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1. Introduction
1.1. Setting of the problem

Boussinesq introduced in [3] several nonlinear partial differential equations to
explain certain physical observations concerning the water waves, e.g. the emer-
gence and stability of solitons. Unfortunately, several systems derived by Boussi-
nesq proved to be ill-posed, so that there was a need to propose other systems
with better mathematical properties. In that direction, the four-parameter family
of Boussinesq systems

+ vy + Uz“i’avzzz*b rx :Oa
{77t (nv) Nwat (1.1)

UVt + Mo + VU + g — dvgze =0
was introduced by Bona et al. in [I] to describe the motion of small amplitude
long waves on the surface of an ideal fluid under the gravity force and in situations
where the motion is sensibly two-dimensional. In (L), 7 is the elevation of the fluid

surface from the equilibrium position and v is the horizontal velocity in the flow.
The parameters a, b, ¢, d are required to fulfill the relations

1 1 1

where 6 € [0,1] and thus a + b+ ¢+ d = . As it has been proved in [I], the initial
value problem for the linear system associated with ([IIJ) is well posed on R if and
only if the parameters a, b, ¢, d fall in one of the following cases:
(C1) b,d>0, a<0, ¢<O0;
(C2) b,d>0, a=c>0.
The well-posedness of the system () on the line (z € R) was investigated
in [2]. Considering (C2) with b = d = 0, then necessarily a = ¢ = 1/6. Using the
scaling © — /6, t — t/4/6 gives a coupled system of two Korteweg-de Vries
(KdV) equations equivalent to (LI]) for which a = ¢ = 1, namely
U + Wy + Ware + (nw)x = 07 in (07 L) X (07 +OO>7
Wi + N + Mgz + Wwy = 0, in (0,L) x (0,400), (1.3)
n(x,0) = no(z), w(x,0)=we(z), in (0,L),

which is the so-called Boussinesq system of KdV-KdV type.

The goal of this paper is to investigate the boundary stabilization for the linear

Boussinesq system of KdV-KdV type
N + Wz + Weaz = 0, in (OvL) X (Oa +00)7
w¢ + Nx + Neze = Oa in (07 L) X (Oa +00)7 (14)
n(x,0) = no(z), w(x,0)=we(x), in (0,L),
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with boundary conditions

7](07t> =0, 77(L7t> =0, %(07?5) = f(t)7 in (07+OO)7 (1 5)
w(0,t) =0, w(L,t)=0, wy(L,t)=0, in (0,400), '

where f(t) is the boundary control. We are mainly concerned with the following
problem.

Stabilization Problem: Can one find a linear feedback control law

f(t> = F[(n('vt)7w('7t)]7 te (07 00)7

such that the closed-loop system (LA) with boundary condition (LX) is exponentially
stable?

1.2. Previous results

Abstract methods have been developed to obtain the rapid stabilization of linear
partial differential equations. Among them, we cite the works [0, [T5] [16] based on
the Gramian approach. In this paper, we are interested in applying this method
to design the feedback control law for the system ([4)) and (L5)). The method
presented here was successfully applied by Cerpa and Crépeau in [6] to study the
rapid stabilization of the KdV equation. Although this method is typically used in
a single equation, this approach has not yet widespread applied to coupled systems.
Stability properties of systems (L3]) or (I4]) on a bounded domain have been
studied by several authors. The pioneering work, for the system under consideration
in this work, is due to Rosier and Pazoto in [I3]. They showed the asymptotic
behavior for the solutions of the system (4] satisfying the boundary conditions

w(0,t) = wye(0,2) =0, on (0,7),
wy(0,t) = agns(0,1), )
w(L,t) = aan(L,t), ), (1.6)
wy (L, t) = —ains (L, t), )
Wyy(Lyt) = —anea (L, 1), )

In ([6), o, a1 and as denote some nonnegative real constants. Under the above

on (0,7
on (0,7
on (0,7
on (0,T

boundary conditions, they observed that the derivative of the energy associated to

the system (3] satisfies
dE
— = (L, = arlne (L, )]* = aoln. (0, ),

where

mwzél(ﬁ+w%m.

This indicates that the boundary conditions play the role of a damping mechanism,
at least for the linearized system. In [I3] the authors provide the following result.
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Theorem A (Pazoto and Rosier [13]). Assume that ag > 0,1 > 0, and that
as = 1. Then there exist two constants Co, g > 0 such that for any (no,wp) €
L?(0,L) x L%(0, L), the solution of (L)) with boundary condition (L8] satisfies

(), w2200,y x £2(0,1) < Coe™ (o, wo)ll2(0,0)x £2(0,1), Yt = 0.

