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1. Introduction

The Kawahara equation [19]

ut + ux + uxxx − uxxxxx + uux = 0 (1.1)

is a dispersive PDE describing numerous wave phenomena such as magneto-acoustic waves in a cold plasma [17], the
propagation of long waves in a shallow liquid beneath an ice sheet [15], gravity waves on the surface of a heavy liquid
[10], etc. In the literature this equation is also referred as the fifth-order KdV equation [5], or singularly perturbed KdV
equation [24]. Jointly with (1.1) it is worthwhile to study the so-called modified Kawahara equation, i.e. the same fifth-order
dispersive equation with a square nonlinearity in the convective term, namely

ut + ux + uxxx − uxxxxx + u2ux = 0. (1.2)

There are some valuable efforts in the last years that focus on the analytical and numerical methods for solving
(1.1) and (1.2). These methods include the tanh-function method [1], extended tanh-function method [2], sine-cosine
method [38], Jacobi elliptic functions method [14], direct algebraic method [23], decompositions methods [18], as well
as the variational iterations and homotopy perturbations methods [16]. For more details see [6,31,33,37,39], among others.
These approaches deal, as a rule, with soliton-like solutions obtained while one considers problems posed on a whole real
line. For numerical simulations, however, there appears the question of cutting-off the spatial domain [3,4]. This motivates
the detail qualitative analysis of problems for (1.1) and/or (1.2) in bounded regions [12].
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Our aim here is to analyze qualitative properties of solutions to the initial–boundary value problem for (1.2) posed on a
bounded interval under the presence of a localized damping term, that is⎧⎪⎨

⎪⎩
ut + ux + uxxx − uxxxxx + u2ux + a(x)u = 0 in Q T = (0, L) × (0, T ),

u(0, t) = u(L, t) = ux(0, t) = ux(L, t) = uxx(L, t) = 0, t ∈ (0, T ),

u(x,0) = u0(x), x ∈ (0, L),

(1.3)

where the real function a = a(x) satisfies the condition{
a ∈ L∞(0, L) and a(x) � a0 > 0 a.e. in ω,

with a nonempty ω ⊂ (0, L).
(1.4)

The term a(x)u designs a feedback damping mechanism; therefore, one can expect the global well-posedness of (1.3) for all
L > 0, and the decay of solutions. The main purpose of this paper is to prove that this is indeed true. There are basically
two features to be emphasized in this way:

• one should be convinced that a damping is effectively important, i.e. there are solutions to undamped model (at least
to its linear version) that do not decay;

• one should be capable to estimate the nonlinear term in appropriate norms, i.e. there are suitable functional spaces
that allow to apply corresponding methods.

First, we show that the presence of an extra damping term is essential already in a linear case: if a(x) ≡ 0, then a
nontrivial solution to⎧⎪⎨

⎪⎩
ut + ux + uxxx − uxxxxx = 0 in Q T ,

u(0, t) = u(L, t) = ux(0, t) = ux(L, t) = uxx(L, t) = 0, t ∈ (0, T ),

u(x,0) = u0(x), x ∈ (0, L),

is constructed to be not decayed as t → ∞ if the length of an interval is critical. Observe that due to the drift term ux the
same occurs for the KdV equation [27]. Indeed, if for instance L = 2πn, n ∈ N, then the function v(x) = 1 − cos x solves⎧⎪⎨

⎪⎩
ut + ux + uxxx = 0 in Q T ,

u(0, t) = u(L, t) = ux(L, t) = 0, t ∈ (0, T ),

u(x,0) = v(x), x ∈ (0, L),

and clearly v(x) � 0 as t → ∞. Despite the valuable advances in [7–9,13], the question whether solutions of undamped
problems associated to nonlinear KdV and Kawahara equations decay as t → ∞ for all finite L > 0 is open.

To overcome these difficulties, a damping of the type a(x)u was introduced in [22] to stabilize the KdV system. More
precisely, considering the damping localized at a subset ω ⊂ (0, L) containing nonempty neighborhoods of the end-points of
an interval, it was shown that solutions of both linear and nonlinear problems for the KdV equation decay, independently
on L > 0. In [25] it was proved that the same holds without cumbersome restrictions on ω ⊂ (0, L). In [34,36] the damping
like in (1.4) was used for (1.1) without the drift term ux . If, however, the linear term ux is dropped, both the KdV and
Kawahara equations do not possess critical set restrictions [27,35], and the damping is not necessary. The decay of solutions
in such case was also proved in [11,12] by different methods.

Once the damping term a(x)u �≡ 0 is added to (1.2), the nonlinearity u2ux provides the second difficulty which should be
treated with accurateness. In this context the mixed problems for the generalized KdV equation

ut + ux + uxxx + upux + a(x)u = 0, (1.5)

were studied in [28] when p ∈ [2,4). For the critical exponent, p = 4, the global well-posedness and the exponential
stability were studied in [21]. The reader is also referred to [20,29] and the references therein for an overall literature
review. To handle the nonlinearity in (1.3), i.e. the case p = 2 in (1.5) with a(x) defined in (1.4), we follow mainly [22] and
[28] to prove the exponential decay of the energy associated to (1.3) without any smallness restrictions.

It should be of interest to detect whether there is a difference between the powers p � 2 in the generalized Kawahara
equation

ut + ux + uxxx + upux − uxxxxx + a(x)u = 0

while the decay of its solutions is studied. For p ∈ (2,4] we show that certain smallness conditions upon the initial data
provide the desired decay. The case p = 2 is more appropriate in this sense.



