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Abstract
A family of Boussinesq systems has been proposed to describe the bi-directional 
propagation of small amplitude long waves on the surface of shallow water. 
In this paper, we investigate the well-posedness and boundary stabilization of 
the generalized higher order Boussinesq systems of Korteweg–de Vries—type 
posed on a interval. We design a two-parameter family of feedback laws for 
which the system is locally well-posed and the solutions of the linearized 
system are exponentially decreasing in time.

Keywords: Boussinesq system of higher order, stabilization, Möbius 
transform, critical length, fifth order KdV-type system
Mathematics Subject Classification numbers: Primary: 93B05, 93D15, 
35Q53

1. Introduction

1.1. Presentation of the problem

Boussinesq introduced in [8] several simple nonlinear systems of PDEs, including the 
Korteweg–de Vries (KdV) equation, to explain certain physical observations concerning water 
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waves, e.g. the emergence and stability of solitons. Unfortunately, several systems derived by 
Boussinesq proved to be ill-posed, so that there was a need to propose other systems similar 
to Boussinesq’s ones but with better mathematical properties. In this spirit, an evolutionary 
version of the Boussinesq systems was proposed in [14, equations (4.7) and (4.8), p 283]:




ηt + ux +
1
6β(3θ

2 − 1)uxxx +
1

120β
2(25θ4 − 10θ2 + 1)uxxxxx

+α(ηu)x +
1
2αβ(θ

2 − 1)(ηuxx)x = 0

ut + ηx + β
[ 1

2 (1 − θ2)− τ
]
ηxxx + β2

[ 1
24 (θ

4 − 6θ2 + 5) + τ
2 (θ

2 − 1)
]
ηxxxxx

αuux + αβ
[
(ηηxx)x + (2 − θ2)uxuxx

]
= 0,

 
(1.1)

where η and u are real function of the real variables x, t. The small parameters α > 0 and β > 0 
represent, respectively, the ratio of wave amplitude to undisturbed fluid depth, and the square of 
the ratio of fluid depth to wave length, both are assumed to be of the same order of smallness. 
Finally, τ  represents a dimensionless surface tension coefficient, with τ = 0 corre sponding to 
the case of no surface tension and the velocity potential at height 0 � θ � 1. For further discus-
sions on the model and different modelling possibilities, see, e.g. [4, 5, 7, 12, 14, 23].

The goal of this paper is to investigate two problems that appear on the mathematical the-
ory when we consider the study of PDEs. The first one is the global well-posedness, in time, 
of system (1.1), which is so-called fifth order KdV–type system or second order Boussinesq 
system. Another problem is concerned with boundary stabilization of the linearized system 
associated to (1.1).

First, we consider the following system, carefully derived by (1.1) in a short appendix at 
the end of this paper,



ηt + ux − auxxx + a1(ηu)x + a2(ηuxx)x + buxxxxx = 0, in (0, L)× (0,∞),
ut + ηx − aηxxx + a1uux + a3(ηηxx)x + a4uxuxx + bηxxxxx = 0, in (0, L)× (0,∞),
η(x, 0) = η0(x), u(x, 0) = u0(x), in (0, L),

 (1.2)

where a  >  0, b  >  0, a �= b, a1  >  0, a2  <  0, a3  >  0 and a4  >  0, with the following boundary 
conditions



η(0, t) = η(L, t) = ηx(0, t) = ηx(L, t) = 0, in (0,∞),
u(0, t) = u(L, t) = ux(0, t) = ux(L, t) = 0, in (0,∞),
uxx(0, t) + α1ηxx(0, t) = 0, uxx(L, t)− α2ηxx(L, t) = 0, in (0,∞),

 (1.3)

for α1,α2 ∈ R+
∗ .

The energy associated to the model is given by

E(t) :=
1
2

∫ L

0
(η2(x, t) + u2(x, t))dx, (1.4)

and, at least formally, we can verify that E(t) satisfies

d
dt

E(t) = −α1b|ηxx(0, t)|2 − α2b|ηxx(L, t)|2 − a1

2

∫ L

0
η2uxdx

−a2

2

∫ L

0
η2uxxxdx + a3

∫ L

0
ηηxxuxdx +

a4

2

∫ L

0
u3

xdx.
 

(1.5)

Indeed, if we multiply the first equation of (1.2) by η, the second one by u and integrate by 
parts over (0, L), we obtain (1.5), by using the boundary conditions (1.3). This indicates that 
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E(t) does not have a definite sign, but the boundary conditions play the role of a feedback 
damping mechanism for the linearized system, namely,



ηt + ux − auxxx + buxxxxx = 0, in (0, L)× (0,∞),
ut + ηx − aηxxx + bηxxxxx = 0, in (0, L)× (0,∞),
η(x, 0) = η0(x), u(x, 0) = u0(x), in (0, L),

 (1.6)

with the boundary conditions given by (1.3).
Then, the following questions arise:

Problem A. Does E(t) → 0 as t → ∞? If it is the case, can we find a decay rate of E(t)? 

The problem might be easy to solve when the underlying model has a intrinsic dissipative 
nature. Moreover, in the context of coupled systems, in order to achieve the desired decay 
property, the damping mechanism has to be designed in an appropriate way to capture all the 
components of the system.

Before presenting an answer for problem A, it is necessary to investigate the global well-
posedeness of the full system (1.2) and (1.3). Thus, the following issue appears naturally:

Problem B. Is the fifth order KdV–type system globally well-posed in time, with initial data 
in Hs(0,L), for some s ∈ R+? 

1.2. Some previous results

It is by now well know that mathematicians are interested in the well-posedness of dispersive 
equation which depends on smoothing effects associated to datum (initial value or boundary 
value). The well-posedness of the initial value problem for single KdV equation and single 
fifth order KdV equation was deeply investigated. For an extensive reading on the subject 
see, for instance, [6, 11, 13, 15, 24] and the reference therein. In contrast, the well-posedness 
theory for the coupled system of KdV–type is considerably less advanced than the theory for 
single KdV–type equations [4, 5, 21–23]. The same is true for the stabilization properties.

Problem A was first addressed in [18] for a Boussinesq system of KdV–KdV type


ηt + ux + (ηu)x + uxxx = 0 in (0, L)× (0, T),
ut + ηx + uux + ηxxx = 0 in (0, L)× (0, T),
η(x, 0) = η0(x), u(x, 0) = u0(x) in (0, L),

 (1.7)

with the boundary conditions



u(0, t) = uxx(0, t) = 0, in (0, T),
ux(0, t) = α0ηx(0, t), ux(L, t) = −α1ηx(L, t) in (0, T),
u(L, t) = α2η(L, t), uxx(L, t) = −α2ηxx(L, t) in (0, T),

 (1.8)

where α0 � 0, α1 > 0 and α2 > 0. Note that, with boundary conditions (1.8), we have the 
following identity

d
dt

E(t) = −α2|η(L, t)|2 − α1|ηx(L, t)|2 − α0|ηx(0, t)|2 − 1
3

u3(L, t)−
∫ L

0
(ηu)xηdx,

which does not have a definite sign. In this case, first the authors studied the linearized system 
to derive some a priori estimates and the exponential decay in the L2–norm. It is established the 
Kato smoothing effect by means of the multiplier method, while the exponential decay is obtained 
with the aid of some compactness arguments that reduce the issue to prove a unique continuation 
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property for a spectral problem associated to the space operator (see, for instance, [2, 19]). The 
exponential decay estimate of the linear system is then combined with the contraction mapping 
theorem in a convenient weighted space to prove the global well-posedness together with the 
exponential stability property of the nonlinear system (1.7) and (1.8) with small data.

Recently, in [10], the authors studied a similar boundary stabilization problem for the sys-
tem (1.7) with less amount of damping. More precisely, the following boundary conditions 
was considered

{
η(0, t) = 0, η(L, t) = 0, ηx(0, t) = 0, in (0, T),
u(0, t) = 0, u(L, t) = 0, ux(L, t) = −αηx(L, t) in (0, T),

with α > 0. In this case, it follows that

d
dt

E(t) = −α|ηx(L, t)|2 − 1
3

u3(L, t)−
∫ L

0
(ηu)xηdx.

Proceeding as in [18] the local exponential decay is also obtained for solution issuing from 
small data. However, due to the lack of dissipation, the unique continuation issue for the lin-
earized system can not be obtained by standard methods. In order to overcome this difficult, 
the spectral problem was then solved by extending the function (η, u) by 0 outside (0, L), by 
taking its Fourier transform and by using Paley–Wiener theorem. Finally, the problem was 
reduced to check for which values of L  >  0 two functions are entire for a set of parameters. 
Then, the authors concluded that the stabilization properties holds if and only if the length L 
does not belong to the following critical set

N := {π
√

k2 + kl + l2

3
; k, l ∈ N∗}.

We point out that the same set was obtaned by Rosier [19] while studying the boundary con-
trollability of the KdV equation with a single control in L2(0,T) acting on the Neumann bound-
ary condition. This shows that the linearized Boussinesq system inherits some interesting 
properties initially observed for the KdV equation.

1.3. Main results and comments

In the present work, we address the problems described in the previous subsection and our 
main results provide a partial positive answer for the problems A and B. In order to give an 
answer for problem B, we apply the ideas suggested in [9, 10], therefore, let us consider

X3 = {(η, u) ∈ [H3(0, L) ∩ H2
0(0, L)]2; ηxx(0) = vxx(L) = 0}.

