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In recent years, controllability problems for dispersive systems have been exten-
sively studied. This work is dedicated to proving a new type of controllability for a 
dispersive fifth order equation that models water waves, what we will now call the 
overdetermination control problem. Precisely, we are able to find a control acting 
at the boundary that guarantees that the solutions of the problem under consider-
ation satisfy an overdetermination integral condition. In addition, when we make 
the control act internally in the system, instead of the boundary, we are also able 
to prove that this condition is satisfied. These problems give answers that were left 
open in [6] and present a new way to prove boundary and internal controllability 
results for a fifth order KdV type equation.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Setting of the problem

The Kawahara equation proposed in 1972 by T. Kawahara [17] is a fifth-order Korteweg-de Vries equation 
(KdV) that can be viewed as a generalization of the KdV equation, which occurs in the theory of shallow 
water waves and take the form

ut + ux + uxxx + αuxxxxx + uux = 0, (1.1)

when α = −1 and u = u(t, x) is a real-valued function of two real variables (t, x). It is important to point 
out that there are others physical background of Kawahara equation or in view of perturbed equation of 
KdV1 and the authors suggest to reader see [3,16,20], among others.
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E-mail addresses: roberto.capistranofilho@ufpe.br (R.A. Capistrano-Filho), luan.soares@ufpe.br (L. Soares de Sousa).

1 Considering α = 0 in (1.1) we have the so-called KdV equation, for a historic review of this equation we can cite [2] and the 
reference therein.
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In this article we will be interested with a kind of a control property to the Kawahara equation when an 
integral overdetermination condition is required, namely

L∫
0

u(t, x)ω(x)dx = ϕ(t), t ∈ [0, T ], (1.2)

with some known functions ω and ϕ. To present the problem, let us consider the Kawahara equation in the 
bounded rectangle QT = (0, T ) × (0, L), where T and L are positive numbers with boundary function hi, 
for i = 1, 2, 3, 4 and h or the right-hand side f of a special form to specify latter, namely,⎧⎪⎪⎪⎨⎪⎪⎪⎩

ut + ux + uxxx − uxxxxx + uux = f(t, x) in QT ,

u(t, 0) = h1(t), u(t, L) = h2(t), ux(t, 0) = h3(t), in [0, T ],
ux(t, L) = h4(t), uxx(t, L) = h(t) in [0, T ],
u(0, x) = u0(x) in [0, L].

(1.3)

Thus, we are interested in studying two control problems, which we will call them from now on by 
overdetermination control problem. The first one can be read as follows:

Problem A: For given functions u0, hi, for i = 1, 2, 3, 4 and f in some appropriated spaces, can we find a 
boundary control h such that the solution associated to the equation (1.3) satisfies the integral overdeter-
mination (1.2)?

The second problem of this work is concentrated to prove that for a special form of the function

f(t, x) = f0(t)g(t, x), (t, x) ∈ QT , (1.4)

the integral overdetermination (1.2) is verified, in other words.

Problem B: For given functions u0, hi, for i = 1, 2, 3, 4, h and g in some appropriated spaces, can we 
find a internal control f0 such that the solution associated to the equation (1.3) satisfies the integral 
overdetermination (1.2)?

Therefore, the main purpose of this paper is to prove that these problems are indeed true. There are 
basically two features to be emphasized in this way:

• One should be convinced that the integral overdetermination condition is effective and gives good 
(internal and boundary) control properties. In fact, this kind of condition is very important in the 
inverse problem (see e.g. [22]) and it is a new way of controlling dispersive systems.

• One should be capable of controlling the system when the control acts in [0, T ], which is also new for the 
Kawahara equation (see for instance [6] for details of internal control problems for Kawahara equation).

1.2. Bibliographical comments

We comment briefly on the bibliography emphasizing the works related with the well-posedness and 
controllability. Before presenting it, we caution that this is only a small sample of the extant works existent 
for the Kawahara equation since there are other subjects of interest from a mathematical point of view.

1.2.1. Well-posedness results
Regarding the Cauchy problem some authors showed the local and global well-posedness results. For 

example, Kenig et al. [18] proved the well-posedness result for a general nonlinear dispersive equation, 
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which one with some restrictions, can be viewed as (1.1). In this celebrated work, the authors are able to 
prove that the associated initial value problem (IVP) is locally well-posed in weighted Sobolev spaces. We 
would like to mention that in [6,19] the authors also treated the theory of well-posedness in weighted Sobolev 
spaces for the Kawahara equation. Recently, Cui et al. [8] studied the Cauchy problem of the Kawahara 
equation in L2-space, precisely, they proved the global well-posedness for (1.1). Considering the initial 
boundary value problem (IBVP) we can see relevant advances in [9], for homogeneous boundary conditions, 
and in [14], for the half-line. In addition to these works, some other works treat the well-posedness theory, 
we can cite, for example, [13,21].

1.2.2. Controllability results
As is well known the control theory can be studied in two ways: Stabilization problem and internal or 

boundary control problems (see [25,1] for details of these kinds of issues).
In this spirit, let us start to mention a pioneer work concerning the stabilization property for the Kawahara 

equation. In [1], the first author with some collaborators were able to introduce an internal feedback law in 
(1.3), considering the nonlinearity u2ux instead of uux and h(t) = hi(t) = 0, for i = 1, 2, 3, 4. Being precise, 
they proved that under the effect of the damping mechanism the energy associated with the solutions of the 
system decays exponentially. Additionally, they conjecture the existence of an important phenomena, is the 
so-called critical set phenomenon as occurs with the single KdV equation [4,23] and the Boussinesq KdV-
KdV system [5].2 We also would like to suggest to the reader the reference [10] to stabilization problems 
related to the Kawahara equation in the real line.

Now, some references of internal control problems are presented. This problem was first addressed in [24]
and after that in [25]. In both cases the authors considered the Kawahara equation in a periodic domain T
with a distributed control of the form

f(t, x) = (Gh)(t, x) := g(x)(h(t, x) −
∫
T

g(y)h(t, y)dy),

where g ∈ C∞(T ) supported in ω ⊂ T and h is a control input. Here, it is important to observe that the 
control in consideration has a different form as presented in (1.4), and the result is proven in a different 
direction from what we will present in this manuscript.

Still related with internal control issues, Chen [7] presented results considering the Kawahara equation 
(1.3) posed on a bounded interval with a distributed control f(t, x) and homogeneous boundary conditions. 
She showed the result taking advantage of a Carleman estimate associated to the linear operator of the 
Kawahara equation with an internal observation. With this in hand, she was able to get a null controllable 
result when f is effective in a ω ⊂ (0, L). As the results obtained by her do not answer all the issues of the 
internal controllability, in a recent article [6] the authors closed some gaps left in [7]. Precisely, considering 
the system (1.3) with an internal control f(t, x) and homogeneous boundary conditions, the authors are 
able to show that the equation in consideration is exact controllable in L2-weighted Sobolev spaces and, 
additionally, the Kawahara equation is controllable by regions on L2-Sobolev space, for details see [6].