Author's personal copy

F.D. Araruna et al. / J. Math. Anal. Appl. 385 (2012) 743–756 745

2. Local and global well-posedness

For L > 0 and T > 0 let Q T be a bounded rectangle: Q T = {(x, t) ∈ (0, L) × (0, T ) ⊂ R2}. We study in this section the
following nonlinear initial–boundary value problem:⎧⎪⎨

⎪⎩
ut + ux + uxxx − uxxxxx + u2ux = 0 in Q T ,

u(0, t) = u(L, t) = ux(0, t) = ux(L, t) = uxx(L, t) = 0, t ∈ (0, T ),

u(x,0) = u0(x), x ∈ (0, L).

(2.1)

Our aim is to put forward the well-posedness theory useful for posterior stability analysis.

2.1. Linear system

For the sake of completeness, we provide below the well-posedness results for the linear problem⎧⎪⎨
⎪⎩

ut + ux + uxxx − uxxxxx = 0 in Q T ,

u(0, t) = u(L, t) = ux(0, t) = ux(L, t) = uxx(L, t) = 0, t ∈ (0, T ),

u(x,0) = u0(x), x ∈ (0, L).

(2.2)

Lemma 2.1. Let u0 ∈ L2(0, L). Then (2.2) possesses a unique (mild) solution

u ∈ C0([0, T ]; L2(0, L)
) ∩ L2(0, T ; H2(0, L)

)
(2.3)

with

uxx(0, t) ∈ L2(0, T ).

Moreover, there exists a constant C = C(T , L) > 0 such that

‖u‖C0([0,T ];L2(0,L)) + ‖u‖L2(0,T ;H2(0,L)) � C‖u0‖ (2.4)

and ∥∥uxx(0, t)
∥∥

L2(0,T )
� ‖u0‖. (2.5)

Proof. Let A : D(A) ⊂ L2(0, L) → L2(0, L) be the linear closed operator defined as

Av = −v ′ − v ′′′ + v ′′′′′

with the domain

D(A) = {
v ∈ H5(0, L): v(0) = v(L) = v ′(0) = v ′(L) = v ′′(L) = 0

}
.

Then, for any v ∈ D(A) it holds

(Av, v) = −1

2

L∫
0

[(
v ′)2]′

dx + 1

2

L∫
0

[(
v ′′)2]′

dx = −1

2

(
v ′′)2

(0) � 0

which means that A is dissipative. Moreover, so is its adjoint

A∗ : D
(

A∗) ⊂ L2(0, L) → L2(0, L)

defined as

A∗v = v ′ + v ′′′ − v ′′′′′

with the domain

D
(

A∗) = {
v ∈ H5(0, L): v(0) = v(L) = v ′(0) = v ′(L) = v ′′(0) = 0

}
.

Indeed, for v ∈ D(A∗), we find (v, A∗v) = −(v ′′)2(0)/2 � 0, as desired.
Notice that D(0, L) is dense in L2(0, L) and D(0, L) ⊂ D(A) ⊂ L2(0, L) which implies that D(A) is dense in L2(0, L).

Therefore, due to classical semigroups results, A generates the semigroup of contractions, strongly continuous in L2(0, L)
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(see, for instance, Theorem 4.3 in [26]). Let {S(t)}t�0 be this semigroup. Then there exists a unique solution u(·, t) = S(t)u0
to (2.2) satisfying u ∈ C0([0, T ]; L2(0, L)) and

‖u‖C0([0,T ];L2(0,L)) � ‖u0‖. (2.6)

To prove that u ∈ L2(0, T ; H2(0, L)), we first consider u0 ∈ D(A). Multiply (2.2)1 by xu and integrate over Q T to obtain

1

2

L∫
0

x
∣∣u(x, T )

∣∣2
dx + 3

2

T∫
0

L∫
0

∣∣ux(x, t)
∣∣2

dx dt + 5

2

T∫
0

L∫
0

∣∣uxx(x, t)
∣∣2

dx dt = 1

2

L∫
0

x
∣∣u0(x)

∣∣2
dx + 1

2

T∫
0

L∫
0

∣∣u(x, t)
∣∣2

dx dt,

which implies

T∫
0

L∫
0

{∣∣u(x, t)
∣∣2 + ∣∣ux(x, t)

∣∣2 + ∣∣uxx(x, t)
∣∣2}

dx dt � L

L∫
0

∣∣u0(x)
∣∣2

dx + 2

T∫
0

L∫
0

∣∣u(x, t)
∣∣2

dx dt. (2.7)

Combining (2.6) and (2.7), we get u ∈ L2(0, T ; H2(0, L)) and

‖u‖L2(0,T ;H2(0,L)) � (L + 2T )1/2‖u0‖. (2.8)

On the other hand, multiplying (2.2)1 by u and integrating over Q T gives

L∫
0

∣∣u(x, T )
∣∣2

dx +
T∫

0

∣∣uxx(0, t)
∣∣2

dt =
L∫

0

∣∣u0(x)
∣∣2

dx, (2.9)

i.e. uxx(0, T ) ∈ L2(0, T ) and∥∥uxx(0, t)
∥∥

L2(0,T )
� ‖u0‖. (2.10)

Since D(A) is dense in L2(0, L) it follows that (2.7)–(2.10) are valid for any u0 ∈ L2(0, L). This completes the proof. �
2.2. Nonlinear system. Local solutions

In this subsection we discuss the existence and uniqueness of a local solution to (2.1).

