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Abstract. In this paper, we study the boundary controllability of the Gear–Grimshaw system posed on a finite domain (0, L),

with Neumann boundary conditions:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut + uux + uxxx + avxxx + a1vvx + a2(uv)x = 0, in (0, L) × (0, T ),

cvt + rvx + vvx + abuxxx + vxxx + a2buux + a1b(uv)x = 0, in (0, L) × (0, T ),

uxx(0, t) = h0(t), ux(L, t) = h1(t), uxx(L, t) = h2(t), in (0, T ),

vxx(0, t) = g0(t), vx(L, t) = g1(t), vxx(L, t) = g2(t), in (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), in (0, L).

We first prove that the corresponding linearized system around the origin is exactly controllable in
(
L2(0, L)

)2
when h2(t) =

g2(t) = 0. In this case, the exact controllability property is derived for any L > 0 with control functions h0, g0 ∈ H− 1
3 (0, T )

and h1, g1 ∈ L2(0, T ). If we change the position of the controls and consider h0(t) = h2(t) = 0 (resp. g0(t) = g2(t) = 0),

we obtain the result with control functions g0, g2 ∈ H− 1
3 (0, T ) and h1, g1 ∈ L2(0, T ) if and only if the length L of the

spatial domain (0, L) does not belong to a countable set. In all cases, the regularity of the controls are sharp in time. If
only one control act in the boundary condition, h0(t) = g0(t) = h2(t) = g2(t) = 0 and g1(t) = 0 (resp. h1(t) = 0), the
linearized system is proved to be exactly controllable for small values of the length L and large time of control T . Finally,
the nonlinear system is shown to be locally exactly controllable via the contraction mapping principle, if the associated
linearized systems are exactly controllable.
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1. Introduction

1.1. Setting of the problem

The goal of this paper is to investigate the boundary controllability properties of the nonlinear dispersive
system ⎧

⎪⎨

⎪⎩

ut + uux + uxxx + avxxx + a1vvx + a2(uv)x = 0, in (0, L) × (0, T ),
cvt + rvx + vvx + abuxxx + vxxx + a2buux + a1b(uv)x = 0, in (0, L) × (0, T ),
u(x, 0) = u0(x), v(x, 0) = v0(x), in (0, L),

(1)

with the following boundary conditions
{

uxx(0, t) = h0(t), ux(L, t) = h1(t), uxx(L, t) = h2(t),
vxx(0, t) = g0(t), vx(L, t) = g1(t), vxx(L, t) = g2(t).

(2)
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In (1), a1, a2, a, b, c and r are real constants, u = u(x, t) and v = v(x, t) are real-valued functions of the
two variables x and t and subscripts indicate partial differentiation. The boundary functions hi and gi,
for i = 0, 1, 2, are considered as control inputs acting on the boundary conditions. Our purpose is to
see whether we can force the solutions of the system to have certain properties by choosing appropriate
control inputs. More precisely, we are mainly concerned with the following exact control problem:

Given T > 0 and u0, v0, u1, v1 ∈ L2(0, L), can one find appropriate control inputs hi, gi, for i = 0, 1, 2,
such that the corresponding solution (u, v) of (1), (2) satisfies

(u(x, T ), v(x, T )) =
(
u1(x), v1(x)

)
? (3)

In order to provide the tools to handle with this problem, we assume that the coefficients a, b, c and
r satisfy

b, c and r are positive and 1 − a2b > 0. (4)
System (1) was derived by Gear and Grimshaw [8] as a model to describe strong interactions of

two long internal gravity waves in a stratified fluid, where the two waves are assumed to correspond to
different modes of the linearized equations of motion (we also refer to [1,14] for an extensive discussion
on the physical relevance of the system). This somewhat complicated model has the structure of a pair
of Korteweg–de Vries (KdV) equations coupled through both dispersive and nonlinear effects and has
been object of intensive research in recent year. It is a special case of a broad class of nonlinear evolution
equations for which the well-posedness theory associated with the pure initial-value problem posed on
the whole real line R, or on a finite interval with periodic boundary conditions, has been intensively
investigated. By contrast, the mathematical theory pertaining to the study of the boundary value problem
is considerably less advanced, specially in what concerns the study of the controllability properties. As far
as we know, the controllability results for system (1) were first obtained in [11], when the model is posed
on a periodic domain and r = 0. In this case, a diagonalization of the main terms allows to decouple
the corresponding linear system into two scalar KdV equations and use the previous results available
in the literature. Later on, assuming that (4) holds, Micu et al. [12] proved the local exact boundary
controllability property for the nonlinear system, posed on a bounded interval, considering the following
boundary conditions: {

u(0, t) = 0, u(L, t) = f1(t), ux(L, t) = f2(t),
v(0, t) = 0, v(L, t) = k1(t), vx(L, t) = k2(t).

