prove the
first part (without time localization). When b = 0, it is obvious due to Xs,0 = L2(R;Hs) (see [40, Theorem
4.3]) and

∥φu∥Hs ≲ ∥u∥Hs , (4.1)

where the implicit constant depends on s and φ.
We now take b = 1, then it is known that

u ∈ Xs,1 ⇐⇒ u ∈ L2(R;Hs) and
(
∂t + (−1)j+1∂2j+1

x

)
u ∈ L2(R;Hs), (4.2)

due to the definition of Xs,b and ⟨·⟩ ∼ 1 + | · |. A computation gives(
∂t + (−1)j+1∂2j+1

x

)
(φu) = φ

(
∂t + (−1)j+1∂2j+1

x

)
u− [φ, (−1)j+1∂2j+1

x ]u. (4.3)

Due to (4.3) and (4.1) in the definition (4.2), it suffices to show[φ, (−1)j+1∂2j+1
x ]u


Hs−2j ≲ ∥u∥Hs . (4.4)

Observe that

[φ, (−1)j+1∂2j+1
x ]u = (−1)j

2j∑
ℓ=0

(
2j + 1
ℓ

)
∂2j+1−ℓ
x φ ∂ℓxu.

This, in addition to (4.1), immediately implies (4.4). Thus, by the complex interpolation theorem of
Stein–Weiss for weighted Lp spaces (see [42, p. 114]), we complete the proof for the case when 0 ≤ b ≤ 1.

The case when −1 ≤ b ≤ 0 can be proved via the duality argument. Precisely, the duality argument
ensures the map u ↦→ φu from X−s+2jb,−b to X−s−b is bounded for 0 ≤ b ≤ 1. Since the spatial regularity
is arbitrary, by replacing −s + 2jb by s, we conclude that multiplication map is bounded from Xs,−b to
Xs−2jb,−b, which implies the desired result for −1 ≤ b ≤ 0, we thus complete the proof. □

4.2. Propagation of compactness

In this section, we present the properties of propagation of compactness for the linear differential operator
L = ∂t+(−1)j+1∂2j+1

x associated with the higher-order KdV type equation. The main ingredient is basically
pseudo-differential analysis.
18
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f

f

a

I

T

I

Proposition 4.5. Let T > 0 and 0 ≤ b′ ≤ b ≤ 1 be given, with b > 0. Suppose that un ∈ X0,b
T and

n ∈ X−2j+2jb,−b
T satisfy

∂tun + (−1)j+1∂2j+1
x un = fn,

or n ∈ N. Assume that there exists a constant C > 0 such that

∥un∥
X

0,b
T

≤ C (4.5)

nd that
∥un∥

X
−2j+2jb,−b
T

+ ∥fn∥
X

−2j+2jb,−b
T

+ ∥un∥
X

−1+2jb′,−b′
T

→ 0, as n → +∞. (4.6)

n addition, assume that for some nonempty open set ω ⊂ T it holds

un → 0 strongly in L2 (0, T ;L2 (ω)
)

. (4.7)

hen,
un → 0 strongly in L2

loc

(
(0, T ) ;L2 (T)

)
, as n → +∞.

Proof. For any compact interval I ⊂ (0, T ), we choose a cut-off function ψ ∈ C∞
c ((0, T )) such that

0 ≤ ψ ≤ 1 and ψ ≡ 1 in I. Then, a simple computation yields

∥un∥2
L2(I;L2) ≤

∫ T

0
ψ(t)(un, un) dt.

On the other hand, since T is compact, there exist a finite number of open interval of the length less than
the size of ω centered at xm0 , m = 1, 2, . . . ,M for some M . For an appropriate χ ∈ C∞

c (ω), we can construct
a partition of unity as

0 ≤ χ(x− xm0 ) ≤ 1 and
M∑
m=1

χ(x− xm0 ) ≡ 1, (4.8)

for all x ∈ T and m = 1, . . . ,M . Then,∫ T

0
ψ(t)(un, un) dt ≤

M∑
m=1

∫ T

0
ψ(t)(χ(· − xm0 )un, un) dt,

which reduces our problem to proving that for any χ ∈ C∞
c (ω) and x0 ∈ T

(ψ(t)χ(· − x0)un, un)L2(0,T ;L2) → 0, n → ∞. (4.9)

Once proving that
lim
n→∞

(ψ(t)(∂xφ)un, un)L2(0,T ;L2) = 0, (4.10)

for some φ ∈ C∞(T), we immediately obtain (4.9) by putting

∂xφ = χ(x) − χ(x− x0). (4.11)

ndeed, a direct computation gives

(ψ(t)χ(x− x0)un, un)L2(0,T ;L2) = (ψ(t)χ(x)un, un)L2(0,T ;L2) − (ψ(t)(∂xφ)un, un)L2(0,T ;L2) ,

and the right-hand side goes to zero due to (4.7) and (4.10), which implies (4.9). Note that Lemma 4.1
ensures to find φ ∈ C∞(T) satisfying (4.11). Thus, we are now further reduced to proving (4.10).
19
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T

a

P

I
b
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F

U
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T

O

T

w

H

I

On the other hand, one knows from Plancherel’s theorem that∫
T
∂xφ(x)un(x)un(x) dx = ûn(0)

∫
T
∂xφ(x)un(x) dx

+
∫
T
(−1)j∂2j

x D
−2jun(x)∂xφ(x)un(x) dx.

herefore, the proof of Proposition 4.5 is completed from

lim
n→∞

⏐⏐⏐(ψ(t)(∂xφ)∂2j
x D

−2jun, un
)
L2(0,T ;L2)

⏐⏐⏐ = 0 (4.12)

nd
lim
n→∞

⏐⏐⏐(ψ(t)(∂xφ)ûn(t, 0), un)L2(0,T ;L2)

⏐⏐⏐ = 0. (4.13)

roof of (4.12). Let take real valued φ ∈ C∞(T) (satisfying (4.11)) and ψ ∈ C∞
0 ((0, T )), and let set

B := φ(x)D−2j and A := ψ(t)B.

t is straightforward to know A∗ = ψ(t)D−2jφ(x). We denote by Aε and Bε the regularization of A and B
y

Aε := Aeε∂
2
x and Bε := Beε∂

2
x ,

espectively, and set αn,ε = ([Aε,L]un, un)L2(0,T ;L2), where L = ∂t+ (−1)j+1∂2j+1
x . Note that Aε = ψ(t)Bε.

rom Lun = fn and L∗ = −L, one has

αn,ε = (fn,A∗
εun)L2(0,T ;L2) + (Aεun, fn)L2(0,T ;L2) .

sing (2.7) and Lemma 4.4, the Cauchy–Schwarz inequality yields⏐⏐⏐(fn,A∗
εun)L2(0,T ;L2)

⏐⏐⏐ ≤ ∥fn∥
X

−2j+2jb,−b
T

∥A∗
εun∥

X
2j−2jb,b
T

≲ ∥fn∥
X

−2j+2jb,−b
T

∥un∥
X

0,b
T

.

imilarly, we show ⏐⏐⏐(Aεun, fn)L2(0,T ;L2)

⏐⏐⏐ ≲ ∥un∥
X

0,b
T

∥fn∥
X

−2j+2jb,−b
T

.

hus, the assumption (4.6) ensures
lim
n→∞

sup
0<ε≤1

αn,ε = 0.

n the other hand, the fact ∂tAε = ψ′(t)Bε + Aε∂t enables us to rewrite

αn,ε =
(
[Aε, (−1)j+1∂2j+1

x ]un, un
)
L2(0,T ;L2) − (ψ′(t)Bεun, un)L2(0,T ;L2) .

hen, the analogous argument shows⏐⏐⏐(ψ′(t)Bεun, un)L2(0,T ;L2)

⏐⏐⏐ ≲ ∥un∥
X

−2j+2jb,−b
T

∥un∥
X

0,b
T

,

hich implies
lim
n→∞

sup
0<ε≤1

⏐⏐⏐(ψ′(t)Bεun, un)L2(0,T ;L2)

⏐⏐⏐ = 0.

ence, we conclude that

lim
n→∞

sup
0<ε≤1

(
[Aε, (−1)j+1∂2j+1

x ]un, un
)
L2(0,T ;L2) = 0.