With this notation, one of the main result of this article can be read as follows:

Theorem 1.1. Let T  >  0. Then, there exists ρ = ρ(T) > 0 such that, for every (η0, u0) ∈ X3 
satisfying

‖(η0, u0)‖X3
< ρ,

there exists a unique solution (η, u) ∈ C([0, T]; X3) of (1.2) and (1.3). Moreover

‖(η, u)‖C([0,T];X3)
� C‖(η0, u0)‖X3

for some positive constant C = C(T).
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In order to prove theorem 1.1 we first analyze the linearized model by using a semi-
group approach. Moreover, by using multiplier techniques, we also obtain the so-called Kato 
smoothing effect, which is crucial to study the stabilization problem. In what concerns the 
full system, the idea is to combine the linear theory and a fixed point argument. However, 
the linear theory described above seems to be unable to provide the a priori bounds needed 
to use a fixed point argument. To overcome this difficult, we consider solutions obtained via 
transposition method, which leads to consider a duality argument and the solutions of the 
corresponding adjoint system. Then, the existence and uniqueness can be proved by using the 
Riesz-representation theorem that gives, at first, a solution which is not continuous in time, 
only L∞. The continuity is then obtained with the aid of what is known as hidden regularity 
of the boundary terms of the adjoint system. In fact, we prove that such system has a class of 
solutions which belong to appropriate spaces possessing boundary regularity. On the other 
hand, it is also important to note that identity (1.5) does not provide any global (in time) a 
priori bounds for the solutions. Consequently, it does not lead to the existence of a global (in 
time) solution in the energy space. The same lack of a priori bounds occurs when higher order 
Sobolev norms are considered (e.g. Hs-norm).

With the damping mechanism proposed in (1.3), the stabilization of the linearized higher 
order Boussinesq system (1.6) holds for any length of the domain. Thus, the second main 
result of this paper is the following:

Theorem 1.2. Assume that α1 > 0, α2 > 0 and L  >  0. Then, there exist some constants 
C0,µ0 > 0, such that, for any (η0, u0) ∈ X0 := [L2 (0, L)]2, system (1.3)–(1.6) admits a unique 
solution

(η, u) ∈ C0 ([0, T] ; X0) ∩ L2 (0, T; [H2 (0, L)]2
)

satisfying

‖(η(t), u(t))‖X0 � C0e−µ0t‖(η0, u0)‖X0 , ∀t � 0.

In order to prove theorem 1.2 we proceed as in [10, 18], i.e. combining multipliers and 
compactness arguments which reduces the problem to show a unique continuation result for 
the state operator. To prove this result, we extend the solution under consideration by zero in 
R \ [0, L] and take the Fourier transform. However, due to the complexity of the system, after 
to take Fourier transform of the extended solution (η, u) it is not possible to use the same tech-
niques used in [10]. Thus, to prove our main result we proceed as Santos et al [20].

For a better understanding we will introduce a general framework to explain the idea of 
the proof. After to take Fourier transform, the issue is to establish when a certain quotient of 
entire functions still turn out to be an entire function. We then pick a polynomial q : C → C 
and a family of functions

Nα : C× (0,∞) → C,

with α ∈ C4 \ {0}, whose restriction Nα(·, L) is entire for each L  >  0. Next, we consider a 
family of functions fα(·, L), defined by

fα(µ, L) =
Nα(µ, L)

q(µ)
,

in its maximal domain. The problem is then reduced to determine L  >  0 for which there exists 
α ∈ C4 \ {0} such that fα(·, L) is entire. In contrast with the analysis developed in [10], this 
approach does not provide us an explicit characterization of a critical set, if it exists, only 
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ensure that the roots of f  have a relations with the Möbius transform (see the proof of theorem 
1.2 above).

Remarks. In what concerns our main results, theorems 1.1 and 1.2, the following remarks 
are now in order.

 i.  As pointed out before, the Boussinesq systems (1.1) have physical sense if they respect 
some smallness conditions for the parameters α and β. For simplicity, let us assume 
α = β = ε and consider the model

{
ηt + ux − aεuxxx + a1ε(ηu)x + a2ε

2(ηuxx)x + bε2uxxxxx = 0,
ut + ηx − aεηxxx + a1εuux + a3ε

2(ηηxx)x + a4ε
2uxuxx + bε2ηxxxxx = 0,

 (1.9)

  where 0 < ε � 1. Thus, an important step to justify (1.9) as an asymptotic model for water 
waves is to establish the global well-posedness result on time scale of order 1ε. Moreover, 
at least formally, the difference of the solutions of such systems and the solutions of the 
free-surface Euler equations in suitable Sobolev norms should be of order O(ε3t). In this 
sense, the problems we address here are more interesting from the mathematical point of 
view and the global well-posedness result given by theorem 1.1 ensures only a lifespan of 
order O(1) for the solution.

 ii.  The exponential decay given by theorem 1.2 can be stated in the following equivalent 
form (see section 5): find C  >  0 and T  >  0, such that

‖(η0, u0)‖2
X0

� C
∫ T

0

(
|ηxx(L, t)|2 + |ηxx(0, t)|2

)
dt, (1.10)

  holds for any finite energy solution of (1.3)–(1.6). Indeed, since the energy E(t) associ-

ated to the linear model is decreasing, from (1.10) we obtain γ = C
C+1 satisfying

E(T) < γE(0).

  Then, the semigroup property associated to the model allows us to conclude that

E(t) �
1
γ

E(0)e
ln γ

T t.

  However, in order to prove (1.10) we argue by contradiction and use the so-called 
compactness-uniqueness argument. Therefore, with this approach, we cannot deter-
mine the dependence of the constants C0 and µ0 appearing in theorem 1.2 in terms of 
a, b, a1, a2, a3, a4 or any variation of these values.

 iii.  The proof of theorem 1.2 relies strongly on a unique continuation property of the spectral 
problem associated to the space operator (see lemma 4.2). Therefore, if we consider the 
Boussinesq system with the same prefactors, the symmetry of the terms ∂3

x and ∂5
x allows 

us to deal with the spectral problem by using the approach introduced in [10]. If we 
remove such assumption, a new approach is needed to fix the issue.

The remaining part of this paper is organized as follows: in section 2, we establish the 
well-posedness of the linearized system. We also derived a series of linear estimates for a 
conservative linear Boussinesq system which will we used to prove the well-posedness for 
the full system (1.2) and (1.3). Section 3, is then devoted to prove the well-posedness for the 
nonlinear system. In section 4, we prove an observability inequality associated to (1.3)–(1.6), 
which plays a crucial role to get second result of this paper, theorem 1.2, proved in the same 
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section. Finally, some additional comments and open problems are proposed in the section 5. 
We also include an appendix with a detailed derivation of the system (1.2).

2. Well-posedness: linear system

The goal of the section is to prove the well-posedness of the linearized system. In order to do 
that, we use the semigroup theory and multiplier techniques, which allow us to derived so-
called Kato smoothing effect. We also use the same approach to study a similar conservative 
linear Boussinesq system that will be used to study the full system (see, definition 3.1).

2.1. Well-posedness: linear system

We will study the existence of solutions of the linear homogeneous system associated to (1.6), 
namely




ηt + ux − auxxx + buxxxxx = 0, in (0, L)× (0, T),
ut + ηx − aηxxx + bηxxxxx = 0, in (0, L)× (0, T),
η(0, t) = η(L, t) = ηx(0, t) = ηx(L, t) = 0, in (0, T),
u(0, t) = u(L, t) = ux(0, t) = ux(L, t) = 0, in (0, T),
uxx(0, t) + α1ηxx(0, t) = 0, in (0, T),
uxx(L, t)− α2ηxx(L, t) = 0, in (0, T),
η(x, 0) = η0(x), u(x, 0) = u0(x), in (0, L). 

(2.1)

We consider X0 with the usual inner product and the operator A : D(A) ⊂ X0 → X0 with 
domain

D(A) = {(η, u) ∈ [H5(0, L) ∩ H2
0(0, L)]2 : uxx(0) + α1ηxx(0) = 0, uxx(L)− α2ηxx(L) = 0},

defined by

A(η, u) = (−ux + auxxx − buxxxxx,−ηx + aηxxx − bηxxxxx).

Let us denote X5  =  D(A). Moreover, we introduce the Hilbert space

X5θ := [X0, X5][θ], for 0 < θ < 5,

where [X0, X5][θ] denote the the Banach space obtained by the complex interpolation method 
(see, e.g. [3]).

Then, the following result holds:

Proposition 2.1. If αi � 0, i = 1, 2, then A generates a C0-semigroup of contraction 
(S(t))t�0 in X0.

Proof. Clearly, A is densely defined and closed, so we are done if we prove that A and its 
adjoint A* are both dissipative in X0. It is easy to see that

A∗ : D(A∗) ⊂ X0 −→ X0

is given by A∗(ϕ,ψ) = (ψx − aψxxx + bψxxxxx,ϕx − aϕxxx + bϕxxxxx) with domain

D(A∗) = {(ϕ,ψ) ∈ X5 : ϕ(0) = ϕ(L) = ϕx(0) = ϕx(L) = 0,
ψ(0) = ψ(L) = ψx(0) = ψx(L) = 0,
ψxx(0)− α1ϕxx(0) = 0,ψxx(L) + α2ϕxx(L) = 0}.

R A Capistrano-Filho et alNonlinearity 32 (2019) 1852
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Pick any (η, u) ∈ D(A). Multiplying the first equation of (2.1) by η, the second one by u and 
integrating by parts, we obtain

(A(η, u), (η, u))X0
= −α2bη2

xx(L)− α1bη2
xx(0) � 0,

which demonstrates that A is a dissipative operator in X0. Analogously, we can deduce that, 
for any (ϕ,ψ) ∈ D(A∗),

(A∗(ϕ,ψ), (ϕ,ψ))X0
= −α2bϕ2

xx(L)− α1bϕ2
xx(0) � 0,

so that A* is dissipative, as well. Thus, the proof is complete. □ 

As a direct consequence of proposition 2.1 and the general theory of evolution equation, we 
have the following existence and uniqueness result:

Proposition 2.2. Let (η0, u0) ∈ X0. There exists a unique mild solution (η, u) = S(·)(η0, u0) 
of (2.1) such that (η, u) ∈ C([0, T]; X0). Moreover, if (η0, u0) ∈ D(A), then (2.1) has a unique 
(classical) solution (η, u) such that

(η, u) ∈ C([0, T]; D(A)) ∩ C1(0, T; X0).

The following proposition provides useful estimates for the standard energy and the Kato 
smoothing effect for the mild solutions of (2.1).