(5)

The analysis developed in [12] was inspired by the results obtained by Rosier [10] for the scalar KdV
equation. It combines the analysis of the linearized system and the Banach’s fixed-point theorem. Follow-
ing the classical duality approach [7,9], the exact controllability of system linearized system is equivalent
to an observability for the adjoint system. Then, the problem is reduced to prove a nonstandard unique
continuation property of the eigenfunctions of the corresponding differential operator. Their main result
reads as follows:

Theorem A. (Micu et al. [12]) Let L > 0 and T > 0. Then there exists a constant δ > 0, such that, for
any initial and final data u0, v0, u1, v1 ∈ L2(0, L) verifying

|| (u0, v0
) ||(L2(0,L))2 ≤ δ and || (u1, v1

) ||(L2(0,L))2 ≤ δ,

there exist four control functions f1, k1 ∈ H1
0 (0, T ) and f2, k2 ∈ L2(0, T ), such that the solution

(u, v) ∈ C([0, T ];
(
L2(0, L)

)2
) ∩ L2(0, T ; (H1(0, L))2) ∩ H1(0, T ; (H−2(0, L))2)

of (1)–(5) verifies (3).

Later on, the same problem was addressed by Cerpa and Pazoto [5] when only two controls act on the
Neumann boundary conditions, i.e., assuming that f1 = k1 = 0. In this case, the analysis of the linearized
system is much more complicated; therefore, the authors used a direct approach based on the multiplier
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technique that gives the observability inequality for small values of the length L and large time of control
T . The fixed-point argument as well as the existence and regularity results needed in order to consider
the nonlinear system runs exactly in the same way as in [12].

The program of this work was carried out for a particular choice of boundary conditions and aims to
establish as a fact that such a model predicts the interesting controllability properties initially observed
for the KdV equation. Therefore, to introduce the reader to the theory developed for KdV with the
boundary conditions of types (2) and (5), we present below a summary of the results achieved in [10] and
[3], respectively.

Rosier [10], studied the following boundary control problem for the KdV equation posed on the finite
domain (0, L) ⎧

⎨

⎩

ut + ux + uux + uxxx = 0 in (0, L) × (0, T ),
u(0, t) = 0, u(L, t) = 0, ux(L, t) = g(t) in (0, T ),
u(x, 0) = u0(x) in (0, L),

(6)

where the boundary value function g(t) is considered as a control input. First, the author studies the
associated linear system

⎧
⎨

⎩

ut + ux + uxxx = 0 in (0, L) × (0, T ),
u(0, t) = 0, u(L, t) = 0, ux(L, t) = g(t) in (0, T ),
u(x, 0) = u0(x) in (0, L)

(7)

and discovered the so-called critical length phenomena, i.e., whether the system (7) is exactly controllable
depends on the length L of the spatial domain (0, L). More precisely, the following result was proved:

Theorem B. (Rosier [10]) The linear system (7) is exactly controllable in the space L2(0, L) if and only
if the length L of the spatial domain (0, L) does not belong to the set

N :=
{

2π√
3

√
k2 + kl + l2 : k, l ∈ N

∗
}

. (8)

Then, by using a fixed-point argument, the controllability result was extended to the nonlinear system
when L /∈ N .

Theorem C. (Rosier [10]) Let T > 0 be given. If L /∈ N , there exists δ > 0, such that, for any u0, uT ∈
L2(0, L) with

||u0||L2(0,L) + ||uT||L2(0,L) ≤ δ,

one can find a control input g ∈ L2(0, T ), such that the nonlinear system (6) admits a unique solution

u ∈ C([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L))

satisfying

u(x, T ) = uT(x).