n particular,
lim

(
[A, (−1)j+1∂2j+1]un, un

)
= 0.
n→∞ x L2(0,T ;L2)
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t

Since ∂x commutes with D−1, a straightforward computation gives

[A, (−1)j+1∂2j+1
x ] = (−1)jψ(t)

2j+1∑
ℓ=1

(
2j + 1
ℓ

)
∂ℓxφ(x)∂2j+1−ℓ

x D−2j . (4.14)

Analogously, we show for ℓ = 2, . . . , 2j + 1 that3⏐⏐⏐⏐⏐
(

(−1)jψ(t)
(

2j + 1
ℓ

)
∂ℓxφ(x)∂2j+1−ℓ

x D−2jun, un

)
L2(0,T ;L2)

⏐⏐⏐⏐⏐
≤
ψ(t)

(
2j + 1
ℓ

)
∂ℓxφ(x)∂2j+1−ℓ

x D−2jun


X

0,−b′
T

∥un∥
X

0,b′
T

≲ ∥un∥
X

1−ℓ+2jb′,−b′
T

∥un∥
X

0,b′
T

,

which implies

lim
n→∞

⏐⏐⏐⏐⏐
(

(−1)jψ(t)
(

2j + 1
ℓ

)
∂ℓxφ(x)∂2j+1−ℓ

x D−2jun, un

)
L2(0,T ;L2)

⏐⏐⏐⏐⏐ = 0. (4.15)

Collecting (4.14) and (4.15), we complete the proof of (4.12).

Proof of (4.13). A straightforward computation in addition to (4.5) yields

∥ûn(t, 0)∥L2((0,T )) ≲ ∥un∥
X

0,b
T

≤ C.

Thus, the sequence ûn(·, 0) is bounded in Hb(0, T ), which is compactly embedded in L2(0, T ), by the Rellich
Theorem. Therefore, there exists a subsequence that converges strongly in L2(0, T ). Next, it can be seen that
the only weak limit of a subsequence in L2(0, T ) is zero, so that the whole sequence tends strongly to 0 in
L2(0, T ). Hence,

ûn(t, 0) → 0, (strongly) in L2(0, T ), as n → +∞,

and (4.13) holds. Consequently, Proposition 4.5 is proved. □

4.3. Propagation of regularity

We now present the properties of propagation of regularity for the linear differential operator L =
∂t + (−1)j+1∂2j+1

x associated with the higher-order KdV-type equation.

Proposition 4.6. Let T > 0, r ∈ R, 0 ≤ b ≤ 1 and f ∈ Xr,−b
T be given. Let u ∈ Xr,b

T be a solution of

∂tu+ (−1)j+1∂2j+1
x u = f .

If there exists a nonempty ω ⊂ T such that u ∈ L2
loc ((0, T ) , Hr+ρ (ω)) for some ρ with

0 < ρ ≤ min
{
j(1 − b), 1

2

}
,

hen
u ∈ L2

loc

(
(0, T ) , Hr+ρ (T)

)
.

3 It suffices to choose b′ = b when ℓ = 2j + 1.
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c

H

O
f

M

f

P

N

f

t

Proof. The strategy of the proof is analogous to the proof of Proposition 4.5. Let s := r + ρ. For any
ompact interval I ⊂ (0, T ) and ψ ∈ C∞

c ((0, T )) as in the proof of Proposition 4.5, we have

∥u∥2
L2(I;Hs) ≤

∫ T

0
ψ(t)(u, u)Hs dt

≲ ∥u∥2
L2(0,T ;L2) +

(
ψ(t)D2s−2j(−∂2

x)ju, u
)
L2(0,T ;L2) ,

ence, we are reduced to proving ⏐⏐⏐(ψ(t)D2s−2j∂2j
x u, u

)
L2(0,T ;L2)

⏐⏐⏐ ≲ 1.

n the other hand, using a partition of unity as in (4.8) (but χ2 instead of χ4), it is enough to show that
or any χ ∈ C∞

c (ω) and x0 ∈ T, we have⏐⏐⏐(ψ(t)D2s−2jχ2(x− x0)∂2j
x u, u

)
L2(0,T ;L2)

⏐⏐⏐ ≲ 1.

oreover, by taking ∂xφ = χ2(x) − χ2(x− x0), we are finally reduced to proving⏐⏐⏐(ψ(t)D2s−2j(∂xφ)∂2j
x u, u

)
L2(0,T ;L2)

⏐⏐⏐ ≲ 1, (4.16)

or some φ ∈ C∞(T), and ⏐⏐⏐(ψ(t)D2s−2jχ2(x)∂2j
x u, u

)
L2(0,T ;L2)

⏐⏐⏐ ≲ 1. (4.17)

roof of (4.16). For n ∈ N, set

un := e
1
n∂

2
xu and fn := e

1
n∂

2
xf.

ote that Lun = fn. Then, there exists C > 0 such that

∥un∥
X

r,b
T

, ∥fn∥
X

r,−b
T

≤ C

or all n ∈ N. Define operators A and B by

B := D2s−2jφ(x) and A := ψ(t)B,

hen we know similarly as in the proof of Proposition 4.5 that(
[A, (−1)j+1∂2j+1

x ]un, un
)
L2(0,T ;L2) − (ψ′(t)Bun, un)L2(0,T ;L2) = (fn,A∗un)L2(0,T ;L2)

+ (Aun, fn)L2(0,T ;L2) .

Using (2.7) and Lemma 4.4, one shows⏐⏐⏐(Aun, fn)L2(0,T ;L2)

⏐⏐⏐ ≤ ∥Aun∥
X

−r,b
T

∥fn∥
X

r,−b
T

≲ ∥un∥
X

−r+2jb+2s−2j,b
T

∥fn∥
X

r,−b
T

≲ ∥un∥
X

r,b
T

∥fn∥
X

r,−b
T

≲ 1,

since −r + 2jb+ 2s− 2j = r + 2ρ− 2j(1 − b) ≤ r. Analogously, we show⏐⏐⏐(ψ′(t)Bun, un)L2(0,T ;L2)

⏐⏐⏐ , ⏐⏐⏐(fn,A∗un)L2(0,T ;L2)

⏐⏐⏐ ≲ 1,

4 It is possible if we simply take χ̄ = √
χ.
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N

F

f

T

P

which says ⏐⏐⏐([A, (−1)j+1∂2j+1
x ]un, un

)
L2(0,T ;L2)

⏐⏐⏐ ≲ 1.

ote that the implicit constant, here, does not depend on n ∈ N. Similarly as in (4.14), we know

[A, (−1)j+1∂2j+1
x ] = (−1)jψ(t)D2s−2j

2j+1∑
ℓ=1

(
2j + 1
ℓ

)
∂ℓxφ(x)∂2j+1−ℓ

x .

or ℓ = 2, . . . , 2j + 1, a direct computation gives⏐⏐⏐⏐⏐
(

(−1)jψ(t)D2s−2j
(

2j + 1
ℓ

)
∂ℓxφ(x)∂2j+1−ℓ

x un, un

)
L2(0,T ;L2)

⏐⏐⏐⏐⏐
≲
ψ(t)D2s−2j∂ℓxφ(x)∂2j+1−ℓ

x un

L2(0,T ;H−r) ∥un∥L2(0,T ;Hr)

≲ ∥un∥L2(0,T ;H−r+2s+1−ℓ) ∥un∥L2(0,T ;Hr) .

Since −r+ 2s+ 1 − ℓ = r+ 2ρ− 1 + (2 − ℓ) ≤ r, for all ℓ = 2, . . . , 2j + 1, whenever ρ ≤ 1
2 , we conclude that⏐⏐⏐⏐⏐

(
(−1)jψ(t)D2s−2j

(
2j + 1
ℓ

)
∂ℓxφ(x)∂2j+1−ℓ

x un, un

)
L2(0,T ;L2)

⏐⏐⏐⏐⏐ ≲ 1,

or ℓ = 2, . . . , 2j + 1 and n ∈ N. Consequently, we obtain⏐⏐⏐((−1)jψ(t)D2s−2j(∂xφ)∂2j
x un, un

)
L2(0,T ;L2)

⏐⏐⏐ ≲ 1.

aking the limit on n, we conclude (4.16).

roof of (4.17). A straightforward computation gives(
ψ(t)D2s−2jχ2∂2j

x un, un
)
L2(0,T ;L2) =

(
ψ(t)[Ds−2j , χ]χ∂2j

x un, D
sun
)
L2(0,T ;L2)

+
(
ψ(t)Ds−2jχ∂2j

x un, [Ds, χ]un
)
L2(0,T ;L2)

+
(
ψ(t)Ds−2jχ∂2j

x un, D
sχun

)
L2(0,T ;L2)

=: I + II + III.