Recently, Capistrano—Filho and Gallego [4] investigated the system (L4 with
two controls in the boundary conditions

{’17(07?,):0, n(L,t) =0, 1.(0,t) = f(t), in (0,+00),

(1.7)
w(0,t) =0, w(L,t) =0, wy(L,t)=g(t), in (0,400),

and deal with the local rapid exponential stabilization by using the backstepping
method. They designed boundary feedback controls

f(t) = Fl(n("t)7w("t)) and g(t) = FQ(U("t)7w("t))7

that lead to the stabilization of the system. The authors proved that the solution
of the closed-loop system decays exponentially to zero in the L?(0, L)-norm and
the decay rate can be tuned to be as large as desired.

Theorem B (Capistrano—Filho and Gallego [4]). Let L € (0, +00)\N where
N = {Q—W\/k2+kl+l2- kleN*} (1.8)
- \/g ) ) - M
For every A > 0, there exist a continuous linear feedback control law
F:=(F,F):L*0,L) x L*(0,L) — R x R,

and positive constant C > 0. Then, for every (no,wo) € L*(0,L) x L?(0,L),
the solution (n,w) of (LAl) with boundary conditions (L) belongs to space
C([0,T); (L3(0, L) x L*(0,L))) and satisfies

3|

(), w(t))lz2(0,0yx£20,) < Ce™ 2 |[(n0, wo)|lL2(0,2)x £2(0,2), VT > 0.

It is important to emphasize that our goal in this paper is to stabilize the
system ([4) using only one feedback control, improving thus the result in [4].
Concerning controllability, the paper [B] studied different configurations for the
position of the control, in particular they proved the following.

Theorem C (Capistrano—Filho et al. [5]). Let T > 0 and L € (0, +00)\N. For
all states (no,wo), (n1,w1) € [L*(0,L)]* one can find a control f € L*(0,T) such
that the solution

(n,w) € C([0, T, [L*(0, L)]*) N L*(0, T, [H'(0, L)]*)

of (LA and (LA) satisfies n(T,z) = n(z) and w(T,z) = wi(z), v € (0, L).

As in the case of the KdV equation [I4, Lemma 3.5], when L € N, the linear
system (C4) and (T3) is not controllable. To prove Theorem C, the authors used
the classical duality approach based upon the Hilbert Uniqueness Method (HUM)
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due to Lions [I1], which reduces the exact controllability of the system to some
observability inequality to be proved for the adjoint system. Then, to establish the
required observability inequality, was used the compactness-uniqueness argument
due to Lions [12] and some multipliers, which reduces the analysis to study a spectral
problem. The spectral problem is finally solved by using a method introduced by
Rosier in [I4], based on the use of complex analysis, namely, the Paley—Wiener
theorem. As we will prove later, in this paper we obtain a controllability result
as in Theorem C but in different state space. This is required by our stabilization
method.

1.3. Main result and outline of the work

In order to present the main result of the paper, let us now define the spaces that
we will work on. To do that, we first need a spectral analysis (see Sec. Bl for details)
for the operator A: D(A) C L?(0, L)?> — L*(0, L)? given by

A(777w> = (_w/ — w”’7 _n/ _ ,’7///>
and
D(4) = {(n.w) € [H*(0, 1) " HY(0. L) s1/(0) = w'(Z) = 0},

As can be seen in [5], the operator A has a compact resolvent and it can be diagonal-
ized in an orthonormal basis, i.e. the spectrum o (A) of A consists only of eigenvalues
and the eigenfunctions form an orthonormal basis of Xy. Thus, due to the results
presented in [5], there exists an orthonormal basis { (0,7, u; )nez U (6,,,u;, Jnez} in
[LZ(0, L)]?, endowed with the natural scalar product

L
((0.0. () = [ (O + u(e)ol)de,
composed of eigenfunctions of A satisfying
ICARAS ISP A CARETAY
and
A0, ) = (=idn)(0,,, uy),
where ), are the eigenvalues. Consider then this orthonormal basis in [LZ(0, L)]?
{07 ud Jnez U (05, up Inez
and let Z = span{(0;7,u;") U (0, ,u,,)}. For any s € R, consider the norm

D @O ) ¢ (0 u)
ne”z

S

= (Z(H M) 2 4 |c”’|2>>

neZ

D=

which is used in the following definition.
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Definition 1.1. Let s € R. The spaces H; will be defined as the completion of Z
with respect of the norm || - ||s. In each space Hy, one has the orthonormal basis

{(1 + ‘)\n‘)*égi’ (1 + |)‘n|)7§u:}nez U {(1 =+ |)‘n|)7§0;a (1 + ‘)‘nDi%u;}nG%

Our result deals with the stabilization problem already mentioned showing the
following theorem in the H;-level.

Theorem 1.1. Let L € (0,+00)\N and w > 0. Then, there exist a continuous
linear map

F,:H — R

and a positive constant C, such that for every (no,wo) € Hy, the solution (n,w) of
the closed-loop system (LA)-(LH), with f(t) = Fu(n(t),w(t)) satisfies

1 (®), w(®)lm, < Ce™!|[(no, wo)llm,, ¥t >0.

Theorem [[Tlis shown using the result proved by Urquiza in [15, Theorem 2.1]. It
is important to emphasize that our control acts only on one equation and through
a boundary condition, instead of four or two controls as in Theorems A and B,
respectively.