More recently, in [3], Caicedo et al. investigated the boundary control problem of the KdV equation
with new boundary conditions, namely the Neumann boundary conditions:

⎧
⎨

⎩

ut + (1 + β)ux + uxxx = 0 in (0, L) × (0, T ),
uxx(0, t) = 0, ux(L, t) = h(t), uxx(L, t) = 0 in (0, T ),
u(x, 0) = u0(x) in (0, L).

(9)

In (9), β is a given real constant and g a control input. For any β �= −1, the authors obtained the following
set of critical lengths

Rβ :=

{
2π

√
3(1 + β)

√
k2 + kl + l2 : k, l ∈ N

∗
}

∪
{

kπ√
β + 1

: k ∈ N
∗
}

, (10)

and proved that the following result holds:
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Theorem D. (Caicedo et al. [3])
(i) If β �= −1, the linear system (9) is exactly controllable in the space L2(0, L) if and only if the length

L of the spatial domain (0, L) does not belong to the set Rβ.
(ii) If β = −1, then the system (9) is not exact controllable in the space L2(0, L) for any L > 0.

In addition, for the nonlinear system
⎧
⎨

⎩

ut + ux + uux + uxxx = 0 in (0, L) × (0, T ),
uxx(0, t) = 0, ux(L, t) = h(t), uxx(L, t) = 0 in (0, T ),
u(x, 0) = u0(x) in (0, L),

(11)

the result below was proved by using a fixed-point argument:

Theorem E. (Caicedo et al. [3]) Let T > 0, β �= −1 and L /∈ Rβ be given. There exists δ > 0, such that,
for any u0, uT ∈ L2(0, L) with

||u0 − β||L2(0,L) + ||uT − β||L2(0,L) ≤ δ,

one can find a control input h ∈ L2(0, T ), such that the system (11) admits unique solution

u ∈ C([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L))

satisfying

u(x, T ) = uT(x).

Both theorems, Theorems B and D, were proved following the classical duality approach [7,9] which
reduces the problem to prove an observability inequality for the solutions of the corresponding adjoint
system. Then, the controllability is obtained with the aid of a compactness argument that leads the
issue to a nonstandard unique continuation principle for the eigenfunctions of the differential operator
associated with the model. The critical lengths in (8) and (10) are such that there are eigenfunctions of
the linear scalar problem for which the observability inequality associated with the adjoint system fails.1

However, in [3], the authors encountered some difficulties that require special attention. For instance, the
adjoint system of the linear system (9) is given by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ψt + (1 + β)ψx + ψxxx = 0 in (0, L) × (0, T ),
(1 + β)ψ(0, t) + ψxx(0, t) = 0 in (0, T ),
(1 + β)ψ(L, t) + ψxx(L, t) = 0 in (0, T ),
ψx(0, t) = 0 in (0, T ),
ψ(x, T ) = ψT(x) in (0, L).

(12)

The exact controllability of system (9) is equivalent to the following observability inequality for the adjoint
system (12):

||ψT||L2(0,L) ≤ C||ψx(L, ·)||L2(0,T ),

for some C > 0. Nonetheless, the usual multiplier method and compactness arguments used to deal with
the system (12) only lead to

||ψT||2L2(0,L) ≤ C1||ψx(L, ·)||2L2(0,T ) + C2||ψ(L, ·)||2L2(0,T ), (13)

where C1 and C2 are positive constants. In order to absorb the extra term present in (13), Caicedo et al.
derived a technical result, which reveals some hidden regularity (sharp trace regularities) for solutions of
the adjoint system (12):

1 In the case of L ∈ N (resp. L ∈ Rβ), Rosier (resp. Caicedo et al. [3]) proved in [10] that the associated linear

system (7) is not controllable; there exists a finite-dimensional subspace of L2(0, L), denoted by M = M(L), which
is unreachable from 0 for the linear system. More precisely, for every nonzero state ψ ∈ M, g ∈ L2(0, T ) and u ∈
C([0, T ]; L2(0, L)) ∩ L2(0, T ; H1(0, L)) satisfying (7) and u(·, 0) = 0, one has u(·, T ) �= ψ. A spatial domain (0, L) is called
critical for the system (7) (resp. (9)) if its domain length L ∈ N (resp. L ∈ Rβ).
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Theorem F. (Caicedo et al. [3]) For any ψT ∈ L2(0, L), the solution

ψ ∈ C([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L))

of the problem (12) possesses the following sharp trace properties

sup
x∈(0,L)

||∂r
xψ(x, ·)||

H
1−r
3 (0,T )

≤ Cr||ψT||L2(0,L), (14)

for r = 0, 1, 2, where Cr are positive constants.

