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Abstract The aim of this work is to consider the internal stabilization of a nonlinear cou-
pled system of two Korteweg–de Vries equations in a finite interval under the effect of a
very weak localized damping. The system was introduced by Gear and Grimshaw to model
the interactions of two-dimensional, long, internal gravity waves propagation in a stratified
fluid. Considering feedback controls laws and using “Compactness–Uniqueness Argument,”
which reduce the problem to use a unique continuation property, we establish the exponen-
tial stability of the weak solutions when the exponent in the nonlinear term ranges over the
interval [1, 4).
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1 Introduction

1.1 Setting of the Problem

In [5], a complex system of equations was derived by Gear and Grimshaw to model the
strong interaction of two-dimensional, long, internal gravity waves propagating on neigh-
boring pycnoclines in a stratified fluid. It has the structure of a pair of Korteweg-de Vries
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equations coupled through both dispersive and nonlinear effects and has been the object
of intensive research in recent years. In particular, we also refer to [1] for an extensive
discussion on the physical relevance of the system.

An interesting possibility now presents itself is the study of the stability properties when
the model is posed on a bounded domain (0, L). In this paper, we are mainly concerned
with the study of the Gear-Grimshaw system
⎧
⎨

⎩

ut + uux + uxxx + a3vxxx + a1vvx + a2(uv)x = 0, in (0, L) × (0, ∞),

cvt + rvx + vvx + a3b2uxxx + vxxx + a2b2uux + a1b2(uv)x = 0, in (0, L) × (0, ∞),

u(x, 0) = u0(x), v(x, 0) = v0(x), in (0, L),

(1.1)
satisfying the following boundary conditions

{
u(0, t) = 0, u(L, t) = 0, ux(L, t) = 0, in (0, ∞),

v(0, t) = 0, v(L, t) = 0, vx(L, t) = 0, in (0, ∞),
(1.2)

where a1, a2, a3, b2, c, r ∈ R. We also assume that

1 − a23b2 > 0 and b2, c > 0.

The purpose is to see whether one can force the solutions of those systems to have certain
desired properties by choosing appropriate damping mechanism. More precisely, we study
the following fundamental problem related to the asymptotic behavior of the solutions for t

sufficiently large:

Stabilization Problem Can one find two feedback controls laws: f = Gu and g = Gv

so that the system
{

ut + uxxx + a3vxxx + a(u)ux + a1vvx + a2(uv)x + Gu = 0

b1vt + rvx + vxxx + b2a3uxxx + a(v)vx + b2a2uux + b2a1(uv)x + Gv = 0,
(1.3)

with boundary condition (1.2), is asymptotically stable as t → +∞ ?
If such the feedback controls laws exists, then the system (1.3)–(1.2) is said to be

stabilizable.

1.2 State of Art

In what concerns the stabilization problems, most of the works have been focused on a
bounded interval with a localized internal damping (see, for instance, [12] and the references
therein). However, the stabilization results for system (1.1)–(1.2) was first obtained in [4],
when the authors considered the system in a periodic domain. Recently, Capistrano–Filho et
al. [3] proved a result which extends the result proved by Dávila [4], which one was proved
only for s ≤ 2. More precisely, in [3], they showed that for any fixed integer s ≥ 3, the
solutions are exponentially stable in the Sobolev spaces

Hs
p(0, 1) := {

u ∈ Hs(0, 1) : ∂n
x u(0) = ∂n

x u(1), n = 0, . . . , s
}

with periodic boundary conditions.

TheoremA ( Capistrano–Filho et al. [3]) Consider

b1 = b2 = 1 (1.4)
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and

r = 0, a21 + a22 = a1 + a2, |a3| < 1, and (a1 − 1)a3 = (a2 − 1)a3 = 0. (1.5)

If φ, ψ ∈ Hs
p(0, 1) for some integer s ≥ 3, then the solution of

⎧
⎪⎪⎨

⎪⎪⎩

ut + uux + uxxx + a3vxxx + a1vvx + a2(uv)x + k(u − [u]) = 0,
vt + vvx + vxxx + a3uxxx + b2a2uux + b2a1(uv)x + k(v − [v]) = 0,
u(0, x) = φ(x),

v(0, x) = ψ(x),

(1.6)

where [f ] denotes the mean value of f defined by

[f ] :=
∫ 1

0
f (x) dx

satisfies the estimate

‖u(t) − [u(t)]‖Hs
p(0,1) + ‖v(t) − [v(t)]‖Hs

p(0,1) = o(e−k′t ), as t → ∞
for each k′ < k.

The proof of Theorem A follows the ideas introduced in [6] for the usual KdV equation
by using the infinite family of conservation laws for this equation. Such conservations lead
to the construction of a suitable Lyapunov function that gives the exponential decay of the
solutions.

Concerning with bounded domain (0, L), recently, Nina et. al. [11] proved that under
presence of a localized damping, represented by a function b = b(x), the following system

⎧
⎨

⎩

ut + uxxx + a3vxxx + a(u)ux + a1vvx + a2(uv)x + b(x)u = 0,
b1vt + rvx + vxxx + b2a3uxxx + a(v)vx + b2a2uux + b2a1(uv)x + b(x)u = 0,
u(x, 0) = u0(x), v(x, 0) = v0(x),

(1.7)
where 0 < x < L, t > 0, with boundary conditions (1.2) is globally uniformly exponential
stable when b satisfies

{
b ∈ L2(0, L) is a nonnegative function, such that

b(x) ≥ b0 > 0 a. e. in ω, where ω ⊂ (0, L) is a nonempty open set.
(1.8)

More precisely, they proved the following result:

Theorem B ( Nina et al. [11]) Let a = a(x) be a C2 function such that

|a(x)| ≤ C(1 + |x|p), |a′(x)| ≤ C(1 + |x|p−1), |a′′(x)| ≤ C(1 + |x|p−2), ∀ x ∈ R

where C is a positive constant and 1 ≤ p < 4. Then, if b satisfies (1.8), system (1.7)–(1.2)
is globally uniformly exponential stable.

The techniques used to prove this result are different from those used in the proof of
TheoremA. The proof of the Theorem B is reduced to show a unique continuation property
one since b(x)u = b(x)v = 0 implies that (u, v) ≡ (0, 0) in {b(x) > 0}× (0, T ). However,
in this problem, the unique continuation property can not be applied directly. To overcome
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this problem, the authors developed a Carleman inequality which allows the authors prove
directly the unique continuation of weak solution.