The content of this paper is divided as follows. Section2lis devoted to presenting
the Urquiza approach, which requires four hypotheses to be satisfied called (H1),
(H2), (H3) and (H4). In Sec. Bl we deal with some preliminary results including
the proof of (H1). We will note that (H2) is easily verified. Next, we prove the
hypotheses (H3) and (H4) in Sec. @l Section [l is dedicated to the construction
of the feedback and to finish the proof of Theorem [Tl Some final comments are
provided in Sec.

2. Urquiza Approach

In this section, we present the Urquiza method [I5] to prove rapid exponential
stabilization of the following system:

Mt + Wy + Wazy = 07 in (07 L) X (07 +OO>7
W + Mg + Nozz = 0, in (0, L) x (0, 400), (2.1)
77(377 0) = 7]0(35>7 w(m7 0) = w0($>7 in (07 L>7

with boundary conditions

{77(0715) =0, (L) =0, na(0,4) = f(t), in (0,+00), 22)
w(0,t) =0, w(L,t)=0, w,(L,t)=0, in (0,+00).
We will extensively use the space operator already mentioned given by
A, w) = (—w' =", =n" = "), (2.3)
with domain
D(A) = {(n,w) € [H*(0,L) N Hy (0, L)]* : ' (0) = w'(L) = 0}, (2.4)

2150111-6
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where

D(A) C Xo := [L*(0,L)]*.

2.1. Gramian method

Let us first write our system in the abstract framework. Set A the operator defined

by Z3)-24) and B given by

B:R — D(A"Y
(2.5)
s +— Bs,
where s € R and Bs is a functional given by
Bs:D(A") = R
(2.6)

(u,v) — Bs(u,v) := —sv,(0).

We will see in Proposition Bl that D(A) = D(A*), which are obviously closed and
dense in Xy. Thus, we have that B* is

B*:D(A) — R
(2.7)
(u,v) — B*(u,v) = —v,(0).
Note that system (2I) and (Z2]) takes the abstract form
{1'/(9“) = Ay(z,t) + Bo(t), in [D(AT)], 2.8)
y(x,0) = y°(x). '

Here y° = (10, wo) € Xp is the initial condition and the control is v(t) = —f(t).

In order to get the rapid exponential stabilization, we use the Urquiza
approach [I5]. Let us explain the method on the abstract control system (28]
with state y(t) in a Hilbert space Y and control s(¢) in a Hilbert space U. Here, the
initial condition y° € Y, A is a skew-adjoint operator in Y whose domain is dense
in Y, and B is an unbounded operator from U to Y.

The method to prove rapid stabilization consists on building a feedback control
using the following four hypothesis for the operators A and B:

(H1) The skew-adjoint operator A is an infinitesimal generator of a strongly con-
tinuous group in the state space Y.

(H2) The operator B:U — D(A*)" is linear and continuous.

(H3) (Regularity property) For every T > 0 there exists Cr > 0 such that

T *
[ ey
0

(H4) (Observability property) There exist T' > 0 and ¢y > 0 such that

[t < Crllylly, Vye DA).

T
/ B e 3 dt > erlly|3. Vy € D(A).
0

2150111-7
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With these hypotheses in hand, the next result holds. Its proof mainly relies on gen-
eral results about the algebraic Riccati equation associated with the linear quadratic
regulator problem (see [7]).

Theorem 2.1 (see [15, Theorem 2.1]). Consider operators A and B under
assumptions (H1)—(H4). For any w > 0, we have

(i) The symmetric positive operator A, defined by
(Apz, 2)y :/ (B*eiT(AJ”’I)*m,B*efT(A“’I)*z)UdT, Va,z €Y,
0

is coercive and 1s an isomorphism on Y .

(ii) Let F, :== —B*A_'. The operator A+ BF,, with D(A + BF,) = A,(D(A4%))
is the infinitesimal generator of a strongly continuous semigroup on 'Y .

(iii) The closed-loop system (system (2.8]) with the feedback law v = F,(y)) is expo-
nentially stable with a decay equals to 2w, that is,

3C >0, Vyey, ||et(A+BF‘“)y||y < 0672“”5\|y\|y.

In order to apply this method, we have to verify the four hypotheses. This will
be done in the next sections. It is worth mentioning that the observability property
(H4) is equivalent to the controllability of system (2.8)) in the appropriate spaces.

3. Preliminaries

To apply Theorem 2.1l to our linear Boussinesq control system is necessary to check
the hypotheses (H1)—-(H4). First, we will prove that operator A defined by ([23)
satisfies (H1). Note that by the definition of the operator B, see (240, it is easy to
see that (H2) also follows true. Moreover, in this section we establish the asymptotic
behavior of eigenfunctions.

3.1. Hypothesis (H1)

We first comment that in order to verify hypothesis (H1) it is enough to prove that
A is a skew-adjoint operator in Hy C Xo = L?(0,L)2. In fact, this will imply that
A has a semigroup property on Hi. Remember that H; plays the role of Y in the
general statement of Urquiza’s method.

