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Abstract This article is dedicated to improve the controllability results obtained by
Cerpa and Pazoto (Commun Contemp Math 13:183–189, 2011) and by Micu et al.
(Commun Contemp Math 11(5):779–827, 2009) for a nonlinear coupled system of
two Korteweg–de Vries equations posed on a bounded interval. Initially, Micu et al.
(2009) proved that the nonlinear system is exactly controllable by using four boundary
controls without any restriction on the length L of the interval. Later on, in Cerpa and
Pazoto (2011), two boundary controls were considered to prove that the same system
is exactly controllable for small values of the length L and large time of control T .
Here, we use the ideas contained in Capistrano-Filho et al. (Z Angew Math Phys
67(5):67–109, 2016) to prove that, with another configuration of four controls, it is
possible to prove the existence of the so-called critical length phenomenon for the
linear system, i.e., whether the system is controllable depends on the length of the
spatial domain. In addition, when we consider only one control input, the boundary
controllability still holds for suitable values of the length L and time of control T . In
both cases, the control spaces are sharp due a technical lemma which reveals a hidden
regularity for the solution of the adjoint system.
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1 Introduction

1.1 Setting of the problem

In [6], a complex system of equations was derived by Gear and Grimshaw to model
the strong interaction of two-dimensional, long, internal gravity waves propagating on
neighboring pycnoclines in a stratified fluid. It has the structure of a pair of Korteweg–
de Vries equations coupled through both dispersive and nonlinear effects and has been
the object of intensive research in recent years.

In this paper, we are mainly concerned with the study of the Gear–Grimshaw system
⎧
⎪⎨

⎪⎩

ut + uux + uxxx + avxxx + a1vvx + a2(uv)x = 0, in (0, L) × (0, T ),

cvt + rvx + vvx + abuxxx + vxxx + a2buux + a1b(uv)x = 0, in (0, L) × (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), in (0, L),

(1.1)

satisfying the following boundary conditions

{
u(0, t) = h0(t), u(L , t) = h1(t), ux (L , t) = h2(t),

v(0, t) = g0(t), v(L , t) = g1(t), vx (L , t) = g2(t),
(1.2)

where a1, a2, a, b, c, r ∈ R. We also assume that

1 − a2b > 0 and b, c > 0.

The functions h0, h1, h2, g0, g1 and g2 are the control inputs and u0, v0 the initial
data.

The purpose is to see whether one can force the solutions of those systems to have
certain desired properties by choosing appropriate control inputs. Consideration will
be given to the following fundamental problem that arises in control theory:

Exact control problem Given T > 0 and (u0, v0), (u1, v1) in (L2(0, L))2, can one find
appropriate h j and g j , for j = 0, 1, 2, in a certain space such that the corresponding
solution (u, v) of (1.1)–(1.2) satisfies

u(x, T ) = u1(x) and v(x, T ) = v1(x)? (1.3)

If one can always find control inputs to guide the system from any given initial
state (u0, v0) to any given terminal state (u1, v1), then the system is said to be exactly
controllable. However, being different from other systems, the length L of the spatial
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domain may play a crucial role in determining the controllability of the system, spe-
cially when some configurations of four controls input are allowed to be used. This
phenomenon, the so-called critical length phenomenon, was observed for the first
time by Rosier [12] while studying the boundary controllability for the KdV equation.
Throughout the paper, we will provide a detailed explanation of such phenomenon
but, roughly speaking, Rosier proved the existence of a finite dimensional subspace
M of L2(0, L), which is not reachable by the KdV system, when starting from the
origin, if L belongs to a countable set of critical lengths.

1.2 State of art

As far as we know, the controllability results for system (1.1) were first obtained
in [9], when the model is posed on a periodic domain and r = 0. In this case, a
diagonalization of the main terms allows to decouple the corresponding linear system
into two scalar KdV equations and use the previous results available in the literature.
In what concerns a bounded interval (0, L), later on, Micu et al. in [10], proved the
following local exact boundary controllability property.

Theorem A (Micu et al. [10]) Let L > 0 and T > 0. Then, there exists a constant δ >

0, such that, for any initial and final data (u0, v0), (u1, v1) ∈ (L2(0, L))2 verifying

||(u0, v0)||(L2(0,L))2 ≤ δ and ||(u1, v1)||(L2(0,L))2 ≤ δ,

there exist four control functions h1, g1 ∈ H1
0 (0, T ) and h2, g2 ∈ L2(0, T ), with

h0 = g0 = 0, such that the solution

(u, v) ∈ C([0, T ]; (L2(0, L))2) ∩ L2(0, T ; (H1(0, L))2) ∩ H1(0, T ; (H−2(0, L))2)

of (1.1)–(1.2) verifies (1.3).

The proof of Theorem A combines the analysis of the linearized system and the
Banach’s fixed point theorem. It is important to point out that, in order to analyze the
linearized system, the authors follow the classical duality approach [5,8] and, there-
fore, the exact controllability property is equivalent to an observability inequality for
the solutions of the adjoint system. The problem is then reduced to prove a nonstandard
unique continuation property of the eigenfunctions of the corresponding differential
operator.

An improvement of Theorem A was made by Cerpa et al. in [4]. The authors
considered the system (1.1)–(1.2) with only two control inputs acting on the Neumann
boundary conditions, that is,

{
u(0, t) = 0, u(L , t) = 0, ux (L , t) = h2(t),

v(0, t) = 0, v(L , t) = 0, vx (L , t) = g2(t).
(1.4)
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In this case, the analysis of the linearized system is much more complicated; therefore,
the authors used a direct approach based on the multiplier technique that gives the
observability inequality for small values of the length L and large time of control T .

Theorem B (Cerpa et al. [4]) Let us suppose that T, L > 0 satisfy

1 >
max{b, c}

min

{

b(1 − ε2),

(

1 − a2b

ε2

)}

{
r L2

3cπ2 + L3

3Tπ2

}

where

ε =
√

−(1 − b) + √
(1 − b)2 + 4a2b2

2b
.

Then, there exists a constant δ > 0, such that, for any initial and final data
(u0, v0), (u1, v1) ∈ (L2(0, L))2 verifying

||(u0, v0)||(L2(0,L))2 ≤ δ and ||(u1, v1)||(L2(0,L))2 ≤ δ,

there exist two control functions h2, g2 ∈ L2(0, T ), with h0 = g0 = h1 = g1 = 0,
such that the solution

(u, v) ∈ C([0, T ]; (L2(0, L))2) ∩ L2(0, T ; (H1(0, L))2) ∩ H1(0, T ; (H−2(0, L))2)

of (1.1)–(1.4) verifies (1.3).

Although the analysis developed by the authors can be compared to the analysis
developed by Rosier [12] for the KdV equation, the problem related to the existence of
critical lengths addressed by Rosier was not studied, more precisely, the existence of
the so-called critical length phenomenon. Indeed, Rosier proved that the linear KdV
equation is exactly controllable by means of a single boundary control except when
L lies in a countable set of critical lengths. This was done using the classical duality
approach, and the critical lengths found by Rosier are such that there are eigenvalues of
the linear problem for which the observability inequality leading to the controllability
fails. More recently, the problem was investigated by Capistrano–Filho et al. in [2],
considering a new set of boundary conditions, the Neumann boundary conditions

{
uxx (0, t) = h0(t), ux (L , t) = h1(t), uxx (L , t) = h2(t),

vxx (0, t) = g0(t), vx (L , t) = g1(t), vxx (L , t) = g2(t),
(1.5)

getting the following result:

Theorem C (Capistrano–Filho et al. [2]) Let T > 0 and define the set

Fr :=
⎧
⎨

⎩
2πk

√

1 − a2b

r
: k ∈ N

∗
⎫
⎬

⎭
∪
⎧
⎨

⎩
π

√

(1 − a2b)α(k, l,m, n, s)

3r
: k, l,m, n, s ∈ N

∗
⎫
⎬

⎭
, (1.6)
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where

α := α(k, l,m, n, s) = 5k2 + 8l2 + 9m2 + 8n2 + 5s2 + 8kl + 6km

+ 4kn + 2ks + 12ml + 8ln + 3ls + 12mn + 6ms + 8ns.

Consider the following positions of the control inputs and the boundary conditions
(1.5):

�h1 = (0, h1, 0), �g1 = (g0, g1, g2) and �h2 = (h0, h1, h2), �g2 = (0, g1, 0),
�h3 = (h0, h1, 0), �g3 = (g0, g1, 0) and �h4 = (0, h1, h2), �g4 = (0, g1, g2),�h5 = (0, h1, 0), �g5 = (0, 0, 0) and �h6 = (0, 0, 0), �g6 = (0, g1, 0).

Then, there exists δ > 0, such that, for any (u0, v0), (u1, v1) ∈ (L2(0, L))2 verifying

‖(u0, v0)‖X + ‖(u1, v1)‖X ≤ δ,

the following assertions are found

(i) If L ∈ (0,∞)\Fr , one can find �hi , �gi ∈ H− 1
3 (0, T ) × L2(0, T ) × H− 1

3 (0, T ),
for i = 1, 2, such that the system (1.1) with boundary conditions (1.5) admits a
unique solution (u, v) ∈ C([0, T ]; (L2(0, L))2) ∩ L2(0, T, (H1(0, L))2) satis-
fying (1.3).

(ii) For any L > 0, one can find �hi , �g j ∈ H− 1
3 (0, T ) × L2(0, T ) × H− 1

3 (0, T ),
for j = 3, 4, such that the system (1.1) with boundary conditions (1.5) admits a
unique solution (u, v) ∈ C([0, T ]; (L2(0, L))2) ∩ L2(0, T, (H1(0, L))2), satis-
fying (1.3).

(iii) Let T > 0 and L > 0 satisfying

1 >
βCT

T

[
L + r

c

]
,

where CT is the constant in (2.30) and β is the constant given by the embed-

ding H
1
3 (0, T ) ⊂ L2(0, T ). Then, one can find �hk, �gk ∈ H− 1

3 (0, T ) ×
L2(0, T ) × H− 1

3 (0, T ), for k = 5, 6, such that the system (1.1) with bound-
ary conditions (1.5) admits a unique solution (u, v) ∈ C([0, T ]; (L2(0, L))2) ∩
L2(0, T, (H1(0, L))2), satisfying (1.3).