1.3 Main Result

In this work, we treat a very special case in which the source terms f and g, introduced in
the Eq. 1.3, are defined by the operators

Gu = 1ω

(

u(t, x) − 1

|ω|
∫

ω

u(t, x)dx

)

(1.9)

and

Gv = 1ω

(

v(t, x) − 1

|ω|
∫

ω

v(t, x)dx

)

, (1.10)

respectively. Here, ω ⊂ (0, L) is a nomempty open set and 1ω denotes the characteristic
function of the set ω.

We assume that a = a(s) is real-valued function that satisfying the condition
⎧
⎪⎨

⎪⎩

a(0) = 0, |a(j)(s)| ≤ c (1 + |s|p−j ), ∀ s ∈ R,

where c is a positive constant and j = 0, 1 if 1 ≤ p < 2

and j = 0, 1, 2 if p ≥ 2.

(1.11)

Let us consider the total energy associated to Eq. 1.3, in this case

Es(t) = 1

2

∫ L

0
(b2u

2 + b1v
2)dx. (1.12)

Then, we can (formally) verify that

1

2

d

dt

∫ L

0
(b2u

2 + b1v
2)dx = −

[
b2

2
u2x(0, t) + 1

2
v2x(0, t) + a3b2ux(0, t)vx(0, t)

]

−
(
b2||Gu||2

L2(ω)
+ ||Gv||2

L2(ω)

)
= −1

2

(
√

b2ux(0, t) +
√

a23b2vx(0, t)

)2

−1

2

(
1 − a23b2

)
v2x(0, t) −

(
b2||Gu||2

L2(ω)
+ ||Gv||2

L2(ω)

)
≤ 0, (1.13)

for any t > 0. The inequality above shows that the terms Gu and Gv plays the role
of a damping mechanisms and, consequently, we can investigate whether the solutions of
Eqs. 1.3–1.2 tend to zero as t → ∞ and under what rate they decay.

Thus, the main result of this work gives a answer to the stabilization problem proposed
on the beginning of this paper and can be read as follows.

Theorem 1.1 Let a = a(x) be a C2 function such that

|a(x)| ≤ C(1 + |x|p), |a′(x)| ≤ C(1 + |x|p−1), |a′′(x)| ≤ C(1 + |x|p−2), ∀ x ∈ R

where C is a positive constant and 1 ≤ p < 4. Then, there exist positive constants C and k,
such that for any (u0, v0) ∈ [L2(0, L)]2 with

Es(0) ≤ R0,
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the corresponding solution (u, v) of
{

ut + uxxx + a3vxxx + a(u)ux + a1vvx + a2(uv)x + Gu = 0

b1vt + rvx + vxxx + b2a3uxxx + a(v)vx + b2a2uux + b2a1(uv)x + Gv = 0,
(1.14)

satisfying the following boundary conditions
{

u(0, t) = 0, u(L, t) = 0, ux(L, t) = 0,
v(0, t) = 0, v(L, t) = 0, vx(L, t) = 0,

(1.15)

where 0 < x < L, t > 0,Gu andGv are defined by Eqs. 1.9 and 1.10, respectively, satisfies

Es(t) ≤ Ce−ktEs(0), ∀t ≥ 0. (1.16)

To prove Theorem 1.1, we use the so called “Compactness-Uniqueness Argument” which
reduces our problem to use a unique continuation property proved by Nina et al. [11] (for
more details, see Section 3).

The following remarks are now in order:

Remark 1.2 A similar feedback law was used in [14] and, more recently, in [7] for
Korteweg-de Vries equation (KdV), to prove a globally uniformly exponential result in a
periodic domain. In [7], the damping with a null mean was introduced to conserve the inte-
gral of the solution, which for KdV represents the mass (or volume) of the fluid. Such form
is thus motivated by a physical interpretation.

Remark 1.3 Note that Theorem 1.1 improves the result proved in [11] (see Theorem B)
in the sense that the decay is obtained with a weaker amount of damping, which not
involves a physical interpretation. Moreover, Theorem 1.1 still holds true for other types

of feedback laws, for instance, if the feedback is defined by f = 1ω

(
− d2

dx2
u
)−1

and

g = 1ω

(
− d2

dx2
v
)−1

. This previous damping mechanism was used by Massarolo et al. [10]

for the KdV equation.

The paper is outlined as follows:

– In Section 2, we review some results of the existence of solutions of the system
(1.14)–(1.15) proved in [11] that will be used thereafter. In addition, we prove that the
nonlinear problem with the extra terms Gu and Gv is also well-posedness.

– Section 3 is devoted to prove our main result, Theorem 1.1.
– Section 4 is related with some extension results. More precisely, when a(x) = x4

the stabilization of the solution of the system (1.14)–(1.15) is obtained. Moreover, for
a(u) = up, p ∈ (2, 4), the existence of weak solutions is also verified in this section.

– Finally, Section 5 contains further comments and a open problem related with the
solutions of the system (1.14)–(1.15).

2 Existence of Solutions for the Gear-Grimshaw System

Most of the results in this section were proved by Nina et al. [11] and Rosier et al. [13]. To
make the work more complete, we present all of this results and, additionally, we prove the
well-posedness result for the nonlinear system with extra terms Gu and Gv.
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2.1 The Linear System

In this subsection, we present results concerning of the existence of solutions of the linear
system corresponding to Eqs. 1.14–1.15, namely

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut + uxxx + a3vxxx = 0, in (0, L) × (0, ∞),

cvt + rvx + a3b2uxxx + vxxx = 0, in (0, L) × (0, T ),

u(0, t) = 0, u(L, t) = 0, ux(L, t) = 0, in (0, ∞),

v(0, t) = 0, v(L, t) = 0, vx(L, t) = 0, in ((0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x), in (0, ∞).

(2.1)

First, we need introduce the Hilbert space X = [L2(0, L)]2 endowed with the inner
product

((u, v), (ϕ, ψ))X = b2

b1

∫ L

0
uϕdx +

∫ L

0
vψdx

and consider the operator
A : D(A) ⊂ X → X

where

D(A) = {(u, v) ∈ [H 3(0, L)]2 : u(0) = v(0) = u(L) = v(L) = ux(L) = vx(L) = 0}
and

A(u, v) =
( −uxxx − a3vxxx

− r
b1

vx − b2a3
b1

uxxx − 1
b1

vxxx

)

. (2.2)

With this notation, system (2.1) can be now written as an abstract Cauchy problem in X.
Letting U = (u, v) we have

{
dU
dt

= AU

U(0) = U0 = (u0, v0.

On the other hand, it is easy to verify that the adjoint operator A∗, associated to A, is
defined by

A∗(ϕ, ψ) =
(

ϕxxx + a3ψxxx
r
b1

ψx + 1
b1

ψxxx + b2a3
b1

ϕxxx

)

(2.3)

where
A∗ : D(A∗) ⊂ X → X

and

D(A∗) = {(ϕ, ψ) ∈ [H 3(0, L)]2 : ϕ(0) = ψ(0) = ϕ(L) = ψ(L) = ϕx(0) = ψx(0) = 0}.
The following results were borrowed from [11]:

Proposition 2.1 The operator A and its adjointA∗ are dissipative in X.