Finally, related to the boundary control problem, there is a unique result which one was proved in [15]. 
The authors consider the boundary conditions as in (1.3) and show that exact controllability holds when 
two or until five controls are inputting in these boundary conditions.

2 Differently what happens with KdV and Boussinesq KdV-KdV the characterization of the critical set for the Kawahara equation 
is an open issue, we cite [11] for details of this subject.
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1.3. Notations and main results

With these previous results in hand, we are able to present our main results that tries to answer questions 
left open in the manuscript [6] and presents an alternative way for the boundary control problems of the 
Kawahara equation. First of all, let us introduce the following notation that we will use in the article from 
now on.

i. Denote by

X(QT ) = C([0, T ];L2(0, L)) ∩ L2(0, T ;H2(0, L)),

the space equipped with the following norm

‖v‖X(QT ) = max
t∈[0,T ]

‖v(t, ·)‖L2(0,L) + ‖vxx‖L2(QT ) = ‖v‖C([0,T ];L2(0,L)) + ‖vxx‖L2(QT ).

ii. Consider

H = H
2
5 (0, T ) ×H

2
5 (0, T ) ×H

1
5 (0, T ) ×H

1
5 (0, T ),

with the norm

‖h̃‖H = ‖h1‖
H

2
5 (0,T )

+ ‖h2‖
H

2
5 (0,T )

+ ‖h3‖
H

1
5 (0,T )

+ ‖h4‖
H

1
5 (0,T )

,

where h̃ = (h1, h2, h3, h4).
iii. The intersection (Lp ∩ Lq)(0, T ) will be considered with the following norm

‖·, ·‖(Lp∩Lq)(0,T ) = ‖·, ·‖Lp(0,T ) + ‖·, ·‖Lq(0,T ).

iv. Finally, for any p ∈ [1, ∞], we denote by

W̃ 1,p(0, T ) = {ϕ ∈ W 1,p(0, T );ϕ(0) = 0},

with the norm defined by

‖ϕ‖
W̃ 1,p(0,T ) = ‖ϕ′‖Lp(0,T ).

vi. Consider ω be a fixed function which belongs to the following set

J = {ω ∈ H5(0, L) ∩H2
0 (0, L); ω′′(0) = 0}. (1.5)

The first result of the manuscript gives us an answer for the Problem A, presented in the beginning of 
the introduction. The answer for the boundary overdetermination control problem for the system (1.3) can 
be read as follows.

Theorem 1.1. Let p ∈ [2, ∞]. Suppose that u0 ∈ L2(0, L), f ∈ Lp(0, T ; L2(0, L)), h̃ ∈ H and hi ∈ Lp(0, T ), 
for i = 1, 2, 3, 4. If ϕ ∈ Lp(0, T ) and ω ∈ J are such that ω′′(L) �= 0 and

L∫
u0(x)ω(x)dx = ϕ(0), (1.6)
0
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considering c0 = ‖u0‖L2(0,L) + ‖f‖L2(0,T ;L2(0,L)) + ‖h̃‖H + ‖ϕ′‖L2(0,T ), the following assertions hold true.

1. For a fixed c0, there exists T0 > 0 such that for T ∈ (0, T0], then we can find a unique function 
h ∈ Lp(0, T ) in such a way that the solution u ∈ X(QT ) of (1.3) satisfies (1.2).

2. For each T > 0 fixed, exists a constant γ > 0 such that for c0 ≤ γ, then we can find a unique boundary 
control h ∈ Lp(0, T ) with the solution u ∈ X(QT ) of (1.3) satisfying (1.2).

The next result ensures for the first time that we are able to control the Kawahara equation with a 
function f0 supported in [0, T ]. Precisely, we will respond to the Problem B mentioned in this introduction.

Theorem 1.2. Let p ∈ [1, ∞], u0 ∈ L2(0, L), h ∈ Lmax{2,p}(0, T ; L2(0, L)), h̃ ∈ H and hi ∈ Lp(0, T ), for 
i = 1, 2, 3, 4. If ϕ ∈ Lp(0, T ), g ∈ C([0, T ]; L2(0, L)) and ω ∈ J are such that ω′′(L) �= 0, and there exists a 
positive constant g0 such that (1.6) is satisfied and∣∣∣∣∣∣

L∫
0

g(t, x)ω(x)dx

∣∣∣∣∣∣ ≥ g0 > 0,

considering c0 = ‖u0‖L2(0,L) + ‖h‖L2(0,L) + ‖h̃‖H + ‖ϕ′‖L1(0,T ), we have that:

1. For a fixed c0, so there exists T0 > 0 such that for T ∈ (0, T0], exists a unique f0 ∈ Lp(0, T ) and a 
solution u ∈ X(QT ) of (1.3), with f defined by (1.4), satisfying (1.2).

2. For a fixed T > 0, there exists a constant γ > 0 such that for c0 ≤ γ, we have the existence of a control 
input f0 ∈ Lp(0, T ) which the solution u ∈ X(QT ) of (1.3), with f as in (1.4), verifies (1.2).

1.4. Heuristic of the article and further comments

In this article, we investigate and discuss overdetermination control problems with respect to boundary 
and internal variations. As can be seen in this introduction, the agenda of the research of control theory for 
the fifth order KdV equation is quite new and does not acknowledge many results in the literature. With 
this proposal to fill this gap, we intend to present a new way to prove internal and boundary control results 
for this system. Thus, for this type of integral overdetermination condition the first results on the solvability 
of control problems for the Kawahara equation are obtained in the present paper.

1.4.1. Heuristic of the article
The first result is concerning of the boundary overdetermination control problem, roughly speaking, we 

are able to find an appropriate control h, acting on the boundary term uxx(t, L), such that integral condition 
(1.2) it turns out. Theorem 1.1 is first proved for the linear system associated to (1.3) and after that, using 
a fixed point argument, extended to the nonlinear system. The main ingredients are the Lemmas 3.1 and 
4.1. In the Lemma 4.1 we are able to find two appropriate applications that links the boundary control term 
h(t) with the overdetermination condition (1.2), namely

Λ : Lp(0, T ) −→ W̃ 1,p(0, T )

h �−→ (Λh)(·) =
L∫

0

u(·, x)ω(x)dx

and
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A : Lp(0, T ) −→ Lp(0, T )

h �−→ (Ah)(t) = ϕ′(t) −
L∫

0

u(t, x)(ω′(x) + ω′′′(x) − ω′′′′′′(x))dx, ∀t ∈ [0, T ].

So, we prove that such application Γ has an inverse which one is continuous, by Banach’s theorem, showing 
the lemma in question, and so, reaching our goal, to prove Theorem 1.1.

Theorem 1.2 follows the same idea, the strictly different point is related with the appropriated applications 
which in this case links the internal control f0 with the overdetermination condition (1.2) (see Lemma 5.1), 
in this case, defined as follows

(Λf0)(·) =
L∫

0

u(·, x)ω(x)dx

and

(Af0)(t) = ϕ′(t)
g1(t)

− 1
g1(t)

L∫
0

u(t, x)(ω′ + ω′′′ − ω′′′′′)dx,

where,

g1(t) =
L∫

0

g(t, x)ω(x)dx.