Note that Theorem C shows that only one control mechanism is needed to prove
the controllability instead of two as in Theorem B. Moreover, the previous theorem
reveals that the system (1.1) is sensitive to changes of boundary conditions, like the
KdV equation (see for instance [3,12] and references therein for more details). More
precisely, in Theorem C the authors showed that the exact controllability property

is derived for any L > 0 with control functions h0, g0 ∈ H− 1
3 (0, T ) and h1, g1 ∈

L2(0, T ). However, if we change the position of the controls and consider h0(t) =
h2(t) = 0 (resp. g0(t) = g2(t) = 0), the result with control functions g0, g2 ∈
H− 1

3 (0, T ) and h1, g1 ∈ L2(0, T ) is obtained if and only if the length L of the spatial
domain (0, L) does not belong to a countable set (1.6). In other words, for Neumann
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boundary condition as in (1.5), the critical length phenomenon appears. Here, the result
was obtained arguing as in [3,12], i.e., combining the classical duality approach [5,8]
and a fixed point argument. On the other hand, if only one control act on the boundary
condition, h0(t) = g0(t) = h2(t) = g2(t) = 0 and g1(t) = 0 (resp. h1(t) = 0), the
linearized system is proved to be exactly controllable for small values of the length L
and time of control T . In this case, due to some technical difficulties that will become
clear during the proof, the observability inequality is proved using multipliers.

Having all these results in hand, a natural question to be asked here is the following
one.

Critical length phenomenon Is there the critical length phenomenon to the system
(1.1)–(1.2)?

1.3 Main result and notations

We will consider the system (1.1) with the following four controls

{
u(0, t) = 0, u(L , t) = 0, ux (L , t) = h2(t) in (0, T ),

v(0, t) = g0(t), v(L , t) = g1(t), vx (L , t) = g2(t) in (0, T ).
(1.7)

As conjectured by Capistrano–Filho et al. in [2], indeed we can prove that system
(1.1)–(1.7) is controllable if and only if the length L of the spatial domain (0, L) does
not belong to a new countable set, i.e.,

L ∈/ F ′
r :=

⎧
⎨

⎩
π

√

(1 − a2b)α(k, l,m, n, s)

3r
: k, l,m, n, s ∈ N

⎫
⎬

⎭
, (1.8)

where

α := α(k, l,m, n, s) = 5k2 + 8l2 + 9m2 + 8n2 + 5s2 + 8kl + 6km

+ 4kn + 2ks + 12ml + 8ln + 3ls + 12mn + 6ms + 8ns.

Furthermore, it is possible to get the controllability of the system by using only one
control

{
u(0, t) = 0, u(L , t) = 0, ux (L , t) = h2(t) in (0, T ),

v(0, t) = 0, v(L , t) = 0, vx (L , t) = 0 in (0, T ),

under the condition

L <
min{b, c}

max{b, c}βCT
T, (1.9)

where CT is the constant in (2.30) and β is the constant given by the embedding

H
1
3 (0, T ) ⊂ L2(0, T ).
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The analysis described above is summarized in the main result of the paper, Theo-
rem 1.1. In order to make the reading of the proof easier, throughout the paper we use
the following notation for the boundary functions:

�h1 = (0, 0, h2), �g1 = (g0, g1, g2) and �h2 = (0, 0, h2), �g2 = (0, 0, 0).

We also introduce the spaces of the boundary functions as follows

HT := H
1
3 (0, T ) × H

1
3 (0, T ) × L2(0, T ) (1.10)

and

ZT := C([0, T ]; (L2(0, L))2) ∩ L2(0, T, (H1(0, L))2), (1.11)

endowed with their natural inner products. Finally, we consider the space X :=
(L2(0, L))2 endowed with the inner product

〈(u, v), (ϕ, ψ)〉 := b

c

∫ L

0
u(x)ϕ(x)dx +

∫ L

0
v(x)ψ(x)dx, ∀(u, v), (ϕ, ψ) ∈ X .

With the notation above, we can answer the question mentioned in previous subsection
as follows:

Theorem 1.1 Let T > 0 and L > 0. Then, there exists δ > 0 depending on L, such
that for (u0, v0), (u1, v1) in X verifying

‖(u0, v0)‖X + ‖(u1, v1)‖X ≤ δ,

the following holds:

(i) If L ∈ (0,+∞)\F ′
r , then, one can find �h1, �g1 ∈ HT , such that the solution

(u, v) ∈ ZT of the system (1.1)–(1.2) satisfies (1.3).
(ii) If L > 0 fulfills (1.9), then, one can find �h2, �g2 ∈ HT , such that the solution

(u, v) ∈ ZT of the system (1.1)–(1.2) satisfies (1.3).

Theorem 1.1 will be proved using the same approach that Capistrano–Filho et al. used
to establish Theorem C. In order to deal with the linearized system, we also use the
classical duality approach [5,8] which reduces the problem to prove an observability
inequality for the solutions of the corresponding adjoint system associated with (1.1)–
(1.2):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ϕt + ϕxxx + ab
c ψxxx = 0, in (0, L) × (0, T ),

ψt + r
cψx + aϕxxx + 1

cψxxx = 0, in (0, L) × (0, T ),

ϕ(0, t) = ϕ(L , t) = ϕx (0, t) = 0, in (0, T ),

ψ(0, t) = ψ(L , t) = ψx (0, t) = 0, in (0, T ),

ϕ(x, T ) = ϕ1(x), ψ(x, T ) = ψ1(x), in (0, L).

(1.12)
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Similarly, as in [2], one will encounter some difficulties that demand special attention.
To prove assertion (i), we need to prove a hidden regularity for the solutions of the
system of the linear system (1.12). In our case, the result is given by the following
lemma.

Lemma 1.2 (Kato sharp trace regularities) For any (ϕ0, ψ0) ∈ X , the system (1.12)
admits a unique solution (ϕ, ψ) ∈ ZT , such that it possess the following sharp trace
properties

sup
0≤x≤L

‖(∂kxϕ(x, ·), ∂kxψ(x, ·))‖
(H

1−k
3 (0,T ))2

≤ CT ‖(ϕ0, ψ0)‖(L2(0,L))2 , for k

= 0, 1, 2. (1.13)

The sharp Kato smoothing properties of solutions of the Cauchy problem of the KdV
equation posed on the whole line R due to Kenig, Ponce and Vega [7] will play
an important role in the proof of Lemma 1.2. In what concerns the assertion (i i), the
observability inequality for the solutions of (1.12) is proved using multipliers together
with the Lemma 1.2. It is precisely the hidden regularity (sharp trace regularity) given
by Lemma 1.2 that enable us to prove Theorem B with less controls.

The program of this work was carried out for the particular choice of boundary
control inputs and aims to establish as a fact that such a model inherits the interesting
qualitative properties initially observed for the KdV equation. Consideration of this
issue for nonlinear dispersive equations has received considerable attention, specially
the problems related to the study of the controllability properties.

The plan of the present paper is as follows.

– In Sect. 2, we show that the linear system associated with (1.1)–(1.2) is glob-
ally well-posed in ZT . Additionally, we present various estimates, among them
Lemma 1.2 for the solution of the adjoint system.

– Sect. 3 is intended to show the controllability of the linear system associated with
(1.1) when four controls are considered in the boundary conditions. Moreover,
when only one function is a control input, the boundary controllability result is
also proved. Here, the hidden regularities for the solutions of the adjoint system
presented in Sect. 2 are used to prove observability inequalities associated with the
control problem.

– In Sect. 4, we prove the local well-posedness of the system (1.1)–(1.2) in ZT .
After that, the exact boundary controllability of the nonlinear system is proved via
contraction mapping principle.

– Finally, Sect. 5 contains some remarks and related problems.

2 Well-posedness

2.1 Linear homogeneous system

Firstly, we establish the well-posedness of the initial-value problem of the linear system
associated with (1.1)–(1.2):
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut + uxxx + avxxx = 0, in (0, L) × (0, T ),

vt + r
cvx + ab

c uxxx + 1
c vxxx = 0, in (0, L) × (0, T ),

u(0, t) = u(L , t) = ux (L , t) = 0, in (0, T ),

v(0, t) = v(L , t) = vx (L , t) = 0, in (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), in (0, L).

(2.1)

Let us define the operator A by

A

(
u
v

)

= −
(

∂xxx a∂xxx
ab

c
∂xxx

r
c∂x + 1

c ∂xxx

)(
u
v

)

(2.2)

with domain

D(A) = {
(u, v) ∈ (H3(0, L))2 : u(0) = v(0) = u(L) = v(L) = ux (L) = vx (L) = 0

} ⊂ X .

The linear system (2.1) can be written in abstract form as

{
Ut = AU,

U (0) = U0,
(2.3)

where U := (u, v) and U0 := (u0, v0). We denote by A∗ the adjoint operator of A,
defined by

A∗
(

ϕ

ψ

)

=
⎛

⎝
∂xxx

ab
c ∂xxx

a∂xxx
r

c
∂x + 1

c
∂xxx

⎞

⎠

(
ϕ

ψ

)

(2.4)

with domain

D(A∗) = {
(ϕ, ψ) ∈ (H3(0, L))2 : ϕ(0) = ψ(0) = ϕ(L) = ψ(L) = ϕx (0) = ψx (0) = 0

}⊂X .

The following results can be found in [10].

Proposition 2.1 [10, Proposition 2.1]. The operator A and its adjoint A∗ are dissi-
pative in X .

As a consequence, we have that ([11, Corollary 4.4, page 15]):

Theorem 2.2 [10, Theorem 2.1]. Let U0 ∈ X . There exists a unique (weak) solution
U = S( · )U0 of (2.1) such that

U ∈ C ([0, T ];X ) ∩ H1
(

0, T ; (H−2(0, L))2
)

. (2.5)

Moreover, if U0 ∈ D(A), then (2.1) has a unique (classical) solution U such that

U ∈ C([0, T ]; D(A)) ∩ C1((0, T );X ).
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The next result reveals a gain of regularity for the weak solutions given by Theo-
rem 2.2.

Theorem 2.3 [10, Theorem 2.2] Let (u0, v0) in X and (u, v) the weak solution of
(2.1). Then,

(u, v) ∈ L2(0, T ; (H1(0, L))2)

and there exists a positive constant c0 such that

‖(u, v)‖L2(0,T ;(H1(0,L))2) ≤ c0‖(u0, v0)‖X .

Moreover, there exist two positive constants c1 and c2 such that

‖(ux (0, ·), vx (0, ·))‖2
X ≤ c1‖(u0, v0)‖2

X .

and

‖(u0, v0)‖2
X ≤ 1

T
‖(u, v)‖2

L2(0,T ;X )
+ c2‖(ux (0, ·), vx (0, ·))‖2

X .

2.2 Linear nonhomogeneous system

In this subsection, we study the nonhomogeneous system corresponding to (1.1)–(1.2):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut + uxxx + avxxx = 0, in (0, L) × (0, T ),

vt + r
cvx + ab

c uxxx + 1
c vxxx = 0, in (0, L) × (0, T ),

u(0, t) = h0(t), u(L , t) = h1(t), ux (L , t) = h2(t), in (0, T ),

v(0, t) = g0(t), v(L , t) = g1(t), vx (L , t) = g2(t), in (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), in (0, L).

(2.6)

The next well-posedness result can be found in [10, Theorems 2.3 and 2.4].