Theorem 2.2 Let (u0, v0) ∈ X. There exists a unique weak solution (u, v) = S( · )(u0, v0)
of Eq. 2.1 such that

(u, v) ∈ C([0, T ];X).

Moreover, if (u0, v0) ∈ D(A), then Eq. 2.1 has a unique (classical) solution (u, v) such
that

(u, v) ∈ C([0, T ];D(A)) ∩ C1(0, T ; X).
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Theorem 2.3 Let (u0, v0) ∈ X and (u, v) = S( · )(u0, v0) the weak solution of (2.1).
Then, (u, v) ∈ L2(0, T ; [H 1(0, L)]2) ∩ H 1(0, T ; [H−2(0, L)]2) and there exists a positive
constant c0 such that

||(u, v)||L2(0,T ;[H 1(0,L)]2) ≤ c0||(u0, v0)||X.

Corollary 2.4 For any s ∈ [0, 3] and any (u0, v0) ∈ [Hs(0, L)]2, the solution (u, v) of
Eq. 2.1 belongs to C([0, T ]; [Hs(0, L)]2).

2.2 The Nonlinear System

For 0 ≤ s ≤ 3, let Xs denote the collection of all the functions w ∈ Hs(0, L) satisfying the
s-compatibility conditions

{
w(0) = w(L) = 0 when 1/2 < s ≤ 3/2,
w(0) = w(L) = w′(L) = 0 when 3/2 < s ≤ 3.

Xs is endowed with the Hilbertian norm ||w||Hs . For any T > 0, we introduce the space

Ys,T = C([0, T ]; Xs) ∩ L2([0, T ];Hs+1(0, L))

endowed with the norm

||w||Ys,T
= ||w||C([0,T ];Hs(0,L)) + ||w||L2([0,T ];Hs+1(0,L)).

The next technical Lemma will be related with the nonlinear problem.

Lemma 2.5 For any T > 0, 1 ≤ p ≤ 2 and u, v, w ∈ Y0,T ,
∫ T

0
‖Gu‖L2(ω) dt ≤ CT ‖u‖Y0,T

, (2.4)

∫ T

0
‖uwx‖L2(0,L) dt ≤ CT 1/4 ‖u‖Y0,T

‖w‖Y0,T
, (2.5)

∫ T

0

∥
∥
∥u |w|p−1 wx

∥
∥
∥

L2(0,L)
dt ≤ CT (2−p)/4 ‖u‖Y0,T

‖w‖p
Y0,T

, (2.6)

∫ T

0

∥
∥
∥u |v|p−1 wx

∥
∥
∥

L2(0,L)
dt ≤ CT (2−p)/4 ‖u‖Y0,T

‖w‖Y0,T
‖v‖p−1

Y0,T
, (2.7)

where C is a positive constant that depends only on L.

Proof Estimates (2.5), (2.6), and (2.7) can be obtained following closely the arguments used
in [13]. Therefore, we will omit the proofs.

Now, we prove the estimate (2.4). By a direct computation, we have

∫ T

0
||Gu||2

L2(ω)
dt =

∫ T

0

(∫

ω

u2dx − |ω|−1
(∫

ω

udx

)2
)1/2

dt

≤
∫ T

0

(∫ L

0
u2dx

)1/2

dt ≤ T ||u||Y0,T .

Thus, (2.4) hold and the proof is finished.
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We will consider the following system
⎧
⎨

⎩

ut + uxxx + a3vxxx + a(u)ux + a1vvx + a2(uv)x + Gu = 0

b1vt + rvx + vxxx + b2a3uxxx + a(v)vx + b2a2uux + b2a1(uv)x + Gv = 0,
u(x, 0) = u0(x), v(x, 0) = v0(x)

(2.8)

where 0 < x < L, t > 0, satisfying the following boundary conditions
{

u(0, t) = 0, u(L, t) = 0, ux(L, t) = 0,
v(0, t) = 0, v(L, t) = 0, vx(L, t) = 0,

(2.9)

where Gu and Gv are defined by Eqs. 1.9 and 1.10, respectively.
The next Lemma and the well-posedness result for the system (2.8)–(2.9) were borrowed

in [11]. Since the proof is similar as made in [11], we will omit it.

Lemma 2.6 Let a = a(x) be a C0 function such that, for 0 ≤ p < 4,

|a(x)| ≤ C(1 + |x|p), ∀ x ∈ R,

where C is a positive constant. Then, for any T > 0

‖(u(·, T ), v(·, T ))‖2X −
∥
∥
∥(u

0, v0)

∥
∥
∥
2

X

+ 1

b1

∫ T

0

[(
√

b2ux(0, t) +
√

a23b2vx(0, t)

)2

+
(
1 − a23b2

)
v2x(0, t)

]

dt

+ 2

b1

∫ T

0

(
b2||Gu||2

L2(ω)
+ ||Gv||2

L2(ω)

)
dt = 0

and

||(u, v)||2
L2(0,T ;[H 1

0 (0,L)]2)

≤ C

{

(1 + T )

∥
∥
∥(u

0, v0)

∥
∥
∥
2

X
+ T

∥
∥
∥(u

0, v0)

∥
∥
∥
6

X
+ T

∥
∥
∥(u

0, v0)

∥
∥
∥

8+2p
4−p

X

}

where C is a positive constant.

Lemma 2.7 Let a = a(x) be a C1 function such that

|a(x)| ≤ C(1 + |x|p) and |a′(x)| ≤ C(1 + |x|p−1), ∀ x ∈ R,

where C is a positive constant and 1 ≤ p < 2. Then, for any T > 0 and (u0, v0) ∈ X

system (2.8)–(2.9) has a unique global solution.

As a consequence, we get the following result.

Corollary 2.8 Let a = a(x) be a C2 function such that

|a(x)| ≤ C(1 + |x|p), |a′(x)| ≤ C(1 + |x|p−1), |a′′(x)| ≤ C(1 + |x|p−2), ∀ x ∈ R,

where C is a positive constant and p ≥ 2. Then, for any (u0, v0) ∈ [H 1
0 (0, L)]2 there exists

a T ∗ > 0, depending only on ||(u0, v0)||[H 1(0,L)]2 , such that system (2.8)–(2.9) admits a
unique solution (u, v) ∈ L∞(0, T ∗; [H 1

0 (0, L)]2).
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Proof The ideas involved in the proof follow closely the previous arguments and those
presented in [13, Lemmas 2.11 and 2.12]. The extension of such results for the model under
consideration was proved in [1, Proposition 5.3] (see also [2, Remark 5.5]). Therefore, we
will omit the details.