1.4.2. Further comments
To conclude this introduction, we outline additional comments. It is important to point out that the 

method used here is commonly applied to inverse problems in optimal control. For the readers we cite this 
excellent book [22] for details of the integral conditions applied in inverse problems.

With respect the generality of the work, we have the following points:

• Theorems 1.1 and 1.2 can be obtained for more general nonlinearities. Indeed, if we consider v ∈ X(QT )
and p ∈ (2, 4], we have that

T∫
0

L∫
0

|vp+2|dxdt � C ‖v‖pC([0,T ];L2(0,L))

T∫
0

‖vx‖2
dt � C ‖v‖p+2

X(QT ) ,

by the Gagliardo–Nirenberg inequality. Moreover, recently, Zhou [27] showed the well-posedness of the 
following initial boundary value problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

ut − uxxxxx = c1uux + c2u
2ux + b1uxuxx + b2uuxxx, x ∈ (0, L), t ∈ R+,

u(t, 0) = h1(t), u(t, L) = h2(t), ux(t, 0) = h3(t), t ∈ R+,

ux(t, L) = h4(t), uxx(t, L) = h(t), t ∈ R+,

u(0, x) = u0(x), x ∈ (0, L).

(1.7)

Thus, due to the previous inequality and the results proved in [27], when we consider b1 = b2 = 0 and 
the combination c1uux + c2u

2ux instead of uux on (1.3), Theorems 1.1 and 1.2 remains valid, however, 
with sake of simplicity, we consider only the nonlinearity as uux.
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• Note that, in this manuscript, the regularity of the boundary terms is sharp in Hs(0, L), for s ≥ 0. In 
fact, due the method introduced by Bona et al. [2] for KdV equation the authors in [26] and [27] are 
able to provide sharp regularity for the traces function in both IBVP (1.3) and (1.7). So, in this sense, 
Theorems 1.1 and 1.2 gives a sharp regularity of the functions involved.

• Unlike what happens in the case of the control problem considered in [23] for KdV equation, in [5]
for Boussinesq KdV–KdV equation and which was conjectured by the first author in [1], here, due the 
method used, we can take hi = 0, for i = 1, 2, 3, 4, and only consider a control acting in the trace 
uxx(t, L), without concern with the critical set phenomenon.

• The arguments presented in this work have prospects to be applied for other nonlinear dispersive 
equations in the context of the bounded domains. In fact, our motivation was due to the fact that 
Faminskii [12] proved a result for the KdV equation, that is, when considering the system (1.1) with 
α = 0. However, note that in [12] the author decides to use the solution in a weak sense, ensuring that 
the results are verified for the function u

2

2 , but, in our case, we can deal with more general the terms 
like u

2

2 , uux and u2ux.
• Finally, this work presents another way to prove control results for the higher order dispersive system 

which are completely different from what was presented in [6,15,25].

1.5. Outline of the work

Section 2 is devoted to review the main results of the well-posedness for the fifth order KdV equation in 
Sobolev spaces. In the Section 3 we present two auxiliary lemmas which help us to prove the controllability 
results. The overdetermination control results, when the control is acting in the boundary and internally, 
are presents in the Sections 4 and 5, respectively, that is, we will present the proof of the main results of 
the manuscript, Theorems 1.1 and 1.2.

2. A fifth order KdV equation: a review of well-posedness results

In this section let us treat the well-posedness of the fifth order KdV equation, that is, we are interested 
in the well-posedness of following system

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut + ux + uxxx − uxxxxx + uux = f(t, x) in QT ,

u(t, 0) = h1(t), u(t, L) = h2(t), ux(t, 0) = h3(t), in [0, T ],
ux(t, L) = h4(t), uxx(t, L) = h(t) in [0, T ],
u(0, x) = u0(x) in [0, L],

(2.1)

where L, T > 0 are fixed real numbers, QT = [0, T ] × [0, L] and u0, h1, h2, h3, h4, h and f are well-known 
functions. Precisely, we will put together the mains results of well-posedness to (2.1).

2.1. Homogeneous case

The first result is due to the first author [1, Lemma 2.1] and provided the well-posedness results for the 
linear problem

⎧⎪⎨⎪⎩
ut + ux + uxxx − uxxxxx = 0 in QT ,

u(t, 0) = u(t, L) = ux(t, 0) = ux(t, L) = uxx(t, L) = 0 in [0, T ],
u(0, x) = u (x) in [0, L].

(2.2)

0
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Lemma 2.1. Let u0 ∈ L2 (0, L). Then (2.2) possesses a unique (mild) solution u ∈ X(QT ) with

uxx (0, t) ∈ L2 (0, T ) .

Moreover, there exists a constant C = C (T,L) > 0 such that

‖u‖C0([0,T ];L2(0,L)) + ‖u‖L2(0,T ;H2(0,L)) ≤ C ‖u0‖

and

‖uxx (0, t)‖L2(0,T ) ≤ ‖u0‖ .

The proof of this lemma is a direct consequence of semigroup theory and multipliers method. In the way 
to prove global well-posedness results for the nonlinear system, in [1, Lemma 2.2 and 2.3], the authors are 
able to prove some results for the following system⎧⎪⎨⎪⎩

ut + ux + uxxx − uxxxxx + upux = 0 in QT ,

u(t, 0) = u(t, L) = ux(t, 0) = ux(t, L) = uxx(t, L) = 0 in [0, T ],
u(0, x) = u0(x) in [0, L],

(2.3)

with p ∈ (2, 4]. The global well-posedness for this system can be read as follows (we infer the read see [1, 
Lemmas 2.2 and 2.3 and Remark 2.1] for details).

Lemma 2.2. Let T0 > 0 and u0 ∈ L2 (0, L) be given. Then there exists T ∈ (0, T0] such that (2.3) possesses 
a unique solution u(t, x) ∈ QT . Moreover, if ‖u0‖  1, then

‖u‖2
L2(0,T ;H2(0,L)) ≤ c1 ‖u0‖2

(
1 + ‖u0‖4

)
,

where c1 = c1 (T,L) is a positive constant. Moreover,

ut ∈ L4/3 (0, T ;H−3 (0, L)
)
.

2.2. Non-homogeneous case

For the nonhomogeneous initial-boundary value problem (IBVP)⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut + ux + uxxx − uxxxxx = f(t, x) in QT ,

u(t, 0) = h1(t), u(t, L) = h2(t), ux(t, 0) = h3(t), in [0, T ],
ux(t, L) = h4(t), uxx(t, L) = h(t) in [0, T ],
u(0, x) = u0(x) in [0, L],

(2.4)

Zhao and Zhang [26, Lemma 3.1] showed the following result:

Lemma 2.3. Let T > 0 be given, there is a C > 0 such that for any f ∈ L1(0, T ; L2(0, L)), u0, h ∈ L2(0, L)
and h̃ ∈ H, IBVP (2.4) admits a unique solution (mild) u := S(u0, h, f, ̃h) ∈ X(QT ) satisfying

‖u‖X(QT ) ≤ C
(
‖u0‖L2(0,L) + ‖h‖L2(0,L) + ‖h̃‖H + ‖f‖L1(0,T ;L2(0,L))

)
.