Proposition 2.3. Let (η0, u0) ∈ X0 and (η(t), u(t)) = S(t)(η0, u0). Then, for any T  >  0, we 
have that

‖(η0(x), u0(x))‖2
X0
− ‖(η(x, T), u(x, T))‖2

X0

=

∫ T

0

(
α2b|ηxx(L, t)|2 + α1b|ηxx(0, t)|2

)
dt

 

(2.2)

and

T
2
‖(η0(x), u0(x))‖2

X0
=

1
2
‖(η(x, t), u(x, t))‖2

L2(0,T;X0)

+ α2b
∫ T

0
(T − t)|ηxx(L, t)|2dt + α1b

∫ T

0
(T − t)|ηxx(0, t)|2dt.

 (2.3)

Furthermore, (η, u) ∈ L2(0, T; X2) and

‖(η, u)‖L2(0,T;X2) � C‖(η0, u0)‖X0 , (2.4)

where C = C(a, b, T) is a positive constant.

Proof. Pick any (η0, u0) ∈ D(A). Multiplying the first equation in (2.1) by η, the second one 
by u, adding the resulting equations and integrating over (0, L)× (0, T), we obtain (2.2) after 
some integration by parts. The identity may be extended to any initial state (η0, u0) ∈ X0 by a 
density argument. Moreover, multiplying the first equation in (2.1) by (T − t)η , the second by 
(T − t)u and integrating over (0, L)× (0, T) we derive (2.3) in a similar way.

Let us proceed to the proof of (2.4). Multiply the first equation by xu, the second one by xη 
and integrate over (0, L)× (0, T). Adding the obtained equations we get that

R A Capistrano-Filho et alNonlinearity 32 (2019) 1852



1860

∫ T

0

∫ L

0
x(ηu)tdxdt +

∫ T

0

∫ L

0

x
2
(|η|2 + |u|2)xdxdt

− a
∫ T

0

∫ L

0
x(ηηxxx + uuxxx)dxdt + b

∫ T

0

∫ L

0
x(ηηxxxxx + uuxxxxx)dxdt = 0.

After some integration by parts, it follows that
∫ T

0

∫ L

0
x(ηu)tdxdt − 1

2

∫ T

0

∫ L

0
(|η|2 + |u|2)dxdt − 3a

2

∫ T

0

∫ L

0
(|ηx|2 + |ux|2)dxdt

−5b
2

∫ T

0

∫ L

0
(|ηxx|2 + |uxx|2)dxdt +

bL
2

∫ T

0
(|ηxx(L, t)|2 + |uxx(L, t)|2)dt = 0,

hence,

1
2

∫ T

0

∫ L

0
(|η|2 + |u|2)dxdt +

3a
2

∫ T

0

∫ L

0
(|ηx|2 + |ux|2)dxdt

+
5b
2

∫ T

0

∫ L

0
(|ηxx|2 + |uxx|2)dxdt

� L
∫ L

0
(η(x, T)u(x, T)− η0(x)u0(x))dx

+
bL(1 + α2

2)

2

∫ T

0
|ηxx(L, t)|2dt.

 

(2.5)

By using (2.2) and Young inequality in the first integral of the right hand side in (2.5), we have 
that

1
2

∫ T

0

∫ L

0
(|η|2 + |u|2)dxdt +

3a
2

∫ T

0

∫ L

0
(|ηx|2 + |ux|2)dxdt +

5b
2

∫ T

0

∫ L

0
(|ηxx|2 + |uxx|2)dxdt

�
L
2

∫ L

0
(|η(x, T)|2 + |u(x, T)|2)dx

+
L
2

(
1 +

1 + α2
2

α2

)∫ L

0
(|η0(x)|2 + |u0(x)|d2)dx.

Clearly, (2.2) implies that E(T) � E(0), thus
∫ T

0

∫ L

0
(|η|2 + |u|2)dxdt + 3a

∫ T

0

∫ L

0
(|ηx|2 + |ux|2)dxdt + 5b

∫ T

0

∫ L

0
(|ηxx|2 + |uxx|2)dxdt

� L
(

1 +
1 + α2

2

α2

)∫ L

0
(|η0(x)|2 + |u0(x)|d2)dx.

Then, (2.4) holds. □ 

2.2. Well-posedness: a conservative linear system

This subsection is devoted to analyze a conservative linear model that will be used to derived 
the nonlinear theory.
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Let us starting by introducing the spaces

X0 := X0 := L2(0, L)× L2(0, L),

X5 = {(ϕ,ψ) ∈ [H5(0, L) ∩ H2
0(0, L)]2 : ϕxx(0) = ψxx(L) = 0}, (2.6)

and

X5θ := [X0, X5][θ], for 0 < θ < 1,

where [X0, X5][θ] denote the the Banach space obtained by the complex interpolation method 
(see, e.g. [3]). It is easily seen that

X1 =H1
0(0, L)× H1

0(0, L),

X2 ={(η, v) ∈ [H2(0, L) ∩ H1
0(0, L)]2; ηx(L) = vx(0) = 0}.

X3 ={(η, v) ∈ [H3(0, L) ∩ H2
0(0, L)]2; ηxx(0) = vxx(L) = 0}.

On the other hand, we shall use at some place below the following space

X7 := {(η, v) ∈ [H7(0, L) ∩ H2
0(0, L)]2; ηxx(0) = vxx(L) = 0,

−aη3x(L) + bη5x(L) = −av3x(L) + bv5x(L) = 0,
−aη3x(0) + bη5x(0) = −av3x(0) + bv5x(0) = 0,

−aη4x(0) + bη6x(0) = −av4x(L) + bv6x(L) = 0},

endowed with its natural norm. The space

X−s = (Xs)
′

denotes the dual of Xs with respect to the pivot space X0 = L2(0, L)× L2(0, L). The bracket 
〈., .〉X−s,Xs

 stands for the duality between X−s and Xs .
Now, we turn our attention to the well-posedness of the system associated to the differential 

operator Ã, given by

Ã(ϕ,ψ) = (−ψx + aψxxx − bψxxxxx,−ϕx + aϕxxx − bϕxxxxx), (2.7)

with domain, D(Ã) = X5. More precisely, we consider the following system



ηt + ux − auxxx + buxxxxx = 0, in (0, L)× (0, T),
ut + ηx − aηxxx + bηxxxxx = 0, in (0, L)× (0, T),
η(0, t) = η(L, t) = ηx(0, t) = ηx(L, t) = ηxx(0, t) = 0, on (0, T),
u(0, t) = u(L, t) = ux(0, t) = ux(L, t) = uxx(L, t) = 0, on (0, T),
η(x, 0) = η0(x), u(x, 0) = u0(x), on (0, L).

 

(2.8)

Proposition 2.4. The operator Ã is skew-adjoint in X0, and thus it generates a group of 
isometries (etA)t∈R in X0.

Proof. We show that Ã∗ = −Ã. First, we prove that −Ã ⊂ Ã∗. Indeed, for any 
(η, u), (θ, v) ∈ D(Ã), we have after some integration by parts,
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(
(θ, v), Ã(η, u)

)
X0

=−
∫ L

0
[θ(ux − auxxx + buxxxxx) + v(ηx − aηxxx + bηxxxxx)] dx

=

∫ L

0
[u(θx − aθxxx + bθxxxxx) + η(vx − avxxx + bvxxxxx)] dx

=
(

Ã(θ, v), (η, u)
)

X0

.

Now, we prove that Ã∗ ⊂ −Ã. Pick any (θ, v) ∈ D(Ã∗). Then, for some positive constant C, 
we have that

∣∣∣∣
(
(θ, v), Ã(η, u)

)
X0

∣∣∣∣ � C‖(η, u)‖X0
, ∀(η, u) ∈ D(A).

Thus, it follows that
∣∣∣∣
∫ L

0
[θ(ux − auxxx + buxxxxx) + v(ηx − aηxxx + bηxxxxx)] dx

∣∣∣∣

� C
(∫ L

0
(η2 + u2)dx

) 1
2

, ∀(η, u) ∈ D(A).

 

(2.9)

Taking η ∈ C∞
c (0, L) and u  =  0, we deduce from (2.9) that v ∈ H5(0, L). Similarly, we obtain 

that θ ∈ H5(0, L). Integrating by parts in the left hand side of (2.9), we obtain that

|aθ(0)uxx(0)− bθx(L)uxxx(L) + bθ(L)uxxxx(L)− bθxx(0)uxx(0) + bθx(0)uxxx(0)
−bθ(0)uxxxx(0) + av(L)ηxx(L)− bvxx(L)ηxx(L) + bvx(L)ηxxx(L)− bv(L)ηxxxx(L)

−bvx(0)ηxxx(0)− bv(0)ηxxxx(0)| � C
(∫ L

0
(η2 + u2)dx

) 1
2

,

for all (η, u) ∈ D(A). Then, it follows that
{
θ(0) = θ(L) = θx(0) = θx(L) = θxx(0) = 0,
v(0) = v(L) = vx(0) = vx(L) = vxx(L) = 0.

Hence (θ, v) ∈ D(Ã) = D(−Ã). Thus, D(Ã∗) = D(−Ã) and Ã∗ = −Ã. □ 

Corollary 2.5. For any (η0, u0) ∈ X0, system (2.8) admits a unique solution 
(η, u) ∈ C(R; X0), which satisfies ‖(η(t), u(t))‖X0

= ‖(η0, u0)‖X0
 for all t ∈ R. If, in addition, 

(η0, u0) ∈ X5, then (η, u) ∈ C(R; X5) with ‖(η, u)‖X5
:= ‖(η, u)‖X0

+ ‖Ã(η, u)‖X0
 constant.

Using the above corollary combined with some interpolation argument between X0 and 
X5, we can deduce that, for any s ∈ (0, 5), there exists a constant Cs  >  0 such that, for any 
(η0, u0) ∈ Xs , the solution (η, u) of (2.8) satisfies (η, u) ∈ C(R; Xs) and

‖(η(t), u(t))‖Xs
� Cs‖(η0, u0)‖Xs

, ∀t ∈ R. (2.10)

Now, we put our attention in the existence of traces. Indeed, we know that the traces

η(0, t), η(L, t), ηx(0, t), ηx(L, t), ηxx(0, t),
u(0, t), u(L, t), ux(0, t), ux(L, t), uxx(L, t),
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vanish. Thus, we have a look at the other traces ηxx(0, t) and uxx(L,t).