We note that in order to apply the fixed point argument, we first rewrite the system in the
following integral form

U(t) = T (t)(u0, v0)

−
∫ t

0
T (t−τ)

(

a(u)ux + a1vvx + a2(uv)x,
a(v)

b1
vx + a2b2

b1
uux + a1b2

b1
(uv)x

)

dτ,

where {T (t)}t≥0 denotes the C0 semigroup property generated by the linear part of the
system. To obtain the global well-posedness, one needs to establish the corresponding global
a priori estimate in the space H 1(0, L), which is not available.

Using Lemma 2.7, we prove the main result of this section:

Theorem 2.9 Let a = a(x) be a C2 function such that

|a(x)| ≤ C(1 + |x|p), |a′(x)| ≤ C(1 + |x|p−1), |a′′(x)| ≤ C(1 + |x|p−2), ∀ x ∈ R,

where C is a positive constant and 1 ≤ p < 4. Then, for any (u0, v0) ∈ X, system (2.8)–
(2.9) admits at least one solution

(u, v) ∈ Cw(R; X) ∩ L2
loc(R

+; [H 1(0, L)]2).

Proof We consider a sequence of functions {an}n∈N in C∞
0 (R;R), such that

{
an(μ) → a(μ) uniformly on each compact set of R,
∣
∣
∣a

j
n(μ)

∣
∣
∣ ≤ C

(
1 + |μ|p−j

)
, ∀ n ≥ 0, ∀ μ ∈ R, j = 0, 1, 2,

(2.10)

where C > 0. Observe that

|an(μ)| ≤ C(1 + |μ|p) and
∣
∣a′

n(μ)
∣
∣ ≤ C(n)(1 + |μ|p−1).

For each n, Lemma 2.7 give us the existence of a unique function

U = (u, v) ∈ C(R+; X) ∩ L2(R; [H 1
0 (0, L)]2)

which solves
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un,t + an(un)un,x + un,xxx + a3vn,xxx + a1vnvn,x

+a2(unvn)x + Gun = 0,
b1vn,t + rvn,x + an(vn)vn,x + b2a3un,xxx + vn,xxx

+b2a2unun,x + b2a1(unvn)x + Gvn = 0,

un(0, t) = un(L, t) = un,x(L, t) = 0,

vn(0, t) = vn(L, t) = vn,x(L, t) = 0,

un(x, 0) = u0n(x), vn(x, 0) = v0n(x),

(2.11)
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where 0 < x < L and t > 0. Moreover, from Lemma 2.6, we get

‖(un(·, T ), vn(·, T ))‖2X+ 1

b1

∫ T

0

[(
√

b2un,x(0, t)+
√

a23b2vn,x(0, t)

)2

+
(
1− a23b2

)
v2n,x(0, t)

]

dt

+ 2

b1

∫ T

0

(
b2||Gun||2L2(ω)

+ ||Gvn||2L2(ω)

)
dxdt =

∥
∥
∥

(
u0n, v

0
n

)∥
∥
∥
2

X

and
∫ T

0

∫ L

0
u2n,xdxdt +

∫ T

0

∫ L

0
v2n,xdxdt ≤ C

{

(1 + T )

∥
∥
∥

(
u0n, v

0
n

)∥
∥
∥
2

X
+ T

∥
∥
∥

(
u0n, v

0
n

)∥
∥
∥
6

X

+ T

∥
∥
∥

(
u0n, v

0
n

)∥
∥
∥

8+2p
4−p

X

}

,

for any T ≥ 0, where C > 0. Due the estimates above, we have that the sequence

{Un}n∈N = {(un, vn)}n∈N is bounded in L∞(R+;X) ∩ L2
loc

(

R
+;
[
H 1

0 (0, L)
]2
)

.

Therefore, there exists a function U = (u, v) and a subsequence, still denoted by the
same index n, such that

Un → U weakly ∗ in L∞(R+; X) (2.12)

Un → U weakly in L2
loc(R

+; [H 1
0 (0, L)]2). (2.13)

The goal now is to pass the limit in Eq. 2.11 to prove that U = (u, v) is a weak solution
of the problem (2.8)–(2.9). Here, the main difficult is the study of the nonlinear terms. In
order to deal with this, we introduce the following functions

An(ϕ) :=
∫ ϕ

0
an(s)ds and Ãn(ϕ) :=

∫ ϕ

0
san(s)ds (2.14)

and we will prove that

(An(un), An(vn)) → (A(u),A(v)) in [D′((0, L) × (0,+∞))]2, as n → ∞.(2.15)

To obtain this result, we divide the prove in several steps:

Step 1. For any T > 0 and α ∈ (1, 6
p+1 ], the sequence {(An(un), An(vn))}n∈N is bounded

in the space [Lα((0, T ) × (0, L))]2.
Indeed, from Eq. 2.10

|An(ϕ)| ≤
∫ ϕ

0
|an(s)| ds ≤

∫ ϕ

0
C1(1 + |s|p)dv ≤ C1(1 + |ϕ|p+1),

which gives that

|An(ϕ)|α ≤ C2(1 + |ϕ|α(p+1)),

for some positive constants C1 and C2 that does not depend on n. Then, since

α(p + 1) − 2

2
≤ 2,
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we can combine Lemma 2.6 and Gagliardo-Nirenberg’s inequality to obtain
∫ T

0

∫ L

0
|An(un)|α dxdt ≤ C2

(

T L +
∫ T

0

∫ L

0
|un|α(p+1) dxdt

)

≤ C2

(

T L +
∫ T

0
‖un‖α(p+1)−2

L∞(0,L)
‖un‖2L2(0,L)

dt

)

≤ C2T L+C2C3

∫ T

0
‖un‖

α(p+1)−2
2

L2(0,L)

∥
∥un,x

∥
∥

α(p+1)−2
2

L2(0,L)
‖un‖2L2(0,L)

dt

≤ C2

(

T L + C3

∥
∥
∥u

0
∥
∥
∥

α(p+1)
2 +1

∫ T

0

∥
∥un,x

∥
∥

α(p+1)−2
2

L2(0,L)
dt

)

≤ C4,

for some C3 > 0 and C4 = C4(T , ||(u0, v0)||X) > 0. Analogously,
∫ T

0

∫ L

0
|An(vn)|α dxdt ≤ C4,

which complete the proof of the step 1.
Step 2. For any T > 0 and α ∈ (1, 6

p+1 ], the sequence {Un,t }n∈N = {(un,t , vn,t )}n∈N is

bounded in Lα(0, T ; [H−2(0, L)]2).
The estimates obtained for {Un}n∈N guarantees that the terms vnvn,x, (unvn)x , unun,x

and (unvn)x that appears in Eq. 2.11 are bounded in Lα(0, T ; [H−2(0, L)]2). In fact,
observe that α ≤ 2, L1(0, L) ⊂ H−2(0, L) and

‖unvn,x‖L2(0,T ;L1(0,L)) ≤ ‖un‖L∞(0,T ;L2(0,L))‖vn‖L2(0,T ;H 1
0 (0,L)).