Estimate (14) is then combined with compactness argument to remove the extra term in (13). We remark
that the sharp Kato smoothing properties obtained by Kenig, Ponce and Vega [13] for the solutions
of the KdV equation posed on the line, played an important role in the proof of the previous result.
The same strategy has been successfully applied by Cerpa et al. [6] for the study of a similar boundary
controllability problem.

1.2. Main result

We are now in a position to return considerations to the control properties of the system (1). First, we
prove that the corresponding linear system with the following boundary conditions

{
uxx(0, t) = h0(t), ux(L, t) = h1(t), uxx(L, t) = 0,
vxx(0, t) = g0(t), vx(L, t) = g1(t), vxx(L, t) = 0,

is exactly controllable in
(
L2(0, L)

)2 with controls h0, g0 ∈ H− 1
3 (0, T ) and h1, g1 ∈ L2(0, T ). In this case,

no restriction on the length L of the spatial domain is required. However, if we change the position of the
controls, a critical size restriction can appear. This is the case when we consider the following boundary
conditions {

uxx(0, t) = 0, ux(L, t) = h1(t), uxx(L, t) = 0,
vxx(0, t) = g0(t), vx(L, t) = g1(t), vxx(L, t) = g2(t).

In this case, the exact controllability result in
(
L2(0, L)

)2 is derived with controls g0, g2 ∈ H− 1
3 (0, T )

and h1, g1 ∈ L2(0, T ) if and only if the length L does not belong of the following set

Fr :=

{

2πk

√
1 − a2b

r
: k ∈ N

∗
}

∪
{

π

√
(1 − a2b)α(k, l,m, n, s)

3r
: k, l,m, n, s ∈ N

∗
}

, (15)

where

α := α(k, l,m, n, s) = 5k2 + 8l2 + 9m2 + 8n2 + 5s2 + 8kl + 6km

+ 4kn + 2ks + 12ml + 8ln + 3ls + 12mn + 6ms + 8ns.

As in [3], the hidden regularity for the corresponding adjoint system (1) was required. Here, the result is
given in Proposition 2.4, which is the key point to prove the controllability result.

Finally, for small values of the length L and large time of control T we derive a exact controllability
result in

(
L2(0, L)

)2 by assuming that the controls g1(t) = 0 (resp. h1(t) = 0) and g0(t) = g2(t) = 0.
In this case, the analysis of the linearized system is much more complicated; therefore, we use a direct
approach based on the multipliers technique, as in [5]. In all cases, the result obtained for the linear system
allows to prove the local controllability property of the nonlinear system (1) by means of a fixed-point
argument.

The analysis describe above are summarized in the main result of the paper, Theorem 1.1. However,
in order to make the reading easier, throughout the paper we use the following notation for the boundary
functions:
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�h1 = (0, h1, 0), �g1 = (g0, g1, g2) and �h2 = (h0, h1, h2), �g2 = (0, g1, 0),
�h3 = (h0, h1, 0), �g3 = (g0, g1, 0) and �h4 = (0, h1, h2), �g4 = (0, g1, g2),
�h5 = (0, h1, 0), �g5 = (0, 0, 0) and �h6 = (0, 0, 0), �g6 = (0, g1, 0).