Considering the full system (2.1), in this same work, Zhao and Zhang [26, Lemma 3.2], showed the 
following result.
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Lemma 2.4. There exists a constant C > 0 such that for any T > 0 and u, v ∈ X(QT ) satisfying the following 
inequalities:

T∫
0

‖uvx‖L2(0,L)dt ≤ C(T 1
2 + T

1
4 )‖u‖X(Q(T )‖v‖X(Q(T )

and

‖uvx‖W 0,1(0,T ;L2(0,L)) ≤ C(T 1
2 + T

1
4 )‖u‖X(Q(T )‖v‖X(Q(T ).

3. Auxiliary results

In this section we are interested to prove some auxiliary lemmas for the solutions of the system⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut + ux + uxxx − uxxxxx = f(t, x) in QT ,

u(t, 0) = h1(t), u(t, L) = h2(t), ux(t, 0) = h3(t), in [0, T ],
ux(t, L) = h4(t), uxx(t, L) = h(t) in [0, T ],
u(0, x) = u0(x) in [0, L].

(3.1)

To do this, consider ω ∈ J defined by (1.5) and define q : [0, T ] −→ R as follows

q(t) =
L∫

0

u(t, x)ω(x)dx,

where u = S(u0, h, f, ̃h) is solution of (3.1) guaranteed by Lemma 2.3. The next two auxiliary lemmas are 
the key point to show the main results of this work. The first one, gives that q ∈ W 1,p(0, L) and can be 
read as follows.

Lemma 3.1. Let p ∈ [1, ∞] and the assumptions of Lemma 2.3 be satisfied. Suppose that hi, for i = 1, 2, 3, 4, 
and h belonging in Lp(0, T ), f = f1 + f2x, where f1 ∈ Lp(0, T ; L2(0, L)) and f2 ∈ Lp(0, T ; H1(0, L)). If 
u = S(u0, h, f1 + f2x, ̃h) is a mild solution of (3.1) and ω ∈ J , then the function q ∈ W 1,p(0, T ) and the 
relation

q′(t) = ω′′(L)h(t) − ω′′′(L)h4(t) + ω′′′(0)h3(t) + ω′′′′(L)h2(t) − ω′′′′(L)h1(t)

+
L∫

0

f1(t, x)ω(x)dx−
L∫

0

f2(t, x)ω′(x)dx +
L∫

0

u(t, x)[ω′(x) + ω′′′(x) − ω′′′′′(x)]dx
(3.2)

holds for almost all t ∈ [0, T ]. In addition, the function q′ ∈ Lp(0, T ) can be estimate in the following way

‖q′‖Lp(0,T ) ≤ C
(
‖u0‖L2(0,L) + ‖h‖(Lp∩L2)(0,T ) + ‖h3‖(Lp∩H

1
5 )(0,T )

+ ‖h4‖(Lp∩H
1
5 )(0,T )

+ ‖h1‖(Lp∩H
2
5 )(0,T )

+ ‖h2‖(Lp∩H
2
5 )(0,T )

+‖f1‖Lp(0,T ;L2(0,L)) + ‖f2‖Lp(0,T ;L1(0,L)) + ‖f2x‖L1(0,T ;L2(0,L))
)
,

(3.3)

with C > 0 a constant that is nondecreasing with increasing T .
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Proof. Considering ψ ∈ C∞
0 (0, T ), multiplying (3.1) by ψω and integrating by parts in QT we have that

T∫
0

ψ′(t)q(t)dt =
T∫

0

ψ(t) (ω′′(L)h(t) − ω′′′(L)h4(t) + ω′′′(0)h3(t)

+
T∫

0

ω′′′′(L)h2(t) − ω′′′′(0)h1(t)

+
L∫

0

f1(t, x)ω(x)dx−
L∫

0

f2(t, x)ω′(x)dx

⎞⎠ dt

+
L∫

0

u(t, x)(ω′(x) + ω′′′(x) − ω′′′′′(x))dx

= −
T∫

0

ψ(t)r(t)dt

with r : [0, T ] �−→ R defined by

r(t) = ω′′(L)h(t) − ω′′′(L)h4(t) + ω′′′(0)h3(t) + ω′′′′(L)h2(t) − ω′′′′(L)h1(t)

+
L∫

0

f1(t, x)ω(x)dx−
L∫

0

f2(t, x)ω′(x)dx +
L∫

0

u(t, x)[ω′(x) + ω′′′(x) − ω′′′′′(x)]dx,

which gives us q′(t) = r(t).
It remains for us to prove that q′ ∈ Lp(0, T ), for p ∈ [1, ∞]. To do it, we need to bound each term of 

(3.2). We will split the proof in two cases, namely, p ∈ [1, ∞) and p = +∞.

Case 1. 1 ≤ p < ∞.

First, note that

∣∣∣∣∣∣
L∫

0

u(t, x)(ω′(x) + ω′′′(x) − ω′′′′′(x))dx

∣∣∣∣∣∣ ≤ ‖ω‖H5(0,L)‖u(t, ·)‖L2(0,L)

≤ T
1
p ‖ω‖H5(0,L)‖u‖C([0,T ];L2(0,L))

≤ C(T, ‖ω‖H5(0,L))‖u‖X(QT ).

To bound the last term of (3.2), note that

∣∣∣∣∣∣
L∫

0

f2(t, x)ω′(x)dx

∣∣∣∣∣∣ ≤ C(L)‖ω′‖H1
0 (0,L)‖f2(t, ·)‖L1(0,L)

≤ C(L)‖ω‖H5(0,L)‖f2(t, ·)‖L1(0,L),

since H1(0, L) ↪→ L∞(0, L) ∩ C[0, L]. So, last inequality yields that
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∥∥∥∥∥∥
L∫

0

f2(t, x)ω′(x)dx

∥∥∥∥∥∥
Lp(0,T )

≤ C(L, ‖ω‖H5(0,L))‖f2‖Lp(0,T ;L1(0,L)).

Also, we have ∥∥∥∥∥∥
L∫

0

f1(t, x)ω(x)dx

∥∥∥∥∥∥
Lp(0,T )

≤ ‖ω‖L2(0,L)‖f1‖Lp(0,T ;L2(0,L)).

To finish this case note that hi, for i = 1, 2, 3, 4 and h belong to Lp(0, T ). Thus, we have that q′ ∈ Lp(0, T ), 
which ensures that q ∈ W 1,p(0, T ). Moreover, follows that

‖q′‖Lp(0,T ) ≤C̃(T,L, ‖ω‖H5(0,L))
(
‖h‖Lp(0,T ) + ‖h1‖Lp(0,T ) + ‖h2‖Lp(0,T ) + ‖h3‖Lp(0,T ) + ‖h4‖Lp(0,T )

+‖u‖X(QT ) + ‖f1‖Lp(0,T ;L2(0,L)) + ‖f2‖Lp(0,T ;L1(0,L))
)
.

Thus, estimate (3.3) holds true, showing Case 1.

Case 2. p = ∞.