The same result is valid for the linear terms. On the other hand, due to the embedding

Lα(0, L) ↪→ H−1(0, L)

and by using step 1, we conclude that

∂x(An(un), An(vn)) =(a(un)un,x, a(vn)vn,x) is bounded in [L2(0, T ; [H−2(0, L)]2)]2.
Observing that

un,t = −(a(un)un,x + un,xxx + a3vn,xxx + a1vnvn,x + a2(unvn)x + Gun)

and

b1vn,t = −(rvn,x + a(vn)vn,x + b2a3un,xxx + vn,xxx + b2a2unun,x)

−(b2a1(unvn)x + Gvn)

the result holds.
Step 3. (ERGOROFF THEOREM) Let 
 be an open subset in RN . If {fn}n∈N is a sequence

in Lp(
), with 1 < p < ∞, such that fn ⇀ f and fn(x) → g(x) a.e., as n → ∞, then
f (x) = g(x) a.e.

Now, by the steps 1–3, we can complete the proof. Indeed, since

{Un}n∈N is bounded in L2
(

0, T ;
[
H 1

0 (0, L)
]2
)

and
{Un,t }n∈N in L2(0, T ; [H−2(0, L)]2),
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from [15, Corollary 4], we obtain a subsequence, still denoted by the same index, such
that

Un → U in [L2(0, T ; L2(0, L))]2, strongly and a. e. (2.16)

Then, from Eqs. 2.10 and 2.16, we have

(An(un(x, t)), An(vn(x, t))) → (A(u(x, t)), A(v(x, t))) a.e. for (x, t) ∈ (0, L) × R
+.

Moreover, from step 1, we can pass to a subsequence, if necessary, to obtain a function

g = (g1, g2) ∈ Lα(0, T ; [Lα(0, L)]2)
for which

(An(un(x, t)), An(vn(x, t))) ⇀ (g1, g2) weakly in [Lα(0, T ; Lα(0, L))]2.
Consequently, Ergoroff Theorem (see step 3) allows us to conclude that

(A(u(x, t)), A(v(x, t))) = (g1, g2)

and then

(An(un(x, t)), An(vn(x, t))) → (A(u(x, t)), A(v(x, t))) in [D′((0, L) × (0, +∞))]2.
Taking the spatial derivative, we deduce that

(an(un)un,x, an(vn)vn,x) → (a(u)ux, a(v)vx) in [D′((0, L) × (0, +∞))]2.
Finally, putting the convergences above together, we can pass the weak limit in the sys-

tem (2.11). However, to conclude that U is a weak solution of Eq. 2.11, it remains to prove
that U satisfies

U(x, 0) = (u0(x), v0(x))

and

U ∈ Cw([0, T ];X).

As {Un}n∈N is bounded in L∞(0, T ;X) and

{Un,t }n∈N ∈ Lα(0, T ; [H−2(0, L)]2),
with α > 1, we can apply again [15, Corollary 4] to obtain a subsequence {Un}n∈N satisfying

Un → U in C([0, T ]; [H−1(0, L)]2), for any T > 0. (2.17)

In particular,

U0
n (x) = Un(x, 0) → U(x, 0),

since

U ∈ L∞(0, T ; X) ∩ C([0, T ]; [H−1(0, L)]2),
from [16, Lemma 1.4] we deduce that U ∈ Cw([0, T ];X). Therefore, the prove of
Theorem 2.9 is archived.
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3 Exponential Stabilization

In this section, we prove the uniform exponential decay of the total energy Es(t), defined
by Eq. 1.12, associated to the following system
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut + uxxx + a3vxxx + a(u)ux + a1vvx + a2(uv)x + Gu = 0

b1vt + rvx + vxxx + b2a3uxxx + a(v)vx + b2a2uux + b2a1(uv)x + Gv = 0,
u(0, t) = 0, u(L, t) = 0, ux(L, t) = 0,
v(0, t) = 0, v(L, t) = 0, vx(L, t) = 0,
u(x, 0) = u0(x), v(x, 0) = v0(x)

(3.1)

where 0 < x < L, t > 0, with

Gu = 1ω

(

u(t, x) − 1

|ω|
∫

ω

u(t, x)dx

)

(3.2)

and

Gv = 1ω

(

v(t, x) − 1

|ω|
∫

ω

v(t, x)dx

)

, (3.3)

where ω ⊂ (0, L) is a nomempty open set and 1ω denotes the characteristic function of the
set ω.

To show our main result, we will use the so-called “Compactness-Uniqueness Argument”
due to J.-L. Lions (see [9]) which reduces the problem to prove a Unique Continuation
Property for weak solutions. As the weak solution of Eq. 3.1 may fail to be unique, we will
say that the solution is exponential stable if the following property holds.

Definition 1 System (3.1) is said to be locally uniformly exponentially stable in X if for
any R > 0 there exist positive constants C and α such that for any U0 = (u0, v0) with
E(0) ≤ R and for any weak solution U = (u, v) of Eq. 3.1, the following holds

Es(t) ≤ C Es(0)e
−αt , ∀ t > 0.

If the constant α is independent of R, the system (3.1) is said to be globally uniformly
exponentially stable in X.

The next proposition give us a local uniform result.

Proposition 3.1 Let a = a(x) be a C2 function such that

|a(x)| ≤ C(1 + |x|p), |a′(x)| ≤ C(1 + |x|p−1), |a′′(x)| ≤ C(1 + |x|p−2), ∀ x ∈ R

where C is a positive constant and 1 ≤ p < 4. Then, the system (3.1) is locally uniformly
stable.