Lemma 2.2. Let T0 > 0 and u0 ∈ L2(0, L) be given. Then there exists T ∈ (0, T0] such that (2.1) possesses a unique solution

u(x, t) ∈ C0([0, T ]; L2(0, L)
) ∩ L2(0, T ; H2(0, L)

)
. (2.11)

Proof. Write a solution to (2.1) as

u = u1 + u2, (2.12)

where u1 and u2 solve, respectively, the following problems:⎧⎪⎨
⎪⎩

u1t + u1x + u1xxx − u1xxxxx = 0 in Q T ,

u1(0, t) = u1(L, t) = u1x(0, t) = u1x(L, t) = u1xx(L, t) = 0, t ∈ (0, T ),

u1(x,0) = u0(x), x ∈ (0, L),

(2.13)

and ⎧⎪⎨
⎪⎩

u2t + u2x + u2xxx − u2xxxxx = f in Q T ,

u2(0, t) = u2(L, t) = u2x(0, t) = u2x(L, t) = u2xx(L, t) = 0, t ∈ (0, T ),

u2(x,0) = 0, x ∈ (0, L),

(2.14)

where f = −u2ux .
For u0 ∈ L2(0, L), Lemma 2.1 assures that (2.13) admits the unique solution

u1(x, t) ∈ C0([0, T0]; L2(0, L)
) ∩ L2(0, T0; H2(0, L)

)
. (2.15)

Moreover, the map u0 �→ u1 is linear and continuous.
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To solve (2.14) observe that its linear part corresponds the semigroup {S(t)}t�0 considered in Lemma 2.1, and that
f = −u2ux is locally Lipschitz from H2(0, L) to L2(0, L). Indeed, since supx∈[0,L] |u2| � ‖u‖2

H1(0,L)
, one finds∥∥u2ux − z2zx

∥∥ �
∥∥u2(ux − zx)

∥∥ + ∥∥zx(u2 − z2)
∥∥ �

∥∥u2
∥∥

L∞(0,L)
‖ux − zx‖ + ‖zx‖L∞(0,L)‖u − z‖‖u + z‖L∞(0,L)

�
(‖u‖2

H1(0,L)
+ ‖z‖H2(0,L)‖u + z‖H1(0,L)

)‖u − z‖H2(0,L). (2.16)

Therefore, there exists T > 0 such that the implicitly defined function

u2(·, t) =
t∫

0

S(t − s) f (·, s)ds, t ∈ [0, T ] ⊂ [0, T0),

solves (2.14) and satisfies (2.11). The proof is completed. �
2.3. Nonlinear system. Global solutions

In order to study the long-time asymptotic for nonlinear model (2.1), its global well-posedness has been established in
this subsection. The main result here is

Lemma 2.3. Let u be solution to (2.1) assured by Lemma 2.2. Then there exists C = C(T , L) > 0 such that

‖u‖2
L2(0,T ;H2(0,L))

� C‖u0‖2(1 + ‖u0‖4) (2.17)

and

ut ∈ L4/3(0, T ; H−3(0, L)
)
. (2.18)

Proof. As usual, the proof consists in several a priori estimates. First, multiply (2.1)1 by u and integrate over (0, L) to obtain

1

2

d

dt

∥∥u(t)
∥∥2 + 1

2

∣∣uxx(0, t)
∣∣2 = 0

which means

‖u‖L∞(0,T ;L2(0,L)) � ‖u0‖. (2.19)

Second, multiply (2.1)1 by xu and integrate over Q T to get

T∫
0

L∫
0

|ux|2 dx dt + 1

3

L∫
0

x
∣∣u(x, T )

∣∣2
dx + 5

2

T∫
0

L∫
0

|uxx|2 dx dt = 1

3

T∫
0

L∫
0

|u|2 dx dt + 1

3

L∫
0

x|u0|2 dx + 1

6

T∫
0

L∫
0

|u|4 dx dt.

The use of (2.19) gives

‖u‖2
L2(0,T ;H2(0,L))

�
(

4T + L

3

)
‖u0‖2 + 1

6

T∫
0

L∫
0

u4 dx dt. (2.20)

The Gagliardo–Nirenberg inequality jointly with (2.19) implies

T∫
0

L∫
0

u4 dx dt � C

T∫
0

‖u‖3 ‖ux‖dt � C

T∫
0

‖u‖6 dt + 3

T∫
0

‖ux‖2 dt � C‖u‖6
L6(0,T ;L2(0,L))

+ 3‖u‖2
L2(0,T ;H1(0,L))

� C(T )‖u‖6
L∞(0,T ;L2(0,L))

+ 3‖u‖2
L2(0,T ;H2(0,L))

� C(T )‖u0‖6 + 3‖u‖2
L2(0,T ;H2(0,L))

. (2.21)

Substituting (2.19) and (2.21) into (2.20), we obtain (2.17).
To get bounds for ut we have to treat the nonlinear term in more details. First, note that (2.21) assures that

u3 is bounded in L4/3(Q T ).

By the other hand, since L4/3(0, T ) ↪→ H−2(0, T ), we conclude that

u2ux = 1

3

∂

∂x

(
u3) is bounded in L4/3(0, T ; H−3(0, L)

)
. (2.22)
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This allows to estimate ut . Indeed, write (2.1)1 as

ut = −ux − uxxx + uxxxxx − u2ux in D′(0, T ; H−3(0, L)
)
.