This case follows noting that

‖q′‖C([0,T ]) ≤ C
(
‖u‖X(QT ) + ‖f2‖C(0,T ;L1(0,L)) + ‖f1‖C([0,T ];L2(0,L))

+ ‖h‖C([0,T ]) + ‖h1‖C([0,T ]) + ‖h2‖C([0,T ]) + ‖h3‖C([0,T ]) + ‖h4‖C([0,T ])
)
.

Thus, Case 2 is achieved and the proof of the lemma is complete. �
The next proposition gives us a relation between u, h and f1 and will be the key point to prove the 

control problems, presented in the next sections.

Lemma 3.2. Suppose that h ∈ L2(0, L), f1 ∈ L1(0, T ; L2(0, L)) and u = S(0, h, f1, 0) mild solution of (3.1), 
then

L∫
0

|u(t, x)|2dx ≤
t∫

0

|h(t)|2dτ + 2
t∫

0

L∫
0

f1(τ, x)u(τ, x)dxdt (3.4)

for all t ∈ [0, T ].

Proof. Pick any function h ∈ C∞
0 (0, T ) and consider f1 ∈ C∞

0 (QT ). Therefore, there exists a smooth 
solution u = S(0, h, f1, 0) of (3.1). Thus, multiplying (3.1) by 2u, integrating in [0, L] and using the boundary 
conditions (remembering that h1 = h2 = h3 = h4 = 0), we get that

d

dt

L∫
0

|u(t, x)|2dx =
L∫

0

f1(t, x)u(t, x)dx + |uxx(t, L)|2 − |uxx(t, 0)|2

≤ 2
L∫

0

f1(t, x)u(t, x)dx + |uxx(t, L)|2.

So, using the fact that uxx(t, L) = h(t), integrating in [0, t] and taking account that u(0, ·) = 0 yields
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L∫
0

|u(t, x)|2dx ≤ 2
t∫

0

L∫
0

f1(τ, x)u(τ, x)dxdτ +
t∫

0

|h(τ)|2dτ

which implies inequality (3.4). By density argument and the continuity of the operator S, the result is 
proved. �
Remarks. We are now giving some remarks.

i. We are implicitly assuming that f2x ∈ L1(0, T ; L2(0, L)) in the Lemma 3.1, but it is not a problem, 
since the function that we will take for f2, in our purposes, satisfies that condition.

ii. When p = ∞, in Lemma 3.2, the spaces Lp(0, T ), Lp(0, T ; L2(0, L)) and Lp(0, T ; L1(0, L)) are replaced 
by the spaces C([0, T ]), C([0, T ]; L2(0, L)) and C([0, T ]; L1(0, L)), respectively. So, we can obtain q ∈
C1([0, T ]).

4. Boundary control

In this section we are interested in providing answers of overdetermination controllability results for the 
system (1.3) when the control is acting at the boundary. Precisely, we want to find a control function h(t)
acting in the boundary such that the solution of the system in consideration satisfies an overdetermination 
condition which will take an integral form.

4.1. Linear result

In this spirit presented above, the first lemma helps to prove a controllability result for the linear case.

Lemma 4.1. Suppose that f = h̃ = u0 = 0 and ω ∈ J , with ω′′(L) �= 0 and ϕ ∈ W̃ 1,p(0, T ), for some 
p ∈ [2, ∞]. Then there exists a unique function h = Γϕ ∈ Lp(0, T ) whose corresponding generalized solution 
(mild) u = S(0, h, 0, 0) of (3.1) satisfies the condition (1.2). Moreover, the linear operator

Γ : W̃ 1,p(0, T ) �−→ Lp(0, T )

is bounded and its norm is nondecreasing with increasing T .

Proof. Without loss of generality we consider here ω′′(L) = 1, in order to simplify the computations. First, 
define the application Λ : Lp(0, T ) −→ W̃ 1,p(0, T ) as

(Λh)(·) =
L∫

0

u(·, x)ω(x)dx,

with u = S(0, h, 0, 0), assured by Lemma 2.1. Observe that (Λh)(0) = 0 and Λ = (Q ◦S), with the functions 
Q : X(QT ) −→ W 1,p(0, T ) defined as

(Qv)(t) =
L∫

0

v(t, x)ω(x)dx, t ∈ [0, T ]

and, in this case, S can be viewed as
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S : L2(0, L) −→ X(QT )

defined by u = S(0, h, 0, 0), respectively. Since S and Q are linear, we have that Λ is also linear, and thanks 
to (3.3), we get that

‖Λ(h)‖
W̃ 1,p(0,T ) = ‖(Q ◦ S)(h)‖

W̃ 1,p(0,T ) ≤ C(T )‖q′‖Lp(0,T ) ≤ C(T )‖h‖L2(0,T ) ∀h ∈ Lp(0, T ).

Therefore, Λ is continuous.
Observing that the relation ϕ = Λh, for h ∈ Lp(0, T ), clearly means that the function h gives the desired 

solution of the control problem under consideration. So, our objective is to apply the Banach’s theorem to 
prove that the inverse of the operator Λ is continuous.

To do it, for a fixed function ϕ ∈ W̃ 1,p(0, T ), consider the mapping A : Lp(0, T ) −→ Lp(0, T ) defined by

(Ah)(t) = ϕ′(t) −
L∫

0

u(t, x)(ω′(x) + ω′′′(x) − ω′′′′′′(x))dx, ∀t ∈ [0, T ].

Firstly, the following claim holds true.

Claim 1. ϕ = Λh if and only if h = Ah.

Indeed, if ϕ = Λh, then q(t) = (Λh)(t) = ϕ(t), that is, q′(t) = ϕ′(t), t ∈ [0, T ]. Therefore,

(Ah)(t) = q′(t) −
L∫

0

u(t, x)(ω′(x) + ω′′′(x) − ω′′′′′(x))dx = h(t),

thanks to (3.2). Conversely, if Ah = h, we have

h(t) = ϕ′(t) −
L∫

0

u(t, x)(ω′(x) + ω′′′(x) − ω′′′′′(x))dx.

Here, the identity q′ = ϕ′ holds for the function q(t) = Λh due to the identity (3.2). Since, ϕ(0) = q(0) = 0, 
follows that ϕ = q in W̃ 1,p(0, T ), and the Claim 1 is proved.

The second claim ensures that:

Claim 2. A is a contraction.

In fact, let 2 ≤ p < ∞, μ1, μ2 ∈ Lp(0, T ), u1 = S(0, μ1, 0, 0) and u2 = S(0, μ2, 0, 0) in X(QT ). Therefore,

Aμ1 −Aμ2 = −
L∫

0

(u1 − u2)(ω′ + ω′′′ − ω′′′′′)dx.