We also introduce the space X :=
(
L2(0, L)

)2 endowed with the inner product

〈(u, v), (ϕ,ψ)〉 :=

L∫

0

u(x)ϕ(x)dx +
b

c

L∫

0

v(x)ψ(x)dx, ∀(u, v), (ϕ,ψ) ∈ X ,

and the spaces

HT := H− 1
3 (0, T ) × L2(0, T ) × H− 1

3 (0, T ) and ZT := C([0, T ];
(
L2(0, L)

)2
) ∩ L2(0, T, (H1(0, L))2)

endowed with their natural inner products.
Thus, our main result reads as follows:

Theorem 1.1. Let T > 0. Then, there exists δ > 0, such that, for any
(
u0, v0

)
,
(
u1, v1

) ∈ X :=
(
L2(0, L)

)2

verifying

‖ (u0, v0
) ‖X + ‖ (u1, v1

) ‖X ≤ δ,

the following holds:

(i) If L ∈ (0,∞) \ Fr, one can find �hi, �gi ∈ HT , for i = 1, 2, such that the system (1), (2) admits a
unique solution (u, v) ∈ ZT satisfying (3).

(ii) For any L > 0, one can find �hi, �gj ∈ HT , for j = 3, 4, such that the system (1), (2) admits a unique
solution (u, v) ∈ ZT , satisfying (3).

(iii) Let T > 0 and L > 0 satisfying

1 >
βCT

T

[
L +

r

c

]
,

where CT is the constant in (35) and β is the constant given by the embedding H
1
3 (0, T ) ⊂ L2(0, T ).

Then, one can find �hk, �gk ∈ HT , for k = 5, 6, such that the system (1), (2) admits a unique solution
(u, v) ∈ ZT , satisfying (3).

Before close this section, we observe that the exact controllability result given in Theorem A holds
without any restriction of the Length L. However, we believe that, with another configuration of the
controls, it is possible to prove the existence of a critical set for the system (1).

The article is organized as follows:

− In Sect. 2, we show that the system (1), (2) is locally well posed in ZT , whenever
(
u0, v0

) ∈
(L2(0, L))2, h0, g0 ∈ H− 1

3 (R+), h1, g1 ∈ L2(R+) and h2, g2 ∈ H− 1
3 (R+). Various linear estimates,

including hidden regularities, are presented for solutions of the corresponding linear system. As we
pointed before, such estimates will play important roles in studying the controllability properties.

− In Sect. 3, the boundary control system (1) is investigated for its controllability. We investigate first
the linearized system and its corresponding adjoint system for their controllability and observability.
In particular, the hidden regularities for the solutions of the adjoint system presented in Sect. 2 are
used to prove observability inequalities associated with the control problem.

− The proof of our main result, Theorem 1.1, is presented in Sect. 4. Finally, the paper ends with an
appendix, where the proof of a technical lemma used in the paper is furnished.
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2. Well-posedness

2.1. Linear system

In this section, we establish the well-posedness of the linear system associated with (1), (2):
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut + uxxx + avxxx = 0, in (0, L) × (0, T ),
vt + r

cvx + ab
c uxxx + 1

cvxxx = 0, in (0, L) × (0, T ),
uxx(0, t) = h0(t), ux(L, t) = h1(t), uxx(L, t) = h2(t), in (0, T ),
vxx(0, t) = g0(t), vx(L, t) = g1(t), vxx(L, t) = g2(t), in (0, T ),
u(x, 0) = u0(x), v(x, 0) = v0(x), in (0, L).

(16)

We begin by considering the following linear nonhomogeneous boundary value problem
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut + uxxx + avxxx = f , in (0, L) × (0, T ),
vt + ab

c uxxx + 1
cvxxx = s, in (0, L) × (0, T ),

uxx(0, t) = h0(t), ux(L, t) = h1(t), uxx(L, t) = h2(t), in (0, T ),
vxx(0, t) = g0(t), vx(L, t) = g1(t), vxx(L, t) = g2(t), in (0, T ),
u(x, 0) = u0(x), v(x, 0) = v0(x), in (0, L),

(17)

with the notation introduced in Sect. 1. Then, the next proposition shows that the problem (17) is well
posed in the space X .

Proposition 2.1. Let T > 0 be given. Then, for any
(
u0, v0

)
in X , f, s in L1(0, T ;L2(0, L)) and

−→
h ,−→g ∈

HT , problem (17) admits a unique solution (u, v) ∈ ZT , with

∂k
xu, ∂k

xv ∈ L∞
x (0, L;H

1−k
3 (0, T )), k = 0, 1, 2. (18)

Moreover, there exist C > 0, such that

‖(u, v)‖ZT
+

2∑

k=0

‖(∂k
xu, ∂k

xv)‖
L∞

x (0,L;(H
1−k
3 (0,T ))2)

≤ C
{

‖ (u0, v0
) ‖X

+ ‖
(−→

h ,−→g
)

‖HT
+ ‖(f, s)‖L1(0,T ;(L2(0,L))2)

}
.