Proposition 3.1. A is a skew-adjoint Hy and thus generates a group of isometries
(etA>te]R m Hl.

Proof. First, it is clear that D(A) is dense in Hy. We have to prove that A* = —A
in H;. Note that we have —A C A* (i.e. (f,u) € D(A*) and A*(0,u) = —A(f,u)
for all (6,u) € D(A)). Indeed, for any (n,v), (0,u) € D(A), we have the following

2150111-8
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series representation by the orthonormal basis {(6;", u,})nez U (0, ,u,, Jnez} given
by Definition [Tl

(m,0) =Y (e (04, wl) + e (0, uy))
nez
and
(0,u) =Y _(dr (0, ut) +dy (0, ,uy,)).
nez
In this case, we have that
A(T}a u) = Z(Z/\TLC:(07T7 u'rt) - l/\nC;(Q;a u'r:))
nez

and

n»n n»-’'n

AO,u) = (IAadf (0, uh) = idnd, (0, ,u,,)),
ne”Z
respectively. Therefore, it yields that
((0,u), A, 0) i, = D (14 [Mal?) 3 (e (M) + ¢ (—iAndi )
nez
ST+ ) (—idnchdd + idnc; dn)
nez
- 7(A(0v u)7 (773 U))Hl .

Now, let us prove now that A* C —A. Pick any (6,u) € D(A*). Then, we have
for some constant C' > 0

|((97u)7A(777v>>X0‘ < C||(7]7U)||Xo V(’hv) € D(A)7

i.e.
1

2

<C (/O [n? + ﬂm) : (3.1)

for all (n,v) € D(A). Picking v = 0 and n € C°(0, L), we infer from (B.I)) that
Uy + Uzze € L?(0,L), and hence that u € H3(0,L). Similarly, we obtain that
6 € H?(0, L). Integrating by parts in the left-hand side of ([B.II), we obtain that

0(L)vas(L) — 0(0)vzz(0) + 02 (0)v2(0) + w(L)Nea (L) — w(0)122(0) — ue(L)n2 (L)

L
/ [9(1}1 + Uzzz) + U(nz + nzzw)]dm
0

L
<C (/ [ + v2}dx>7 Y (n,v) € D(A).
0
It easily follows that
0(0) =0(L) = 0,(0) = u(0) = u(L) = u, (L) =0,

so that (0,u) € D(A) = D(—A). Thus D(A*) = D(—A) and A* = —A, which ends
the proof of this proposition. |

2150111-9
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3.2. Behavior of the traces

As already mentioned (see [0 for details), there exists an orthonormal basis
{0 u Inez U (0 ur, Jnez}
in [L2(0, L)]?, composed of eigenfunctions of A satisfying
A0y uy) = i (0 wy)
and
A0y uy) = (=idn)(0 ur),s

where the real numbers {\, },cz are the eigenvalues. Moreover, they have the fol-
lowing asymptotic form:
127 (k ’
(HW—(IW) + O(n>7 as n — 400
6L

127(ks — n)\
_(77T+ g£k2 n)) +0(n), asn — —oo

for some numbers k1, ks € Z. Next result provides the behavior of boundary traces
associated with the orthonormal basis {(0;7, u;)nez U (6, ,u;, )nez}. The proof is

n
given in [Xppendi Al
Proposition 3.2. There exist positive constants C1i and Cgi, such that

0* (L uE (0
lim e (EDI_ Ct and  lim [tna O _ Cy. (3.3)

4. Proof of Hypothesis (H3) and (H4)

In this section, we are interested in proving the hypothesis (H3) and (H4). We start
presenting some auxiliary results that will be used to prove the regularity condition
and observability inequality, respectively.

4.1. Auzxiliary lemmas

To find the regularity needed and to prove the observability inequality we use the
following classical Ingham inequality, see e.g. [8] [I0] for details.

Lemma 4.1. Let T > 0 and {fn}nez C R be a sequence of pairwise distinct real
numbers such that

lm (Bur1 — Ba) = +o0.

In|—o0

2150111-10
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Then, the series
h(t) = Z YnePrt  converges in L?(0,7),
nez

for any sequence {yn}nez satisfying >, va < oo. Moreover, there exist two
strictly positive constants Cy and Cy such that

T
2D I MUCIETELSY pecs
0

nez neZ

Now, observe that following the spectral analysis for the operator A given in
[B, Appendix: Proof of Theorem 3.11], we obtain that

) 1
—up(L —x) and ufx = —u,(x),
7 ( ) (z) 7 (2)
where {v, }nez are the eigenvectors of the operator B defined as

By = —y""(L —z) -y (L — ),

with domain D(B) = {y € H3(0,L) N H}(0,L):y'(L) = 0}, which is closely related
with the operator A. So, operator B has the following properties that can be seen
in [5 Appendix: Proof of Theorem 3.11].

bt (@) =¥ (4.1)

Lemma 4.2. The operator B is self-adjoint in L?(0,L). Moreover, the following
clatms hold:

(i) If L € (0,00)\N, then
B~':L*(0,L) — H?*(0,L)
is well-defined continuous operator. Here, N is defined by (L3));

(i) There is an orthonormal basis {vp }nez in L?(0, L) composed of eigenvectors of

B: v, € D(B) and Bv,, = Ayvy, for alln € N for some A, € R.