Lemmas 4.2 and 4.3 ensure for u ∈ Xr,b
T ∩ L2

loc(0, T ;Hs(ω)) that

∥χun∥Hs ≤
e 1

n∂
2
xχu


Hs

+
[χ, e 1

n∂
2
x ]u

Hs

≲ ∥χu∥Hs + ∥u∥Hs−1

and χ∂2j
x un


Hσ−2j ≤ ∥χun∥Hσ +

[χ, ∂2j
x ]un


Hσ−2j ≲ ∥χun∥Hσ + ∥un∥Hσ−1 ,

for σ ∈ R. The Cauchy–Schwarz inequality and Lemmas 4.2 and 4.3, in addition to above estimates, yield

|I| ≤ ∥un∥L2(0,T ;Hr)
ψ(t)Dρ[Ds−2j , χ]χ∂2j

x un

L2(0,T ;L2)

≤ ∥un∥L2(0,T ;Hr)
ψ(t)χ∂2j

x un

L2(0,T ;Hs+ρ−1−2j)

≲ ∥un∥
X

r,b
T

(
∥ψ(t)χu∥L2(0,T ;Hs) + ∥u∥

X
r,b
T

+ ∥un∥
X

r,b
T

)
≲ 1,

|II| ≤
ψ(t)χ∂2j

x un

L2(0,T ;Hs−2j−ρ) ∥Dρ[Ds, χ]un∥L2(0,T ;L2)

≤
ψ(t)χ∂2j

x un

L2(0,T ;Hs−2j−ρ) ∥un∥L2(0,T ;Hρ+s−1)

≲ ∥un∥
X

r,b
T

(
∥ψ(t)χu∥L2(0,T ;Hs) + ∥u∥

X
r,b
T

+ ∥un∥
X

r,b
T

)

≲ 1
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and

|III| ≤
∫ T

0
ψ(t)

χ∂2j
x un


Hs−2j ∥χun∥Hs dt

≲
∫ T

0
ψ(t) ∥χun∥Hs (∥χun∥Hs + ∥un∥Hs−1) dt

≲ ∥u∥2
L2(I;Hs(ω)) + ∥u∥2

X
r,b
T

+
(

∥ψ(t)χu∥L2(0,T ;Hs) + ∥u∥
X

r,b
T

)
∥un∥

X
r,b
T

≲ 1.

Thus, we obtain ⏐⏐⏐(ψ(t)D2s−2jχ2∂2j
x un, un

)
L2(0,T ;L2)

⏐⏐⏐ ≲ 1,

which implies (4.17) by taking limit on n, and the proof of Proposition 4.6 is achieved. □

4.4. Unique continuation property

As a consequence of the propagation of regularity, we prove the following unique continuation property
for the higher-order KdV type. First, let us prove the auxiliary lemma.

Lemma 4.7. Let u ∈ X
0, 1

2
T be a solution of

∂tu+ (−1)j+1∂2j+1
x u+ u∂xu = 0 on (0, T ) × T. (4.18)

ssume that u ∈ C∞ ((0, T ) × ω), where ω ⊂ T nonempty set. Then, u ∈ C∞ ((0, T ) × T).

Proof. Recall that the mean value [u] is conserved. Changing a into a+ [u] if needed, we may assume that
[u] = 0. Using Lemma 3.1 (or from Lemma 2.2), we have that u∂xu ∈ X

0,− 1
2

T . It follows from Proposition 4.6
with f = −u∂xu that

u ∈ L2
loc(0, T ;H 1

2 (T)).

hoose t0 such that u (t0) ∈ H
1
2 (T). We can then solve (4.18) in X

1
2 ,

1
2

T with the initial data u (t0). By
niqueness of solution in X0, 1

2
T , we conclude that u ∈ X

1
2 ,

1
2

T . Applying Proposition 4.6 iteratively, we obtain

u ∈ L2 (0, T ;Hr (T)) , ∀r ≥ 0,

nd, hence u ∈ C∞ ((0, T ) × T). □

As a consequence of the previous result, we have the following unique continuation property.

Corollary 4.8. Let ω be a nonempty open set in T and let u ∈ X
0, 1

2
T be a solution of{

∂tu+ (−1)j+1∂2j+1
x u+ u∂xu = 0 on (0, T ) × T,

u = c on (0, T ) × ω,

here c ∈ R denotes some constant. Then, u(t, x) = c on (0, T ) × T. Furthermore, if the mean [u] = 0, then
(t, x) = 0 on (0, T ) × T.

roof. Using Lemma 4.7, we infer that u ∈ C∞((0, T ) × T). It follows that u ≡ c on (0, T ) × T by the
nique property proved by Saut and Scheurer in [43]. □
24
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5. Global stability: Proof of Theorem 1.4

In this section, we can establish the global results for the higher-order nonlinear dispersive equation
(while Theorem 1.2 has a local aspect). The main ingredients are the propagation of regularity and the
unique continuation property shown in the previous section. Accurately, we are concerned with the stability
properties of the closed loop system{

∂tu+ (−1)j+1∂2j+1
x u+ u∂xu = −Kλu in {t > 0} × T,

u (0, x) = u0 (x) on T, (5.1)

here λ ≥ 0 is a given number, u0 ∈ Hs
0 (T), for any s ≥ 0 and Kλ is defined by Kλu(t, x) ≡ GG∗L−1

λ u(t, x)
or the operator G defined as in (1.4). It is known (see, for e.g. [19]) that G is a linear bounded operator
rom L2(0, T ;Hs

0(T)) into itself. Moreover, G is a self-adjoint positive operator on L2
0(T).

.1. Proof of Theorem 1.4 for s = 0

Consider λ = 0 in Kλ and remember that K0 = GG∗, so Theorem 1.4 in L2-level is a direct consequence
f the following observability inequality:

Let T > 0 and R0 > 0 be given. There exists a constant µ > 1 such that for any u0 ∈ L2
0 (T) satisfying

∥u0∥L2 ≤ R0,

he corresponding solution u of (5.1), with λ = 0, satisfies

∥u0∥2
L2 ≤ µ

∫ T

0
∥Gu(t)∥2

L2 dt. (5.2)

Indeed, suppose that (5.2) holds. Assuming that λ = 0, the energy estimate gives us

∥u (T, ·)∥2
L2 = ∥u0∥2

L2 −
∫ T

0
∥Gu(t)∥2

L2 dt, (5.3)

hich jointly with (5.2) insures,

∥u (T, ·)∥2
L2 ≤ (µ− 1)

∫ T

0
∥Gu(t)∥2

L2 dt

r equivalently,
∥u (T, ·)∥2

L2 ≤ (µ− 1)
(

∥u0∥2
L2 − ∥u (T, ·)∥2

L2

)
.

Thus,
∥u (T, ·)∥2

L2 ≤ µ− 1
µ

∥u0∥2
L2 .

n this way, we inductively obtain that

∥u(kT, ·)∥2
L2 ⩽

(
µ− 1
µ

)k
∥u0∥2

L2 ,

or all k ⩾ 0. Finally, analogously to (5.3), we know

∥u(t, ·)∥L2 ⩽ ∥u(kT, ·)∥L2 ,

or kT ⩽ t ⩽ (k + 1)T , thus
∥u (t, ·)∥L2(T) ⩽ ce−γt ∥u0∥L2(T) , ∀t ⩾ 0, (5.4)

µ and γ =
log
(

µ
µ−1
)

, and Theorem 1.4 holds true for s = 0. □
here c = µ−1 T
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Let us now turn to prove inequality (5.2). To do that we argue by contradiction. Suppose not, there exist
a sequence {un}n∈N = un, such that un ∈ Y 0

T is solution of (5.1) satisfying

∥u0,n∥L2 ≤ R0

ut ∫ T

0
∥Gun(t)∥2

L2 dt <
1
n

∥u0,n∥2
L2 , (5.5)

here u0,n = un (0). Let ξn := ∥u0,n∥L2 ≤ R0. Then, one can choose a subsequence of ξn = {ξn}n∈N, still
enote by ξn, such that,

lim
n→∞

ξn = ξ.

here are two possible cases: (a) ξ > 0 and (b) ξ = 0.

ase (a): ξ > 0. Since the sequence un is bounded in Y 0
T , by Lemma 2.2 (see particularly [15, Lemma 2.4]),

the sequence
{
∂x
(
u2
n

)}
n∈N is bounded in X

0,− 1
2

T . By the compactness of embedding (taking subsequences
f needed, but still denote by un), we know

un → u in X−1,0
T and − 1

2∂x
(
u2
n

)
⇀ f in X

0,− 1
2

T ,

here u ∈ X
0, 1

2
T and f ∈ X

0,− 1
2

T . Moreover, from (3.1), we obtain

X
0, 1

2
T ↪→ L4((0, T ) × T),

which ensures that u2
n is bounded in L2 ((0, T ) × T). Therefore, its follows that ∂x

(
u2
n

)
is bounded in

X−1,0
T = L2 (0, T ;H−1 (0, L)

)
.