Since (2.17), (2.19) and (2.22), it holds that

ut is bounded in L4/3(0, T ; H−3(0, L)
)

(2.23)

which completes the proof. �
Remark 2.1. Considering the generalized Kawahara equation

ut + ux + uxxx − uxxxxx + upux = 0 with p � 2, (2.24)

one can see that global solutions for p ∈ (2,4] can be obtained (at least by the method above) provided the initial data are
sufficiently small. More precisely, if p ∈ (2,4] and ‖u0‖  1, then

‖u‖2
L2(0,T ;H2(0,L))

� c1

( ‖u0‖2

1 − c2‖u0‖2

)
(2.25)

where ck = ck(T , L) (k = 1,2) are positive constants. In fact, for 2 < p � 4, (2.19) remains true and the Gagliardo–Nirenberg
inequality may be applied as follows:

T∫
0

L∫
0

up+2 dx dt � C

T∫
0

‖u‖p ‖ux‖2 dt � C‖u0‖p

T∫
0

‖ux‖2 dt � C‖u0‖p‖u‖2
L2(0,T ;H2(0,L))

. (2.26)

Substituting (2.26) into appropriately modified (2.20), we obtain (2.25).

2.4. Example of a critical set

Due to dispersive properties, just obtained global solutions are expected to be dissipative, i.e. to approach zero as t → ∞.
However, the following example shows that not every solution of the Kawahara equation stabilizes. We prove here the
existence of a nonempty critical set for the linearized system (2.2). More precisely, we construct a nontrivial steady-state
solution to the initial–boundary value problem (2.2) with a non-zero initial datum u0(x) �≡ 0 and homogeneous boundary
conditions upon the endpoints of the interval with a critical length. Moreover, the critical set is shown to be at least
countable, in the same manner as it is for the KdV equation (see [27]).

Let L > 0 be a real number and take

a =
√√

5 − 1

2
, b =

√√
5 + 1

2
,

C2 = 1 − e−aL, C3 = eaL − 1, A = C2 + C3, B = C3 − C2,

C1 = −
(

1 + a2

b2

)
A, C4 = a2

b2
A, C5 = a

b
B.

Define

N =
{

L > 0: eibL =
(

C4 + iC5

|C4 + iC5|
)2}

⊂ R+

and

u(x) = C1 + C2eax + C3e−ax + C4 cos(bx) + C5 sin(bx) �≡ 0, x ∈ (0, L).

If L ∈ N , then u = u(x) solves

−u′′′′′ + u′′′ + u′ = 0,

and satisfies

u(0) = u′(0) = u′′(0) = u(L) = u′(L) = u′′(L) = 0.

Observe that the countable critical set N ⊂ R+ is due to a presence of the linear drift term ux in (2.2)1. It is shown
in [35] that N = ∅ for the model with ux neglected. We note also that a complete description of critical lengths for (2.2) is
an open problem.
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3. Stability

Due to example provided above and in order to control the system described by (2.1), one is suggested to add some extra
dissipative mechanism into the model. In this section, we consider the system appended with so-called “localized damping”
term, i.e. the extra term corresponding, roughly speaking, to some kind of friction presented in a part of the spatial domain.
We are looking for an exponential decay of the energy associated to the following problem:⎧⎪⎨

⎪⎩
ut + ux + uxxx − uxxxxx + u2ux + a(x)u = 0 in Q T ,

u(0, t) = u(L, t) = ux(0, t) = ux(L, t) = uxx(L, t) = 0, t ∈ (0, T ),

u(x,0) = u0(x), x ∈ (0, L),

(3.1)

where a : (0, L) → R is a nonnegative function satisfying{
a ∈ L∞(0, L) and a(x) � a0 > 0 a.e. in ω,

with a nonempty ω ⊂ (0, L).
(3.2)

Considering (3.1) as a perturbation of (2.1) with a(x) ≡ 0, one can see that (3.1) is globally well-posed for u0 ∈ L2(0, L),
and (2.17) and (2.18) hold.

Note that multiplying (3.1)1 by u and integrating over (0, L) yields

d

dt

L∫
0

∣∣u(x, t)
∣∣2

dx + 1

2

∣∣uxx(0, t)
∣∣2 +

L∫
0

a(x)
∣∣u(x, t)

∣∣2
dx = 0. (3.3)

This indicates that the energy E(t) = 1
2 ‖u‖2(t) associated with (3.1) is not increasing, and the term a(x)u designs a localized

damping mechanism.

3.1. Linear case

We follow [34] and [40] to prove L2-exponential decay of solutions to the linear problem⎧⎪⎨
⎪⎩

ut + ux + uxxx − uxxxxx + a(x)u = 0 in Q T ,

u(0, t) = u(L, t) = ux(0, t) = ux(L, t) = uxx(L, t) = 0, t ∈ (0, T ),

u(x,0) = u0(x), x ∈ (0, L).