Finally, the next result is a direct consequence of the spectral analysis for the
operator A and ensures the well-posedness for the homogeneous system associated

to the system (ZI]) and (22)).

Lemma 4.3. For any (10, wo) = > ,cz(20° " (0, ul) + 207 (05, uyy)) € Hy, there
exists a unique solution of

{(nfn U)t) = A(n7 w)7
(77(0)7 U/(O)) = (770a w0)7
belonging of C(R, Hy) and given by

(n(z,t),w(z,t)) =Y (ePtzg (07, wlh) + e 20" (0, uy)).
neZ

Additionally, as {\n}nez C R, we have

1(n(&), w(t)lls = (10, wo)lls-

2150111-11



Commun. Contemp. Math. Downloaded from www.worldscientific.com

by UNIVERSIDADE FEDERAL DE PERNAMBUCO on 02/10/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

R. de A. Capistrano—Filho, E. Cerpa € F. A. Gallego

4.2. Proof of (H3)
Let us take

(m0,wo) = > (267 (O uh) + 25" (0, ,uy,)) € Hi.
nez

Note that by Lemma 3] we have

(n(z, t), w(z, t)) = Z(eMntZ(7)17+(97er7 urt) + eii)\ntz(7)17_(9;7 u;»v
nez

it implies that

w (0,8) = (€ 2y Tt L (0) + e A2 Tuy L (0)).
ne”z

Thanks to ([@T), we deduce that

1

0falD) = = Z=tna(0). GralD) = —%vn,m(()),

uf(0) = %wox i (0) = %vn,x<0>.

Thus, there exists a positive constant C, such that

e (0,0)* < O (17" Plu o (00 + |25 [*luy, 0 (0)])
nez

<CY ot Oz P + =57 1P)).
ne”z

Hence,

‘Unw(o)‘Q 2, n.+2 -2
[wn(0.) < € == [+ D3 (12 + 125 )
PORTETWE i i

(4.2)

Using the asymptotic behavior ([B2]), there exists a positive constant Cy such that

2
%gch VneZ.

Therefore,

2 n, n,—
w, (0, < C1 > (1+ M) (120 + 257 71%) = Cu | (mo, wo) I3,
nez

and so condition (H3) holds in Hy-norm.

2150111-12

(4.3)



Commun. Contemp. Math. Downloaded from www.worldscientific.com

by UNIVERSIDADE FEDERAL DE PERNAMBUCO on 02/10/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

Rapid stabilization for a KdV-KdV system

4.3. Proof of (H4)
Note that ([2)) implies that sequences {\,, } ez satisfies the following gap condition:

[n|—o0

Then, from Lemma [41] and relations ([@1]) and ([@3]), we obtain that

T
(ZIZ"+ o 0)|2+Z|26”_u;x(0)l2> S/O w0, 1) *dt

ne”Z neZ

< Ci|(m0, wo) 17, (4.4)
for some positive constants Cy and Cs. By using [@2]) and ([€4]), we have that

/ e (0,0)2dt > C3 3 o (O (1202 + |07 2)

nez
fcsgz(lwn')%[(umo (252 + 1257, (45)

holds for some C5 > 0. Observe that we can estimate the right-hand side of (£H)
in terms of any Hy—norm for s > 1. To finalize the proof of the hypothesis (H4) for
the Hy—norm, we cannot lose any coefficient z( mE . Thus, we claim the following.

Claim 1. v, »(0) # 0 for all n € Z.

Indeed, suppose by contradiction that there exists ng € Z such that vy, ,(0) = 0.
This implies that

(O,2(L)s Uy, £(0) =0 and (0, o (L), Uy, (0)) = 0. (4.6)

no,T no,T ? 'no,T

In particular, considering u(x) = 6, (x) + u} (x), there exist A,, € C such that

u” +u' + Apyu =0,

u(0) = wu(L) =u/(0) =/ (L) = 0.
From [14, Lemma 3.5], it follows that L € N, which is a contradiction, and Claim
1 holds.

Lastly, due to the asymptotic behavior (32]) and Claim 1, there exists a positive
constant Cy > 0 such that

‘Umw(o)‘Q
(1+ADF
for all n € N, Thus, follows by (4.0) that

b

T
/0 a0, 1) 2dt > Cil| (o, wo) 2. (4.7)

Therefore, relation (H4) is satisfied. As we already mentioned, this property gives
us an additional result. The exact controllability of ([Z) and (Z2) with control
space L2(0,T) and state space Hj.