From interpolation of the space X0,− 1
2

T and X−1,0
T , we obtain that ∂x

(
u2
n

)
is bounded in X

−θ,− 1
2 + θ

2
T , for

∈ [0, 1]. Again using the compactness of embedding we conclude that

−1
2∂x

(
u2
n

)
→ f in X

−1,− 1
2

T .

n the other hand, it follows from (5.5) that∫ T

0
∥Gun∥2

L2 dt →
∫ T

0
∥Gu∥2

L2 dt = 0, (5.6)

hich implies from the definition of the operator G as in (1.4) that

u(t, x) =
∫
T
g(y)u(t, y) dy =: c(t) on (0, T ) × ω,

here ω = {x ∈ T : g > 0}. Thus, taking n → ∞, we obtain from (5.1) that{
∂tu+ (−1)j+1∂2j+1

x u = f on (0, T ) × T,
u(t, x) = c (t) on (0, T ) × ω.

e prove now that f = − 1
2∂x

(
u2). Indeed, pick wn = un − u and fn = − 1

2∂x
(
u2
n

)
− f − K0un. Remark

that from (5.6),∫ T

∥Gwn∥2
L2 dt =

∫ T

∥Gun∥2
L2 dt+

∫ T

∥Gu∥2
L2 dt− 2

∫ T

(Gun, Gu) dt → 0. (5.7)

0 0 0 0
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Since wn ⇀ 0 in X
0, 1

2
T we infer from Rellich theorem that∫

T
g (y)wn (t, y) dy → 0 in L2 (0, T ) .

ombined with (5.7), this yields

∥gwn∥L2(0,T ;L2) ≤ ∥Gwn∥L2(0,T ;L2) +
∫

T
g(y)wn(·, y) dy


L2(0,T )

→ 0.

Then, wn and fn satisfy
∂twn + (−1)j+1∂2j+1

x wn = fn

and
fn → 0 in X

−1,− 1
2

T and wn → 0 in L2 (0, T ;L2 (ω̃)
)

,

here ω̃ :=
{
g >

∥g∥L∞
2

}
. Applying Proposition 4.5 with b = 1

2 and b′ = 0, we conclude that

wn → 0 in L2
loc

(
0, T ;L2 (T)

)
.

onsequently, u2
n tends to u2 in L1

loc

(
0, T ;L2 (T)

)
and ∂x

(
u2
n

)
tends to ∂x

(
u2) in distributional sense.

Therefore, f = − 1
2∂x

(
u2) and u ∈ X

0, 1
2

T satisfies{
∂tu+ (−1)j+1∂2j+1

x u+ 1
2∂x

(
u2) = 0 on (0, T ) × T,

u (t, x) = c (t) on (0, T ) × ω.

he first equation gives c′ (t) = 0 which, combined with the unique continuation property (Corollary 4.8)
nsures that u(t, x) = c, for some c ∈ R. Since [u] = 0, then c = 0 and

un → 0 in L2
loc

(
(0, T ) , L2 (T)

)
.

o end the proof of Case (a), we take a particular time t0 ∈ [0, T ] such that

un (t0) → 0 in L2 (T) .

direct computation gives

∥u0,n∥2
L2 = ∥un (t0)∥2

L2 +
∫ t0

0
∥Gun(t)∥2

L2 dt,

nd this makes a contradiction, since the right-hand side converges to 0 while the left-hand side does not by
he hypothesis.

ase (b): ξ = 0. Note from (5.5) that ξn > 0, for all n ∈ N. For each n ∈ N, set vn = un
ξn

. Then vn satisfies

∂tvn + (−1)j+1∂2j+1
x vn +K0vn + ξn

2 ∂x
(
v2
n

)
= 0

with ∫ T

0
∥Gvn∥2

L2 dt <
1
n

(5.8)

nd
∥v0,n∥L2 = 1.

nalogously as above, by the compactness of embedding, vn (by extracting the subsequences if needed, but
till denote by vn) satisfies

v → v in X
−1,− 1

2 ∩X−1,0 and ξ ∂
(
v2) → 0 in X

0,− 1
2 .
n T T n x n T
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From (5.8), we have ∫ T

0
∥Gv∥2

L2 dt = 0,

hich ensures that v solves {
∂tv + (−1)j+1∂2j+1

x v = 0 on (0, T ) × T,
v (t, x) = c (t) on (0, T ) × ω. (5.9)

ue to Holmgren’s uniqueness theorem (see e.g. [44]), we conclude c (t) = c ∈ R. Moreover, as [v] = 0 then
= 0. According to (5.8), Gvn converges to 0 in L2(0, T ;L2), thus so

K0vn → 0 in X
−1,− 1

2
T .

pplying Proposition 4.5 as in Case (a), we have

vn → 0 in L2
loc

(
0, T ;L2 (T)

)
,

hus we achieve the same conclusion, showing the result. □

emark 6. In view of the hypotheses in Proposition 4.5, the proof above is still valid, even if fn converges
o 0 only in larger class (e.g., X−j,− 1

2 ). In other words, the property of propagation of compactness
Proposition 4.5) established in this work enables one to extend Theorem 1.4 for rougher solutions.

.2. Proof of Theorem 1.4

Once again, consider λ = 0 in Kλ. Now we prove that the solution u of (5.1) decays exponentially in
Hs-level for any s > 0. We first prove it when s = 2j+ 1. Then, interpolating with the result in Section 5.1,
we obtain the conclusion for 0 ≤ s ≤ 2j + 1. The similar argument can be applied for s = (2j + 1)N, and
thus we complete the proof.

Fix s = 2j+ 1, j ∈ N, and pick any R > 0 and any u0 ∈ H2j+1(T) with ∥u0∥L2(T) ≤ R. Let u be solution
of (5.1) with initial condition u0, and set v = ut. Then, v satisfies{

∂tv + (−1)j+1∂2j+1
x v + ∂x(uv) = −K0v in {t > 0} × T,

v (0, x) = v0 (x) on T, (5.10)

here
v0 = −K0u0 − u0u

′
0 − (−1)j+1∂2j+1

x u0. (5.11)

ccording to Theorem B.3 and the exponential decay (5.4), for any T > 0 there exist constants C > 0 and
> 0 depending only on R and T such that

∥u(·, t)∥Y 0
[t,t+T ]

≤ Ce−γt ∥u0∥L2 for all t ≥ 0.

hus, for any ϵ > 0, there exists a t∗ > 0 such that if t ≥ t∗, one has

∥u(·, t)∥Y s
[t,t+T ]

≤ ϵ.

t this point we need an exponential stability result for the linearized system{
∂tw + (−1)j+1∂2j+1

x w + ∂x(aw) = −K0w in {t > 0} × T,
w (0, x) = w0 (x) on T, (5.12)

where a ∈ Y s is a given function.
T
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Lemma 5.1. Let s ≥ 0 and a ∈ Y sT for all T > 0. Then for any γ′ ∈ (0, γ) there exist T > 0 and β > 0
uch that if

sup
n≥1

∥a∥Y s
[nT,(n+1)T ]

≤ β (5.13)

hen
∥w(·, t)∥Hs ≲ e−γ′t ∥w0∥Hs for all t ≥ 0.

emark that the implicit constant depends on ∥w0∥Hs , but not w0.