Moreover, making u = u1 − u2, h = μ1 − μ2 we have, using (3.4), that

‖u1(t, ·) − u2(t, ·)‖L2(0,L) ≤ ‖μ1 − μ2‖L2(0,t), ∀t ∈ [0, T ]. (4.1)

Consider γ > 0. For t ∈ [0, T ], by Hölder inequality, follows that
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∣∣e−γt(Aμ1 −Aμ2)(t)
∣∣ ≤ C(‖ω‖H5(0,L))e−γt‖u1(t, ·) − u2(t, ·)‖L2(0,L). (4.2)

The relation (4.1) gives,

‖e−γt(Aμ1 −Aμ2)‖Lp(0,L) ≤ C(‖ω‖H5(0,L))

⎛⎝ T∫
0

e−γpt‖u1(t, ·) − u2(t, ·)‖pL2(0,L)dt

⎞⎠
1
p

≤ C(‖ω‖H5(0,L))

⎛⎜⎝ T∫
0

e−γpt

⎛⎝ t∫
0

(μ1(τ) − μ2(τ))2dτ

⎞⎠
p
2

dt

⎞⎟⎠
1
p

≤ C(p, ‖ω‖H5(0,L))

⎛⎝ T∫
0

e−γpt

t∫
0

|μ1(τ) − μ2(τ)|pdτdt

⎞⎠
1
p

≤ C(p, ‖ω‖H5(0,L))

⎛⎝ T∫
0

e−γpt|μ1(τ) − μ2(τ)|p
T∫
t

epγ(τ−t)dτdt

⎞⎠
1
p

≤ C(p, ‖ω‖H5(0,L))‖e−γt(μ1 − μ2)‖Lp(0,T )

⎛⎝ T∫
0

e−γptdt

⎞⎠
1
p

≤ 1
(pγ)

1
p

C(p, T, ‖ω‖H5(0,L))‖e−γt(μ1 − μ2)‖Lp(0,T )
(
1 − e−γpT

) 1
p

= C1‖e−γt(μ1 − μ2)‖Lp(0,T ),

(4.3)

with C1 = C(p, T, ‖ω‖H5(0,L)). Therefore, is enough to take γ = (2C1)p
p , and so A is contraction, showing 

the Claim 2 for the case p ∈ [2, ∞).
Now, let us analyse the case p = ∞. Using (4.2), yields that

sup
t∈[0,T ]

e−γt |(Aμ1 −Aμ2)(t)| = C(‖ω‖H5(0,L)) sup
t∈[0,T ]

e−γt‖u1(t, ·) − u2(t, ·)‖L2(0,L)

≤ C(‖ω‖H5(0,L)) sup
t∈[0,T ]

e−γt‖μ1 − μ2‖L2(0,t)

≤ C(‖ω‖H5(0,L)) sup
t∈[0,T ]

⎛⎝ t∫
0

e2γ(τ−t)|μ1(τ) − μ2(τ)|2dτ

⎞⎠
1
2

≤ C(‖ω‖H5(0,L))‖e−γt(μ1 − μ2)‖L∞(0,T ) sup
t∈[0,T ]

(
1
2γ [1 − e−2γt]

) 1
2

(4.4)

so taking γ = 2C2
1 yields that A is a contraction, showing the claim for p = ∞. This analysis ensures that 

the mapping A is a contraction, and Claim 2 is achieved.
Therefore, for each function ϕ ∈ W̃ 1,p(0, T ), there exists a unique function h ∈ Lp(0, T ) such that 

h = A(h), that is, ϕ = Λ(h). It follows that operator Λ is invertible, and so, its inverse Γ := Λ−1 :
Lp(0, T ) �−→ W̃ 1,p(0, T ) is continuous thanks to the Banach theorem. In particular,

‖Γ(ϕ)‖Lp(0,T ) ≤ C(T )‖ϕ′‖Lp(0,T ).
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By a standard argument we continuously extend the function ϕ by the constant ϕ(T ) in (T, T1) with the 
previous inequality still valid in (0, T1) with C(T ) ≤ C(T1), therefore the operator Γ in nondecreasing with 
increasing T, proving the result. �

With the previous result in hand, now let us show a controllability result for the linear case.

Theorem 4.2. Consider p ∈ [2, ∞], ϕ ∈ W 1,p(0, T ), u0 ∈ L2(0, L), h̃ ∈ H, with hi ∈ Lp(0, T ), for i =
1, 2, 3, 4 and f = f1 + f2x, where f1 ∈ Lp(0, T ; L2(0, L)). Moreover, if f2 ∈ Lp(0, T ; L1(0, L)) such that 
f2x ∈ L1(0, T ; L2(0, L)) and ω ∈ J , with ω′′(L) �= 0, satisfies (1.6), then there exists a unique function 
h ∈ Lp(0, T ) such that the mild solution u = S(u0, h, f1 + f2x, ̃h) of (3.1) verifies the overdetermination 
condition (1.2).

Proof. Here, consider

S : L2(0, L) × L2(0, L) × L1(0, T ;L2(0, L)) ×H −→ X(QT ),

with û = S(u0, 0, f1 +f2x, ̃h) mild solution of the system (3.1). Now, consider the application ϕ̂ = ϕ −Q(û), 
where ϕ ∈ W̃ 1,p(0, T ). Lemma 3.1 together with (1.6), ensures that ϕ̂ ∈ W̃ 1,p(0, T ). Thus, Lemma 3.4
guarantees the existence of a unique Γϕ̂ = h ∈ Lp(0, T ) such that the solution v = S(0, h, 0, 0) of (3.1)
satisfies

L∫
0

v(t, x)ω(x)dx = ϕ̂(t), t ∈ [0, T ].

Thus, if u = û + v = S(u0, h, f1 + f2x, ̃h), we have that u is solution of (3.1) satisfying

L∫
0

u(t, x)ω(x)dx = ϕ(t), t ∈ [0, T ].

So, the proof of the theorem is complete. �
4.2. Nonlinear result

In this section we are able to prove the first main result of this manuscript.

Proof of Theorem 1.1. In the assumptions of Theorem 4.2 consider f1 = f and f2 = v2

2 , with v ∈ X(QT )
and f ∈ L1(0, T ; L2(0, L)). Note that v2 ∈ C(0, T ; L1(0, L)) ↪→ Lp(0, T ; L1(0, L)), for p ∈ [1, ∞]. So, using 
the following inequality

sup
x∈[0,L]

|g(x)|2 ≤ C(L)
(
‖g′‖L2(0,L)‖g‖L2(0,L) + ‖g‖2

L2(0,L)
)
,

we have v2 ∈ L2(QT ) and
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‖v2‖L2(QT ) ≤
T∫

0

⎛⎝ sup
x∈[0,L]

|v(t, ·)|2
L∫

0

|v(t, x)|2dxdt

⎞⎠
1
2

≤ C(L)

⎛⎝ T∫
0

‖v(t, ·)‖3
L2(0,L).‖vxx(t, ·)‖L2(0,L)dt +

T∫
0

‖v(t, ·)‖4
L2(0,L)dt

⎞⎠
1
2

≤ C(L)

⎛⎝ sup
t∈[0,T ]

‖v(t, ·)‖3
L2(0,L)

T∫
0

‖vxx(t, ·)‖L2(0,L)dt + T sup
t∈[0,T ]

‖v(t, ·)‖4
L2(0,L)

⎞⎠
1
2

≤ C(L)

⎛⎜⎝ sup
t∈[0,T ]

‖v(t, ·)‖
3
2
L2(0,L)

⎛⎝ T∫
0

‖vxx(t, ·)‖L2(0,L)dt

⎞⎠
1
2

+ T
1
2 sup
t∈[0,T ]