2150111-13
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5. Rapid Stabilization: Control Design

In this section, we design the feedback law using the Urquiza approach to show the
rapid exponential stabilization for solutions of the system (21 and (Z2]). Recall
that this system takes an abstract form (Z.8)) and the operators A and B are given
by @3)—2Z4) and ZI)—(24), respectively. With this in hand, we are in position

to prove our main result.

5.1. Proof of Theorem [I.1]

For any (po, o), (70, So) in Hy and w > 0, consider the bilinear form defined by

aw((po; qo), (ro, 50)) == / e %7 q,(0,7)5,(0, 7)dr. (5.1)
0
Here (p, q) and (r, s) are solutions of

Pr + Qe + Qeze =0,

qr + Pz + Pz =0,

p(0,7) =p(L,7) = ps(0,7) =0,

q(0,7) = q(L,7) = ¢u(L,7) =0,

p(x,0) =po(z), q(z,0) =qo(x)

and

T+ + 8¢ + Szae = 0,

S+ Ty + Tppe =0,

r(0,7) =r(L,7) =r(0,7) =0,
$(0,7) = s(L,7) = s, (L,7) =0,
r(z,0) =ro(xz), s(x,0)=so(x),

respectively. Finally, consider the following operator A, : Hy — H_; satisfying the
relation

(Aw(Posqo), (ro, 50)) i 1,1, = aw((Po,q0), (10, 50)), (5.2)

for all (po,qo), (1o, s0) € Hy and w > 0. Note that, from (27]) we have that
<Aw(Po, QO), (To, 50)>H,1,H1
:/ e 27 q,(0,7)5,(0, 7)dr,
0
= [ B e ).l ) B (), sl )
0

2150111-14
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Thanks to Theorem 211 the operator A, is coercive and an isomorphism. On the
other hand, set the functional

F,:H — R

(21, 22) = Fu((21, 22)) := qp(0),

where (po, qo) is the solution of the following Lax—Milgram problem
aw((Po, q0), (10, 50)) = ((21,22), (r0, $0)) iy 11,5 ¥V (r0,80) € Hi.  (5.3)
From ([5.2]), we deduce that (21, 22) = Aw(po, qo) in H_1. Moreover, observe that
Fu(21,22) = q0(0) = =B*(po, q0) = —B*A; " (21,22), V(21,22) € Hi.

Thus, we are in the hypothesis of Theorem 2.1 which one can be applied and
guarantees the rapid exponential stabilization to the solutions of the system (2.1)
and ([22). It means that for any w > 0, there exists a continuous linear feedback
control

f(t> = Fw(n(t>7 w(t>>
with F,, = —B*A;! where A, is given by (1) and (5.2) and a positive constant

C, such that for every initial conditions (ng,wp) € Hi, the solution (n,w) of the
closed-loop system (2.1]) and (2.2), satisfies

1(n(8), w())llsr, < Ce™||(no, wo) |1,

with a decay equals to 2w.

6. Further Comments

We have applied the Gramian approach to build some boundary feedback law to
prove the rapid stabilization for a coupled KAV-KdV type system. Considering one
control acting on the Neumann boundary condition at the right-hand side of the
interval where the system evolves we are able to prove that the closed-loop system
is locally exponentially stable with a decay rate that can be chosen to be as large
as we want. In what follows, we present some final remarks.

e Theorem A guarantees the stabilization of the KAV-KdV system with four con-
trols and Theorem B ensures the rapid stabilization with two controls. However,
Theorem [[.T] gives us a best result for the linear system, that is, we are able to
make the solutions of the linear system go to zero with only one control acting at
the boundary. It is important to point out here that the drawback is that we are
not able to treat the nonlinear case. This is due to the lack of any Kato smoothing
effect, as in the case of a single KAV [6], which leaves the rapid stabilization for
the full system (3] with boundary conditions (3 completely open to study.
The same lack of smoothing effect brings us to work in the state space H; in
order to have traces (and then controls) in the space L?(0,T). This regularity is
unlikely to be sharp and we think that a better result in fractional spaces should
be expected.
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e Note that we can also prove that there exists a continuous linear feedback control

9(t) = Fu(n(t), w(t))
such that the closed-loop system ([4]) with boundary conditions
n(0,t) =0, n(L,t)=0, n(0,t)=0, in (0, 4+00),
{w(O,t) =0, w(L,t)=0, wy(L,t)=g(t), in (0,+00),
satisfies
1(n(8), w(E)ler, < Ce™ [ (no, wo) |y
with a decay equals to 2w. To prove this consider the operator B given by
B:R — D(A*)
s+ Bs:= Lg,
where s € R and L; is a functional given by
Ls:D(A") = R
(u,v) = Lg(u,v) := suy(L).