Proposition 2.6. Let (η0, u0) ∈ X2 and let (η, u) denote the solution of (2.8). Pick any 
T  >  0. Then ηxx(L, t), uxx(0, t) ∈ L2(0, T) with

∫ T

0

(
|ηxx(L, t)|2 + |uxx(0, t)|2

)
dt � C‖(η0, u0)‖2

X2
 (2.11)

for some constant C = C(L, T , a, b).

Proof. Assume that (η0, u0) ∈ X3, so that (η, u) ∈ C([0, T]; X3) ∩ L1([0, T]; X0). We mul-
tiply the first (resp. second) equation in (2.8) by xu (resp. xη), integrate over (0, T)× (0, L), 
integrate by parts and add the two obtained equations to get

−5b
2

∫ T

0

∫ L

0
[η2

xx + u2
xx]dxdt − 3a

2

∫ T

0

∫ L

0
[η2

x + u2
x ]dxdt − 1

2

∫ T

0

∫ L

0
[η2 + u2]dxdt

+

[∫ L

0
[xηu]dx

]T

0
+

bL
2

∫ T

0
(|ηxx(L, t)|2 + |uxx(L, t)|2)dt = 0.

 (2.12)

Since 
∫ T

0 ‖(η, u)‖2
X2

dt � C‖(η0, u0)‖2
X2

, this yields
∫ T

0
|ηxx(L, t)|2(t, L) dt � C‖(η0, u0)‖2

X2
.

By symmetry, using now as multipliers (L − x)u and (L − x)η, we infer that
∫ T

0
|uxx(t, 0)|2 dt � C‖(η0, u0)‖2

X2
.

Thus, (2.11) is established when (η0, u0) ∈ X3. Since X3 is dense in X2, the result holds as well 
for (η0, u0) ∈ X2. □ 

Proposition 2.7. Let (η0, u0) ∈ X3 and let (η, u) denote the solution of (2.8). Then 
ηxx(L, t), uxx(0, t) ∈ H

1
5 (0, T) with

‖ηxx(L, ·)‖2
H

1
5 (0,T)

+ ‖uxx(0, ·)‖2
H

1
5 (0,T)

� C‖(η0, u0)‖2
X3 (2.13)

for some constant C = C(L, T , a, b).

Proof. In direction to prove (2.13), we consider (η0, u0) ∈ X7. By proposition 2.4, Ã 
generates a group of isometries. Thus, by semigroup properties (see [17]) we obtain that 
(η, u) ∈ C(R; X7), so that

(η̂, û) = (ηt, ut) = Ã(η, u) ∈ C(R; X2) (2.14)

and it solves
{
(η̂, û)t = Ã(η̂, û),
(η̂, û)(0) = Ã(η0, u0) ∈ X2.

 (2.15)
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Then, from (2.11), we deduce that

‖ηxx(·, L)‖2
H1(0,T) + ‖uxx(·, 0)‖2

H1(0,T) � ‖(η0, u0)‖2
X7

. (2.16)

Since X3 = [X2, X7] 1
5
, we infer from (2.11) and (2.16) that

‖ηxx(·, L)‖2
H

1
5 (0,T)

+ ‖uxx(·, 0)‖2
H

1
5 (0,T)

� ‖(η0, u0)‖2
X3

,

for some constant C = C(T) and all (η0, u0) ∈ X3. □ 

3. Well-posedness: nonlinear system

In this section we prove the well-posedness for the nonlinear system


ηt + ux − auxxx + a1(ηu)x + a2(ηuxx)x + buxxxxx = 0,
ut + ηx − aηxxx + a1uux + a3(ηηxx)x + a4uxuxx + bηxxxxx = 0,
η(x, 0) = η0(x), u(x, 0) = u0(x),

 (3.1)

with a  >  0, b  >  0, a �= b, a1  >  0, a2  <  0, a3  >  0 and a4  >  0, with the following boundary 
conditions



η(0, t) = η(L, t) = ηx(0, t) = ηx(L, t) = 0,
u(0, t) = u(L, t) = ux(0, t) = ux(L, t) = 0,
uxx(0, t) + α1ηxx(0, t) = 0, uxx(L, t)− α2ηxx(L, t) = 0, α1,α2 > 0.

 (3.2)

Before presenting the proof of the main theorem of this section, it is necessary to establish 
some definition to show how the solution of the problem (3.1) and (3.2) is obtained.

Definition 3.1. Given T  >  0, (η0, u0) ∈ X3, (h1, h2) ∈ L2(0, T; X−2) and f , g ∈ H− 1
5 (0, T), 

consider the non-homogeneous system



ηt + ux − auxxx + buxxxxx = h1, in (0, L)× (0, T),
ut + ηx − aηxxx + bηxxxxx = h2, in (0, L)× (0, T),
η(0, t) = η(L, t) = ηx(0, t) = ηx(L, t) = 0, ηxx(0, t) = f (t), on (0, T),
u(0, t) = u(L, t) = ux(0, t) = ux(L, t) = 0, uxx(L, t) = g(t), on (0, T),
η(x, 0) = η0(x), u(x, 0) = u0(x), on (0, L).

 (3.3)

A solution of the problem (3.3) is a function (η, u) in C([0, T]; X3) such that, for any τ ∈ [0, T] 
and (ϕτ ,ψτ ) ∈ X3, the following identity holds

((η(τ), u(τ)), (ϕτ ,ψτ ))X3
=((η0, u0), (ϕ(0),ψ(0)))X3

+
〈

f (t),χ(0,τ)(t)ψxx(0, t)
〉

H− 1
5 (0,T),H

1
5 (0,T)

+
〈
g(t),χ(0,τ)(t)ϕxx(L, t)

〉
H− 1

5 (0,T),H
1
5 (0,T)

+

∫ τ

0
〈(h1(t), h2(t)), (ϕ(t),ψ(t))〉(X−2,X2)2 dt,

 (3.4)

where (·, ·)X3
 is the inner product of X3, 〈·, ·〉 is the duality of two spaces, χ(0,τ)(·) denotes the 

characteristic function of the interval (0, τ) and (ϕ,ψ) is the solution of
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ϕt + ψx − aψxxx + bψxxxxx = 0, in (0, L)× (0, τ),
ψt + ϕx − aϕxxx + bϕxxxxx = 0 in (0, L)× (0, τ),
ϕ(0, t) = ϕ(L, t) = ϕx(0, t) = ϕx(L, t) = ϕxx(0, t) = 0, on (0, τ),
ψ(0, t) = ψ(L, t) = ψx(0, t) = ψx(L, t) = ψxx(L, t) = 0, on (0, τ),
ϕ(x, τ) = ϕτ , ψ(x, τ) = ψτ , on (0, L).

 

(3.5)

The well-posedness of (3.5) is guaranteed by corollary 2.5 and (2.10).

Remark 1. Note that the right hand side of (3.4) is well defined for all τ ∈ [0, T], since 
ψxx(0, ·) and ϕxx(L, ·) belong to H

1
5 (0, τ), by proposition 2.7. The fact that χ(0,τ)ψxx(0, ·) and 

χ(0,τ)ϕxx(L, ·) belong to H
1
5 (0, T), for any τ ∈ [0, T], follows from [16, theorem 11.4, p 60].

The next result borrowed from [9], with minor changes, gives us the existence and unique-
ness of solution for system (3.3). Its proof is presented here for the sake of completeness.

Lemma 3.2. Let T  >  0, (η0, u0) ∈ X3, (h1, h2) ∈ L2(0, T; X−2) and f , g ∈ H− 1
5 (0, T). 

There exists a unique solution (η, u) ∈ C([0, T]; X3) of the system (3.3). Moreover, there exists 
a positive constant CT, such that

‖(η(τ), u(τ))‖X3
� CT

(
‖(η0, u0)‖X3

+ ‖f‖
H− 1

5 (0,T)
+ ‖g‖

H− 1
5 (0,T)

+‖(h1, h2)‖L2(0,T;X−2)

)
,

 (3.6)

for all τ ∈ [0, T].

Proof. Let T  >  0 and τ ∈ [0, T]. From proposition 2.4, Ã defined by (2.7) and (2.6) is 
skew adjoint and generates a C0−semigroup S̃(t). Note that making the change of variable 
(x, t) �→ (ϕ(x, τ − t),ψ(x, τ − t)) and taking (ϕτ ,ψτ ) ∈ X3, we have that the solution of (3.5) 
is given by

(ϕ,ψ) = S̃∗(τ − t)(ϕτ ,ψτ ) = −S̃(τ − t)(ϕτ ,ψτ ).

Moreover, (2.10) implies that

(ϕ,ψ) ∈ C(R; X3).

In particular, there exists CT  >  0, such that

‖(ϕ(t),ψ(t))‖X3
= ‖S̃∗(τ − t)(ϕτ ,ψτ )‖X3

� CT‖(ϕτ ,ψτ )‖X3
, ∀t ∈ [0, τ ].

 (3.7)

Let us define L a linear functional given by the right hand side of (3.4), that is,

L(ϕτ ,ψτ ) =
(
(η0, u0), S̃∗(τ)(ϕτ ,ψτ )

)
X3

+

〈
(g(t), f (t)),χ(0,τ)(t)

d2

dx2 (S̃
∗(τ − t)(ϕτ ,ψτ ))

∣∣∣
L

0

〉

(H− 1
5 (0,T),H

1
5 (0,T))2

+

∫ τ

0

〈
(h1(t), h2(t)), S̃∗(τ − t)(ϕτ ,ψτ )

〉
(X−2,X2)2

dt.