(3.4)

Despite the linear case provides no difficulties, we present it in detail in order to be applied in modified and improved form
to nonlinear system (3.1). The stability result in this subsection is given by

Lemma 3.1. Let a(x) satisfy (3.2). Then for all L > 0 there exist constants c > 0 and μ > 0 such that solutions of (3.4) obey

‖u‖2(t) � c‖u0‖2e−μt, ∀t � 0. (3.5)

Proof. Multiply (3.4)1 by ux and integrate over Q T to obtain

1

2

L∫
0

x
∣∣u(x, T )

∣∣2
dx + 3

2

T∫
0

L∫
0

∣∣ux(x, t)
∣∣2

dx dt + 5

2

T∫
0

L∫
0

∣∣uxx(x, t)
∣∣2

dx dt +
T∫

0

L∫
0

xa(x)
∣∣u(x, t)

∣∣2
dx dt

= 1

2

T∫
0

L∫
0

∣∣u(x, t)
∣∣2

dx dt + 1

2

L∫
0

x
∣∣u0(x)

∣∣2
dx.

Then

‖u‖2
L2(0,T ;H2(0,L))

� (2T + L)‖u0‖2. (3.6)

On the other hand, multiplying (3.4)1 by (T − t)u and integrating over Q T gives

T ‖u0‖2 =
T∫

0

L∫
0

∣∣u(x, t)
∣∣2

dx dt +
T∫

0

(T − t)
∣∣uxx(0, t)

∣∣2
dt + 2

T∫
0

L∫
0

(T − t)a(x)
∣∣u(x, t)

∣∣2
dx dt (3.7)
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which can be written as

‖u0‖2 � 1

T

T∫
0

L∫
0

∣∣u(x, t)
∣∣2

dx dt +
T∫

0

∣∣uxx(0, t)
∣∣2

dt + 2

T∫
0

L∫
0

a(x)
∣∣u(x, t)

∣∣2
dx dt. (3.8)

Our aim now is to prove that

T∫
0

L∫
0

∣∣u(x, t)
∣∣2

dx dt � C

{ T∫
0

∣∣uxx(0, t)
∣∣2

dt + 2

T∫
0

L∫
0

a(x)
∣∣u(x, t)

∣∣2
dx dt

}
(3.9)

for some positive constant C = C(R, T ) independent on u. We employ the contradiction argument following [40]. Suppose
(3.9) is not true. Then there exists a sequence {un}n∈N ,

un ∈ L∞(
0, T ; L2(0, L)

) ∩ L2(0, T ; H2(0, L)
)
,

which solves (3.4) and

lim
n→∞

∫ T
0

∫ L
0 |un(x, t)|2 dx dt∫ T

0 |un,xx(0, t)|2 dt + 2
∫ T

0

∫ L
0 a(x)|un(x, t)|2 dx dt

= +∞. (3.10)

Let λn = ‖un‖L2(Q T ) and vn(x, t) = un(x, t)/λn . Then vn solves⎧⎪⎪⎨
⎪⎪⎩

vn,t + vn,x + vn,xxx − vn,xxxxx + a(x)vn = 0 in Q T ,

vn(0, t) = vn(L, t) = vn,x(0, t) = vn,x(L, t) = vn,xx(L, t) = 0, t ∈ (0, T ),

vn(x,0) = v0,n = un(x,0)

λn
, x ∈ (0, L).

(3.11)

On the other hand,

‖vn‖L2(Q T ) = 1 (3.12)

and, due to (3.10), it holds

lim
n→∞

{ T∫
0

∣∣vn,xx(0, t)
∣∣2

dt + 2

T∫
0

L∫
0

a(x)
∣∣vn(x, t)

∣∣2
dx dt

}
= 0. (3.13)

Using (3.12) and (3.13), (3.8) means that {vn(·,0)} is bounded in L2(0, L). Therefore, (3.6) implies

‖vn‖L2(0,T ;H2(0,L)) � C, ∀n ∈ N, (3.14)

for some constant C > 0. Similarly, (3.11)1 and (3.14) assure that {(vn)t} is bounded in L2(0, T ; H−3(0, L)). In this way, due
to Aubin–Lions’ compactness theorem (see [32, Corollary 4]), one can extract a subsequence {vn} (still denoted as before)
such that

vn → v strongly in L2(Q T ), (3.15)

vn → v weakly in L2(0, T ; H2(0, L)
)
, (3.16)

vn,t → vt weakly in L2(0, T ; H−3(0, L)
)
. (3.17)

By (3.12),

‖v‖L2(Q T ) = 1. (3.18)

Moreover, since a(x) satisfies (3.2) we get

0 = lim
n→∞ inf

{ T∫
0

∣∣vn,xx(0, t)
∣∣2

dt + 2

T∫
0

L∫
0

a(x)
∣∣vn(x, t)

∣∣2
dx dt

}
�

{ T∫
0

∣∣vxx(0, t)
∣∣2

dt +
T∫

0

L∫
0

a(x)
∣∣v(x, t)

∣∣2
dx dt

}

(3.19)

which implies a(x)v ≡ 0 in Q T . In particular, v ≡ 0 in ω × (0, T ). However, v(x, t) satisfies
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vt + vx + vxxx − vxxxxx = 0

and, by Hölmgren’s uniqueness theorem, v ≡ 0 in Q T . This contradicts (3.18) and, therefore, (3.9) is verified.
To prove the energy decay we insert (3.9) into (3.8) to get

E(0) = 1

2
‖u0‖2 � C

{
1

2

T∫
0

∣∣uxx(0, t)
∣∣2

dt +
T∫

0

L∫
0

a(x)
∣∣u(x, t)

∣∣2
dx dt

}
(3.20)

for some constant C = C(T ) > 0. On the other hand, (3.3) implies

E(T ) = E(0) − 1

2

T∫
0

∣∣uxx(0, t)
∣∣2

dt −
T∫

0

L∫
0

a(x)
∣∣u(x, t)

∣∣2
dx, (3.21)

which jointly with (3.20) insures

(1 + C)E(T ) = (1 + C)

(
E(0) − 1

2

T∫
0

∣∣uxx(0, t)
∣∣2

dt −
T∫

0

L∫
0

a(x)
∣∣u(x, t)

∣∣2
dx dt

)

� C E(0) −
(

1

2

T∫
0

∣∣uxx(0, t)
∣∣2

dt +
T∫

0

L∫
0

a(x)
∣∣u(x, t)

∣∣2
dx dt

)
� C E(0).