Theorem 2.4 [10, Theorems 2.3 and 2.4] There exists a unique linear and continuous
map
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 : X × (H1
0 (0, T ))2 × (H1

0 (0, T ))2 × (L2(0, T ))2

→ C([0, T ];X ) ∩ L2(0, T ; (H1(0, L))2)

such that, for any (u0, v0) in D(A) and hi , gi in C2
0 [0, T ], with i = 0, 1, 2,


((u0, v0), (h0, g0, h1, g1, h2, g2)) = (u, v)

where (u, v) is the unique classical solution of (2.6). Moreover, there exists a positive
constant C > 0 such that

‖(u, v)‖2
C([0,T ];X ) + ‖(u, v)‖L2(0,T ;(H1(0,L))2)

≤ C

[

‖(u0, v0)‖2
X +

2∑

i=0

(‖hi‖H1(0,T ) + ‖gi‖H1(0,T ))

]

.

Our main goal in this subsection is to improve Theorem 2.4. We will obtain some
important trace estimates, using a new tool, which reveals the sharp Kato smoothing
(or hidden regularity) for the solution of system (2.6). In order to do that, we consider
the system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut + uxxx + avxxx = f, in (0, L) × (0, T ),

vt + ab
c uxxx + 1

c vxxx = s, in (0, L) × (0, T ),

u(0, t) = h0(t), u(L , t) = h1(t), ux (L , t) = h2(t), in (0, T ),

v(0, t) = g0(t), v(L , t) = g1(t), vx (L , t) = g2(t), in (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), in (0, L),

(2.7)

where f = f (x, t) and s = s(x, t). Then, we have the following result:

Proposition 2.5 Let T > 0 be given and HT defined in (1.10). For any (u0, v0) in

X , f, s in L1(0, T ; L2(0, L)) and
−→
h := (h0, h1, h2),

−→g := (g0, g1, g2) in HT , the
IBVP (2.7) admits a unique solution (u, v) ∈ ZT , with

∂kx u, ∂kx v ∈ L∞
x (0, L; H 1−k

3 (0, T )), k = 0, 1, 2. (2.8)

Moreover, there exist C > 0, such that

‖(u, v)‖ZT +
2∑

k=0

‖(∂kx u, ∂kx v)‖
L∞
x (0,L;H 1−k

3 (0,T ))

≤ C
{
‖(u0, v0)‖(L2(0,L))2 + ‖(−→h ,

−→g )‖HT

+‖( f, s)‖L1(0,T ;L2(0,L))

}
. (2.9)

To prove the Proposition 2.5, we need an auxiliary result.
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Proposition 2.6 Consider the following nonhomogeneous Korteweg–de Vries equa-
tion

⎧
⎪⎨

⎪⎩

ut + αuxxx = f, in (0, L) × (0, T ),

u(0, t) = h0(t), u(L , t) = h1(t), ux (L , t) = h2(t), in (0, T ),

u(x, 0) = u0(x), in (0, L).

(2.10)

For any u0 ∈ L2(0, L), f ∈ L1(0, T ; L2(0, L)),
−→
h := (h0, h1, h2) ∈ HT and

α > 0, the IBVP (2.10) admits a unique solution

u ∈ XT := C([0, T ]; L2(0, L)) ∩ L2(0, T ; H1(0, L))

with

∂kx u ∈ L∞
x (0, L; H 1−k

3 (0, T )), k = 0, 1, 2. (2.11)

Moreover, there exist C > 0, such that

‖u‖XT +
2∑

k=0

‖∂kx u‖
L∞
x (0,L;H 1−k

3 (0,T ))

≤ C
{
‖u0‖L2(0,L) + ‖(−→h ,

−→g )‖HT + ‖( f, s)‖L1(0,T ;L2(0,L))

}
. (2.12)

Proof When k = 0, 1 the result was proved by Bona, Sun and Zhang in [1]. Therefore,
for the sake of completeness, we prove the result for the case when k = 2.

Proceeding as in [1], it is sufficient to prove that the solution v of the following
linear nonhomogeneous boundary value problem,

⎧
⎪⎨

⎪⎩

vt + αvxxx = 0, in (0, L) × (0, T ),

v(0, t) = h0(t), v(L , t) = h1(t), vx (L , t) = h2(t), in (0, T ),

v(x, 0) = 0, in (0, L).

(2.13)

satisfies

sup
0≤x≤L

‖∂2
x v(x, ·)‖

H− 1
3 (0,T )

≤ CT ‖−→h ‖HT . (2.14)

Indeed, applying the Laplace transform with respect to t , (2.13) is converted to

⎧
⎪⎨

⎪⎩

sv̂(x, s) + αv̂xxx (x, s) = 0, in (0, L) × (0, T ),

v̂(0, s) = ĥ0(s), v̂(L , s) = ĥ1(s), v̂x (L , s) = ĥ2(s), in (0, T ),

v̂(x, 0) = 0, in (0, L).

(2.15)
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where

v̂(x, s) =
∫ ∞

0
e−stv(x, t)dt and ĥ j (s) =

∫ ∞

0
e−st h j (t)dt, j = 0, 1, 2.

The solution v̂(x, s) can be written in the form v̂(x, s) = ∑2
j=0 c j (s)e

−λ j (s)x , where

λ j (s) are the solutions of the characteristic equation s +αλ3 = 0 and c j (s), solve the
linear system

⎛

⎝
1 1 1

eλ0 eλ1 eλ2

λ0eλ0 λ1eλ1 λ2eλ2

⎞

⎠

⎛

⎝
c0
c1
c2

⎞

⎠ =
⎛

⎝
ĥ0

ĥ1

ĥ2

⎞

⎠ .

Using the Cramer rule, we obtain c j (s) = � j (s)
�(s) , j = 0, 1, 2, where �(s) is

the determinant of the coefficient matrix and � j (s) the determinants of the matri-

ces that are obtained by replacing the ith-column by the column vector
−→
h :=

(ĥ0(s), ĥ1(s), ĥ2(s)). Taking the inverse Laplace transform of v̂, yields

v(x, t) = 1

2π i

2∑

j=0

∫ r+i∞

r−i∞
est

� j (s)

�(s)
eλ j (s)xds

for any r > 0. Note that, v may also be written in the form

v(x, t) =
2∑

m=0

vm(x, t), (2.16)

where vm(x, t) solves (2.13) with h j = 0 when j �= m, m, j = 0, 1, 2. Thus, vm take
the form

vm(x, t) = 1

2π i

2∑

j=0

∫ r+i∞

r−i∞
est

� j,m(s)

�(s)
eλ j (s)x ĥm(s)ds := [Wm(t)hm(t)](x)

(2.17)

where � j,m(s) is obtained from � j (s) by letting ĥm ≡ 1 and ĥ j ≡ 0, for j �= m,
j,m = 0, 1, 2. Moreover, note that, the right-hand sides are continuous with respect
to r for r ≥ 0. As the left-hand sides do not depend on r , it follows that we may take
r = 0. Thus, we can write vm as

vm(x, t) = v+
m (x, t) + v−

m (x, t), (2.18)
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where

v+
m (x, t) = 1

2π i

2∑

j=0

∫ i∞

0
est

� j,m(s)

�(s)
eλ j (s)x ĥm(s)ds,

v−
m (x, t) = 1

2π i

2∑

j=0

∫ 0

−i∞
est

� j,m(s)

�(s)
eλ j (s)x ĥm(s)ds.

Making the substitution s = iαρ3L3 with ρ ≥ 0 in the characteristic equation, the
three roots are given in terms of ρ by

λ0(ρ) = i Lρ, λ1(ρ) = −i Lρ

(
1 + i

√
3

2

)

, λ2(ρ) = −i Lρ

(
1 − i

√
3

2

)

.

Thus, v+
m and v−

m have the following representation,

v+
m (x, t) = 3αL3

2π

2∑

j=0

∫ ∞

0
eiαρ3L3t

�+
j,m(ρ)

�+(ρ)
eλ+

j (ρ)x ĥ+
m(ρ)ρ2dρ and v−

m (x, t)

= v+
m (x, t), (2.19)

where �+
j,m(ρ) = � j,m(iαρ3L3), �+(ρ) = �(iαρ3L3), λ+

j (ρ) = λ j (iαρ3L3) and

ĥ+
m(ρ) = ĥm(iαρ3L3). Thus, we have

∂2
x v

+
m (x, t) = 3αL3

2π

2∑

j=0

∫ ∞

0
eiαρ3L3t (λ+

j (ρ))2
�+

j,m(ρ)

�+(ρ)
eλ+

j (ρ)x ĥ+
m(ρ)ρ2dρ

= 1

2π

2∑

j=0

∫ ∞

0
eiμt (λ+

j (θ(μ)))2
�+

j,m(θ(μ))

�+(θ(μ))
eλ+

j (θ(μ))x ĥ+
m(θ(μ))dμ,

where θ(μ) is the real solution of μ = αρ3L3, for ρ ≥ 0. Here

λ0(ρ) = i Lρ, λ1(ρ) = −i Lρ

(
1 + i

√
3

2

)

, λ2(ρ) = −i Lρ

(
1 − i

√
3

2

)

.

Applying Plancherel Theorem (with respect to t), yields for any x ∈ (0, L),

‖∂2
x v

+
m (x, ·)‖2

H− 1
3 (0,T )

≤ 1

2π

2∑

j=0

∫ ∞

0
|μ|− 2

3

∣
∣
∣
∣
∣
(λ+

j (θ(μ)))2
�+

j,m(θ(μ))

�+(θ(μ))
eλ+

j (θ(μ))x

∣
∣
∣
∣
∣

2 ∣
∣
∣ĥ+

m(θ(μ))

∣
∣
∣
2

dμ
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= 1

2π

2∑

j=0

∫ ∞

0
α− 2

3 ρ−2L−2

∣
∣
∣
∣
∣
(λ+

j (ρ))2
�+

j,m(ρ)

�+(ρ)
eλ+

j (ρ)x

∣
∣
∣
∣
∣

2 ∣
∣
∣ĥ+

m(ρ)

∣
∣
∣
2
(3αL3ρ2)dρ,

= 3α− 1
3 L

2π

2∑

j=0

∫ ∞

0

∣
∣
∣
∣
∣
(λ+

j (ρ))2
�+

j,m(ρ)

�+(ρ)
eλ+

j (ρ)x

∣
∣
∣
∣
∣

2 ∣
∣
∣ĥ+

m(ρ)

∣
∣
∣
2

dρ.

On the other hand, note that

sup
0≤x≤L

∣
∣
∣eλ+

0 (ρ)x
∣
∣
∣ ≤ C, sup

0≤x≤L

∣
∣
∣eλ+

1 (ρ)x
∣
∣
∣ ≤ Ce

√
3

2 ρL , sup
0≤x≤L

∣
∣
∣eλ+

2 (ρ)x
∣
∣
∣ ≤ Ce−

√
3

2 ρL .