Claim. L belongs to L(X3;R).
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Indeed, from the fact X3 ⊂ X2 and proposition 2.7, we obtain that

|L(ϕτ ,ψτ )| �CT‖(η0, u0)‖X3
‖(ϕτ ,ψτ )‖X3

+ CT‖(ϕτ ,ψτ )‖X3
‖(h1, h2)‖L1(0,T;X−2)

+ CT‖( f , g)‖
(H− 1

5 (0,T))2
‖(ϕxx(L),ψxx(0)‖

(H
1
5 (0,τ))2

�CT

(
‖(η0, u0)‖X5

+ ‖( f , g)‖
(H− 1

5 (0,T))2
+ ‖(h1, h2)‖L2(0,T;X−2)

)
‖(ϕτ ,ψτ ))‖X3

,

where in the last inequality we use (3.7). Then, from Riesz representation theorem, there  
exists one and only one (ητ , uτ ) ∈ X3 such that

((ητ , uτ ), (ϕτ ,ψτ ))X3
= L(ϕτ ,ψτ ), with ‖(ητ , uτ )‖X3

= ‖L‖L(X3;R) (3.8)

and the uniqueness of the solution to the problem (3.3) holds.
We prove now that the solution of the system (3.3) satisfies (3.6). Let (η, u) : [0, T] → X3 

be defined by

(η(τ), u(τ)) := (ητ , uτ ), ∀τ ∈ [0, T]. (3.9)

From (3.8) and (3.9), (3.4) follows and

‖(η(τ), u(τ))‖X3
= ‖L‖L(X3;R) � CT

(
‖(η0, u0)‖X3

+ ‖f‖
(H− 1

5 (0,T))

+‖g‖
(H− 1

5 (0,T))
+ ‖(h1, h2)‖L2(0,T;X−2)

)
.

In order to prove that the solution (η, u) belongs to C([0, T]; X3), let τ ∈ [0, T] and {τn}n∈N  be 
a sequence such that

τn −→ τ , as n → ∞.

Consider (ϕτ ,ψτ ) ∈ X3 and {(ϕτn ,ψτn)}n∈N be a sequence in X3 such that

(ϕτn ,ψτn) → (ϕτ ,ψτ ) strongly in X3, as n → ∞. (3.10)

Note that

lim
n→∞

(
(η0, w0), S̃∗(τn)(ϕτn ,ψτn)

)
X3

=
(
(η0, w0), S̃∗(τ)(ϕτ ,ψτ )

)
X3

. (3.11)

Indeed,

lim
n→∞

(
(η0, w0), S̃∗(τn)(ϕτn ,ψτn)

)
X3

= lim
n→∞

(
(η0, w0), S̃∗(τn) ((ϕτn ,ψτn)− (ϕτ ,ψτ ))

)
X3

+ lim
n→∞

(
(η0, w0), S̃∗(τn)(ϕτ ,ψτ )

)
X3

.

From (3.10) and since {S̃(t)}t�0 is a strongly continuous group of continuous linear operators 
on X0, we have

lim
n→∞

(
(η0, w0), S̃∗(τn) ((ϕτn ,ψτn)− (ϕτ ,ψτ ))

)
X3

= 0

and consequently,
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lim
n→∞

(
(η0, w0), S̃∗(τn)(ϕτ ,ψτ )

)
X3

=
(
(η0, w0), S̃∗(τ)(ϕτ ,ψτ )

)
X3

.

Thus, (3.11) follows. Now, we have to analyze the following limits,

lim
n→∞

〈
(g(t), f (t)),χ(0,τn)(t)

d2

dx2 (S̃
∗(τn − t)(ϕτn ,ψτn))

∣∣∣
L

0

〉

(H− 1
5 (0,T),H

1
5 (0,T))2

 (3.12)

and

lim
n→∞

∫ τ

0

〈
(h1(t), h2(t)), S̃∗(τn − t)(ϕτn ,ψτn)

〉
(X−2,X2)2

dt. (3.13)

In fact, observe that, by group properties of S̃∗ and proposition 2.7, we have that
∥∥∥∥

d2

dx
S̃∗(τ − t)(ϕτ ,ψτ )

∣∣∣
L

0

∥∥∥∥
[H

1
5 (0,τ)]2

� C‖(ϕτ ,ψτ )‖X3
.

Thus, the linear map (ϕτ ,ψτ ) ∈ X3 �→ d2

dx2 (S̃∗(τ − ·)(ψτ ,ϕτ ))
∣∣∣
L

0
 belongs to H

1
5 (0, τ ;R2) 

and it is continuous. Moreover, as the natural extension by 0 outside (0, τ) is a continuous 

map from H
1
5 (0, τ) into H

1
5 (0, T) (see [16, theorem 11.4, p 60]), we obtain that the map 

(ϕτ ,ψτ ) ∈ X3 �→ χ(0,τn)(·) d2

dx2 (S̃∗(τ − ·)(ψτ ,ϕτ ))
∣∣∣
L

0
 belongs to H

1
5 (0, T;R2) and it is con-

tinuous, as well. Since a continuous linear map between two Hilbert spaces is weakly continu-
ous, (3.10) implies that

χ(0,τn)(t)
d2

dx2 (S̃
∗(τn − ·)(ϕτn ,ψτn))

∣∣∣
L

0
⇀ χ(0,τ)(t)

d2

dx2 (S̃
∗(τ − ·)(ϕτ ,ψτ ))

∣∣∣
L

0
,

 

(3.14)

weakly in H
1
5 ([0, T];R2), as n → ∞. Thus, by using (3.14), the limit (3.12) yields that

lim
n→∞

〈
(g(t), f (t)),χ(0,τn)(t)

d2

dx2 (S̃
∗(τn − t)(ϕτn ,ψτn))

∣∣∣
L

0

〉

(H− 1
5 (0,T),H

1
5 (0,T))2

=

〈
(g(t), f (t)),χ(0,τ)(t)

d2

dx2 (S̃
∗(τ − t)(ϕτ ,ψτ ))

∣∣∣
L

0

〉

(H− 1
5 (0,T),H

1
5 (0,T))2

.

 (3.15)

On the other hand, extending by zero the functions hi, for i = 1, 2, we obtain elements of 
[H

1
5 (−T , T)]′ and L2(−T , T; X−2), that is,

hi ≡ 0 a.e in (−T , 0)× (0, L),

and setting s = τn − t, we have that
∫ τn

0

〈
(h1(t), h2(t)), S̃∗(τn − t)(ϕτn ,ψτn)

〉
(X−2,X2)2

dt

=

∫ T

0
χ(0,τn)(s)

〈
(h1(τn − s), h2(τn − s)), S̃∗(s)(ϕτn ,ψτn)

〉
(X−2,X2)2

dt.
 

(3.16)
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Similarly, taking s = τ − t in (3.13), we get
∫ τ

0

〈
(h1(t), h2(t)), S̃∗(τ − t)(ϕτ ,ψτ )

〉
(X−2,X2)2

dt

=

∫ T

0
χ(0,τ)(s)

〈
(h1(τ − s), h2(τ − s)), S̃∗(s)(ϕτ ,ψτ )

〉
(X−2,X2)2

dt.
 

(3.17)

Since the translation in time is continuous in L2(0, T; X−2) and using the dominated conv-
ergence theorem, we obtain

χn(·)(h1(τn − ·, ·), h2(τn − ·, ·)) −→ χ(·)(h1(τ − ·, ·), h2(τ − ·, ·)), (3.18)

in L2(0, T; X−2), as n → ∞. Similarly, by the strong continuity of the group, it follows that

S̃∗(·)(ϕτn ,ψτn) ⇀ S̃∗(·)(ϕτ ,ψτ )

weakly in L2(−T , T; X0), as n → ∞. In particular, we obtain that

S̃∗(·)(ϕτn ,ψτn) ⇀ S̃∗(·)(ϕτ ,ψτ ), (3.19)

weakly in L2(−T , T; X2), as n → ∞. By using (3.16)–(3.19), the limit (3.13) yields that

lim
n→∞

∫ τn

0

〈
(h1(t), h2(t)), S̃∗(τn − t)(ϕτn ,ψτn)

〉
(X−2,X2)2

dt

=

∫ τ

0

〈
(h1(t), h2(t)), S̃∗(τ − t)(ϕτ ,ψτ )

〉
(X−2,X2)2

dt.

 (3.20)

Finally, from (3.8), (3.9), (3.11), (3.15) and (3.20), one gets

((η(τn), w(τn)), (ϕτn ,ψτn))X3
−→ ((η(τ), w(τ)), (ϕτ ,ψτ ))X3

, as n → ∞,

which implies that

(η(τn), w(τn)) −→ (η(τ), w(τ)) in X3, as n → ∞.

This concludes the proof. □ 

The next result establishes the well-posedness of the non-homogeneous feedback linear 
system associated to (3.3).

Lemma 3.3. Let T  >  0. Then, for every (η0, u0) in X3 and (h1, h2) in L2(0, T; X−2), there 
exists a unique solution (η, u) of the system (3.3) such that

(η, u) ∈ C([0, T]; X3),

with f (t) := −α1ηxx(0, t) and g(t) := α2ηxx(L, t), where α1 and α2 belong to R . Moreover, for 
some positive constant C = C(T), we have

‖(η(t), u(t))‖X3
� C

(
‖(η0, u0)‖X3

+ ‖(h1, h2)‖L2(0,T;X−2)

)
, ∀t ∈ [0, T].
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Proof. Firstly, note that if (η, u) ∈ C([0, T]; X3), then

f (t) := −α1ηxx(0, t) and g(t) := α2ηxx(L, t) ∈ H− 1
5 (0, T).

In fact, by using the continuous embedding L2(0, T) ⊂ H− 1
5 (0, T) and the trace theorem [1, 

theorem 7.53], there exists a positive constant C := C(L,α1,α2) such that

‖α1ηxx(0, ·)‖2
H− 1

5 (0,T)
+ ‖α2ηxx(L, ·)‖2

H− 1
5 (0,T)

� C
∫ T

0

(
α2

1η
2
xx(0, t) + α2

2η
2
xx(L, t)

)
dt

� C
∫ T

0
‖η(t)‖2

X3
dt

� TC‖(η, u)‖2
C([0,T];X3)

.