Proof To obtain the exponential decay of Es(t) is known be necessary to prove the
following observability inequality

Es(0) ≤ C
∫ T

0

(
b2||Gu||2

L2(ω)
+ ||Gv||2

L2(ω)

)

+∫ T

0

[

1
2

(√
b2ux(0, t) +

√

a23b2vx(0, t)

)2

+ 1
2

(
1 − a23b2

)
v2x(0, t)

]

dt,
(3.4)
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for every finite energy solution of Eq. 3.1, where C = C(R, T ) is a positive constant. To
prove (3.4), we first multiply the first equation of Eq. 3.1 by (T − t)b2u and add with the
second one multiplied by (T − t)v. Therefore, by using integration by parts, we have

b2
2

∫ L

0 (u0)2dx + b1
2

∫ L

0 (v0)2dx ≤ 1
T

(
b2
2

∫ T

0

∫ L

0 u2dxdt + b1
2

∫ T

0

∫ L

0 v2dxdt
)

+ 1
2

∫ T

0

[(√
b2ux(0, t) +

√

a23b2vx(0, t)

)2

+ (
1 − a23b2

)
v2x(0, t)

]

dt

+∫ T

0

(
b2||Gu||2

L2(ω)
+ ||Gv||2

L2(ω)

)
dt.

(3.5)

Thus, to obtain (3.4), we have to prove the following claim:
For any T > 0 and R > 0, there exists a constant C(R, T ) > 0 satisfying

b2
b1

∫ T

0

∫ L

0 u2dxdt + ∫ T

0

∫ L

0 v2dxdt

≤ C(R, T )

(
∫ T

0

[(√
b2ux(0, t) +

√

a23b2vx(0, t)

)2

+ (
1 − a23b2

)
v2x(0, t)

]

dt

+ ∫ T

0 2
(
b2||Gu||2

L2(ω)
+ ||Gv||2

L2(ω)

)
dt
)

(3.6)

for any weak solution U of Eq. 3.1, whenever ||(u0, v0)||X ≤ R.
Indeed, if Eq. 3.6 is not true, there exists a sequence of functions

{Un}n∈N = {(un, vn)}n∈N ∈ Cw([0, T ];X) ∩ L2
(

0, T ;
[
H 1

0 (0, L)
]2
)

,

such that

||(un(·, 0), vn(·, 0))||X ≤ R, (3.7)

solution of
⎧
⎪⎪⎨

⎪⎪⎩

b1Un,t + AUn,xxx + RUn,x + B(Un)Un,x + C(Un)Un + GUn = 0,

Un(0, t) = Un(L, t) = Un,x(L, t) = 0,

Un(x, 0) = U0
n (x),

(3.8)

where x ∈ (0, L), t > 0 with U = (u, v),

A =
(

b1 b1a3
b2a3 1

)

,

B(U) =
(

b1a2v b1(a2u + a1v)

b2(a2u + a1v) b2a1u

)

R =
(
0 0
0 r

)

and

C(U) =
(

b1a(u) 0
0 a(v)

)

.

G is as diagonal matrix whose diagonal elements are damping operators b2G and G.
Additionally,

lim
n→∞

b2
b1

||un||2L2(0,T ;L2(0,L))
+ ||vn||2L2(0,T ;L2(0,L))

In

= ∞, (3.9)
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where

In = ∫ T

0

[(√
b2un,x(0, t) +

√

a23b2vn,x(0, t)

)2

+ (
1 − a23b2

)
v2n,x(0, t)

]

dt

+2
∫ T

0

(
b2||Gu||2

L2(ω)
+ ||Gv||2

L2(ω)

)
dt.

Let

σn :=
(

b2

b1
||un||2L2(0,T ;L2(0,L))

+ ||vn||2L2(0,T ;L2(0,L))

) 1
2 = ||Un||L2(0,T ;X) (3.10)

and consider

Zn(x, t) := 1

σn

Un(x, t) =
(

yn(x, t)

wn(x, t)

)

. (3.11)

For each n ∈ N, Zn satisfies the following system
⎧
⎪⎪⎨

⎪⎪⎩

b1Zn,t + AZn,xxx + RZn,x + σnB(Zn)Zn,x + C(σnZn)Zn + GZn = 0,

Zn(0, t) = Zn(L, t) = Zn,x(L, t) = 0,

Zn(x, 0) = Z0
n(x) = U0

n (x)

σn
,

(3.12)

with 0 < x < L and t > 0,
||Zn||2L2(0,T ;X)

= 1 (3.13)

and

∫ T

0

[(√
b2yn,x(0, t) +

√

a23b2wn,x(0, t)

)2

+ (
1 − a23b2

)
w2

n,x(0, t)

]

dt

+∫ T

0 2
(
b2||Gyn||2L2(ω)

+ ||Gwn||2L2(ω)

)
dt → 0,

(3.14)

as n → ∞. Observe that the energy dissipation law and Eq. 3.7 guarantee that σn is
bounded. Then, extracting a subsequence, still denoted by the same index, we can assume
that

σn → σ ≥ 0.

Moreover, combining (3.5), (3.13), and (3.14), we deduce that ||Z0
n||X is bounded. Then,

following the arguments used in the proof of Theorem 2.9, there exists a function Z =
(y,w) such that

Zn ⇀ Z in L∞(0, T ;X) weak * ,

Zn ⇀ Z in L2(0, T ; [H 1(0, L)]2) weak ,

Zn → Z in L2(0, T ;X) a. e. ,

Zn → Z in C([0, T ]; [H−1(0, L)]2),
C(σnZn)Zn,x → C(σZ)Zx in D′((0, L) × (0, T )).

(3.15)

The last convergence follows from the fact that

|a(σnμ)| ≤ C(1 + |σn|p |μ|p) ≤ C′(1 + |μ|p),

where C′ is a positive constant. Consequently, by Eqs. 3.14 and 3.15, we obtain

||Z||L2(0,T ;X) = 1 (3.16)
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and

∫ T

0

[(√
b2yx(0, t) +

√

a23b2wx(0, t)

)2

+ (
1 − a23b2

)
w2

x(0, t)

]

dt

+∫ T

0 2
(
b2||Gy||2

L2(ω)
+ ||Gw||2

L2(ω)

)
dt ≤ 0.

(3.17)

The previous statements ensures that Z fulfills
{

b1Zt + AZxxx + RZx + σB(Z)Zx + C(σZ)Z + GZ = 0,

Z(0, t) = Z(L, t) = 0,
(3.18)

in D′(ω × (0, T )). In addition, from Eq. 3.17, we get

Gy = 0

and
Gw = 0,

or equivalently,

y(x, t) − 1

|ω|
∫

ω

y(x, t)dx = 0 ⇐⇒ y(x, t) = 1

|ω|
∫

ω

y(x, t)dx

and

w(x, t) − 1

|ω|
∫

ω

w(x, t)dx = 0 ⇐⇒ w(x, t) = 1

|ω|
∫

ω

w(x, t)dx,

which implies that
y(x, t) = s1(t) on ω × (0, T )

and
w(x, t) = s2(t) on ω × (0, T ),

for some functions s1(t) and s2(t). Therefore, we have that Z fulfills
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

b1Zt + AZxxx + RZx + σB(Z)Zx + C(σZ)Z + GZ = 0,

Z(0, t) = Z(L, t) = 0,

Z =
(

s1(t)

s2(t)

)

on ω × (0, T ).