Suppose Lemma 5.1 is valid. Choose ϵ < β, and then apply Lemma 5.1 to (5.10) to obtain

∥v(·, t)∥L2 ≲ e−γ′(t−t∗) ∥v (·, t∗)∥L2 ,

or any t ≥ t∗, or equivalently
∥v(·, t)∥L2 ≲ e−γ′t ∥v0∥L2 ,

for any t ≥ 0. From
(−1)j+1∂2j+1

x u = −K0u− u∂xu− v,

a direct computation gives

∥u(t)∥Hs ≲ ∥u(t)∥L2 + ∥u(t)∥L2∥u(t)∥Hs + ∥v(t)∥L2 .

Applying Theorem 1.4 for s = 0 established in Section 5.1, Theorem B.3 and Lemma 5.1 with (5.11) to the
right-hand side, we obtain

∥u(·, t)∥Hs ≲ Ce−γ′t ∥u0∥Hs ,

for any t ≥ 0. Note that the implicit constant here depends only on R. This proves Theorem 1.4 for s = 2j+1.
Moreover applying Lemma 5.1 for w = u1 − u2 and a = u1 + u2 when u1, u2 are two different solutions, we
obtain the Lipschitz stability estimate, which is required for interpolation:

∥(u1 − u2) (·, t)∥0 ≤ Ce−γ′t ∥(u1 − u2) (·, 0)∥0 .

Thus, it remains to prove Lemma 5.1. □

Proof of Lemma 5.1. Let T > 0 and s ≥ 0 be given, and a ∈ Y sT . Similarly as the proof of Theorem B.3,
we can show that the system (5.12) admits a unique solution Y sT ∩ CTH

s, and the solution u satisfies

∥u∥Y s
T

≤ αT,s(∥a∥Y s
T

) ∥u0∥Hs , (5.14)

where αT,s is positive nondecreasing continuous function. By Duhamel’s principle, the solution u to (5.12)
is equivalent to the following integral form:

w(t) = W0(t)w0 −
∫ t

0
W0(t− s)∂x(aw)(s) ds,

where W0(t) = e
−t
(

(−1)j+1∂2j+1
x +K0

)
. Then, due to Proposition A.4, Lemma B.1 and (5.14), we get

∥w(·, T )∥Hs ≤ C1e
−γT ∥w0∥Hs + C2∥a∥Y s

T
αT,s

(
∥a∥Y s

T

)
∥w0∥Hs , (5.15)

where C1 > 0 is independent of T while C2 may depend on T . Let
yn = w(·, nT ) for n ∈ N.
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Then, similarly as (5.15), we obtain for each n ∈ N that

∥yn+1∥Hs ≤ C1e
−γT ∥yn∥Hs + C2,n∥a∥Y s

[nT,(n+1)T ]
αT,s

(
∥a∥Y s

[nT,(n+1)T ]

)
∥yn∥Hs .

y choosing appropriate T > 0 large enough and β > 0 small enough such that

C1e
−γT + C2βαT,s(β) = e−γ′T ,

e conclude that
∥yn+1∥Hs ≤ e−γ′T ∥yn∥Hs (5.16)

or any n ≥ 1 as long as (5.13) is assumed. By using (5.16) inductively, we obtain

∥yn∥Hs ≤ e−nγ′T ∥y0∥Hs

or any n ≥ 1, which implies that
∥w(·, t)∥Hs ≤ Ce−γ′t ∥w0∥Hs

or all t ≥ 0. This completes the proof. □

. Concluding remarks and open issues

In this work we treat the global control issues for the general higher-order KdV type equation on periodic
omain {

∂tu+ (−1)j+1∂2j+1
x u+ u∂xu = Gh,

u(0, x) = u0,
(t, x) ∈ (0, T ) × T, (6.1)

here, Gh is defined as (1.4) and can take also the form Gh := Kλu(t, x) ≡ GG∗L−1
λ u(t, x). The

esults presented in the manuscript recovered previous global control problems for the KdV and Kawahara
quations, when j = 1 and 2, respectively. Nevertheless, presents global control results for a general KdV
ype equation, which is more complex than the studies previously presented.

Precisely, due to the smoothing properties of solutions in Bourgain spaces we are able to prove the
trichartz estimates and propagation of regularity associated with the solution of the linear system of (6.1).
ith this in hand, we prove an observability inequality for the solutions of the system(6.1). This helps us

rove the main results of the article. Even though it has a generalist character, the work presents interesting
roblems from the mathematical point of view, which we will detail below.

.1. Time-varying feedback law

A natural question that arises is related to global stabilization with an arbitrary large decay rate. This
an be obtained by using a time-varying feedback law. As for the KdV and Kawahara equations, the time-
arying feedback control law for the higher-order KdV type equation can be found. Precisely, it is possible
o construct a continuous time-varying feedback law K ≡ K(u, t) such that a semi-global stabilization holds
ith an arbitrary large decay rate in the Sobolev space Hs(T) for any s ≥ 0. In fact, K has the following

orm

K(u, t) := ρ
(

∥u∥2
Hs(T)

)[
θ

(
t

T

)
Kλ(u) + θ

(
t

T
− T

)
GG∗u

]
+
(

1 − ρ
(

∥u∥2
Hs(T)

))
GG∗u,

here ρ ∈ C∞(R+; [0, 1]) is a function such that for some r0 ∈ (0, 1), we have

ρ(r) :=
{

1, for r ≤ r0,

0, for r ≥ 1

30
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f

and θ ∈ C∞(R; [0, 1]) is a function with the following properties: θ(t+ 2) = θ(t), for all t ∈ R and

θ(t) :=
{

1, for δ ≤ t ≤ 1 − δ,
0, for 1 ≤ t ≤ 2,

or some δ ∈ (0, 1
10 ). Then, the following result holds true.

Theorem 6.1. Let λ > 0 and let K = K(u, t) be as above. Pick any λ′ ∈ (0, λ) and any λ′′ ∈
(λ′/2, (k + λ′) /2). Then there exists a time T0 > 0 such that for T > T0, t0 ∈ R and u0 ∈ Hs(T), the
unique solution of the closed-loop system

∂tu+ (−1)j+1∂2j+1
x u+ u∂xu = −K(u, t), (t, x) ∈ R × T

satisfies
∥u(·, t) − [u0]∥Hs ≤ γs,µ (∥u0 − [u0]∥Hs) e−λ′′(t−t0) ∥u0 − [u0]∥Hs , for all t > t0,

where γs is a nondecreasing continuous function.

6.2. Low regularity control results

Observe that the results presented in this work are verified in Hs(T), when s ≥ 0. However, by comparing
with [15], a natural question appears.

Problem A: Is it possible to prove control results for the system (6.1) with −j/2 ≤ s < 0?
The answer for this question may be very technical and the well-posedness result probably will be the

biggest challenge. Additionally, the unique continuation property needs to be proved and appears to be also
a hard problem. Thus, the following open issues naturally appear.

Problem B: Is the system (6.1) globally well-posed in Hs(T), for −j/2 ≤ s < 0?

Problem C: Is the unique continuation property, presented in Lemma 4.7, true for −j/2 ≤ s < 0?
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Appendix A. Controllability and stability results: Linear problems

Let us consider the linear open loop control system{
∂tu+ (−1)j+1∂2j+1

x u = Gh, (t, x) ∈ R × T,
u(0, x) = u0(x), x ∈ T, (A.1)

where the operator G is defined as in (1.4) and h = h(t, x) is the control input.
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(

M

Consider the L2-basis {ϕk}k∈Z, thus the solution u of (A.1) can be expressed in the form

u(t, x) =
∑
k∈Z

(
eλktu0,k +

∫ t

0
eλk(t−τ)Gk [h] (τ) dτ

)
ϕk (x) , (A.2)

where u0,k are the Fourier coefficients of u0 and G[h] are

u0,k = (u0, ϕk) and Gk[h] = (Gh, ϕk) = (h,Gϕk) (A.3)

for k ∈ Z, respectively. Moreover, for given s ∈ R, if u0 ∈ Hs (T) and h ∈ L2 (0, T ;Hs (T)), the function
given by (A.2) belongs to the space C([0, T ];Hs(T)). Now, we are in position to prove control results for the
system (A.1).

A.1. Controllability result

The first result means that system (A.1) is exactly controllable in time T > 0 and can be read as follows.