Consequently, E(T ) � γ E(0) with 0 < γ < 1. Therefore, ‖u(·,kT )‖2 � γ k‖u0‖2 for all k � 0. Finally, since ‖u(·, t)‖ �
‖u(·,kT )‖ for kT � t � (k + 1)T , we get

E(t) � c‖u0‖e−μt, ∀t � 0,

where c = 1/γ and μ = logγ /T . �
3.2. Compactness-uniqueness method for nonlinear system

Considered here are preliminaries for nonlinear treatment; the last one is the crucial unique continuation property.
Notice first that v = ut solves⎧⎪⎨

⎪⎩
vt + vx + vxxx − vxxxxx + (

u2 v
)

x + a(x)v = 0 in Q T ,

v(0, t) = v(L, t) = vx(0, t) = vx(L, t) = vxx(L, t) = 0, t ∈ (0, T ),

v(x,0) = v0(x), x ∈ (0, L),

(3.22)

where u is a solution to (3.1) with u0 ∈ L2(0, L) and

v0(x) = ut(x,0) = −u0,x − u0,xxx + u0,xxxxx − u2
0u0,x − a(x)u0 ∈ H−5(0, L). (3.23)

Lemma 3.2. There exists a constant C = C(T ,‖u0‖) > 0 such that

‖v0‖2
L2(0,L)

� C

{ T∫
0

v2
xx(0, t)dt +

T∫
0

L∫
0

a(x)v2(x, t)dx dt + ‖v0‖2
H−5(0,L)

+ 1

}
. (3.24)

Proof. Multiplying (3.22)1 by (T − t)v and integrating over Q T , we obtain

T ‖v0‖2
L2(0,L)

=
T∫

0

L∫
0

v2 dx dt +
T∫

0

(T − t)v2
xx(0, t)dt + 2

T∫
0

L∫
0

a(x)v2 dx dt + 1

2

T∫
0

L∫
0

(T − t)

(
d

dx
u2

)
v2 dx dt,

(3.25)

this implies

‖v0‖2
L2(0,L)

� 1

T

T∫
0

L∫
0

v2 dx dt + 2

T∫
0

L∫
0

a(x)v2 dx dt +
T∫

0

v2
xx(0, t)dt +

T∫
0

L∫
0

|uux|v2 dx dt. (3.26)
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Moreover,

T∫
0

L∫
0

|uux|v2 dx dt �
T∫

0

‖uux‖L2(0,L)‖v‖2
L4(0,L)

dt � C‖u‖2
L∞(0,T ;L2(0,L))

‖u‖2
L2(0,T ;H2(0,L))

+ 1

2
‖v‖4

L4(Q T )
. (3.27)

Substituting (3.27) in (3.26) and using (2.19), (2.20), we have

‖v0‖2
L2(0,L)

� C + 1

2
‖v‖4

L4(Q T )
+

T∫
0

v2
xx(0, t)dt + 2

T∫
0

L∫
0

a(x)v2 dx dt, (3.28)

where C > 0 is a constant depending on ‖u0‖. Therefore, to prove (3.24) it suffices to show that for all T > 0 there exists a
constant C = C(T ) > 0 such that

‖v‖2
L4(0,T ;L4(0,L))

� C

{ T∫
0

v2
xx(0, t)dt + 2

T∫
0

L∫
0

a(x)v2(x, t)dx dt + ‖v0‖2
H−5(0,L)

}
. (3.29)

Suppose this is false, i.e. there exists a sequence vn of solutions to (3.1) satisfying

lim
n→∞

‖vn‖4
L4(Q T )∫ T

0 |vn,xx(0, t)|2 dt + 2
∫ T

0

∫ L
0 a(x)v2

n(x, t)dx dt + ‖v0,n‖2
H−5(0,L)

= ∞. (3.30)

Let λn = ‖vn‖L4(0,T ;L4(0,L)) and define wn(x, t) = vn(x,t)
λn

. Then wn satisfies⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wn,t + wn,x + wn,xxx − wn,xxxxx + (
u2(x, t)wn

)
x + a(x)wn = 0 in Q T ,

wn(0, t) = wn(L, t) = wn,x(0, t) = wn,x(L, t) = wn,xx(L, t) = 0, t ∈ (0, T ),

wn(x,0) = vn(x,0)

λn
, x ∈ (0, L),

(3.31)

and

‖wn‖L4(Q T ) = 1. (3.32)

Moreover, taking the limit as n → ∞, it holds

T∫
0

∣∣wn,xx(0, t)
∣∣2

dt + 2

T∫
0

L∫
0

a(x)w2
n(x, t)dx dt + ∥∥wn(·,0)

∥∥2
H−5(0,L)

→ 0. (3.33)