(3.19)

The first equation of Eq. 3.19 gives Z′(x, t) = 0 implying s′
1 = s′

2 = 0 which, combined
with a unique continuation property proved in [11, Corollary 3], yields that Z(x, t) ≡ s for
some constant s ∈ R in (0, L) × (0, T ). Since Z(L, t) = 0, we deduce that

Z ≡ 0 on (0, L) × (0, T ). (3.20)

Therefore, this completes the proof.

Remark 3.2 Observe that to apply [11, Corollary 3] we need Z ∈ L∞(0, T ; [H 1(0, L)]2),
however, by using [11, Proposition 3] with minor changes, we have Z in the appropriate
class.

Now, we are able to prove the main result of this paper.

Proof of Theorem 1.1 Proposition 3.1 guarantees the existence of a constant α > 0, such
that if Es(0) < 1, the corresponding solution fulfill

Es(t) ≤ C′Es(0)e
−αt , ∀ t > 0,
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where Es(t) is defined by Eq. 1.12. Moreover, given R > 0 we obtain positive constants
C = C(R) and β = β(R) such that

Es(t) ≤ CEs(0)e
−βt , ∀ t > 0,

whenever Es(0) < R. Then, setting TR := β−1 ln(RC), we get

Es(t) ≤ C′Es(TR)e−α(t−TR), ∀ t > TR,

which ensures that

Es(t) ≤ C′CEs(0)e
αTRe−αt , ∀ t > 0.

This completes the proof and main Theorem is proved.

4 Extension Results: Stabilization for the Critical Case and Weak
Solutions

4.1 The Critical Case

In this subsection, we will follow the arguments due to [8] to prove that for the critical
case a(u) = u4 we have the exponential decay of the total energy Es(t) in space X =
[L2(0, L)]2, assuming that ||(u0, v0)||X << 1. Moreover, for a(u) = up, p ∈ (2, 4), the
existence of weak solutions is also verified.

4.1.1 Exponential Decay

Note that the energy dissipation law (1.13), as well as Eq. 3.5, is still valid when a(u) = u4.
Then, the main result of this subsection can be read as follows:

Theorem 4.1 Consider Es(t) defined by Eq. 1.12. Then, there exist positive constants C

and k, such that for any (u0, v0) ∈ [L2(0, L)]2 with
Es(0) ≤ R0,

the corresponding solution (u, v) of
{

ut + uxxx + a3vxxx + u4ux + a1vvx + a2(uv)x + Gu = 0

b1vt + rvx + vxxx + b2a3uxxx + v4vx + b2a2uux + b2a1(uv)x + Gv = 0,
(4.1)

satisfying the following boundary conditions
{

u(0, t) = 0, u(L, t) = 0, ux(L, t) = 0,
v(0, t) = 0, v(L, t) = 0, vx(L, t) = 0,

(4.2)

where 0 < x < L, t > 0,Gu andGv are defined by Eqs. 1.9 and 1.10, respectively, satisfies

Es(t) ≤ Ce−ktEs(0), ∀t ≥ 0. (4.3)

Proof To prove the exponential decay, the following claim will be needed.
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Claim For any T > 0 and R > 0, there exists a constant C = C(R, T ) > 0, such that

∫ T

0

∫ L

0 u2dxdt + b1
b2

∫ T

0

∫ L

0 v2dxdt

≤ C(R, T )

(
∫ T

0

[(√
b2ux(0, t) +

√

a23b2vx(0, t)

)2

+ (
1 − a23b2

)
v2x(0, t)

]

dt

+ ∫ T

0 2
(
b2||Gu||2

L2(ω)
+ ||Gv||2

L2(ω)

)
dt
)

,

(4.4)

for any solution solution of Eqs. 4.1–4.2, whenever ||(u0, v0)||2X ≤ R2.

To prove the previous claim, we use the approach developed in the proof of the
Proposition 3.1. To use it, the following estimates are required.

Estimate 1 Multiplying the first equation in Eq. 4.1 by xu, the second by xv and integrating
by parts we obtain

∫ T

0

∫ L

0

(
u2x + v2x

)
dxdt ≤ C

[
||(u0, v0)||2X + ∫ T

0

∫ L

0 (u6 + v6)dxdt
]
, (4.5)

where C = C(T , L) is a positive. Now, we will bound (u, v) in L2(0, T ; [H 1
0 (0, L)]2. By

using the Gagliardo-Nirenberg inequality and Eq. 1.13, we get that
∫ T

0

∫ L

0 u6dxdt ≤ C
∫ T

0 ‖u(t)‖4
L2(0,L)

‖ux(t)‖2L2(0,L)
dt

≤ C ‖(u0, v0)‖4X
∫ T

0 ‖ux(t)‖2L2(0,L)
dt

(4.6)

for some constant C > 0. Analogously, we can estimate
∫ T

0

∫ L

0 v6dxdt . Thus, by (4.5), we
have that

(
1 − C||(u0, v0)||4X

) ||(u, v)||2
L2(0,T ;[H 1

0 (0,L)]2) ≤ C(T , L)||(u0, v0)||2X. (4.7)

Estimate 2 We need bound ut , respectively vt . To do this, we we should have to pay some
attention to the nonlinear term u4ux = 1

5∂x(u
5), respectively v4vx . First, observe that the

argument used in Eq. 4.6 give us
∫ T

0

∫ L

0 |u5|6/5dxdt ≤ c ‖u0‖4 ∫ T

0 ‖ux(t)‖2L2(0,L)
dt ≤ c ‖(u0, v0)‖4X

∫ T

0 ‖ux(t)‖2L2(0,L)
dt.

Therefore, from the Eqs. 1.13 and 4.7, the following holds

{u5} is bounded in L
6
5 ((0, T ) × (0, L)).

On the other hand, since

L
6
5 (0, L) ↪→ H−1(0, L),

we conclude that

{u4ux} =
{
1

5
∂x(u

5)

}

is bounded in L
6
5 (0, T ;H−2(0, L)).

The result is also verified for v4vx .
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Estimate 3 Here, we can obtain a bound for (ut , vt ). Indeed, since
{

ut = −(uxxx + a3vxxx + u4ux + a1vvx + a2(uv)x + Gu),

b1vt = −(vx + vxxx + b2a3uxxx + v4vx + b2a2uux + b2a1(uv)x + Gv),

the second estimate allows to conclude that

(ut , vt ) is bounded in L
6
5 (0, T ; [H−2(0, L)]2). (4.8)

Estimate 4 Finally, arguing by contradiction (see Proposition 3.1), the main difficult
is to pass to the limit in the nonlinear term w4

nwn,x when {wn}n∈N is bounded in
L2

(
0, T ; H 1

0 (0, L)
)∩L∞(0, T ; L2(0, L)). To deal with this nonlinear term, we prove that:

Claim There exists s > 0 such that

{wn}n∈N is bounded in L4(0, T ; Hs(0, L)),

the embedding Hs(0, L) ↪→ L4(0, L) being compact.