Theorem A.1. Let T > 0 and s ∈ R be given. There exists a bounded linear operator

Φ : Hs(T) ×Hs(T) → L2 (0, T ;Hs(T))

such that for any u0, u1 ∈ Hs(T) with [u0] = [u1], if one chooses h = Φ (u0, u1) in (A.1), then the system
A.1) admits a solution u ∈ C([0, T ];Hs(T)) satisfying

u|t=0 = u0, u|t=T = u1.

oreover, we have
∥Φ(u0, u1)∥L2(0,T ;Hs) ≲ (∥u0∥Hs + ∥u1∥Hs), (A.4)

here the implicit constant depends only on T , ∥g∥Hs and ∥g∥H−s .

Remark 7. The proof of Theorem A.1 is standard provided that the eigenvalues of the associated linear
operator satisfy Lemma 2.1, precisely, the proof relies only on the fact that the dual basis of {eλkt} is a
Riesz sequence, which follows from a classical theorem of Ingham and Beurling [32,33].

Proof of Theorem A.1. As mentioned in Remark 7, the proof of Theorem A.1 is now standard, and can be
found in the literature, for instance [10,19,25]. However, we also give a proof for the sake of self-containedness.

Since the solution u(t, x) can be expressed as in (A.2), it suffices to find h ∈ L2(0, T ;Hs(T)) such that

u1(x) =
∑
k∈Z

(
eλkTu0,k +

∫ T

0
eλk(T−τ)Gk [h] (τ) dτ

)
ϕk (x) ,

which follows from
e−λkTu1,k − u0,k =

∫ T

0
e−λkτGk[h](τ) dτ, for each k ∈ Z, (A.5)

where u0,k, u1,k and Gk[h] are the Fourier coefficients defined as in (A.3).
Note that P := {pk = eλkt : k ∈ Z} forms a Riesz basis for its closed span PT in L2(0, T ), and there

uniquely exists the dual basis Q = {qk : k ∈ Z} in PT such that∫ T

qj(t)pk(t) dt = δjk, −∞ < j, k < ∞. (A.6)

0
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We take the control input h of the form

h(t, x) =
∑
j∈Z

hjqj(t)(Gϕj)(x), (A.7)

here the coefficients hj are to be precisely determined later, depending on given v0, v1 and g.
Inserting (A.7) into (A.5) and using (A.6) and the fact that G is a self-adjoin operator, one has

e−λkTu1,k − u0,k =
∑
j∈Z

∫ T

0
e−λkthjqj(t)(G(Gϕj), ϕk)dt = hk∥Gϕk∥2

L2 . (A.8)

e set βk := ∥Gϕk∥2
L2 . The definitions of ϕk and Gϕk ensure that βk > 0 for all k ̸= 0. Moreover, a direct

omputation in (1.4) gives

βk = 1
2π

∫
T
g(x)2 dx− 2Re

((∫
T
g(x)ϕk(x) dx

)∫
T
g(x)2ϕ−k(x) dx

)
+
⏐⏐⏐⏐∫

T
g(x)ϕk(x) dx

⏐⏐⏐⏐2 ∫
T
g(x)2 dx,

hich, in addition to Riemann–Lebesgue lemma, ensures

lim
|k|→∞

βk = 1
2π

∫
T
g(x)2 dx > 0.

rom above observation, it follows that there exists δ > 0 such that

βk > δ > 0, k ̸= 0.

hus, from (A.8), hk is naturally defined as

h0 = 0 and hk = e−λkTu1,k − u0,k

βk
, k ̸= 0.

The rest of proof is to show that h is in L2 (0, T ;Hs(T)) for all u0, u1 ∈ Hs. We write Gϕj and g with
the standard basis {ϕn} as

Gϕj(x) =
∑
n∈Z

Gj,nϕn(x) and g(x) =
∑
n∈Z

gnϕn(x),

where Gj,n = (Gϕj , ϕn) and gn = (g, ϕn), for all j, n ∈ Z. Then, h in (A.7) can be rewritten as

h(t, x) =
∑
j∈Z

∑
n∈Z

hjqj(t)Gj,nϕn(x).

By using a classical theorem of Ingham and Beruling [32,33], a computation with the property of the Riesz
basis Q gives

∥h∥2
L2(0,T :Hs) ≲

∑
n∈Z

⟨n⟩2s ∑
j∈Z\{0}

|hjGj,n|2

=
∑

j∈Z\{0}

|hj |2
∑
n∈Z

⟨n⟩2s |Gj,n|2.

sing definitions of Gj,n and Gϕj , one knows

Gj,n = (Gϕj , ϕn) =
∑

gk(ϕkϕj , ϕn) − g−jgn = 1√
2π
gn−j − g−jgn,
k∈Z

33



R.de A. Capistrano–Filho, C. Kwak and F.J. Vielma Leal Nonlinear Analysis: Real World Applications 68 (2022) 103695
hence we obtain
|Gj,n|2 ≲ |gn−j |2 + |g−j |2|gn|2,

and conclude ∑
n∈Z

⟨n⟩2s |Gj,n|2 ≲
∑
n∈Z

⟨n+ j⟩2s |gn|2 + |g−j |2
∑
n∈Z

⟨n⟩2s |gn|2.

When s ≥ 0, a direct computation yields

∥h∥2
L2(0,T :Hs) ≲

∑
j∈Z\{0}

|hj |2
(∑
n∈Z

⟨j + n⟩2s |gn|2 + |g−j |2
∑
n∈Z

⟨n⟩2s |gn|2
)

≲ ∥g∥2
Hs

∑
j∈Z\{0}

(⟨j⟩2s + |g−j |2)|hj |2

≲ ∥g∥2
Hs

∑
j∈Z\{0}

(⟨j⟩2s + |g−j |2)β−2
j |e−λjTu1,j − u0,j |

2

≲ max
j∈Z\{0}

β−2
j ∥g∥2

Hs (1 + ∥g∥2
L2)
(

∥u0∥2
Hs + ∥u1∥2

Hs

)
.

On the other hand, when s < 0, due to the crude estimate

⟨a+ b⟩c ≲ ⟨a⟩|c| ⟨b⟩c , a, b, c ∈ R,

we have similarly as before∑
n∈Z

⟨j⟩−2s ⟨n⟩2s |Gj,n|2 ≲
∑
n∈Z

⟨n⟩−2s |gn|2 + ⟨−j⟩−2s |g−j |2
∑
n∈Z

⟨n⟩2s |gn|2

≲ (1 + ∥g∥2
Hs) ∥g∥2

H−s ,

and hence
∥h∥2

L2(0,T :Hs) ≲
∑

j∈Z\{0}

⟨j⟩2s |hj |2
∑
n∈Z

⟨j⟩−2s ⟨n⟩2s |Gj,n|2

≲ max
j∈Z\{0}

β−2
j (1 + ∥g∥2

Hs) ∥g∥2
H−s

(
∥u0∥2

Hs + ∥u1∥2
Hs

)
.

Therefore, we complete the proof. □

As a consequence of Theorem A.1, we have the following property for the unitary operator group W .

Corollary A.2. Let T > 0 be given. Then, there exists δ > 0 such that∫ T

0
∥GW (t)f∥2

L2 dt ≥ δ ∥f∥2
L2 ,

for any f ∈ L2.

A.2. Feedback stabilization

This part of the work gives a positive answer to the stabilization problem. Let us remember that if s ∈ R,
for any λ > 0, we define a bounded linear operator from Hs(T) to itself by

Lλf =
∫ 1

e−2λτW (−τ)GG∗W ∗(−τ)f dτ,

0
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for any f ∈ Hs (T). Note that L0 ≡ I. It is known that Lλ is a self-adjoint positive operator on Hs
0(T) and

o is its inverse L−1
λ , for all s ≥ 0 (see, for instance, [19, Lemma 2.4]). This fact enables us to take the control

function h(t, x) = −G∗L−1
λ u(t, x), and by employing the following feedback control law

Kλu(t, x) ≡ GG∗L−1
λ u(t, x)

we obtain the closed-loop system from (A.1), namely

∂tu+ (−1)j+1∂2j+1
x u = −Kλu. (A.9)

We will give a stabilizability result, to see this we rewrite system (A.9) as an abstract control system in
the Hilbert space V:

∂tu = Au+Bh, u(0) = u0, (A.10)

where A is the operator defined by (2.1) which corresponds to the continuous unitary operator group W (t)
on the space L2(T) satisfying (2.2). The following theorem is derived from Theorem A.1 and a classical
principle exact controllability implies exponential stabilizability for conservative control systems. For details,
we suggest for the reader the Refs. [30,31].