‖v(t, ·)‖2
L2(0,L)

⎞⎟⎠

≤ C(L)

⎛⎜⎝ sup
t∈[0,T ]

‖v(t, ·)‖
3
2
L2(0,L)

⎛⎝ T∫
0

‖vxx(t, ·)‖L2(0,L)dt

⎞⎠
1
2

+ T
1
2 ‖v‖2

X(QT )

⎞⎟⎠
≤ C(L)

(
sup

t∈[0,T ]
‖v(t, ·)‖

3
2
L2(0,L)

(
T

1
2 ‖vxx‖L2(0,T ;L2(0,L))

) 1
2 + T

1
2 ‖v‖2

X(QT )

)

≤ C(L)

⎛⎝T
1
4 sup
t∈[0,T ]

‖v(t, ·)‖L2(0,L)

(
sup

t∈[0,T ]
‖v(t, ·)‖L2(0,L)‖vxx‖L2(QT )

) 1
2

+ T
1
2 ‖v‖2

X(QT )

⎞⎠
≤ C(L)

(
T

1
4 ‖v‖X(QT )

(
sup

t∈[0,T ]
‖v(t, ·)‖L2(0,L) + ‖vxx‖L2(QT )

)
+ T

1
2 ‖v‖2

X(QT )

)

= C(L)
(
T

1
4 + T

1
2

)
‖v‖2

X(QT ),

showing that

‖v2‖L2(0,T ;L2(0,L)) = ‖v2‖L2(QT ) ≤ C(L)(T 1
2 + T

1
4 )‖v‖2

X(QT ). (4.5)

On the space X(QT ) define the application Θ : X(QT ) −→ X(QT ) by

Θv = S
(
u0,Γ

(
ϕ−Q(S(u0, 0, f − vvx, h̃))

)
, f − vvx, h̃

)
.

Let ϕ ∈ W 1,p(0, T ), u0 ∈ L2(0, L), h̃ ∈ H be given such that hi ∈ Lp(0, T ), for i = 1, 2, 3, 4 and f ∈
L1(0, T ; L2(0, L)). Applying the results of Lemma 2.4, for s = 0, Theorem 4.2 and inequality (4.5) we have, 
for p = 2, that
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‖Θv‖X(QT ) ≤ C(T )
(
‖u0‖L2(0,L) + ‖f‖L1(0,T ;L2(0,L)) + ‖h̃‖H

+ ‖vvx‖L1(0,T ;L2(0,L)) +
∥∥∥ϕ−Q(S(u0, 0, f − vvx, h̃))

∥∥∥
W̃ 1,p(0,T )

)
≤ C(T )

(
‖u0‖L2(0,L) + ‖f‖L1(0,T ;L2(0,L)) + ‖h̃‖H

+ ‖vvx‖L1(0,T ;L2(0,L)) + ‖ϕ′‖L2(0,T ) + ‖q′‖L2(0,T )
)

≤ C(T )
(
‖u0‖L2(0,L) + ‖f‖L1(0,T ;L2(0,L)) + ‖h̃‖H + ‖ϕ′‖L2(0,T )

+ ‖f‖L2(0,T ;L2(0,L)) + ‖vvx‖L1(0,T ;L2(0,L)) +
∥∥∥∥v2

2

∥∥∥∥
L2(0,T ;L1(0,L))

)

≤ C(T )
(
c0 + T

1
4

)
‖v‖2

X(QT ),

and in a similar way

‖Θv1 − Θv2‖X(QT ) ≤ C(T )T 1
4 (‖v1‖X(QT ) + ‖v1‖X(QT ))‖v1 − v2‖X(QT ),

where

c0 = ‖u0‖L2(0,L) + ‖f‖L2(0,T ;L2(0,L)) + ‖h̃‖H + ‖ϕ′‖L2(0,T )

and the constant C(T ) is nondecreasing with increasing T .
Fix c0 and consider T0 > 0 such that 8C(T0)2T

1
4
0 c0 ≤ 1 and then, for any T ∈ (0, T0], we can choose

r ∈

⎡⎣2C(T )c0,
1(

4C(T )T 1
4

)
⎤⎦ .

By the other hand, for a fixed T > 0, pick

r = 1(
4C(T, L)T 1

4

)
and

c0 ≤ γ = 1(
8C(T )2T 1

4

) ,
so in both cases

C(T )c0 ≤ r

2 and C(T )T 1
4 r ≤ 1

4 ,

thus Θ is a contraction on B(0, r) ⊂ X(QT ). In this way, there exists a unique fixed point

u = Θu ∈ X(QT )

satisfying (1.3) and the integral condition (3.4) when

h = Γ
(
ϕ−Q(S(u0, 0, f − uux, h̃))

)
.

As the uniqueness can be obtained in the standard way, Theorem 1.1 is proved. �



18 R.A. Capistrano-Filho, L. Soares de Sousa / J. Math. Anal. Appl. 506 (2022) 125546
5. Internal control

This section is dedicated to prove the internal controllability result for system (1.3) when f assumes 
a special form, namely f(t, x) = f0(t)g(t, x). First, we prove that the linear system associated to (1.3) is 
controllable in the sense proposed in the introduction, finally, we extend this result for the full system using 
a fixed point theorem, as made in the previous section.

5.1. Linear result

The next lemma is a key point to prove one of the main results of this manuscript and can be read as 
follows.

Lemma 5.1. Assuming that h = h̃ = u0 = 0 in the system (3.1), for g ∈ C(0, T ; L2(0, L)) and ω ∈ J be 
given such that ∣∣∣∣∣∣

L∫
0

g(t, x)ω(x)dx

∣∣∣∣∣∣ ≥ g0 > 0, ∀ t ∈ [0, T ], (5.1)

and ϕ ∈ W̃ 1,p(0, T ), for some p ∈ [1, ∞], there exists a unique function f0 = Γ(ϕ) ∈ Lp(0, T ) such that the 
solution u = S(0, 0, f0g, 0) of (3.1) satisfies the overdetermination condition (1.2). Moreover,

Γ : W̃ 1,p(0, T ) �−→ Lp(0, T )

is a linear bounded operator and its norm is nondecreasing with increasing T.

Proof. With this hypothesis in hand, define the following linear application

G : Lp(0, T ) −→ L1(0, T ;L2(0, L))

by G(f0) = f0g, which satisfies

‖G(f0)‖L1(0,T ;L2(0,L)) ≤ T
p−1
p ‖g‖C([0,T ];L2(0,L))‖f0‖Lp(0,T )

Now, considering the mapping Λ = Q ◦ S ◦G : Lp(0, T ) −→ W̃ 1,p(0, T ) as

(Λf0)(t) =
L∫

0

u(t, x)ω(x)dx,

where u = S(0, 0, f0g, 0), since Q, S and G are linear and bounded operators, we have that Λ is a bounded 
linear operator. Additionally, using Lemma 3.1 and the continuity of the operator S, Λ acts boundedly from 
the spaces Lp(0, T ) to the space W̃ 1,p(0, T ).