With these information in hand and the following observability inequality

T
| Ina(zoPa = Clm,wn) . € >0,
0

the result follows using the same idea as done in the proof of Theorem [T
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Appendix A. Proof of Proposition

Following the ideas of [5, Appendix A. Proof of Theorem 3.11], we observe that v,
takes the form

3
vn(z) = ajleni” — e o)), (A1)
j=1
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with a; = a;(n) € C, for j =1, 2,3, where

3

Y aj(ent —i) =0,

j=1

3
> a1 —iet) =0, (A.2)
j=1

eraj(eTjL +i)=0

j=1
and r;, j = 1,2, 3, are pairwise distinct such that
r1 =r1(n) ~ 71-/\711/37 ro = ro(n) ~ —ip)\rl/:g, r3 =r3(n) ~ fipz)\yll/g, (A.3)

for p = "% . Note that the equations in (A2) imply that

3 3
E aj = E aje it =0,
=1 =1

that is,
as = —a1 — a2
and
a1 (emL o e’rgL) + ag(e""‘L . eT'aL) —o.
Moreover, if we assume \,, — 0o, we have

r = =i\ O Y3) ~ —idl/3

3
ro = —ipAl® + O(N;1/3) ~ (% + %) AL/3

and
=
rs = —ip? A3 + O(A;1/3) ~ <_§ n %) AL/3,

Additionally, if \,, — —oo, we have

re=—iA/2 OO YP) ~ i

ra = —ipA/* + OOH?) ~ — (? + %) 2
and

ra = —ipPAY? + OO (“75 - g) Al

2150111-17
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Note that the previous relations implies
lertt| — 1, |e"E| — 400, |e™l| =0, asn — oo (A.4)
and
le B =1, et =0, |emf] — 400, asn — —oo. (A.5)
The convergences (A4l and [AF]) ensure that
Ap — 00, asn — too.
With these relations in hand, the following claim can be verified.

Claim 2. The behaviors [B3]) hold whenever there exist positive constant Cy and
Cy such that

/
im 2Ol e and tim = C. (A.6)

In fact, to obtain the limit (A6]), we have to analyze the asymptotic behavior of
the a;j(n) terms. First, note that ||v,||z2¢0,z) = 1, since {vp }nez is an orthonormal
basis thanks to Lemma 2] thus

2
3

L
1:/ a; {6””71'6”(]:_“’)] dz
Dy

j=1

L[ 3 3
:/o D Aj@+2 Y A(w)d;(w) | de, (A7)

4,j=1,i#]

where A;(z) = a;[e"i® — ie"s(F=)]. Then,

L L
/ A?(a:)dm = / a?(eQT"“’ — 24emiera(b=a) _ o2y (L=a)) gy
0 0

2r; 2r;(L—x) L
. — 2"l 4 e
J 27"j 2’1“j 0
hence
L
2 2 1L
/0 Aj(w)dr = —2iaje” " L. (A.8)

On the other hand,

/0 " ) A, ()

L
= / aiaj(e"® — jeri (Lo (eri® — jeri(L=)) gy
0

e(riJrrj)x Z‘e(rifrj)zeer ie*(ri*Tj)l’eriL e(rﬁ»rj)(sz) L
= aiaj +

7

i+ TP — 7T ri— 7T T+ 0

2150111-18
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therefore

eer _ eriL

L
/0 Ai(x)Aj(x)dr = 2ia0;—————, Vi j. (A.9)

Ty — Ty

Putting together (AL8)) and (A1) in (A7), we get

—2iL(a2e™ ! + aZe™t + aZeml)

67“2[/ _ erlL 6T3L _ T‘1L e’r‘3L _ 67“2[/
+ 44 (alagi +aja3———— + CL2(137> =1
M — 7o r —17T3 To — T3
(A.10)
Thanks to the second and first relation in (A.2)), respectively, we have
as = —FCL1, az = —CL1(1 — F>7
where T' = (e F — emsl)(em2l — emL) =1, Now, using (AI0), we obtain
—2iLa3(e"t +T%emk + (1 —T)2%emsh)
rolL _ _ri L rsL _ _riL rslL _ _roL
] = T N T ey BT
T2 LT3 ro — 13
(A.11)
Moreover, note that
LT erzL _ erlL
6T2L — e’r‘3L
and
T‘1L7 T‘3L ’I“QL _ ’I“lL
F(I—F):(e e (e ent)
(er2L — ersL)?
Therefore, we have
F(l B F) er3L _ 6T2L _ (erlL _ 6T3L>(6T2L _ erlL)’
Ty — T3 (ro —r3)(eml —ersl)
rolL _ _rL rmL _ _rsL rolL _ _riL
e et (e et (e et
T = T2 (r1 —ra)(er2h —erst)
and
(1 B F) e’l“gL _ erlL _ (e’l“lL _ eT‘gL)(e;QL _ el’l/“lL)
r—73 (r1 —r3)(em2l — ersh)

Using the previous equalities in [ATT]), it follows that
—2iLa?(emt +T2%eml 4 (1 —T)%emsl)

(erlL _ 6T3L>(6T2L _ erlL) ( 1 1 1 ) _,

(et —erst) TL—T3  Ta—T3  T1—T2

+ dia?
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or, equivalently,
—2iaj[L(e" " + T + (1 —T)%e"s") —20(e"" — ") g(r1, 7, 73)] = 1,

where

1 1 1

T —T3 o — T3 T1—T2'