Theorem A.3. Assume that the assumptions of Theorem A.1 are satisfied. Then

(i) There exist a T > 0 and δ > 0 such that∫ T

0
∥B∗W ∗(t)u0∥2

L2(T) dt ≥ δ ∥u0∥2
Hs(T) ,

for any u0 ∈ Hs.
(ii) For any given λ > 0, there exists an operator K ∈ L(Hs(T), L2(T)) such that if one chooses h = Ku in

(A.10), then the resulting closed-loop system

∂tu = Au+BKu, u(0) = u0,

has the property that its solution satisfies

∥u(t)∥Hs ≲ e−λt ∥u0∥Hs ,

In our context, by using the result due [30,31], the following proposition presents that the closed-loop
ystem (A.9) is exponentially stable:

roposition A.4. Let s ≥ 0 and λ > 0 be given. Then for any u0 ∈ Hs (T), the linear closed-loop system
A.9) admits a unique solution u ∈ C ([0, T ] ;Hs (T)). Moreover, the solution u obeys the following decay
roperty:

∥u(t) − [u0]∥Hs ≲ e−λt ∥u0 − [u0]∥Hs ,

or any t > 0. The implicit constant depends only on s.

Proof. The proof is the same as that of Theorem A.3. □
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Appendix B. Global well-posedness for the closed loop system

Recall the system (A.9) with the nonlinearity uux

∂tu+ (−1)j+1∂2j+1
x u+ uux = −Kλu. (B.1)

nd its integral formulas

u(t) = W (t)u0 −
∫ t

0
W (t− τ)(Kλu)(τ)dτ −

∫ t

0
W (t− τ) (uux) (τ)dτ

=: Wλ(t)u0 −
∫ t

0
Wλ(t− τ) (uux) (τ)dτ,

(B.2)

here Wλ(T ) is the linear propagator associated to (A.9). Using Lemma 2.2 (5) (with small modification)
nd the boundedness of G,G∗ and L−1

λ , we immediately obtain∫ t

a

W (t− τ)(Kλu)(τ) dτ

Y s

I

≲ |I|1−ϵ ∥u∥Y s
I
, (B.3)

or I = [a, b] with 0 < b− a < 1 and 0 < ϵ < 1
2 .

We now establish a similar result to Lemma 2.2 (2) and (3), associated to the propagator Wλ but in Y s.

emma B.1. Let T > 0 be given.

(1) For all s ∈ R, we have for f ∈ Hs

∥Wλ(t)f∥Y s
T
≲ ∥f∥Hs .

(2) For all s ∈ R, we have for F ∈ Y sT∫ t

0
Wλ(t− τ)F (τ) dτ


Y s

T

≲
F−1

(⟨
τ − k2j+1⟩−1

F̃
)

Y s
T

.

he implicit constants depend on T and s.

roof. For given f ∈ Hs and F ∈ Y sT , set

u(t, x) = Wλ(t)f +
∫ t

0
Wλ(t− τ)F (τ) dτ.

hen, u solves
∂tu+ (−1)j+1∂2j+1

x u = −Kλu+ F

ith u(0) = f , equivalently,

u(t, x) = W (t)f −
∫ t

0
W (t− τ)(Kλu)(τ) dτ +

∫ t

0
W (t− τ)F (τ) dτ.

sing (B.3), one has

∥u∥Y s
I
≲

(
∥f∥Hs +

F−1
(⟨
τ − k2j+1⟩−1

F̃
)

Y s
T

)
+ |I|1−ϵ ∥u∥Y s

I
,

hich implies
∥u∥Y s ≤ C(I)

(
∥f∥Hs +

F−1
(⟨
τ − k2j+1⟩−1

F̃
)

s

)
,

I Y
T
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for a proper non-empty I ⊂ [0, T ] with |I| < 1. Let I = [0, t0], then we divide [0, T ] into
[
T
t0

]
+ 1 the

ubintervals, denoted by Ij , precisely, let t∗ :=
[
T
t0

]
, set

I0 = [0, t0], Ij = [jt0, (j + 1)t0], j = 1, 2, . . . , t∗ − 1, and It∗ = [t∗t0, T ].

herefore, we have5

∥u∥Y s
T
≲ (t∗ + 1)C(t0)

(
∥f∥Hs +

F−1
(⟨
τ − k2j+1⟩−1

F̃
)

Y s
T

)
,

which completes the proof. □

Using Lemmas B.1 and 2.2 Item (4), one proves the local well-posedness of (B.1).

Lemma B.2 (Local Well-Posedness of Nonlinear Closed Loop System). Let s ≥ 0 and T > 0 be given. Let
efine a map Γ : Hs → CTH

s as in the second part of the right-hand side of (B.2) (again denoted by Γu).
Then, there exists δ = δ(T ) > 0 such that if

∥u0∥Hs ≤ δ,

then the map Γ is a contraction map on a suitable ball. Moreover the map is locally uniformly continuous.

Proof. The proof is analogous to the proof of Lemma C.1. Taking Y sT norm to the map Γu and applying
Lemmas B.1 and 2.2 Item (4), one has

∥Γu∥Y s
T

≤ C ∥u0∥Hs + C ∥u∥2
Y s

T

and for u− u with u(0) = u(0),

∥Γu− Γu∥Y s
T

≤ C
(

∥u∥Y s
T

+ ∥u∥Y s
T

)
∥u− u∥Y s

T
,

here the constant C be the maximum one among constants appearing in Lemma 2.2 (4) and Lemma B.1.
y taking δ > 0 satisfying 8C2δ < 1, we claim the map Γ is contractive on a ball

{v ∈ Y sT : ∥v∥Y s
T

≤ 2Cδ}.

ne similarly proves that the map is Lipschitz continuous, thus we complete the proof. □

The local solution constructed in Lemma B.2 can be extended to the global one.

heorem B.3 (Global Well-Posedness). Let s ≥ 0 and T > 0 be given. For any u0 ∈ Hs, there exists a
nique solution u to (B.1) in Y sT ∩ CTH

s such that the following estimate holds true:

∥u∥Y s
T

≤ αT,s(∥u0∥L2) ∥u0∥Hs ,

here αT,s is positive nondecreasing continuous function depending on T and s.

5 One may use time cut-off functions supported on each Ij so that u =
∑t∗

j=0
ηIj

(t)u on [0, T ]. Then Y s
T norm of each part

s bounded by Y s norm of the same one.
Ij

37



R.de A. Capistrano–Filho, C. Kwak and F.J. Vielma Leal Nonlinear Analysis: Real World Applications 68 (2022) 103695

f

T

h

U

W
∥

Proof. A direct computation, in addition to the fact that G is self-adjoint in L2, yields

1
2
d

dt

∫
T
u2 = (−1)j

∫
T
u∂2j+1

x u−
∫
T
u(uux) −

∫
T
uKλu = −(GL−1

λ u,Gu). (B.4)

Since G and L−1
λ is bounded in L2, the Cauchy–Schwarz and the Grönwall’s inequalities ensure

∥u(t)∥2
L2 ≲ ∥u0∥2

L2 e
ct, (B.5)

or some c > 0 depending on G and Lλ, and t > 0. Together with Lemma B.2 and the standard continuity
argument, we complete the global well-posedness of (B.1) in L2.

Let v = ut for a smooth solution to (B.1). Then, v solves

∂tv + (−1)j+1∂2j+1
x v + (uv)x = −Kλv (B.6)

where
v0 = (−1)j∂2j+1

x u0 − u0∂xu0 −Kλu0. (B.7)

Note that u is a solution to (B.1), thus we can take T0 > 0 such that

∥u∥Y 0
T0

≲ ∥u0∥L2 .

hen, analogously as in the proof of Lemma B.2, we also have

∥v∥L∞(0,T1;L2) ≲ ∥v∥Y 0
T1

≲ 2∥v0∥L2 ,

ere 0 < T1 < T0 is chosen appropriately.
On the other hand, a direct computation gives

d

dt

(
1
2

∫
T
(∂jxu)2 − 1

6

∫
T
u3
)

= −(GL−1
λ ∂jxu,G∂

j
xu) + 1

2

∫
T
u2Kλu.

sing boundedness of G and L−1
λ , and thus Kλ, and Gagliardo–Nirenberg inequality, we have

∥∂jxu(t)∥2
L2 ≤ 1

3

∫
T

u3 + ∥∂jxu0∥2
L2 + 1

3

∫
T
u3

0

+ C

∫ t

0
∥∂jxu(s)∥2

L2 ds+
∫ t

0

1
4∥∂jxu(s)∥2

L2 + 1
4∥u(s)∥6

L2 + 1
2∥u(s)∥2

L2 ds

≤ 1
12∥∂jxu(t)∥2

L2 + 1
4∥u(t)∥

10
3
L2 + 13

12∥∂jxu0∥2
L2 + 1

4∥u0∥
10
3
L2

+ C

∫ t

0
∥∂jxu(s)∥2

L2 ds+
∫ t

0

1
4∥∂jxu(s)∥2

L2 + 1
4∥u(s)∥6

L2 + 1
2∥u(s)∥2

L2 ds.

ith (B.5), we claim from Grönwall’s inequality that ∥∂jxu(t)∥L2 does not blow up in finite time, thus so
∂xu(t)∥L∞ .