Then, it follows that

‖∂2
x v

+
m (x, ·)‖2

H− 1
3 (0,T )

≤ C

⎧
⎨

⎩

∫ ∞

0
ρ4

∣
∣
∣
∣
∣

�+
0,m(ρ)

�+(ρ)

∣
∣
∣
∣
∣

2 ∣
∣
∣ĥ+

m(ρ)

∣
∣
∣
2

dρ +
∫ ∞

0
ρ4e

√
3ρL

∣
∣
∣
∣
∣

�+
1,m(ρ)

�+(ρ)

∣
∣
∣
∣
∣

2 ∣
∣
∣ĥ+

m(ρ)

∣
∣
∣
2

dρ

+
∫ ∞

0
ρ4e−√

3ρL

∣
∣
∣
∣
∣

�+
2,m(ρ)

�+(ρ)

∣
∣
∣
∣
∣

2 ∣
∣
∣ĥ+

m(ρ)

∣
∣
∣
2

dρ

⎫
⎬

⎭
.

Using the estimates of

∣
∣
∣
∣
�+

j,m(ρ)

�+(ρ)

∣
∣
∣
∣ proved in [1], that is,

�+
0,0(ρ)

�+(ρ)
∼ e−

√
3

2 ρL
�+

1,0(ρ)

�+(ρ)
∼ e−√

3ρL
�+

2,0(ρ)

�+(ρ)
∼ 1

�+
0,1(ρ)

�+(ρ)
∼ 1

�+
1,1(ρ)

�+(ρ)
∼ e−

√
3

2 ρL
�+

2,1(ρ)

�+(ρ)
∼ 1

�+
0,2(ρ)

�+(ρ)
∼ ρ−1

�+
1,2(ρ)

�+(ρ)
∼ ρ−1e−

√
3

2 ρL
�+

2,2(ρ)

�+(ρ)
∼ ρ−1

(2.20)

we obtain

‖∂2
x v

+
0 (x, ·)‖2

H− 1
3 (0,T )

≤ C
∫ ∞

0
ρ4

∣
∣
∣ĥ+

0 (ρ)

∣
∣
∣
2

dρ = C
∫ ∞

0
ρ4

∣
∣
∣ĥ0(iαρ3L3)

∣
∣
∣
2

dρ

= C
∫ ∞

0
ρ4

∣
∣
∣
∣

∫ ∞

0
e−iαρ3L3t h0(t)dt

∣
∣
∣
∣

2

dρ.

Setting μ = αρ3L3, it follows that

‖∂2
x v

+
0 (x, ·)‖2

H− 1
3 (0,T )

= C
∫ ∞

0
ρ4

∣
∣
∣
∣

∫ ∞

0
e−iαρ3L3t h0(t)dt

∣
∣
∣
∣

2

dρ
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≤ C
∫ ∞

0
μ

2
3

∣
∣
∣
∣

∫ ∞

0
e−iμt h0(t)dt

∣
∣
∣
∣

2

dμ

≤ C‖h0‖2

H
1
3 (R+)

.

Similarly, we obtain estimates for ∂2
x v1 and ∂2

x v2 in H− 1
3 (0, T ). Indeed,

‖∂2
x v

+
1 (x, ·)‖2

H− 1
3 (0,T )

≤ C‖h1‖2

H
1
3 (R+)

and

‖∂2
x v

+
2 (x, ·)‖2

H− 1
3 (0,T )

≤ C
∫ ∞

0
ρ2

∣
∣
∣ĥ+

1 (ρ)

∣
∣
∣
2

dρ ≤ C‖h2‖2
L2(R+)

.

Thus, (2.14) follows from (2.16), (2.18) and (2.19). We also observe that, as in [1,
Theorem 2.10], the solutions can be written in the form of the boundary integral
operator Wbdr as follows

v(x, t) = [Wbdr
−→
h ](x, t) =

2∑

i=0

[Wj (t)h j ](x), (2.21)

where Wj is defined in (2.17). ��

Proof of Proposition 2.5 Consider the change of variable

{
u = 2aũ + 2aṽ,

v = (( 1
c − 1

) + λ
)
ũ + (( 1

c − 1
) − λ

)
ṽ

(2.22)

with λ =
√
( 1
c − 1

)2 + 4a2b
c . Thus, we can transform the linear system (2.7) into

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ũt + α−ũxxx = f̃ ,
ṽt + α+ṽxxx = s̃,
ũ(0, t) = h̃0(t), ũ(L , t) = h̃1(t), ũx (L , t) = h̄2(t),
ṽ(0, t) = g̃0(t), ṽ(L , t) = g̃1(t), ṽx (L , t) = g̃2(t),
ũ(x, 0) = ũ0(x), ṽ(x, 0) = ṽ0(x),

(2.23)

where α± = − 1
2

(( 1
c − 1

) ± λ
)

and

⎧
⎪⎪⎨

⎪⎪⎩

f̃ = − 1
2

(
α+
aλ f + 1

λ s
)

, ũ0 = − 1
2

(
α−
aλ u

0 − 1
λv0

)
, h̃i = − 1

2

(
α−
aλ hi − 1

λ gi
)

, i = 0, 1, 2,

s̃ = − 1
2

(
α−
aλ f − 1

λ s
)

, ṽ0 = 1
2

(
α+
aλ u

0 − 1
λv0

)
, g̃i = 1

2

(
α+
aλ hi − 1

λ gi
)

, i = 0, 1, 2.

123



Math. Control Signals Syst.  (2017) 29:6 Page 17 of 37  6 

The system (2.23) can be decoupled into two KdV equations as follows:

⎧
⎪⎪⎨

⎪⎪⎩

ũt + α−ũxxx = f̃ ,
ũ(0, t) = h̃0(t), ũ(L , t) = h̃1(t),
ũx (L , t) = h̃2(t),
ũ(0, x) = ũ0(x)

and

⎧
⎪⎪⎨

⎪⎪⎩

ṽt + α+ṽxxx = s̃,
ṽ(0, t) = g̃0(t), ṽ(L , t) = g̃1(t),
ṽx (L , t) = g̃2(t),
ṽ(x, 0) = ṽ0(x).

(2.24)

Note that for α± to be nonzero, it is sufficient to assume that a2b �= 1. Then, it is easy
to see that

(̃u0, ṽ0) ∈ X , ( f̃ , s̃) ∈ L1(0, T ; (L2(0, L))2),
−→̃
h ,

−→̃
g ∈ HT .

By Proposition 2.6, we obtain the existence of (̃u, ṽ), solution of the system (2.24)
belongs to ZT , such that

∂kx ũ, ∂kx ṽ ∈ L∞
x (0, L; H 1−k

3 (0, T )), k = 0, 1, 2

and

‖(̃u, ṽ)‖ZT +
2∑

k=0

‖(∂kx ũ, ∂kx ṽ)‖
L∞
x (0,L;H 1−k

3 (0,T ))

≤ C

{

‖(̃u0, ṽ0)‖(L2(0,L))2 + ‖(−→̃h ,
−→̃
g )‖HT

+‖( f̃ , s̃)‖L1(0,T ;L2(0,L))

}
.

Observe that, as in [1], we have the following variation of parameters formula
(Duhamel principle)

ũ(t) = W−
0 (t )̃u0 + W−

bdr (t)
−→̃
h +

∫ t

0
W−

0 (t − τ) f̃ (τ )dτ,

ṽ(t) = W+
0 (t )̃v0 + W+

bdr (t)
−→̃
g +

∫ t

0
W+

0 (t − τ )̃s(τ )dτ,

where {W±
0 (t)}t≥0 is the C0-semigroup in the space L2(0, L) generated by the linear

operator

A± = −α±g′′′,

with domain

D(A±) = {g ∈ H3(0, L) : g(0) = g(L) = g′(L) = 0},
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and {W±
bdr (t)}t≥0 is the operator given in (2.21). By using the change of variable, it is

easy to see that

{
u(t) = W−

0 (t)u0 + W−
bdr (t)

−→
h + ∫ t

0 W−
0 (t − τ) f (τ )dτ,

v(t) = W+
0 (t)v0 + W+

bdr (t)
−→g + ∫ t

0 W+
0 (t − τ)s(τ )dτ.

Therefore, the proof is complete. ��

By using standard fixed point argument together with Propositions 2.5 and 2.6, we
show the global well-posedness of the system (2.6). It is also worth noting that the
argument allows us to include nonlinearities and also low-order terms.

Theorem 2.7 Let T > 0 be given. For any (u0, v0) in X and
−→
h := (h0, h1, h2),−→g := (g0, g1, g2) inHT , the IBVP (2.6) admits a unique solution (u, v) ∈ ZT , with

∂kx u, ∂kx v ∈ L∞
x (0, L; H 1−k

3 (0, T )), k = 0, 1, 2.

Moreover, there exist C > 0, such that

‖(u, v)‖ZT +
2∑

k=0

‖(∂kx u, ∂kx v)‖
L∞
x (0,L;H 1−k

3 (0,T ))

≤ C
{
‖(u0, v0)‖(L2(0,L))2 + ‖(−→h ,

−→g )‖HT

+‖( f, s)‖L1(0,T ;L2(0,L))

}
. (2.25)

2.3 Adjoint system

We can now study the properties of the adjoint system of (2.1):

{
ϕt + ϕxxx + ab

c ψxxx = 0, in (0, L) × (0, T ),

ψt + r
cψx + aϕxxx + 1

cψxxx = 0, in (0, L) × (0, T ),
(2.26)

with the boundary conditions,

{
ϕ(0, t) = ϕ(L , t) = ϕx (0, t) = 0, in (0, T ),

ψ(0, t) = ψ(L , t) = ψx (0, t) = 0, in (0, T )
(2.27)

and the final conditions

ϕ(x, T ) = ϕ1(x), ψ(x, T ) = ψ1(x), in (0, L). (2.28)
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Observe that, applying the change of variable t = T − t , we obtain

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ϕt − ϕxxx − ab
c ψxxx = 0, in (0, L) × (0, T ),

ψt − r
cψx − aϕxxx − 1

cψxxx = 0, in (0, L) × (0, T ),

ϕ(0, t) = ϕ(L , t) = ϕx (0, t) = 0, in (0, T ),

ψ(0, t) = ψ(L , t) = ψx (0, t) = 0, in (0, T ),

ϕ(x, 0) = ϕ0(x), ψ(x, 0) = ψ0(x), in (0, L).

(2.29)

Moreover, remark that the change of variable x = L−x reduces system (2.29) to (2.6).
Therefore, the properties of the solutions of (2.29) are similar to the ones deduced in
Theorem 2.7.

Proposition 2.8 For any (ϕ0, ψ0) ∈ X , the system (2.29) admits a unique solution
(ϕ, ψ) ∈ ZT , such that it possess the following sharp trace properties

⎧
⎪⎨

⎪⎩

sup
0≤x≤L

‖∂kxϕ(x, ·)‖
H

1−k
3 (0,T )

≤ CT ‖ϕ0‖L2(0,L),

sup
0≤x≤L

‖∂kxψ(x, ·)‖
H

1−k
3 (0,T )

≤ CT ‖ψ0‖L2(0,L),
(2.30)

for k = 0, 1, 2, where CT increases exponentially in T .