In fact, by interpolation we can deduce that {wn} is bounded in
[Lq(0, T ; L2(0, L)), L2(0, T ; H 1

0 (0, L))]θ = Lp(0, T ; [L2(0, L),H 1
0 (0, L)]θ ),

where 1
p

= 1−θ
q

+ θ
2 and 0 < θ < 1. Thus, choosing q = ∞, θ = 1/2, so that p = 4, the

claim holds with s = 1/2, i.e.,

[L2(0, L),H 1
0 (0, L)] 1

2
= H

1
2 (0, L).

Furthermore, the embedding H
1
2 (0, L) ↪→ L4(0, L) is compact. Therefore, from of the

previous estimates and using a classical compactness result shown by [15, Corollary 4], we
can extract a subsequence of {wn}n∈N, still denoted by the same index n, such that

wn → w strongly in L4(0, T ; L4(0, L)), (4.9)

which allows us to pass to the limit in the nonlinear term. Then, arguing as in Theorem 1.1,
we deduce that Es(t) decays to zero exponentially.

4.1.2 Existence of Weak Solutions

Definition 2 For (u0, v0) ∈ X and T > 0, we denote by a weak solution of Eqs. 1.14–1.15
any function

u ∈ Cw([0, T ];X) ∩ L2(0, T ; [H 1(0, L)]2)
which solves (1.14)–(1.15), and such that, as p → 4,

up → u weakly ∗ in L∞(0, T ; X),

up → u weakly in L2(0, T ; [H 1(0, L)]2),
up denoting a solution of Eqs. 1.14–1.15 (as given by Theorem 2.9) for a(x) = xp and
2 < p < 4.

Theorem 4.2 For any (u0, v0) ∈ [L2(0, L)]2 there exists a weak solution of
{

ut + uxxx + a3vxxx + upux + a1vvx + a2(uv)x + Gu = 0

b1vt + rvx + vxxx + b2a3uxxx + vpvx + b2a2uux + b2a1(uv)x + Gv = 0,
(4.10)
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satisfying the following boundary conditions
{

u(0, t) = 0, u(L, t) = 0, ux(L, t) = 0,
v(0, t) = 0, v(L, t) = 0, vx(L, t) = 0,

(4.11)

where 0 < x < L, t > 0, Gu, Gv are defined by Eqs. 1.9 and 1.10, and 2 < p < 4.

We follow the same steps of the previous estimates and for the sake of simplicity, we
drop the notation up and use the notation u.

Proof We will only present a sketch of the proof.

Estimate 1 Using the multipliers xu and xv the solution fulfill
∫ T

0

∫ L

0

(
u2x + v2x

)
dxdt ≤ C

[
||(u0, v0)||2X + ∫ T

0

∫ L

0 (up+2 + vp+2)dxdt
]
, (4.12)

where C = C(T , L) is a positive constant. By Gagliardo-Nirenberg inequality we obtain

∫ T

0

∫ L

0
up+2dxdt ≤ C

∫ T

0
‖u(t)‖(1− 2

p+2 )(p+2)

L2(0,L)
‖ux(t)‖2L2(0,L)

dt

≤ C ‖(u0, v0)‖p
X

∫ T

0
‖ux(t)‖2L2(0,L)

dt, (4.13)

for some constant C > 0 that does not depend on p. The same holds to
∫ T

0

∫ L

0 vp+2dxdt .
The above estimate and Eq. 4.12 give us that

(1 − ||(u0, v0)||pX)||(u, v)||2
L2(0,T ;[H 1

0 (0,L)]2) ≤ C ||(u0, v0)||2X. (4.14)

Estimate 2 We are interested to bound the term upu. By the previous subsection and using
(4.13)–(4.14), we deduce that

{up+1} is bounded in L
p+2
p+1 ((0, T ) × (0, L)),

with a bound uniform in p. Therefore,

{(p + 1)upux} = {∂x(u
p+1)} is bounded in L

p+2
p+1 (0, T ; H−2(0, L)),

i.e.,

{upux} = {∂x(u
p+1)} is bounded in L

p+2
p+1 (0, T ;H−2(0, L)) ⊂ L

6
5 (0, T ;H−2(0, L)),

since p is intended to go to 4 and p+2
p+1 > 6

5 . The same holds to vpvx .

Estimate 3 Combining the equations in Eq. 4.10 and the previous estimates, we deduce that

(ut , vt ) is bounded in L
p+2
p+1 (0, T ; [H−2(0, L)]2) ⊂ L

6
5 (0, T ;H−2(0, L)),

with a bound uniform in p.

Estimate 4 Finally, to deal with to the nonlinear term, we claim that the following hold:

Claim There exists s > 0 such that {up} is bounded in L4(0, T ; Hs(0, L)), the embedding

Hs(0, L) ↪→ L4(0, L)

being compact.
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As made in the previous subsection and using interpolation, the results holds. Indeed,
since 1

p
= 1−θ

q
+ θ

2 , choosing θ = 1
2 and q = ∞ we obtain the claim with s = 1

2 .
Due to the statement above and classical compactness results due to [15, Corollary 4],

we can extract a subsequence of {up}, still denoted by {up}, and a function
u ∈ L∞(0, T ;X) ∩ L2(0, T ; [H 1(0, L)]2),

such that up → u, as p → 4, in the sense described above. Therefore, the result is archived.

5 Further Comment

5.1 Only One Damping Mechanism

Note that the energy dissipation law (1.13), as well as, Eq. 3.5 is still valid for only one
damping mechanism Gu (or Gv). So it is natural to believe that the same method devel-
oped here should ensures the exponential decay of solution of the system (1.14)–(1.15) with
only Gu (or Gv). However, we can not apply directly the ideas contained in the proof of
Proposition 3.1 because that the unique continuation property proved in [11] it is valid when:

(u, v) = 0 in ω implies (u, v) = 0 in (0, T ) × (0, L),

due the Carleman estimate proved by the authors in [11, Theorem 3.1]. Thus, to get the
result with one damping mechanism a new Carleman estimate will be need with only one
observation in u (or v). Therefore, the following problem remains open:

Open problem Is the system (1.14)–(1.15) with one damping mechanism Gu (or Gv)
asymptotically stable as t → +∞ ?
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