A similar computation as in (B.4) yields

1
2
d

dt

∫
T
v2 = −1

2

∫
T
uxv

2 − (GL−1
λ v,Gv),

which ensures that
∥v(t)∥ ≤ e

Ct+
∫ t

0
∥∂xu(s)∥L∞ ∥v ∥
L2 0 L2
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for all t > 0, due to global boundedness of ∥∂xu(u)∥L∞ . Finally, for given T > 0, a direct computation with
= ut = −(−1)j+1∂2j+1

x u− uux −Kλu gives

∥∂2j+1
x u∥L2 ≲ ∥u∥L2 + ∥v∥L2 + ∥u∥L2∥ux∥L∞

≤ C(∥u0∥L2 + ∥v0∥L2 + ∥u0∥3
L2) + 1

2∥∂2j+1
x u∥L2 ,

or some C > 0 depending on T , which in addition to (B.7) implies

∥u∥L∞(0,T ;H2j+1) ≤ αT,2j+1(∥u0∥L2)∥u0∥H2j+1 .

or s ∈ (2j+ 1)N, one can show the global well-posedness similarly, and for (2j+ 1)(n− 1) < s < (2j+ 1)n,
∈ N, it follows from the interpolation argument. Therefore, we complete the proof. □

ppendix C. Local controllability and stability: Nonlinear results

This section devotes to proving Theorems 1.1 and 1.2. The proofs can be found in [29], but we just provide
ere the proof for the self-containedness.

.1. Proof of Theorem 1.1

Rewrite the system (1.8) in its equivalent integral equation form:

u(t) = W (t)u0 +
∫ t

0
W (t− τ)(Gh)(τ)dτ −

∫ t

0
W (t− τ) (uux) (τ)dτ. (C.1)

Define
ω(T, u) :=

∫ T

0
W (T − τ) (uux) (τ)dτ.

Then, Lemma 2.2 (3) and (4) yield

∥ω(T, u)∥Hs ≲

⟨k⟩s F
(∫ t

0
W (t− τ) (uux) (τ)dτ

)
ℓ2
k
L1

τ

≲ ∥u∥2
Y s

T
< ∞, (C.2)

rovided that u ∈ Y sT . Choose h = Φ(u0, u1 +ω(T, u)) in Eq. (C.1) for u ∈ Y sT . From Theorem A.1, we have
hat for given u0 and u1

u(t) = W (t)u0 +
∫ t

0
W (t− τ) (GΦ (u0, u1 + ω(T, u))) (τ)dτ −

∫ t

0
W (t− τ) (uux) (τ)dτ (C.3)

ith u|t=0 = u0 and u|t=T = u1. Then, the following lemma proves Theorem 1.1.

emma C.1. Let s ≥ 0 and T > 0 be given. Let define a map Γ : Hs → CTH
s as in (C.3) (denoted by Γu).

hen, there exists δ = δ(T ) > 0 such that if ∥u0∥Hs ≤ δ and ∥u1∥Hs ≤ δ, then the map Γ is a contraction
ap on a suitable ball.

emark 8. The standard Picard iteration argument ensures the uniqueness of the fixed point, hence the
ondition u(T, x) = u1 is guaranteed.

roof of Lemma C.1. We denote the maximum implicit constant among ones appearing in Lemma 2.2,
A.4) and (C.2) by C > 0. Note that here the constant C depends on time T > 0, precisely, C is increasing

hen T grows up.
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A

T

t

C

w

i

O

So, using Lemma 2.2 with Remark 3, (A.4) and (C.2), one has

∥Γu∥Y s
T

≤ C
(

∥u0∥Hs + ∥u∥2
Y s

T
+
(

∥u0∥Hs + ∥u1∥Hs + ∥u∥2
Y s

T

))
.

nalogously, for solutions u and u with u(0) = u(0) and u(T ) = u(T ), we have

∥Γu− Γu∥Y s
T

≤ 2C
(

∥u∥Y s
T

+ ∥u∥Y s
T

)
∥u− u∥Y s

T
.

aking δ > 0 satisfying 48C2δ ≤ 1,6 we conclude that the map Γ is contractive in a ball

{v ∈ Y sT : ∥v∥Y s
T

≤ 6Cδ},

hus this completes the proof. □

.2. Proof of Theorem 1.2

We are now ready to prove Theorem 1.2. For given s ≥ 0 and λ > 0, we have from Proposition A.4 that

∥Wλ(t)u0∥Hs ≤ Ce−λt ∥u0∥Hs ,

here the implicit constant C > 0 depends only on s. For any 0 < λ′ < λ, take T = T (λ′) > 0 such that

2Ce−λT ≤ e−λ′T .

Let us consider solution u to the integral Eq. (B.2) as a fixed point of the map

Γu(t) = Wλ(t)u0 −
∫ t

0
Wλ(t− τ) (uux) (τ)dτ

n some closed ball BR(0) in the function space Y sT . This will be done provided that ∥u0∥Hs ≤ δ where δ is
a small number to be determined. Furthermore, to ensure the exponential stability with the claimed decay
rate, the numbers δ and R will be chosen in such a way that

∥u(T )∥Hs ≤ e−λ′T ∥u0∥Hs .

Applying Lemmas B.1 and 2.2 (4), there exist some positive constant C1, C2 (independent of δ and R) such
that

∥Γu∥Y s
T

≤ C1 ∥u0∥Hs + C2 ∥u∥2
Y s

T

and for u− u with u(0) = u(0),

∥Γu− Γu∥Y s
T

≤ C2

(
∥u∥Y s

T
+ ∥u∥Y s

T

)
∥u− u∥Y s

T
.

n the other hand, we have for some constant C ′ > 0 and all u ∈ BR(0)

∥Γ (u)(T )∥Y s
T

≤ C1 ∥Wλ(T )u0∥Y s
T

+ C2


∫ T

0
Wλ(T − τ) (uux) (τ)dτ


Y s

T

≤ e−λT δ + C ′R2.

Pick δ = C4R
2, where C4 and R are chosen so that

C ′

C4
≤ Ce−λT , (C1C4 + C2)R2 ≤ R and 2C2R ≤ 1

2 .

6 Here δ depends on T since the constant relies on T .
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a

f

i

R

Then we have
∥Γ (u)∥Y s

T
≤ R, ∀u ∈ BR(0)

and
∥Γ (u1) − Γ (u2)∥Y s

T
≤ 1

2 ∥u1 − u2∥ZT
T,σ

, ∀u1, u2 ∈ BR(0).

Therefore, Γ is a contraction in BR(0). Furthermore, its unique fixed point u ∈ BR(0) fulfills

∥u(T )∥Hs ≤ ∥Γ (u)(T )∥Y s
T

≤ e−λ′T δ

Assume now that 0 < ∥u0∥0 < δ. Changing δ into δ′ ≡ ∥u0∥s and R into R′ ≡ (δ′/δ)
1
2 R, we infer that

∥u(T )∥Hs ≤ e−λ′T ∥u0∥Hs

nd an obvious induction yields
∥u(nT )∥Hs ≤ e−λ′nT ∥u0∥Hs

or any n ≥ 0. We infer by the semigroup property that there exists some positive constant C > 0 such that

∥u(t)∥Hs ≤ Ce−λt ∥u0∥Hs ,

f ∥u0∥Hs ≤ δ. The proof is complete. □
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[41] C. Laurent, Global controllability and stabilization for the nonlinear Schrödinger equation on an interval, ESAIM Control
Optim. Calc. Var. 16 (2) (2010) 356–379.
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