In what concern system (2.26)–(2.28), it possesses the sharp hidden regularity (2.30)
a relevant result as described above. Moreover, we have the following estimate:

Proposition 2.9 Any solution (ϕ, ψ) of the adjoint system (2.26)–(2.28) satisfies

‖(ϕ1, ψ1)‖2
X ≤C

T
‖(ϕ, ψ)‖2

L2(0,T ;X )
+ 1

2
‖ϕx (L , ·)‖2

L2(0,T )
+ b

2c
‖ψx (L , ·)‖2

L2(0,T )

+ 1

2

∥
∥
∥
∥ϕx (L , ·) + ab

c
ψx (L , ·)

∥
∥
∥
∥

2

L2(0,T )

+ b

2c

∥
∥
∥
∥aϕx (L , ·) + 1

c
ψx (L , ·)

∥
∥
∥
∥

2

L2(0,T )

,

(2.31)

with (ϕ1, ψ1) ∈ X and C = max{b,c}
min{b,c} .

Proof Multiplying the first equation of (2.26) by −tϕ, the second one by − b
c tψ and

integrating by parts in (0, T ) × (0, L), we obtain

C1T

2
‖(ϕ1, ψ1)‖2

X ≤C2

2
‖(ϕ, ψ)‖2

L2(0,T ;X )

−
∫ T

0
t

[
b

c
ψ(x, t)

(

aϕxx (x, t) + 1

c
ψxx (x, t) + r

c
ψ(x, t)

)

− b

2c
ψx (x, t)

(

aϕx (x, t) + 1

c
ψx (x, t)

)

− 1

2
ϕx (x, t)

(

ϕx (x, t) + ab

c
ψx (x, t)

)
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+ ϕ(x, t)

(

ϕxx (x, t) + ab

c
ψxx (x, t)

)

− br

2c2 ψ2(x, t)

]L

0
dt,

whereC1 = min{b, c} andC2 = max{b, c}. From (2.27) and applying Young inequal-
ity, (2.31) is obtained. ��

3 Exact boundary controllability: linear system

3.1 Four controls

Considerations are first given to the boundary controllability of the linear system

⎧
⎨

⎩

ut + uxxx + avxxx = 0 in (0, L) × (0, T ),

vt + r
cvx + ab

c uxxx + 1
c vxxx = 0 in (0, L) × (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), in (0, L)

(3.1)

satisfying the boundary conditions

{
u(0, t) = 0, u(L , t) = 0, ux (L , t) = h2(t) in (0, T ),

v(0, t) = g0(t), v(L , t) = g1(t), vx (L , t) = g2(t) in (0, T ),
(3.2)

which employ
−→
h 1 := (0, 0, h2) and −→g 1 := (g0, g1, g2) ∈ HT .

Theorem 3.1 Let L ∈ (0,∞)\F ′
r , where F ′

r is defined by (1.8) and T > 0 be given.
There exists a bounded linear operator


 : [L2(0, L)]2 × [L2(0, L)]2 −→ HT × HT

such that for any (u0, v0) ∈ [L2(0, L)]2 and (u1, v1) ∈ [L2(0, L)]2, if one chooses

(
−→
h 1,

−→g 1) = 
((u0, v0), (u1, v1)),

then the system (3.1)–(3.2) admits a solution (u, v) ∈ ZT satisfying

u(·, T ) = u1(·), and v(·, T ) = v1(·). (3.3)

To prove the previous result, we first establish the following observability for the
corresponding adjoint system (2.26)–(2.28).

Proposition 3.2 For T > 0and L ∈ (0,∞)\F ′
r . There exists a constantC(T, L) > 0,

such that

‖(ϕ1, ψ1)‖2
X ≤C

{∥
∥
∥
∥(−�t )

− 1
6

(

aϕxx (L , ·) + 1

c
ψxx (L , ·)

)∥
∥
∥
∥

2

L2(0,T )

+
∥
∥
∥
∥ϕx (L , ·) + ab

c
ψx (L , ·)

∥
∥
∥
∥

2

L2(0,T )
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+
∥
∥
∥
∥(−�t )

− 1
6

(

aϕxx (0, ·) + 1

c
ψxx (0, ·)

)∥
∥
∥
∥

2

L2(0,T )

+
∥
∥
∥
∥aϕx (L , ·) + 1

c
ψx (L , ·)

∥
∥
∥
∥

2

L2(0,T )

}

, (3.4)

for any (ϕ1, ψ1) ∈ X , where (ϕ, ψ) is solution of (2.26)–(2.28).

Proof We proceed as in [12, Proposition 3.3]. Let us suppose that (3.4) does not hold.
In this case, it follows that there exists a sequence {(ϕ1

n , ψ
1
n )}n∈N, such that

1 = ‖(ϕ1
n , ψ

1
n )‖2

X ≥ n

{∥
∥
∥
∥(−�t )

− 1
6

(

aϕn,xx (L , ·) + 1

c
ψn,xx (L , ·)

)∥
∥
∥
∥

2

L2(0,T )

+
∥
∥
∥
∥ϕn,x (L , ·) + ab

c
ψn,x (L , ·)

∥
∥
∥
∥

2

L2(0,T )

+
∥
∥
∥
∥(−�t )

− 1
6

(

aϕn,xx (0, ·) + 1

c
ψn,xx (0, ·)

)∥
∥
∥
∥

2

L2(0,L)

(3.5)

+
∥
∥
∥
∥aϕn.x (L , ·) + 1

c
ψn,x (L , ·)

∥
∥
∥
∥

2

L2(0,T )

}

.

where, for each n ∈ N, {(ϕn, ψn)}n∈N is the solution of (2.26)–(2.28). Inequality (3.5)
implies that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(−�t )
− 1

6
(
aϕn,xx (0, ·) + 1

cψn,xx (0, ·)) → 0 in L2(0, T ),

(−�t )
− 1

6
(
aϕn,xx (L , ·) + 1

cψn,xx (L , ·)) → 0 in L2(0, T ),

ϕn,x (L , ·) + ab
c ψn,x (L , ·) → 0 in L2(0, T ),

aϕn,x (L , ·) + 1
cψn,x (L , ·) → 0 in L2(0, T ).

(3.6)

Since 1−a2b > 0, from the convergence of the sequences in the third and fourth lines
of (3.6), we obtain

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

aϕn,xx (0, ·) + 1
cψn,xx (0, ·) → 0 in H− 1

3 (0, T ),

aϕn,xx (L , ·) + 1
cψn,xx (L , ·) → 0 in H− 1

3 (0, T ),

ϕn,x (L , ·) → 0 in L2(0, T ),

ψn,x (L , ·) → 0 in L2(0, T ).

(3.7)

From (2.30) and (3.5), we obtain that {(ϕn, ψn)}n∈N is bounded in L2(0, T ; (H1

(0, L))2). On the other hand, system (2.26) implies that {(ϕt,n, ψt,n)}n∈N is bounded
in L2(0, T ; (H−2(0, L))2), and the compact embedding

H1(0, L) ↪→ L2(0, L) ↪→ H−2(0, L), (3.8)
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allows us to conclude that {(ϕn, ψn)}n∈N is relatively compact in L2(0, T ;X ) and
consequently, we obtain a subsequence, still denoted by the same index n, satisfying

(ϕn, ψn) → (ϕ, ψ) in L2(0, T ;X ), as n → ∞. (3.9)

Furthermore, (2.30) implies that {ϕn(0, ·)}n∈N, {ϕn(L , ·)}n∈N, {ψn(0, ·)}n∈N and

{ψn(L , ·)}n∈N are bounded in H
1
3 (0, T ). Then, the compact embedding

H
1
3 (0, T ) ↪→ L2(0, T ) (3.10)

guarantees that the above sequences are relatively compact in L2(0, T ). Thus, we
obtain a subsequence, still denoted by the same index n, satisfying

{
ϕn(0, ·) → ϕ(0, ·), ϕn(L , ·) → ϕ(L , ·) in L2(0, T ),

ψn(0, ·) → ψ(0, ·), ψn(L , ·) → ψ(L , ·) in L2(0, T ).
(3.11)

From (2.27), we deduce that

{
ϕ(0, ·) = ϕ(L , ·) = 0,

ψ(0, ·) = ψ(L , ·) = 0.

In addition, according to Proposition 2.9, we have

‖(ϕ1
n , ψ1

n )‖2
X ≤C

T
‖(ϕn, ψn)‖L2(0,T ;X ) + 1

2
‖ϕn,x (L , ·)‖2

L2(0,T )
+ b

2c
‖ψn,x (L , ·)‖2

L2(0,T )

+ 1

2

∥
∥
∥
∥ϕn,x (L , ·) + ab

c
ψn,x (L , ·)

∥
∥
∥
∥

2

L2(0,T )

+ b

2c

∥
∥
∥
∥aϕn,x (L , ·) + 1

c
ψn,x (L , ·)

∥
∥
∥
∥

2

L2(0,T )

.

Then, from (3.7) and (3.9) if follows that {(ϕ1
n , ψ

1
n )}n∈N is a Cauchy sequence in X .

Thus,

(ϕ1
n , ψ

1
n ) → (ϕ1, ψ1) in X , as n → ∞. (3.12)

Proposition 2.8 together with (3.12), imply that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϕn,x (0, ·) → ϕx (0, ·) in L2(0, T ), as n → ∞,

ϕn,x (L , ·) → ϕx (L , ·) in L2(0, T ), as n → ∞,

ψn,x (0, ·) → ψx (0, ·) in L2(0, T ), as n → ∞,

ψn,x (L , ·) → ψx (L , ·) in L2(0, T ), as n → ∞
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and

{
aϕn,xx (0, ·) + 1

cψn,xx (0, ·) → aϕxx (0, ·) + 1
cψxx (0, ·) in H− 1

3 (0, T ), as n → ∞,

aϕn,xx (L , ·) + 1
cψn,xx (L , ·) → aϕxx (L , ·) + 1

cψxx (L , ·) in H− 1
3 (0, T ), as n → ∞.

Finally, taking n → ∞, from (2.26)–(2.28) and (3.7), we obtain that (ϕ, ψ) is solution
of

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ϕt + ϕxxx + ab
c ψxxx = 0, in (0, L) × (0, T ),

ψt + r
cψx + aϕxxx + 1

cψxxx = 0, in (0, L) × (0, T ),

ϕ(0, t) = ϕ(L , t) = ϕx (0, t) = 0, in (0, T ).

ψ(0, t) = ψ(L , t) = ψx (0, t) = 0, in (0, T ).