Since (3.28), (3.32) and (3.33), it follows that {wn(·,0)} is bounded in L2(0, L). Therefore, using the same arguments as for
(2.17) and (3.28), we obtain

‖wn‖L2(0,T ;H2(0,L)) � C, (3.34)

for some constant C > 0. By the other hand∥∥(
u2 wn

)
x

∥∥
L2(0,T ;L1(0,L))

� C‖wn‖L∞(0,T ;L2(0,L))‖u‖2
L2(0,T ;H2(0,L))

+ C‖u‖2
L∞(0,T ;L2(0,L))

‖wn‖L2(0,T ;H2(0,L)), (3.35)

where C is some other positive constant. Thus, it follows from (2.17), (2.19) and (3.34) that one can find a constant C > 0
such that∥∥(

u2 wn
)

x

∥∥
L2(0,T ;L1(0,L))

� C . (3.36)

Observe also that (3.31)1, (3.34) and (3.36) insure

{wn,t} is bounded in L2(0, T ; H−3(0, L)
)
. (3.37)

We claim now that there exists a constant s > 0 such that {wn} is bounded in L4(0, T ; Hs(0, L)) and the embedding
Hs(0, L) ↪→ L4(0, L) is compact. Indeed, because of {wn} is bounded in L∞(0, T ; L2(0, L)) ∩ L2(0, T ; H2(0, L)), we deduce by
interpolation that {wn} is bounded in
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[
Lq(0, T ; L2(0, L)

)
, L2(0, T ; H2(0, L)

)]
θ

= Lp(
0, T ; [L2(0, L); H2(0, L)

]
θ

)
,

where 1
p = 1−θ

q + θ
2 and 0 < θ < 1. Therefore, setting p = 4, q = ∞ and θ = 1/2, we find s = 1/2, i.e.[

L2(0, T ), H2(0, L)
]

1/2 = H1/2(0, L)

and the embedding H
1
2 (0, L) ↪→ L4(0, L) is compact.

Finally, using the above claim, (3.37) and the classical compactness results (see [32], for instance) we get a subsequence
{wn} such that

wn → w strongly in L4(Q T ) (3.38)

and, by (3.32), it holds

‖w‖L4(Q T ) = 1. (3.39)

Note that

0 = lim
n→∞ inf

{ T∫
0

∣∣wn,xx(0, t)
∣∣2

dt + 2

T∫
0

L∫
0

a(x)w2
n(x, t)dx dt + ∥∥wn(·,0)

∥∥2
H−5(0,L)

}

�
T∫

0

∣∣wxx(0, t)
∣∣2

dt + 2

T∫
0

L∫
0

a(x)w2(x, t)dx dt + ∥∥w(·,0)
∥∥2

H−5(0,L)
(3.40)

which implies, in particular, that w(·,0) = 0. Therefore, the limit w , which solves the system⎧⎪⎨
⎪⎩

wt + wx + wxxx + (
u2 w

)
x − wxxxxx + a(x)w = 0 in Q T ,

w(0, t) = w(L, t) = wx(0, t) = wx(L, t) = wxx(L, t) = 0, t ∈ (0, T ),

w(x,0) = 0, x ∈ (0, L),

is a null function, i.e. w ≡ 0. This contradicts (3.39) and, necessarily, (3.29) is valid. The proof of Lemma 3.2 is completed. �
As a corollary, the unique continuation property is done as follows.

Lemma 3.3. Let u be a solution to (3.1) with a(x) and ω defined in (3.2). If{
uxx(0, ·) = 0, ∀t > 0,

u ≡ 0 in ω × (0, T ),

then u ≡ 0 in Q T .

Proof. Let u0 ∈ L2(0, L). Bearing in mind (3.2), (3.23) and Lemma 3.2, we deduce that v0 ∈ L2(0, L). Therefore, by Lemma 2.2,
a solution v of (3.22) lyes in

ut = v ∈ L∞(
0, T ; L2(0, L)

) ∩ L2(0, T ; H2(0, L)
)
. (3.41)

Since (2.11), (3.2) and (3.41), it follows from (3.1)1 that uxxxxx ∈ L2(Q T ). Therefore,

u ∈ L2(0, T ; H5(0, L)
) ∩ H1(0, T ; H2(0, L)

)
which is sufficiently to the unique continuation principle from [30] be applied. This gives u ≡ 0 in Q T which completes the
proof. �
3.3. Nonlinear system. Main result

The main result of the paper is:

Theorem 3.1. Let u be a global solution to (3.1) ensured by Lemma 2.3 with ‖u0‖ � R. Then for all L > 0 there exist positive constants
c = c(R) and μ = μ(R) such that

E(t) := 1

2
‖u‖2(t) � c‖u0‖2e−μt, ∀t � 0. (3.42)
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Proof. Integrate (3.3) over (0, t) with t ∈ (0, T ) to obtain

E(t) = E(0) − 1

2

t∫
0

∣∣uxx(0, t)
∣∣2 −

t∫
0

L∫
0

a(x)
∣∣u(x, t)

∣∣2
dx.