 

(3.21)

Let 0 < β � T  that will be determinate later. For each (η0, u0) ∈ X3, consider the map

Γ : C([0,β]; X3) −→ C([0,β]; X3)

(η, u) �−→ Γ(η, u) = (w, v)

where, (w, v) is the solution of the system (3.3) with f (t) = −α1ηxx(0, t) and g(t) = α2ηxx(L, t). 
By lemma 3.2 and (3.21), the linear map Γ is well defined. Furthermore, there exists a positive 
constant Cβ , such that

‖Γ(η, u)‖C([0,β];X3)
� Cβ

(
‖(η0, u0)‖X3

+ ‖(α1ηxx(0, t),α2ηxx(L, t))‖
(H− 1

5 (0,β))2

+‖(h1, h2)‖L2(0,T;X−2)

)
.

Then,

‖Γ(η, u)‖C([0,β];X3)
� CT

(
‖(η0, u0)‖X3

+ ‖(h1, h2)‖L2(0,T;X−2)

)
+ CTβ

1
2 ‖(η, w)‖C([0,β];X3)

.

Let

(η, u) ∈ BR(0) := {(η, u) ∈ C([0,β]; X3) : ‖(η, u)‖C([0,β];X3)
� R},

with

R = 2CT

(
‖(η0, u0)‖X3

+ ‖(h1, h2)‖L2(0,T;X−2)

)
.

Choosing β such that CTβ
1
2 � 1

2 , it implies that ‖Γ(η, u)‖C([0,β];X3)
� R, for all 

(η, u) ∈ BR(0), i.e. Γ maps BR(0) into BR(0).
On the other hand, note that

‖Γ(η1, u1)− Γ(η2, u2)‖C([0,β];X3)
� CTβ

1
2 ‖(η1 − η2, u1 − u2)‖C([0,β];X3)

�
1
2
‖(η1 − η2, u1 − u2)‖C([0,β];X3)

.

Hence, Γ : BR(0) −→ BR(0) is a contraction and, by Banach fixed point theorem, we obtain a 
unique (η, u) ∈ BR(0), such that Γ(η, u) = (η, u) and
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‖(η, u)‖C([0,β];X3)
� 2CT

(
‖(η0, u0)‖X3

+ ‖(h1, h2)‖L2(0,T;X−2)

)
.

Since the choice of β is independent of (η0, u0), the standard continuation extension argument 
yields that the solution (η, u) belongs to C([0,β]; X3), thus, the proof is complete. □ 

We are now in position to prove one of the main results of this article.

3.1. Proof of theorem 1.1

Let T  >  0 and ‖(η0, u0)‖X3
< ρ, where ρ > 0 will be determined later. Note that for 

(η, u) ∈ C([0, T]; X3), there exists a positive constant C1 such that

‖ηux‖2
L2(0,T;L2(0,L)) �

∫ T

0
‖η(t)‖2

L∞(0,L)‖ux(t)‖2
L2(0,L)dt

� C′
1

∫ T

0
‖η(t)‖2

H1(0,L)‖u(t)‖2
H1(0,L)dt

� C2
1T‖(η, u)‖4

C([0,T];X3)
,

 

(3.22)

‖ηuxx‖2
L2(0,T;L2(0,L)) �

∫ T

0
‖η(t)‖2

L∞(0,L)‖uxx(t)‖2
L2(0,L)dt

� C′
1

∫ T

0
‖η(t)‖2

H2(0,L)‖u(t)‖2
H2(0,L)dt

� C2
1T‖(η, u)‖4

C([0,T];X3)
,

 

(3.23)

‖ηxuxx‖2
L2(0,T;L2(0,L)) �

∫ T

0
‖ηx(t)‖2

L∞(0,L)‖uxx(t)‖2
L2(0,L)dt

� C′
1

∫ T

0
‖η(t)‖2

H2(0,L)‖u(t)‖2
H2(0,L)dt

� C2
1T‖(η, u)‖4

C([0,T];X3)
,

 

(3.24)

and

‖ηuxxx‖2
L2(0,T;L2(0,L)) �

∫ T

0
‖η(t)‖2

L∞(0,L)‖uxxx(t)‖2
L2(0,L)dt

� C′
1

∫ T

0
‖η(t)‖2

H3(0,L)‖u(t)‖2
H3(0,L)dt

� C2
1T‖(η, u)‖4

C([0,T];X3)
.

 

(3.25)

This implies that, for any (η, u) ∈ C([0, T]; X3) and ai ∈ R, with i = 1, 2, 3, 4, we have that

−a1(ηu)x − a2(ηuxx),−a1uux − a3(ηηxx)x − a4uxuxx ∈ L2(0, T; X0) ⊂ L2(0, T; X−2).

Consider the following linear map

Γ : C([0, T]; X3) −→ C([0, T]; X3)

(η, u) �−→ Γ(η, w) = (η, u),
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where (η, u) is the solution of the system (3.3) with

(h1, h2) = (−a1(ηu)x − a2(ηuxx),−a1uux − a3(ηηxx)x − a4uxuxx)

in L2(0, T; X−2), with f (t) := −α1ηxx(0, t) and g(t) := α2ηxx(L, t).

Claim. The map Γ is well-defined, maps BR(0) into itself and it is a contraction in a ball.

Indeed, firstly note that lemma 3.3 ensures that Γ is well-defined, moreover, using lemma 
3.2, there exists a positive constant CT, such that

‖Γ(η, u)‖C([0,T];X3)
�CT

(
‖(η0, u0)‖X3

+ ‖a1(ηu)x + a2(ηuxx)‖L2(0,T;X−2)

+‖a1uux + a3(ηηxx)x + a4uxuxx‖L2(0,T;X−2)
+ ‖wwx‖L2(0,T;X−2)

)
.

Then, equations (3.22)–(3.24) and (3.25) yield that

‖Γ(η, u)‖C([0,T];X3)
�CT‖(η0, u0)‖X3

+ (3|α1|+ |a2|+ 2|a3|+ |a4|)T1/2CTC1‖(η, u)‖2
C([0,T];X3)

�CT‖(η0, u0)‖X3
+ 7MT1/2CTC1‖(η, u)‖2

C([0,T];X3)
,

 (3.26)
where M = max{|a1|, |a2|, |a3|, |a4|}. Consider the ball

BR(0) =
{
(η, u) ∈ C([0, T]; X3) : ‖(η, u)‖C([0,T];X3)

� R
}

,

where R = 2CT‖(η0, u0)‖X3
. From the estimate (3.26) we get that

‖Γ(η, u)‖C([0,T];X3)
�

R
2
+ 7MT1/2CTC1R2 <

R
2
+ 14MT1/2C2

TC1ρR,

for all (η, u) ∈ BR(0). Consequently, if we choose ρ > 0 such that

14MT1/2C2
TC1ρ <

1
4

, (3.27)

Γ maps the ball BR(0) into itself. Finally, note that

‖Γ(η1, u1)− Γ(η2, u2)‖C([0,T];X3)
�CT‖a1((η2u2)x − (η1u1)x)‖L2(0,T;X−2)

+ CT‖a2((η2u2,xx)x − (η1u1,xx)x)‖L2(0,T;X−2)

+ CT‖a1(u2u2,x − u1u1,x)‖L2(0,T;X−2)

+ CT‖a3((η2η2,xx)x − (η1η1,xx)x)‖L2(0,T;X−2)

+ CT‖a4(u2,xu2,xx − u1u1,xx)‖L2(0,T;X−2)
.

Thus, we obtain

‖Γ(η1, u1)− Γ(η2, u2)‖C([0,T];X3)

� 3T1/2CTC1M(‖η1‖C([0,T];H3(0,L)) + ‖η2‖C([0,T];H3(0,L)))‖u1 − u2‖C([0,T];H3(0,L))

+ 3T1/2CTC1M(‖u1‖C([0,T];H3(0,L)) + ‖u2‖C([0,T];H3(0,L)))‖η1 − η2‖C([0,T];H3(0,L))

+ 2T1/2CTC1M(‖u1‖C([0,T];H3(0,L)) + ‖u2‖C([0,T];H3(0,L)))‖u1 − u2‖C([0,T];H3(0,L)).

Finally, it follows that
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‖Γ(η1, u1)− Γ(η2, u2)‖C([0,T];X3)
� 14T1/2CTC1MR‖(η1 − η2, u1 − u2)‖C([0,T];X3)

< 28T1/2C2
TC1Mρ‖(η1 − η2, u1 − u2)‖C([0,T];X3)

.

Therefore, from (3.27), we get

‖Γ(η1, u1)− Γ(η2, u2)‖C([0,T];X3)
�

1
2
‖(η1 − η2, u1 − u2)‖C([0,T];X3)

,

for all (η, u) ∈ BT(0). Hence, Γ : BR(0) −→ BR(0) is a contraction and the claim is archived.
Thanks to Banach fixed point theorem, we obtain a unique (η, u) ∈ BR, such that 

Γ(η, u) = (η, u) and

‖(η, w)‖C([0,T];X3)
� 2CT‖(η0, u0)‖X3

.

Thus, the proof is archived. □ 

3.2. Well-posedness in time

Adapting the proof of theorem 1.1, one can also prove, without any restriction over the initial 
data (η0, u0), that there exist T*  >  0 and a solution (η, u) of (3.1) and (3.2), satisfying the initial 
condition η(·, 0) = η0(·) and u(·, 0) = u0(·). More precisely,

Theorem 3.4. Let (η0, u0) ∈ X3. Then, there exists T*  >  0 and a unique solution 
(η, u) ∈ C([0, T∗]; X3) of (3.1) and (3.2). Moreover

‖(η, u)‖C([0,T];X3)
� C‖(η0, u0)‖X3

,

for some positive constant C  =  C(T*).