ϕ(x, T ) = ϕ1(x), ψ(x, T ) = ψ1(x), in (0, L),

(3.13)

satisfying the additional boundary conditions

⎧
⎪⎨

⎪⎩

ϕx (L , t) = ψx (L , t) = 0, in (0, T ),

aϕxx (0, ·) + 1
cψxx (0, ·) = 0, in (0, T ),

aϕxx (L , ·) + 1
cψxx (L , ·) = 0, in (0, T ),

(3.14)

and, from (3.5), we get

‖(ϕ1, ψ1)‖X = 1. (3.15)

Notice that (3.15) implies that the solutions of (3.13)–(3.14) can not be identically
zero. However, from the following Lemma, one can conclude that (ϕ, ψ) = (0, 0),
which drive us to contradicts (3.15). ��
Lemma 3.3 For any T > 0, let NT denote the space of the initial states (ϕ1, ψ1) ∈ X ,
such that the solution of (3.13) satisfies (3.14). Then, NT = {0}.
Proof The proof uses the same arguments as those given in [12]. Therefore, if
NT �= {0}, the map (ϕ1, ψ1) ∈ NT → A(NT ) ⊂ CNT (where CNT denote the
complexification of NT ) has (at least) one eigenvalue; hence, there exists λ ∈ C and
ϕ0, ψ0 ∈ H3(0, L)\{0}, such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

λϕ0 + ϕ′′′
0 + ab

c ψ ′′′
0 = 0, in (0, L),

λψ0 + r
cψ

′
0 + aϕ′′′

0 + 1
cψ

′′′
0 = 0, in (0, L),

ϕ0(0) = ϕ0(L) = ϕ′
0(0) = ϕ′

0(L) = 0,

ψ0(0) = ψ0(L) = ψ ′
0(0) = ψ ′

0(L) = 0,

aϕ′′
0 (0) + 1

cψ
′′
0 (0) = 0,

aϕ′′
0 (L) + 1

cψ
′′
0 (L) = 0.

(3.16)

To conclude the proof of the Lemma, we prove that this does not hold if L ∈ (0,∞)\F ′
r .
��
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To simplify the notation, henceforth we denote (ϕ0, ψ0) := (ϕ, ψ). Moreover, the
notation {0, L} means that the function is applied to 0 and L , respectively.

Lemma 3.4 Let L > 0 and consider the assertion

(N ) : ∃λ ∈ C, ∃(ϕ, ψ) ∈ (H3(0, L))2\(0, 0) such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λϕ + ϕ′′′ + ab
c ψ ′′′ = 0, in (0, L),

λψ + r
cψ ′ + aϕ′′′ + 1

cψ ′′′ = 0, in (0, L),

ϕ(x) = ψ(x) = 0, in {0, L},
ϕ′(x) = ψ ′(x) = 0, in {0, L},
aϕ′′(x) + 1

cψ ′′(x) = 0, in {0, L}.

Then, (N ) holds if and only if L ∈ F ′
r .

Proof We use an argument which is similar to the one used in [12, Lemma 3.5]. Let
us introduce the notation ϕ̂(ξ) = ∫ L

0 e−i xξ ϕ(x)dx and ψ̂(ξ) = ∫ L
0 e−i xξψ(x)dx .

Then, multiplying the equations by e−i xξ , integrating by parts over (0, L) and using
the boundary conditions, we have

⎧
⎪⎨

⎪⎩

[(iξ)3 + λ]ϕ̂(ξ) + ab

c
(iξ)3ψ̂(ξ) = ϕ′′(0) + ab

c
ψ ′′(0) −

(

ϕ′′(L) + ab

c
ψ ′′(L)

)

e−i Lξ ,

1

c
[(iξ)3 + r(iξ) + cλ]ψ̂(ξ) + a(iξ)3ϕ̂(ξ) = 0.

(3.17)

From the first equation in (3.17), we have

ϕ̂(ξ) =
(
α + βe−i Lξ

)

(iξ)3 + λ
− ab(iξ)3ψ̂(ξ)

c
(
(iξ)3 + λ

) , (3.18)

where α = ϕ′′(0) + ab
c ψ ′′(0) and β = −ϕ′′(L) − ab

c ψ ′′(L). Replacing (3.18) in the
second equation of (3.17), it follows that

1

c

[

(iξ)3 + r(iξ) + cλ − a2b(iξ)6

(iξ)3 + λ

]

ψ̂(ξ) = −a(iξ)3
(
α + βe−i Lξ

)

(iξ)3 + λ
.

Therefore,

ψ̂(ξ) = − ac(iξ)3
(
α + βe−i Lξ

)

(1 − a2b)(iξ)6 + r(iξ)4 + (c + 1)λ(iξ)3 + rλ(iξ) + cλ2 . (3.19)

Having (3.19) in hands, from (3.18) we obtain

ϕ̂(ξ)

=
(

1 + a2b(iξ)6

(1 − a2b)(iξ)6 + r(iξ)4 + (c + 1)λ(iξ)3 + rλ(iξ) + cλ2

) (
α + βe−i Lξ

)

(iξ)3 + λ
,
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hence,

ϕ̂(ξ) =
(
(iξ)3 + r(iξ) + cλ

) (
α + βe−i Lξ

)

(1 − a2b)(iξ)6 + r(iξ)4 + (c + 1)λ(iξ)3 + rλ(iξ) + cλ2 .

Setting λ = i p, p ∈ C, we have that ψ̂(ξ) = −aci f (ξ) and ϕ̂(ξ) = ig(ξ), where

⎧
⎪⎪⎨

⎪⎪⎩

f (ξ) = ξ3
(
α + βe−i Lξ

)

P(ξ)
,

g(ξ) =
(
ξ3 − rξ − cp

) (
α + βe−i Lξ

)

P(ξ)
.

with

P(ξ) := (1 − a2b)ξ6 − rξ4 − (c + 1)pξ3 + rpξ + cp2.

Using Paley–Wiener theorem ( [13, Section 4, page 161]) and the usual characterization
of H2(R) functions by means of their Fourier transforms, we see that (N ) is equivalent
to the existence of p ∈ C and (α, β) ∈ C

2\(0, 0), such that

(i) f and g are entire functions in C,
(ii)

∫

R
| f (ξ)|2(1 + |ξ |2)2dξ < ∞ and

∫

R
|g(ξ)|2(1 + |ξ |2)2dξ < ∞,

(iii) ∀ξ ∈ C, we have that | f (ξ)| ≤ c1(1 + |ξ |)keL|Imξ | and |g(ξ)| ≤ c1(1 +
|ξ |)keL|Imξ |, for some positive constants c1 and k.

Notice that if (i) holds true, then (ii) and (iii) are satisfied. Recall that f and g
are entire functions if only if, the roots ξ0, ξ1, ξ2, ξ3, ξ4 and ξ5 of P(ξ) are roots
of ξ3

(
α + βe−i Lξ

)
and (ξ3 − rξ − cp)

(
α + βe−i Lξ

)
.

Let us first assume that ξ = 0 is not root of P(ξ). Thus, it is sufficiently to consider
the case when α+βe−i Lξ and P(ξ) share the same roots. Since the roots of α+βe−i Lξ

are simple, unless α = β = 0 (indeed, it implies that ϕ′′(0) + ab
c ψ ′′(0) = 0 and

ϕ′′(L) + ab
c ψ ′′(L) = 0, thus, using the system (3.16), we conclude that (ϕ, ψ) =

(0, 0), which is a contradiction). Then, (i) holds provided that the roots of P(ξ) are
simple. Thus, we conclude that (N ) is equivalent to the existence of complex numbers
p, ξ0 and positive integers k, l,m, n and s, such that, if we set

ξ1 = ξ0 + 2π

L
k, ξ2 = ξ1 + 2π

L
l, ξ3 = ξ2 + 2π

L
m,

ξ4 = ξ3 + 2π

L
n and ξ5 = ξ4 + 2π

L
s, (3.20)

we have

P(ξ) = (ξ − ξ0)(ξ − ξ1)(ξ − ξ2)(ξ − ξ3)(ξ − ξ4)(ξ − ξ5). (3.21)

In particular, we obtain the following relations:

ξ0 + ξ1 + ξ2 + ξ3 + ξ4 + ξ5 = 0, (3.22)
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ξ0(ξ1 + ξ2 + ξ3 + ξ4 + ξ5) + ξ1(ξ2 + ξ3 + ξ4 + ξ5) + ξ2(ξ3 + ξ4 + ξ5)

+ ξ3(ξ4 + ξ5) + ξ4ξ5 = − r

1 − a2b
, (3.23)

ξ0ξ1ξ2ξ3ξ4ξ5 =
(

c

1 − a2b

)

p2. (3.24)

Some calculations lead to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L = π

√
(1 − a2b)α(k, l,m, n, s)

3r
,

ξ0 = −π

3
(5k + 4l + 3m + 2n + s),

p =
√

(1 − a2b)ξ0ξ1ξ2ξ3ξ4ξ5

c
,

(3.25)

where

α(k, l,m, n, s) := 5k2 + 8l2 + 9m2 + 8n2 + 5s2 + 8kl + 6km + 4kn + 2ks

+12ml + 8ln + 3ls + 12mn + 6ms + 8ns.

Finally, we assume that ξ0 = 0 is a root of P(ξ). In this case, it follows that p = 0
and, therefore,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f (ξ) = ξ3
(
α + βe−i Lξ

)

(1 − a2b)ξ6 − rξ4 =
(
α + βe−i Lξ

)

ξ
(
(1 − a2b)ξ2 − r

) ,

g(ξ) =
(
ξ3 − rξ

) (
α + βe−i Lξ

)

(1 − a2b)ξ6 − rξ4 =
(
ξ2 − r

) (
α + βe−i Lξ

)

ξ3
(
(1 − a2b)ξ2 − r

) .

Then, (N ) holds if and only if f and g satisfy (i), (ii) and (iii). Thus (i) holds provided
that

ξ0 = 0, ξ1 =
√

r

1 − a2b
and ξ2 = −

√
r

1 − a2b

are roots of α + βe−i Lξ . Note that, zero must be root of multiplicity three, which
leads to a contradiction. Thus, ξ = 0 is not root of P(ξ). Finally, from (3.25), we
deduce that (N ) holds if and only if L ∈ F ′

r . This completes the proof of Lemma 3.4,
Lemma 3.3 and, consequently, the proof of Proposition 3.2. ��
Proof of Theorem 3.1 Without loss of generality, we assume that (u0, v0) = (0, 0).
Moreover, it is easy to see that the solution (u, v) of (3.1)–(3.2) satisfies (3.3) if and
only if

123



Math. Control Signals Syst.  (2017) 29:6 Page 27 of 37  6 

∫ L

0

(
u1(x)ϕ1(x) + v1(x)ψ1(x)

)
dx =

∫ T

0
g0(t)

(

aϕxx (0, t) + 1

c
ψxx (0, t)

)

dt

−
∫ T

0
g1(t)

(

aϕxx (L , t) + 1

c
ψxx (L , t)

)

dt

(3.26)

+
∫ T

0
g2(t)

(

aϕx (L , t) + 1

c
ψx (L , t)

)

dt

+
∫ T

0
h2(t)

(

ϕx (L , t) + ab

c
ψx (L , t)

)

dt

for any (ϕ1, ψ1) ∈ X , where (ϕ, ψ) is the solution of the system (2.26)–(2.28), with
initial data (ϕ1, ψ1). Relation (3.26) is obtained by multiplying the equations in (3.1)
by the solution (ϕ, ψ) of (2.26)–(2.28), integrating by parts and using the boundary
conditions (3.2).