Note that ϕ = Λf0, for f0 ∈ Lp(0, T ), means that the function f0 gives the desired solution of our control 
problem. So, with this in hand define the operator A : Lp(0, T ) −→ Lp(0, T ) by

(Af0)(t) = ϕ′(t)
g1(t)

− 1
g1(t)

L∫
u(t, x)(ω′ + ω′′′ − ω′′′′′)dx,
0
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where u = S(0, 0, f0g, 0) and

g1(t) =
L∫

0

g(t, x)ω(x)dx,

for all t ∈ [0, T ]. Thus, as done in Lemma 4.1 we have that Λf0 = ϕ if and only if f0 = Af0.
Now, we are concentrating on proving the following.

Claim 3. A is a contraction.

For the case when 1 ≤ p < ∞, consider f01 and f02 in Lp(0, T ), u1 = S(0, 0, f01g, 0) and u2 =
S(0, 0, f02g, 0). Thus,

Af01 −Af02 = − 1
g1

L∫
0

(u1 − u2)(ω′ + ω′′′ − ω′′′′′)dx.

Moreover, rewrite the following functions as u = u1 − u2 and f1 = f01 − f02, thanks to the inequality (3.4), 
holds that

‖u1(t, ·) − u2(t, ·)‖L2(0,L) ≤ 2‖g‖C(0,T ;L2(0,L))‖f01 − f02‖L1(0,t), ∀t ∈ [0, T ]. (5.2)

Let γ > 0, for p < +∞ in the analog way as we did in (4.3), we have

‖e−γt(Af01 −Af02)‖Lp(0,T ) ≤
1
g0

‖ω‖H5(0,L)

⎛⎝ T∫
0

e−γpt‖u1(t, ·) − u2(t, ·)‖pL2(0,L)dt

⎞⎠
1
p

≤ C(p)

⎛⎝ T∫
0

e−γpt

T∫
0

|f01(τ) − f02(τ)|pdτdt

⎞⎠
1
p

≤2
1
pC(p)
(γp)

1
p

‖f01 − f02‖Lp(0,T )

(
1 − e−γpT

2

) 1
p

≤ C1

(γp)
1
p

‖e−γt(f01 − f02)‖Lp(0,T )

where C1 = C1(T, p, ‖ω‖H5(0,L), g0, ‖g‖C(0,T ;L2(0,L))). So, just take γ = (2C1)p
p and A is a contraction in this 

case.
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Now, consider p = ∞. For γ > 0, we get similarly to what was done (4.4) that

sup
t∈[0,T ]

e−γt |((Ah1)(t) − (Ah2)(t))) | ≤ 2C(g0, ‖g‖, ‖ω‖H5(0,L)) sup
t∈[0,T ]

e−γt‖f01 − f02‖L1(0,t)

≤ 2C(g0, ‖g‖, ‖ω‖H5(0,L)) sup
t∈[0,T ]

t∫
0

eγ(τ−t)|f01(τ) − f02(τ)|dτ

≤ 2C(g0, ‖g‖, ‖ω‖H5(0,L))‖f01 − f02‖L∞(0,T ) sup
t∈[0,T ]

1
γ

[1 − e−γt]

≤ 1
γ

2C(g0, ‖g‖, ‖ω‖H5(0,L))‖f01 − f02‖L∞(0,T )

≤C1

γ
‖f01 − f02‖L∞(0,T ),

where C1 = C1(T, ‖ω‖H5(0,L), g0, ‖g‖C(0,T ;L2(0,L))). Thus, if γ = 2C1 we have A is contractions, finishing 
the case p = +∞, proving Claim 3.

Therefore, for each ϕ ∈ W̃ 1,p(0, T ), there exists a unique f0 ∈ Lp(0, T ) such that f0 = A(f0), i.e., 
ϕ = Λ(f0). It follows that Λ is invertible, and its inverse Γ : Lp(0, T ) �−→ W̃ 1,p(0, T ) is a continuous 
operator thanks to the Banach’s theorem. Additionally, we have

‖Γ(ϕ)‖Lp(0,T ) ≤ C(T )‖ϕ′‖Lp(0,T ).

The end of the proof follows in the same way as in Lemma 4.1, and so, the proof is complete. �
Let us now enunciate a result concerning the internal controllability for the linear system. The result is 

the following one.

Theorem 5.2. Assume that p ∈ [1, ∞], u0 ∈ L2(0, L), h ∈ Lmax{2,p}(0, T ), h̃ ∈ H, with hi ∈ Lp(0, T ), for 
i = 1, 2, 3, 4 and f2 ∈ Lp(0, T ; L1(0, L)) such that f2x ∈ L1(0, T ; L2(0, L)). If g ∈ C([0, T ]; L2(0, L)), ω ∈ J , 
ω′′(L) �= 0 and ϕ ∈ W 1,p(0, T ) satisfies (1.6) and∣∣∣∣∣∣

L∫
0

g(t, x)ω(x)dx

∣∣∣∣∣∣ ≥ g0 > 0, ∀t ∈ [0, T ]

then there exists a unique function f0 ∈ Lp(0, T ) such that the solution u = S(u0, h, f0g + f2x, ̃h) of (3.1)
satisfies

L∫
0

u(t, x)ω(x)dx = ϕ(t), t ∈ [0, T ].

Proof. Pick û = S(u0, h, −f2x, ̃h) solution of (3.1) with f = −f2x. Now, consider ϕ̂ = ϕ − Q(û) with 
ϕ ∈ W 1,p(0, T ). By Lemma 3.1, together with (1.6), follows that ϕ̂ ∈ W̃ 1,p(0, T ). Therefore, due to the 
Lemma 5.1, there exists a unique Γϕ̂ = f0 ∈ Lp(0, T ) such that the solution v = S(0, 0, f0g, 0) of (3.1) with 
f = f0g satisfies

L∫
v(t, x)ω(x)dx = ϕ̂(t), t ∈ [0, T ].
0
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Thus, taking u = û+ v = S(u0, h, f0g− f2x, ̃h), we have that u solution of (3.1) have the following property

L∫
0

u(t, x)ω(x)dx = ϕ(t),

for t ∈ [0, T ], showing the result. �
5.2. Nonlinear result

In this section we are able to prove the second main result of this article.

Proof of Theorem 1.2. In the assumption of Theorem 5.2, pick f2 = −v2

2 for an arbitrary v ∈ X(QT ). Now, 
define the mapping Θ : X(QT ) −→ X(QT ) as follows

Θv = S
(
u0, h,Γ

(
ϕ−Q(S(u0, h,−vvx, h̃))

)
g − vvx, h̃

)
.

In the same way as done in the proof of Theorem 1.1, we have

‖Θv‖X(QT ) ≤ C(T )
(
c0 + T

1
4 ‖v‖2

X(QT )

)
and

‖Θv1 − Θv2‖X(QT ) ≤ C(T )T 1
4 (‖v1‖X(QT ) + ‖v1‖X(QT ))‖v1 − v2‖X(QT ).

With this in hand we can proceed as the Theorem 1.1 to conclude that Θ is a contraction and there exists 
a unique fixed point u ∈ X(QT ) such that f0 = Γ

(
ϕ −Q(S(u0, h, −uux, ̃h))

)
. �
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