Observe that if (η1, u1) ∈ C([0, T1]; X3) and (η2, u2) ∈ C([0, T2]; X3) are the solutions given 
by the theorem 1.1 with initial data (η0, u0) and (η1(T1), u1(T1)), respectively, the function 
(η, u) : [0, T1 + T2] → X3 defined by

(η(t), u(t)) =
{
(η1(t), u1(t)) if t ∈ [0, T1],
(η2(t − T1), u2(t − T2)) if t ∈ [T1, T1 + T2],

is the solution of the feedback system on interval [0, T1 + T2] with initial data (η0, u0). 
This argument allows us to extend a local solution until a maximal interval, that is, for all 
0 < T < Tmax � ∞ there exists a function (η, u) ∈ C([0, T]; X3), solution of the feedback 
system (3.1) and (3.2). The following proposition, easily holds:

Proposition 3.5. Let (η0, u0) ∈ X3 and (η, w) ∈ C([0, T]; X3) solution of the feedback sys-
tem, for all 0 < T < Tmax, with initial data (η0, u0). Then, only one of the following assertions 
holds:

 (i)  Tmax = ∞; 
 (ii)  If Tmax < ∞, then, limt→Tmax ‖(η(t), w(t))‖X3

= ∞.

4. Exponential stability for the linearized system

Let us now to prove theorem 1.2 concerning the exponential stability for the linear system 
(2.1).

R A Capistrano-Filho et alNonlinearity 32 (2019) 1852



1873

Proof of theorem 1.2. Theorem 1.2 is a consequence of the following claim:

There exists a constant C  >  0, such that

‖(η0, u0)‖2
X0

� C
∫ T

0

(
|ηxx(L, t)|2 + |ηxx(0, t)|2

)
dt, (4.1)

where (η, u) is the solution of (2.1) given by proposition 2.2.

Indeed, if (4.1) is true, we get

E(T)− E(0) � −E(0)
C

,

where E(t) is defined by (1.4). This implies that

E(T) � E(0)− E(0)
C

� E(0)− E(T)
C

.

Thus,

E(T) �
(

C
C + 1

)
E(0),

which gives theorem 1.2 by using the semigroup property associated to the model. □ 

We will divide the proof of the observability inequality (4.1) in three steps as follows:

Proof of (4.1). Step 1: compactness-uniqueness argument

We argue by contradiction. Suppose that (4.1) does not hold, then there exists a sequence 
{(η0,n, u0,n)}n∈N ∈ X0, such that

1 = ‖(η0,n, u0,n)‖2
X0

> n
∫ T

0

(
|ηn,xx(L, t)|2 + |ηn,xx(0, t)|2

)
dt, (4.2)

where (ηn(t), un(t)) = S(t)(η0,n, u0,n). Thus, from (4.2) we obtain

lim
n→∞

∫ T

0

(
|ηn,xx(L, t)|2 + |ηn,xx(0, t)|2

)
dt = 0. (4.3)

Estimate (2.4) in proposition 2.3, together with (4.2), imply that the sequence {(ηn, un)}n∈N is 
bounded in L2(0, T; X2). Furthermore, by (2.1) we deduce that {(ηn,t, un,t)}n∈N is bounded in 
L2(0, T; X−3). Thus, the compact embedding

X2 ↪→ X0 ↪→ X−3, (4.4)

allows us to conclude that {(ηn, un)}n∈N is relatively compact in L2(0, T; X0) and, consequent-
ly, we obtain a subsequence, still denoted by the same index n, satisfying

(ηn, un) → (η, u) in L2(0, T; X0), as n → ∞. (4.5)

Moreover, using (2.3), (4.3) and (4.5), we obtain that {(η0,n, u0,n)}n∈N is a Cauchy sequence in 
X0. Hence, there exists (η0, u0) ∈ X0, such that
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(η0,n, u0,n) → (η0, u0) in X0, as n → ∞, (4.6)

and, from (4.2) we get ‖(η0, u0)‖X0 = 1. On the other hand, note that combining (2.2), (4.3) 
and (4.6), we obtain a subsequence {(ηn, un)}n∈N, such that

(ηn, un) → (η, u) in C([0, T]; X0), as n → ∞. (4.7)

In particular,

(η(0), u(0)) = lim
n→∞

(ηn(0), un(0)) = lim
n→∞

(η0,n, u0,n) = (η0, u0).

Consequently, passing to the weak limit, by proposition 2.2, we obtain

(η(t), u(t)) = S(t)(η0, u0).

Moreover, from (4.3), we obtain that
∫ T

0

(
|ηxx(L, t)|2 + |ηxx(0, t)|2

)
dt � lim inf

n→∞

∫ T

0

(
|ηn,xx(L, t)|2 + |ηn,xx(0, t)|2

)
dt.

Thus, we have that (η, u) is the solution of the IBVP (2.1) with initial data (η0, w0) which 
satisfies, additionally,

ηxx(L, t) = ηxx(0, t) = 0 (4.8)

and

‖(η0, u0)‖X0 = 1. (4.9)

Notice that (4.9) implies that the solution (η, u) can not be identically zero. However, from 
lemma bellow, one can conclude that (η, u) = (0, 0), which drive us to a contradiction. □ 

Step 2: reduction to a spectral problem

Lemma 4.1. For any T  >  0, let NT denote the space of the initial states (η0, u0) ∈ X0, such 
that the solution (η(t), u(t)) = S(t)(η0, u0) of (2.1) satisfies (4.8). Then, NT  =  {0}.

Proof. The proof uses the same arguments as those given in [10, theorem 3.7]. If NT �= {0}, 
the map (η0, u0) ∈ CNT → A(NT) ⊂ CNT  (where CNT  denote the complexification of NT) 
has (at least) one eigenvalue. Hence, there exists λ ∈ C and η0, u0 ∈ H5(0, L) \ {0}, such that




λη0 + u′0 − au′′′
0 + bu′′′′′

0 = 0, in (0, L),
λu0 + η′0 − aη′′′0 + bη′′′′′0 = 0, in (0, L),
η0(0) = η0(L) = η′0(0) = η′0(L) = η′′0 (0) = η′′0 (L) = 0,
u0(0) = u0(L) = u′

0(0) = u′
0(L) = u′′

0 (0) = u′′
0 (L) = 0.

To obtain the contradiction, it remains to prove that a triple (λ, η0, u0) as above does not exist.
 □ 

Step 3: Möbius transformation

To simplify the notation, henceforth we denote (η0, u0) := (η, u). Moreover, the notation 
{0, L} means that the function is applied to 0 and L, respectively.
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Lemma 4.2. Let L  >  0 and consider the assertion

(N ) : ∃λ ∈ C, ∃(η, u) ∈ (H2
0(0, L) ∩ H5(0, L))2 such that





λη + u′ − au′′′ + bu′′′′′ = 0, in (0, L),
λu + η′ − aη′′′ + bη′′′′′ = 0, in (0, L),
η(x) = η′(x) = η′′(x) = 0, in {0, L},
u(x) = u′(x) = u′′(x) = 0, in {0, L}.

Then, if (λ, η, u) ∈ C× (H2
0(0, L) ∩ H5(0, L))2 is solution of (N ), then

η = u = 0.

Proof. Firstly, let us consider the following change of variable ϕ(x) = η(x)± u(x), thus we 
have the problem in only one equation:

{
λϕ+ ϕ′ − aϕ′′′ + bϕ′′′′′ = 0, in (0, L),
ϕ(x) = ϕ′(x) = ϕ′′(x) = 0, in {0, L}. (4.10)

Note that, if we multiply the equation in (4.10) by ϕ and integrate in [0, L], it is easy to see that 
λ is purely imaginary, i.e. λ = ir, for r ∈ R. Now, we extend the function ϕ to R  by setting 
ϕ(x) = 0 for x �∈ [0, L]. The extended function satisfies

λϕ+ ϕ′ − aϕ′′′ + bϕ′′′′′ = bϕ′′′′(0)δ′0 − bϕ′′′′(L)δ′L + bϕ′′′(0)δ0 − bϕ′′′(L)δL,

in S ′(R), where δζ  denotes the Dirac measure at x = ζ  and the derivatives ϕ′′′′(0), ϕ′′′′(L), 
ϕ′′′(0) and ϕ′′′(L) are those of the function ϕ when restricted to [0, L]. Taking the Fourier 
transform of each term in the above system and integrating by parts, we obtain

λϕ̂(ξ) + iξϕ̂(ξ)− a(iξ)3ϕ̂(ξ) + b(iξ)5ϕ̂(ξ) = b(iξ)ϕ′′′(0)− b(iξ)ϕ′′′(L)e−iLξ

+ bϕ′′′′(0)− bϕ′′′′(L)e−iLξ.

Setting λ = −ir and fα(ξ, L) = iϕ̂(ξ), from the equation above it follows that

fα(ξ, L) =
Nα(ξ, L)

q(ξ)
,

with Nα(·, L) defined by

Nα(ξ, L) = α1iξ − α2iξe−iξL + α3 − α4e−iξL (4.11)

and

q(ξ) = bξ5 + aξ3 + ξ + r,

where αi, for i = 1, 2, 3, 4, are the traces of bϕ′′′ and bϕ′′′′.
For each r ∈ R and α ∈ C4 \ {0} let Fαr  be the set of L  >  0 values, for which the function 

fα(·, L) is entire. We introduce the following statements, which are equivalent:
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 A1.  fα(·, L) is entire; 
 A2.  all zeros, taking the respective multiplicities into account, of the polynomial q are zeros 

of Nα(·, L); 
 A3.  the maximal domain of fα(·, L) is C.

To the function fα(·, L) to be entire, due to the equivalence between statement A1 and A2, we 
must have

α1iξi + α3

α2iξi + α4
= e−iLξi ,

where ξi denotes the zeros of q(ξ), for i = 1, 2, 3, 4, 5. Let us define, for α ∈ C4 \ {0}, the 
following discriminant

d(α) = α1α3 − α2α4. (4.12)

Then, for α ∈ C4 \ {0}, such that d(α) �= 0 the Möbius transformations can be introduced by

M(ξi) = e−iLξi , (4.13)

for each zero ξi of the polynomial q(ξ).