Thus, in order to obtain the desired result, we introduce the linear bounded map �

as follows

�: L2(0, L) × L2(0, L) −→ L2(0, L) × L2(0, L)

(ϕ1(·), ψ1(·)) �−→ �(ϕ1(·), ψ1(·)) = (u(·, T ), v(·, T )),

where (u, v) is the solution of (3.1)–(3.2), with

⎧
⎨

⎩

g0(t) = (−�t )
− 1

3

(
aϕxx (0, t) + 1

cψxx (0, t)
)

, g2(t) = aϕx (L , t) + 1
cψx (L , t),

g1(t) = −(−�t )
− 1

3

(
aϕxx (L , t) + 1

cψxx (L , t)
)

, h2(t) = ϕx (L , t) + ab
c ψx (L , t),

(3.27)

being (ϕ, ψ) the solution of the system (2.26)–(2.28) with initial data (ϕ1, ψ1) and
�t = ∂2

t . According to Proposition 3.2

(�(ϕ1, ψ1), (ϕ1, ψ1))(L2(0,L))2 =
∥
∥
∥
∥ϕx (L , ·) + ab

c
ψx (L , ·)

∥
∥
∥
∥

2

L2(0,T )

+
∥
∥
∥
∥aϕx (L , ·) + 1

c
ψx (L , ·)

∥
∥
∥
∥

2

L2(0,T )

+
(

(−�t )
1
3

(

ϕxx (0, ·) + ab

c
ψxx (0, ·)

)

, ϕxx (0, ·)

+ab

c
ψxx (0, ·)

)

L2(0,T )

+
(

(−�t )
1
3

(

aϕxx (0, ·) + 1

c
ψxx (0, ·)

)

, aϕxx (0, ·)

+1

c
ψxx (0, ·)

)

L2(0,T )
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=
∥
∥
∥
∥ϕx (L , ·) + ab

c
ψx (L , ·)

∥
∥
∥
∥

2

L2(0,T )

+ ‖aϕx (L , ·)

+1

c
ψx (L , ·)

∥
∥
∥
∥

2

L2(0,T )

+
∥
∥
∥
∥(−�t )

1
6

(

aϕxx (0, ·) + 1

c
ψxx (0, ·)

)∥
∥
∥
∥

2

L2(0,T )

+
∥
∥
∥
∥(−�t )

1
6

(

ϕxx (0, ·) + ab

c
ψxx (0, ·)

)∥
∥
∥
∥

2

L2(0,T )

≥C−1‖(ϕ1, ψ1)‖2
X ,

i.e., � is coercive. Then, by Lax–Milgram theorem, � is invertible. Consequently,
for given (u1, v1) ∈ X , we can define (ϕ1, ψ1) := �−1(u1, v1) to solve the system
(2.26)–(2.28) and get (ϕ, ψ) ∈ ZT . Thus, if h0(t), h1(t), g0(t) and g1(t) are given by
(3.27), the corresponding solution (u, v) of the system (3.1)–(3.2), satisfies

(u(·, 0), v(·, 0)) = (0, 0) and (u(·, T ), v(·, T )) = (u1(·), v1(·)).
��

3.2 One control

Consider the boundary controllability of the linear system employing only one control
input h2 and fixing h0 = h1 = g0 = g1 = 0, namely

{
u(0, t) = 0 u(L , t) = 0, ux (L , t) = h2(t), in (0, T ),

v(0, t) = 0, v(L , t) = 0, vx (L , t) = 0, in (0, T ).
(3.28)

Note that by using the change of variable x ′ = L − x and t ′ = T − t , the system
(2.26)–(2.28) is equivalent to the following forward system

⎧
⎪⎨

⎪⎩

ϕt + ϕxxx + ab
c ψxxx = 0, in (0, L) × (0, T ),

ψt + r
cψx + aϕxxx + 1

cψxxx = 0, in (0, L) × (0, T ),

ϕ(x, 0) = ϕ0(x), ψ(x, 0) = ψ0(x), in (0, L),

(3.29)

with boundary conditions

{
ϕ(0, t) = ϕ(L , t) = ϕx (L , t) = 0, in (0, T ),

ψ(0, t) = ψ(L , t) = ψx (L , t) = 0, in (0, T ).
(3.30)

In this case, the observability inequality

‖(ϕ0, ψ0)‖2
X ≤ C

∥
∥
∥
∥ϕx (0, ·) + ab

c
ψx (0, ·)

∥
∥
∥
∥

2

L2(0,T )

(3.31)
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plays a fundamental role for the study of the controllability. To prove (3.31), we use
a direct approach based on the multiplier technique and the estimates given by the
hidden regularity. Such estimates give us the observability inequality for some values
of the length L and time of control T .

Proposition 3.5 Let us suppose that T > 0 and L > 0 satisfy

L <
min{b, c}

max{b, c}βCT
T, (3.32)

where CT is the constant in (2.30) and β is the constant given by the embedding

H
1
3 (0, T ) ⊂ L2(0, T ). Then, there exists a constant C(T, L) > 0, such that for any

(ϕ0, ψ0) in X the observability inequality (3.31) holds, for any (ϕ, ψ) solution of
(3.29)–(3.30) with initial data (ϕ0, ψ0).

Proof We multiply the first equation in (3.29) by (T−t)ϕ, the second one by b
c (T−t)ψ

and integrate over (0, T ) × (0, L). Thus, we obtain

T

2

∫ L

0

(

ϕ2
0(x) + b

c
ψ2

0 (x)

)

dx =1

2

∫ T

0

∫ L

0

(

ϕ2(x, t) + b

c
ψ2(x, t)

)

dxdt

+ 1

2

∫ T

0
(T − t)

[

ϕ2
x (0, t) + 2ab

c
ψx (0, t)ϕx (0, t)

+ b

c2 ψ2
x (0, t)

]

dt.

Consequently,

‖(ϕ0, ψ0)‖2
X ≤ C

T
‖(ϕ, ψ)‖2

L2(0,T ;X )
+ C1

∥
∥
∥
∥ϕx (0, ·) + ab

c
ψx (0, ·)

∥
∥
∥
∥

2

L2(0,T )

,

(3.33)

where C = max{b,c}
min{b,c} and C1 = C1(a, b, c) > 0. On the other hand, note that

‖ϕ(·, t)‖2
L2(0,L)

≤ L‖ϕ(·, t)‖2
L∞(0,L) and ‖ψ(·, t)‖2

L2(0,L)
≤ L‖ψ(·, t)‖2

L∞(0,L).

Hence,

‖(ϕ, ψ)‖2
L2(0,T ;X )

≤ L
∫ T

0

{
b

c
‖ϕ(·, t)‖2

L∞(0,L) + ‖ψ(·, t)‖2
L∞(0,L)

}

dt (3.34)

≤ bLβ

c
‖ϕ‖2

H
1
3 (0,T ;L∞(0,L))

+ Lβ‖ψ‖2

H
1
3 (0,T ;L∞(0,L))

(3.35)
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where β is the constant given by the compact embedding H
1
3 (0, T ) ⊂ L2(0, T ).

Combining (3.33), (3.34) and Proposition 2.8, we obtain

‖(ϕ0, ψ0)‖2
X ≤ LβCTC

T
‖(ϕ0, ψ0)‖2

X + C1

∥
∥
∥
∥ϕx (0, ·) + ab

c
ψx (0, ·)

∥
∥
∥
∥

2

L2(0,T )

.

Finally, we obtain

‖(ϕ0, ψ0)‖2
X ≤K

∥
∥
∥
∥ϕx (0, ·) + ab

c
ψx (0, ·)

∥
∥
∥
∥

2

L2(0,T )

under the condition

K = C1

(

1 − CCTβL

T

)−1

> 0. (3.36)

��

From the observability inequality (3.31), the following result holds.

Theorem 3.6 Let T > 0 and L > 0 satisfying (3.32). Then, the system (3.1)–(3.28)
is exactly controllable in time T.

Proof We can proceed following the same ideas presented in the proof of Theorem 3.1.
In this case, we consider the map

�: L2(0, L) × L2(0, L) −→ L2(0, L) × L2(0, L)

(ϕ1(·), ψ1(·)) �−→ �(ϕ1(·), ψ1(·)) = (u(·, T ), v(·, T ))

where (u, v) is the solution of (3.1)–(3.28), with h2(t) = ϕx (L , t) + ab
c ψx (L , t) and

(ϕ, ψ) is the solution of the system (2.26)–(2.28) with initial data (ϕ1, ψ1). Then,
the observability inequality (3.31) guarantees that � is coercive and, consequently, by
using Lax–Milgram theorem the proof is achieved. ��

4 Exact controllability: the nonlinear control system

4.1 Well-posedness of the nonlinear system

In this subsection, attention will be given to the full nonlinear initial boundary value
problem (IBVP)
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⎧
⎪⎨

⎪⎩

ut + uux + uxxx + avxxx + a1vvx + a2(uv)x = 0, in (0, L) × (0, T ),

cvt + rvx + vvx + abuxxx + vxxx + a2buux + a1b(uv)x = 0, in (0, L) × (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), in (0, L),

(4.1)

with the boundary conditions

{
u(0, t) = h0(t), u(L , t) = h1(t), ux (L , t) = h2(t),

v(0, t) = g0(t), v(L , t) = g1(t), vx (L , t) = g2(t).
(4.2)

We show that the IBVP (4.1)–(4.2) is locally well-posed in the space ZT .

Theorem 4.1 Let T > 0 be given. For any (u0, v0) ∈ X and
−→
h := (h0, h1, h2),−→g := (g0, g1, g2) ∈ HT , there exists T ∗ ∈ (0, T ] depending on ‖(u0, v0)‖X , such

that the IBVP (4.1)–(4.2) admits a unique solution (u, v) ∈ ZT ∗ with

∂kx u, ∂kx v ∈ L∞
x (0, L; H 1−k

3 (0, T ∗)), k = 0, 1, 2.

Moreover, the corresponding solution map is Lipschitz continuous.

Proof Let

FT =
{
(u, v) ∈ ZT : (u, v) ∈ L∞

x (0, L; (H
1−k

3 (0, T ))2), k = 0, 1, 2
}

which is a Banach space equipped with the norm

‖(u, v)‖FT = ‖(u, v)‖ZT +
2∑

k=0

‖(∂kx u, ∂kx v)‖
L∞
x (0,L;(H 1−k

3 (0,T ))2)
.