¢(7”1a T2, Tg) -

Noting that

B 1

-~ 2|L(emL 4 T2em2l 4 (1 —T')2ersl) — 20 (er2L — e L)p(rq1,72,73)|’
it follows that

jax ()]

1
2(L|emL| + LT2er2L| + L|(1 — T')2emsl| 4 2|T||em2l — emL||¢(r1, 2, 73)])
< |ay (n)[?
- 1
= 2|L|emE| — LIT2er2k| — L|(1 — T)2ersl| — 2|D[|er2E — emL||@(r1, 72, 73)||

(A.12)
Additionally, from ([A3]), we have
r1—re = —i(1 —p))\}/3 + O()\;l/g),
ra —rs = —ip(1 = p)A/* + 0N 1?)
and
r—r3 = —i(1—p?)AY3 + O\ 13,

which allow us to conclude that ¢(r1,72,73) — 0, as |n| — occ.
Observe that

Il — (erlL _ eT'gL) ‘erlL' + |€T3L‘

| ‘ - eT‘QL(l _ 6T3L67T2L) - ‘eTQLul _ e’r‘3Lef’r‘2L‘
2y _ | (€T —enty? (JemE] + ferE|)?
[Frem| = er2L(1 — ersle—r2L)2| = |er2L||1 — ersle—r2L|2

and

.. 2
(1 —Tyerst| = |(1- C2 =€ pran| o (et et
67"2[/ — eTSL - |6T3LH6T2L67T3L _ 1‘2

Due to the asymptotic behavior of {\,; }neny B2) and (AA), we get
IT| —0, [T%2% -0 and |(1-T)%"% -0, asn—oo. (A.13)
Note that |[Te"2*| — 1, which implies that
IT||e"2" — e L ||p(r1,72,73)] — 0 as n — oo.
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On the other hand, thanks to (A), it follows that

| — 1, [[[le™* —eE| -1, |2l -0 and
(A.14)

|(1-T)%eml] -0, asn— —oo.
Thus, using (A13), (AI4) and passing to the limit in (A2]), we deduce that

lim |ai(n)| = (A.15)

1
Let us prove (A6). From [A]) we have that

3
vh(@) =Y agrsleni® 4 e ),
j=1
then
3
v, (0) = Z a;jr;[1 4 ie™"]
j=1
and
3
vl (L) = Zajrj [emit 4 4].
j=1

Thanks to (A2)), it follows that
0! (0) = a1 (1 +ie™5) 4 agro (1 4 ie™) — (a1 + az)rs(1 + ie™t)
=ari (14 ie”L) +as(re —r3) + agrgi(e”L — e”L)

+ agie”L(rg —r3)—airs(l+ ie”L)

ri1L r3L>

=ari (14 ie”L) +as(re —r3) — arrei(e” —e

+ agie™  (ry — r3) — ayrz(1 +ie™h)

= ay[ri(1 +ie™’) — rg — roie™¥]

+ag(ry — 73)(1 4 i) + ayie™ (ry — r3)

= ap[ri(1 +ie™ ") — rg — roie™¥]
6T1L _ e’r’3L

ay . .
N (ém_—em)(W —13)(1 +ie™") + arie™ " (ry —13).

We analyze the case when n — +o0, the case when n — —oo can be shown
analogously. Noting that

’I”1L ’I“3L P
e — e _V/3y1/3
=0(e 20,

erzL _ er3L
To — T3 = O()\l/g)
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and

V3
1+ie™t =01 + e_TJ)‘l/SL)

)

we have that

Note that (1 —p?*) =

riL raL

ay(emt —e . . s
E(ETQL—ETSL)(TQ —r3)(1 +ie"™) 4 ayie™ (ry —13) = O(e

(1 —p), due the fact that p = ¢’5. Thus,

0! (0) = ay((ry — r3) +ie™ E(ry — rg) + O(A3e ,L,\l/sL))

= ay (=AY (1 = p?) + i (—idl/?) (1 = p) + O(1))

= a1 (=N (1 = p?) + ien B (=AY (1 - ph) + O(1))
(—iAY3 (1 = pP)[1 +iem P (1 +p?) + 0(1)]
( (

= a1 (=AY (1 = p?) (1 + ie"Fp? + 0(1)).

Since el ~ e ML~ e=i/6  jp? there exists K; € C\{0}, such that

0! (0) ~ K ai (n) A3,

Similarly, there exists K, € C\{0}, such that

vl (L) ~ K3 ay(n)AY3.

n

Analogously, when n — —o0, we get

and

0n(0) ~ Ky ar(n)A/?

(L) ~ Ky ar(m)A,/?,

for some complex constants nonzero K; and K, , respectively. Finally, (B2
and (AT ensure that ((A6) follows and, consequently, Proposition B.2lis achieved.
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