The next claim analyzes the behavior of the roots of polynomial q(·):

Claim 1. The polynomial q(·) has exactly one real root, with multiplicity 1 and two pairs of 
complex conjugate roots.

In fact, initially, we suppose that r �= 0. Note that the derivative of q is given by

q′(ξ) = 5bξ4 + 3aξ2 + 1,

and its zeros are ±z1 and ±z2, where

z1 =

√
−3a −

√
9a2 − 20b

10b
and z2 =

√
−3a +

√
9a2 − 20b

10b
.

It is easy to see that z1 and z2 belong to C \ R. Hence, the polynomial q(·) does not have criti-
cal points, which means that q(·) has exactly one real root. Suppose that ξ0 ∈ R is the root of 
q(·) with multiplicity m � 5. Hence,

q(ξ0) = q′(ξ0) = ... = q(m−1)(ξ0) = 0.

Consider the following cases:

 (i)  If ξ0 has multiplicity 5, it follows that q(ξ0) = 0 and q′′′′(ξ0) = 120bξ0 = 0, implying 
that ξ0 = 0 and r  =  0.

 (ii)  If ξ0 has multiplicity 4, it follows that q′′′(ξ0) = 60bξ2
0 + 6a = 0, implying that ξ0 ∈ iR.

 (iii)  If ξ0 has multiplicity 3, it follows that q(ξ0) = 0 and q′′(ξ0) = 20bξ3
0 + 6aξ0 = 0, 

implying that ξ0 = 0 and r  =  0 or ξ0 ∈ iR.
 (iv)  If ξ0 has multiplicity 2, it follows that q′(ξ0) = 5bξ4

0 + 3aξ2 + 1 = 0, implying that 
ξ0 ∈ C \ R.
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In any case, we have a contradiction, since r �= 0 and ξ0 ∈ R. Consequently, q(·) has exactly 
one real root, with multiplicity 1. This means that this polynomial has two pairs of complex 
conjugate roots.

Second, we suppose that r  =  0. Initially, note that from the derivation of the model (see the 
appendix) we have 4b  >  a2. Then, we obtain

q(ξ) = ξ(bξ4 + aξ2 + 1),

whose roots are 0,±ρ and ±k  where

ρ2 = − a
2b

+ i

√
4b − a2

2b
and k = − a

2b
− i

√
4b − a2

2b
= ρ2 = ρ2. (4.14)

Thus, q(·) has two pairs of complex conjugate roots and one real root, proving claim 1. □ 

Besides of the claim 1 the following two auxiliary lemmas are necessary to conclude the 
proof of the lemma 4.2. Their proofs can be found in [20, lemmas 2.1 and 2.2], thus we will 
omit them.

Lemma 4.3. Let non null α ∈ C4 with d(α) = 0 and L  >  0 for d(α) defined in (4.12). 
Then, the set of the imaginary parts of the zeros of Nα(·, L) in (4.11) has at most two elements.

Lemma 4.4. For any L  >  0, there is no Möbius transformation M, such that

M(ξ) = e−iLξ, ξ ∈ {ξ1, ξ2, ξ̄1, ξ̄2},

with ξ1, ξ2, ξ̄1, ξ̄2 all distinct in C.

Let us finish the proof of lemma 4.2. To do this, we need to consider two cases:

 i.  d(α) �= 0; 
 ii.  d(α) = 0,

where d(α) was defined in (4.12).
In fact, if d(α) �= 0, we can define the Möbius transformation. Let us assume, by contra-

diction, that there exists L  >  0 such that the function fa(·, L) is entire. Then, all roots of the 
polynomial q(·) must satisfy (4.13), i.e. there exists a Möbius transformation that takes each 
root ξ0 of q(·) into e−iLξ0. However, this contradicts lemma 4.4 and proves that if (N ) holds 
then Fαr = ∅ for all r ∈ R. On the other hand, suppose that d(α) = 0 and note that by using 
the claim 1, we can conclude that the set of the imaginary parts of the polynomial q(·) has at 
least three elements, thus it follows from lemma 4.3 that Fαr = ∅ for all r ∈ R. Note that in 
both cases, we have that Fαr = ∅, which implies that (N ) only has the trivial solution for any 
L  >  0, and the proof of lemma 4.2 is archived. □ 

To close this section we derive an exponential stability result in each space Xs, for s ∈ [0, 5]. 
To do this, for s ∈ [0, 5], let Xs denote the collection of all the functions

(η, u) ∈ [Hs
0(0, L)]2 := {(η, u) ∈ [Hs(0, L)]2 : (η, u)( j)(0) = 0, (η, u)( j)(L) = 0},

for j = 0, 1, ..., [s]4, endowed with the Hilbertian norm
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‖(η, u)‖2
Xs
= ‖η‖2

Hs(0,L) + ‖u‖2
Hs(0,L).

Using theorem 1.2 and some interpolation argument, we derive the following result.

Corollary 4.5. Let αi, i = 1, 2 be as in theorem 1.2. Then, for any s ∈ [0, 5], there exists a 
constant Cs  >  0, such that, for any (η0, u0) ∈ Xs, the solution (η(t), u(t)) of (2.1) belongs to 
C(R+; Xs) and fulfills

‖(η(t), u(t))‖Xs � C0e−µ0t‖(η0, u0)‖Xs , ∀t � 0. (4.15)

Proof. Equation (4.15) was already been established for s  =  0 in theorem 1.2. Pick any 
U0 = (η0, u0) ∈ X5 = D(A) and write U(t) = (η(t), u(t)) = S(t)U0. Let V(t) = Ut(t) = AU(t). 
Then V  is the mild solution of the system

{
Vt = AV
V(0) = AU0 ∈ X0, (4.16)

hence, by using theorem 1.2, estimate ‖V(t)‖X0 � C0e−µ0t‖V0‖X0, holds. Since V(t) = AU(t), 
V0 = AU0, and the norms ‖U‖X0 + ‖AU‖X0 and ‖U‖X5 are equivalent in X5, we conclude that, 
for some constant C5  >  0, we have that

‖U(t)‖X5 � C5e−µ0t‖U0‖X5 .

This proves (4.15) for s  =  5. The fact that (4.15) is still valid for 0  <  s  <  5 follows from a 
standard interpolation argument, since Xs = [X0, X5]s/5. □ 

5. Further comments and open problems

In this section considerations will be done regarding the fifth order Boussinesq system (1.2) 
and (1.3). It is important to note that the classical energy estimate does not provide any global 
(in time) a priori bounds for the solutions of the corresponding nonlinear model. Consequently, 
it does not lead to the existence of a global (in time) solution in the energy space. Due to the 
structure of the nonlinear terms, the same lack of a priori bounds also occurs when higher 
order Sobolev norms are considered (e. g. Hs  −  norm). Because of this strict requirement, we 
cannot proceed as in [10, 18] and have only succeeded in deriving uniform decay results for 
the linear system.

 •  Global well-posedness in time

  Theorem 1.1 and proposition 3.5 give us a positive answer to the well-posedness problem. 
However, the following questions are still open:

  Question A. Is the nonlinear system (1.2) and (1.3), global well-posed in time? If yes, 
should we expect some restriction on the initial data? 

 •  One feedback on the boundary condition
  If we consider in (1.2) and (1.3) with only one damping mechanism, that is, with α1 

or α2 vanishing, we still have E(t), defined by (1.4), decreasing along the trajectories 

4 For any real number s, [s] stands for its integer part.
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of the linearized system associated to the model. Thus, the following question can be 
formulated:

  Question B. Is the linearized system associated to (1.2) and (1.3) exponentially stable 
with only one damping mechanism? 

 •  Exponential stability for the full system

  Because of the lack of classical energy estimates for the nonlinear model we are not able 
to prove, by using, e.g. [10, 18], the exponential stability for the full model (1.2) and 
(1.3). Then, one natural question remains open:

  Question C. Does the energy associated to the nonlinear system (1.2) and (1.3), with one 
or two damping mechanism, converges to zero, as t → ∞, for initial data in the energy 
space X0? 
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Appendix

The following fifth-order Boussinesq system
{
ηt + ux − auxxx + a1(ηu)x + a2(ηuxx)x + buxxxxx = 0,
ut + ηx − aηxxx + a1uux + a3(ηηxx)x + a4uxuxx + bηxxxxx = 0, (A.1)

with a  >  0, b  >  0, a �= b, a1  >  0, a2  <  0, a3  >  0 and a4  >  0, can be derived from (1.1) with a 
carefully choice of the parameters θ, β and τ .

Indeed, taking τ = 2
3 − θ2, we have that

1
6
β(3θ2 − 1) = β

[
1
2
(1 − θ2)− τ

]
,

and a = 1
6β(3θ

2 − 1). On the other hand, taking θ2 = 1
2 − 1

2
√

5
≈ 0, 276 393 < 1

3  and noting 
that β > 0, it follows that

5
(
θ2 − 1

5

)2

= (θ2 − 1)(3 − 11θ2) (A.2)

and

a =
1
2
β

(
θ2 − 1

3

)
< 0.
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Note that (A.2) is equivalent to

5
(
θ2 − 1

5

)2

= (θ2 − 1)
(

9
3
− 11θ2

)
= (θ2 − 1)

(
θ2 − 5 + 12τ

)

= (θ2 − 5)(θ2 − 1) + 12(θ2 − 1)τ .

Thus,

5
24

(
θ2 − 1

5

)2

=
1

24
(θ2 − 5)(θ2 − 1) +

1
2
(θ2 − 1)τ

⇔ 1
120

(
25θ4 − 10θ2 + 1

)
=

1
24

(θ2 − 6θ2 + 5) +
1
2
(θ2 − 1)τ ,

and b can define as

b =
β2

120
(
25θ4 − 10θ2 + 1

)
= β2

[
1

24
(θ2 − 6θ2 + 5) +

1
2
(θ2 − 1)τ

]
> 0.

Finally, with the choice of

a1 = α > 0, a2 =
1
2
αβ(θ2 − 1) < 0, a3 = αβ > 0 and a4 = αβ(2 − θ2) > 0,

we obtain (A.1).
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