Hence,

E(t) � E(0) = 1

2
‖u0‖2, ∀t � 0. (3.43)

We are aimed to prove that for all T > 0 there exists a constant C = C(T ) > 0 such that

‖u0‖2 � C

{ T∫
0

∣∣uxx(0, t)
∣∣2

dt +
T∫

0

L∫
0

a(x)
∣∣u(x, t)

∣∣2
dx dt

}
. (3.44)

In fact, multiplying (3.1)1 by (T − t)u and integrating over Q T , we get

T ‖u0‖2 =
T∫

0

L∫
0

∣∣u(x, t)
∣∣2

dx dt +
T∫

0

(T − t)
∣∣uxx(0, t)

∣∣2
dt + 2

T∫
0

L∫
0

(T − t)a(x)
∣∣u(x, t)

∣∣2
dx dt, (3.45)

which implies

‖u0‖2 � 1

T

T∫
0

L∫
0

∣∣u(x, t)
∣∣2

dx dt +
T∫

0

∣∣uxx(0, t)
∣∣2

dt + 2

T∫
0

L∫
0

a(x)
∣∣u(x, t)

∣∣2
dx dt. (3.46)

Therefore, to prove (3.44) it suffices to show that for all T > 0 there exists a constant C > 0 such that

T∫
0

L∫
0

∣∣u(x, t)
∣∣2

dx dt � C

{ T∫
0

∣∣uxx(0, t)
∣∣2

dt + 2

T∫
0

L∫
0

a(x)
∣∣u(x, t)

∣∣2
dx dt

}
(3.47)

provided ‖u0‖ � R , for some R > 0. We use the contradiction argument again. Suppose (3.47) fails. Then one finds the
sequence

{un} ∈ C0([0, T ]; L2(0, L)
) ∩ L2(0, T ; H2(0, L)

)
satisfying∥∥un(·,0)

∥∥ � R, (3.48)

which solves (3.1) and

lim
n→∞

∫ T
0

∫ L
0 |un(x, t)|2 dx dt∫ T

0 |un,xx(0, t)|2 dt + 2
∫ T

0

∫ L
0 a(x)|un(x, t)|2 dx dt

= ∞. (3.49)

As earlier, take λn = ‖un‖L2(Q T ) and define vn(x, t) = un(x, t)/λn . For any n ∈ N the function vn solves⎧⎪⎪⎪⎨
⎪⎪⎪⎩

vn,t + vn,x + vn,xxx + λ2
n v2

n vn,x − vn,xxxxx + a(x)vn = 0 in Q T ,

vn(0, t) = vn(0, L) = vn,x(0, t) = vn,x(L, t) = vn,xx(L, t) = 0, t ∈ (0, T ),

vn(x,0) = v0,n = un(x,0)

λn
, x ∈ (0, L).

(3.50)

Moreover,

‖vn‖L2(Q T ) = 1 (3.51)

and

T∫
0

∣∣vn,xx(0, t)
∣∣2

dt + 2

T∫
0

L∫
0

a(x)
∣∣vn(x, t)

∣∣2
dx dt → 0, as n → ∞. (3.52)
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Using (3.51) and (3.52) in (3.46), one concludes that {vn(·,0)} is bounded in L2(0, L). Then (2.17) gives

‖vn‖L2(0,T ;H2(0,L)) � c, ∀n ∈ N, (3.53)

and in the same way as in (2.23) we deduce

{vn,t} is bounded in L4/3(0, T ; H−3(0, L)
)
. (3.54)

Since H2(0, L) ↪→ L2(0, L) compactly, due to (3.53), (3.54) and by Aubin–Lions’ theorem we see that {vn} is relatively
compact in L2(Q T ). Therefore, a subsequence {vn} can be extracted to obey

vn → v strongly in L2(Q T ) (3.55)

and, by (3.51), it holds

‖v‖L2(Q T ) = 1. (3.56)

Moreover,

0 = lim
n→∞ inf

{ T∫
0

∣∣vn,xx(0, t)
∣∣2

dt + 2

T∫
0

L∫
0

a(x)
∣∣vn(x, t)

∣∣2
dx dt

}

�
T∫

0

∣∣vxx(0, t)
∣∣2

dt + 2

T∫
0

L∫
0

a(x)
∣∣v(x, t)

∣∣2
dx dt, (3.57)

which implies{
vxx(0, t) = 0, t ∈ (0, T ),

v ≡ 0 in ω × (0, T ).
(3.58)

Combining (3.43) and (3.48), we have also a subsequence of {λn}, still denoted by {λn} and λ � 0 such that

λn → λ.

Two situations may occur: either λ = 0 or λ > 0. If λ = 0, then v solves linear problem (3.4) and satisfies (3.58). There-
fore, by Hölmgren’s uniqueness theorem, v ≡ 0 in Q T which contradicts (3.56). If λ > 0, then v is a solution to nonlinear
problem⎧⎪⎨

⎪⎩
vt + vx + vxxx − vxxxxx + λ2 v2 vx + a(x)v = 0 in Q T ,

v(0, t) = v(L, t) = vx(0, t) = vx(L, t) = vxx(L, t) = 0, t ∈ (0, T ),

v(x,0) = v0(x), x ∈ (0, L),

satisfying (3.58). By Lemma 3.3 we get v ≡ 0 in Q T which is a contradiction, as well.
Thus, (3.44) holds and the same arguments as in Lemma 3.1 lead to the desired result. �

Remark 3.1. Considering the generalized Kawahara equation (2.24) one concludes that the case p = 2 is more appropriate
in the following sense: if p = 2, the exponent energy decay holds for the arbitrary initial data from L2(0, L). If p ∈ (2,4],
the decay may be proved in the same way as above, provided the global solutions exist. It was just mentioned, however, in
Remark 2.1 that the existence of such solutions is available only for small initial data (at least by the suggested method).
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