Let 0 < T ∗ ≤ T to be determined later. For each u, v ∈ FT ∗ , consider the problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ωt + ωxxx + aηxxx = f (u, v), in (0, L) × (0, T ∗),
ηt + ab

c ωxxx + 1
cηxxx = s(u, v), in (0, L) × (0, T ∗),

ω(0, t) = h0(t), ω(L , t) = h1(t), ωx (L , t) = h2(t), in (0, T ∗),
η(0, t) = g0(t), η(L , t) = g1(t), ηx (L , t) = g2(t), in (0, T ∗),
ω(x, 0) = u0(x), v(x, 0) = v0(x), in (0, L),

(4.3)

where

f (u, v) = −a1(vvx ) − a2(uv)x

and

s(u, v) = −r

c
vx − a2b

c
(uux ) − a1b

c
(uv)x .
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Since ‖vx‖L1(0,β;L2(0,L)) ≤ β
1
2 ‖v‖Zβ

, from [1, Lemma 3.1] we deduce that f (u, v)

and s(u, v) belong to L1(0, T ∗; L2(0, L)) and

‖( f, s)‖L1(0,T ∗;(L2(0,L))2) ≤ C1((T
∗)

1
2 + (T ∗)

1
3 )
(
‖u‖2

ZT∗ + (‖u‖ZT∗ + 1)‖v‖ZT∗

+‖v‖2
ZT∗

)
,

for some positive constantC1. According to Proposition 2.5, we can define the operator

� : FT ∗ → FT ∗ given by �(u, v) = (ω, η),

where (ω, η) is the solution of (4.3). Moreover,

‖�(u, v)‖FT∗ ≤ C
{
‖(u0, v0)‖X + ‖(−→h ,

−→g )‖H∗
T

+ ‖( f, s)‖L1(0,T ∗;(L2(0,L))2)

}
,

where the positive constant C depends only on T ∗. Thus, we obtain

‖�(u, v)‖FT∗ ≤ C
{
‖(u0, v0)‖X + ‖(−→h ,

−→g )‖H∗
T

}

+ CC1((T
∗)

1
2 + (T ∗)

1
3 )
(
‖u‖2

ZT∗ + (‖u‖ZT∗ + 1)‖v‖ZT∗ + ‖v‖2
Zβ

)
.

Let (u, v) ∈ Br (0), where

Br (0) := {
(u, v) ∈ FT ∗ : ‖(u, v)‖FT∗ ≤ r

}
,

with r = 2C
{
‖(u0, v0)‖X + ‖(−→h ,

−→g )‖HT

}
. It follows that

‖�(u, v)‖FT∗ ≤ r

2
+ CC1((T

∗)
1
2 + (T ∗)

1
3 ) (3r + 1) r. (4.4)

Choosing T ∗ > 0, such that

CC1((T
∗)

1
2 + (T ∗)

1
3 ) (3r + 1) ≤ 1

2
,

from (4.4), we have

‖�(u, v)‖FT∗ ≤ r.

Therefore,

� : Br (0) ⊂ FT ∗ → Br (0).

123



Math. Control Signals Syst.  (2017) 29:6 Page 33 of 37  6 

On the other hand, �(u1, v1) − �(u2, v2) is the solution of system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ωt + ωxxx + aηxxx = f (u1, v1) − f (u2, v2), in (0, L) × (0, T ∗),
ηt + ab

c ωxxx + 1
cηxxx = s(u1, v1) − s(u2, v2), in (0, L) × (0, T ∗),

ω(0, t) = ω(L , t) = ωx (L , t) = 0, in (0, T ∗),
η(0, t) = η(L , t) = ηx (L , t) = 0, in (0, T ∗),
ω(x, 0) = 0, v(x, 0) = 0, in (0, L).

Note that

| f (u1, v1) − f (u2, v2)| ≤ C2|
(
(v2 − v1)v2,x + v1(v2 − v1)x + (u2(v2 − v1))x

+((u2 − u1)v1)x ) |

and

|s(u1, v1) − s(u2, v2)| ≤C2|
(
(v2 − v1)x + (u2 − u1)u2,x + u1(u2 − u1)x

+ (u2(v2 − v1))x + ((u2 − u1)v1)x ) |,

for some positive constantC2. Proposition 2.5 and [1, Lemma 3.1] give us the following
estimate

‖�(u1, v1)−�(u2, v2)‖FT∗ ≤ C3((T
∗)

1
2 +(T ∗)

1
3 )(8r + 1)‖(u1 − u2, v1 − v2)‖FT∗ ,

for some positive constant C3. Choosing T ∗, such that

C3((T
∗)

1
2 + (T ∗)

1
3 )(8r + 1) ≤ 1

2
,

we obtain

‖�(u1, v1) − �(u2, v2)‖FT∗ ≤ 1

2
‖(u1 − u2, v1 − v2)‖FT∗ .

Hence � : Br (0) → Br (0) is a contraction and, by Banach fixed point theorem, we
obtain a unique (u, v) ∈ Br (0), such that �(u, v) = (u, v) ∈ FT ∗ and, therefore, the
proof is complete. ��

We are now in position to prove our main result. First, define the bounded linear
operators

�i : X × X −→ HT × HT (i = 1, 2), (4.5)

such that, for any (u0, v0) ∈ X and (u1, v1) ∈ X ,

�i

((
u0

v0

)

,

(
u1

v1

))

:=
( �hi

�gi
)

,

where
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(i) �h1 = (0, 0, h2) and �g1 = (g0, g1, g2),
(ii) �h2 = (0, 0, h2) and �g2 = (0, 0, 0).

Proof of Theorem 1.1 According to Proposition 2.5 and [1, Theorem 2.10], the solu-
tion of (4.1)–(4.2) can be written as:

(
u(t)
v(t)

)

= W0(t)

(
u0
v0

)

+ Wbdr (t)

( �hi
�gi
)

−
∫ t

0
W0(t − τ)

(
a1(vvx )(τ ) + a2(uv)x (τ )

r
cvx (τ ) + a2b

c (uux )(τ ) + a1b
c (uv)x (τ )

)

dτ,

with i = 1, 2, where {W0(t)}t≥0 and {Wbdr (t)}t≥0 are the operators defined in the
proof of Proposition 2.5.

For u, v ∈ ZT , let us define

(
υ

ν(T, u, v)

)

:=
∫ T

0
W0(T − τ)

(
a1(vvx )(τ ) + a2(uv)x (τ )
a2b
c (uux )(τ ) + a2b

c (uv)x (τ )

)

dτ.

Here, we consider the case i = 1. The other case i = 2 is analogous and, therefore,
we will omit it. Consider the map

�

(
u
v

)

=W0(t)

(
u0

v0

)

+ Wbdr (x)�1

((
u0

v0

)

,

(
u1

v1

)

+
(

v

ν(T, u, v)

))

−
∫ t

0
W0(t − τ)

(
a1(vvx )(τ ) + a2(uv)x (τ )

r
cvx (τ ) + a2b

c (uux )(τ ) + a1b
c (uv)x (τ )

)

dτ.

By choosing

( �h1
�g1

)

= �1

((
u0

v0

)

,

(
u1

v1

)

+
(

v

ν(T, u, v)

))

, (4.6)

we get, from Theorem 3.1,

�

(
u
v

) ∣
∣
∣
t=0

=
(
u0

v0

)

and

�

(
u
v

) ∣
∣
∣
t=T

=
(
u1

v1

)

+
(

v

ν(T, u, v)

)

−
(

v

ν(T, u, v)

)

=
(
u1

v1

)

.

If we show that the map � is a contraction in an appropriate metric space, then its fixed
point (u, v) is the solution of (4.1)–(4.2) with �h1 and �g1 defined by (4.6), satisfying
u(·, T ) = u1(·) and v(·, T ) = v1(·). In order to prove the existence of the fixed point,
we apply the Banach fixed point theorem to the restriction of � on closed ball

Br = {
(u, v) ∈ ZT : ‖(u, v)‖ZT

≤ r
}
,
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for some r > 0.

(a) � mapsBr in itself. Indeed, as in the proof of Theorem 4.1, we obtain that there
exists a constant C1 > 0 such that

∥
∥
∥
∥�

(
u
v

)∥
∥
∥
∥ZT

≤ C1δ + C2(r + 1)r,

where C2 is a constant depending only T . Thus, if we select r and δ satisfying

r = 2C1δ

and

2C1C2δ + C2 ≤ 1

2
,

the operator � maps Br into itself for any (u, v) ∈ ZT .
(b) � is contractive. In fact, proceeding as the proof of Theorem 4.1, we obtain

∥
∥
∥
∥�

(
u
v

)

− �

(
ũ
ṽ

)∥
∥
∥
∥ZT

≤ C3(r + 1)r

∥
∥
∥
∥

(
u − ũ
v − ṽ

)∥
∥
∥
∥ZT

,

for any (u, v), (̃u, ṽ) ∈ Br and C3 constant depending only T . Thus, choosing
δ > 0, such that

γ = 2C2C3δ + C3 < 1,

we obtain

∥
∥
∥
∥�

(
u
v

)

− �

(
ũ
ṽ

)∥
∥
∥
∥ZT

≤ γ

∥
∥
∥
∥

(
u − ũ
v − ṽ

)∥
∥
∥
∥ZT

.

Therefore, the map � is a contraction.

Thus, from (a) and (b), � has a fixed point in Br by the Banach fixed point Theorem
and its fixed point is the desired solution. The proof of Theorem 1.1 is archived. ��

5 Further comments

The following remarks are now in order:

• In [10], it was proved that the system (1.1) with the boundary conditions

{
u(0, t) = 0, u(L , t) = h1(t), ux (L , t) = h2(t) in (0, T ),

v(0, t) = 0, v(L , t) = g1(t), vx (L , t) = g2(t) in (0, T ),
(5.1)
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is exactly controllable in L2(0, L) when h1, g1 ∈ H1
0 (0, T ) and h2, g2 ∈ L2(0, T )

(see Theorem A). By using the tools developed in this paper, more precisely,
Lemma 1.2, an improvement of the regularity of the control can be obtained.

In this case, the control (h1, g1, h2, g2) can be found in the space H
1
3 (0, T ) ×

H
1
3 (0, T ) × L2(0, T ) × L2(0, T ).

• Another case that can be treated is the following one

{
u(0, t) = h0(t), u(L , t) = h1(t), ux (L , t) = h2(t) in (0, T ),

v(0, t) = 0, v(L , t) = 0, vx (L , t) = g2(t) in (0, T ).
(5.2)

By using the same ideas of the proof of Theorem 1.1, we can prove that system
(3.1)–(5.2) is exactly controllable for any time T > 0 if L ∈ (0,∞)\F ′

r .
• Concerning the exact boundary controllability of the system (1.1) with one control,

our approach can be applied to the following configuration:

{
u(0, t) = 0 u(L , t) = 0 ux (L , t) = 0, in (0, T ),

v(0, t) = 0, v(L , t) = 0, vx (L , t) = g2(t), in (0, T ).
(5.3)

The proof of this case is analogous to (ii) of Theorem 1.1.
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