Proof. We diagonalize the main term in (16) and consider the change of variable
{

u = 2aũ + 2aṽ,
v =

((
1
c − 1

)
+ λ

)
ũ +

((
1
c − 1

)− λ
)
ṽ,

where λ =
√(

1
c − 1

)2 + 4a2b
c . Thus, we can transform the linear system (17) into

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ũt + α−ũxxx = f̃ ,

ṽt + α+ṽxxx = s̃,

ũxx(0, t) = h̃0(t), ũx(L, t) = h̃1(t), ũxx(L, t) = h̄2(t),

ṽxx(0, t) = g̃0(t), ṽx(L, t) = g̃1(t), ṽxx(L, t) = g̃2(t),

ũ(x, 0) = ũ0(x), ṽ(x, 0) = ṽ0(x),

(19)

where α± = − 1
2

((
1
c − 1

)± λ
)

and
⎧
⎨

⎩

f̃ = − 1
2

(α+
aλ f + 1

λs
)
, ũ0 = − 1

2

(α−
aλ u0 − 1

λv0
)
, h̃i = − 1

2

(α−
aλ hi − 1

λgi

)
, i = 0, 1, 2,

s̃ = − 1
2

(α−
aλ f − 1

λs
)
, ṽ0 = 1

2

(α+
aλ u0 − 1

λv0
)
, g̃i = 1

2

(α+
aλ hi − 1

λgi

)
, i = 0, 1, 2.
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Note that condition (4) guarantees that α± are nonzero. Therefore, system (19) can be decoupled into
two single KdV equations as follows:

⎧
⎪⎪⎨

⎪⎪⎩

ũt + α−ũxxx = f̃ ,

ũxx(0, t) = h̃0(t), ũx(L, t) = h̃1(t), ũxx(L, t) = h̃2(t),

ũ(0, x) = ũ0(x)

(20)

and ⎧
⎪⎪⎨

⎪⎪⎩

ṽt + α+ṽxxx = s̃,

ṽxx(0, t) = g̃0(t), ṽx(L, t) = g̃1(t), ṽxx(L, t) = g̃2(t),

ṽ(x, 0) = ṽ0(x).

(21)

Here, we consider the solutions written in the form {W±
bdr(t)}t≥0 that will be called the boundary integral

operator. For this purpose, we use a lemma, which can be found in [4, Lemma 2.4] (see also [3, Lemma
2.1]), for solutions of (20) (or (21)). For the sake of completeness, we will present the proof in Appendix A.

�

Lemma 2.2. The solution u of the IBVP (20) (or (21)), when f̃ = 0, s̃ = 0 and null initial data, can be
written in the form

u(x, t) = [W+
bdr

�̃
h](x, t) := [W+

bdr
�h](x, t) :=

3∑

j,m=1

[W+
j,mhm](x, t),

where
[W+

j,mh](x, t) ≡ [Uj,mh](x, t) + [Uj,mh](x, t) (22)

with

[Uj,mh](x, t) ≡ 1
2π

+∞∫

0

eiρ3teλ+
j (ρ)x3ρ2[Q+

j,mh](ρ)dρ (23)

for j = 1, 3, m = 1, 2, 3 and

[U2,mh](x, t) ≡ 1
2π

+∞∫

0

eiρ3te−λ+
2 (ρ)(1−x)3ρ2[Q+

2,mh](ρ)dρ (24)

for m = 1, 2, 3. Here

[Q+
j,mh](ρ) :=

Δ+
j,m(ρ)

Δ+(ρ)
ĥ+(ρ), [Q+

2,mh](ρ) =
Δ+

2,m(ρ)
Δ+(ρ)

eλ+
2 (ρ)ĥ+(ρ) (25)

for j = 1, 3 and m = 1, 2, 3. Here ĥ+(ρ) = ĥ(iρ3), Δ+(ρ) and Δ+
j,m(ρ) are obtained from Δ(s) and

Δj,m(s) by replacing s with iρ3 and λ+
j (ρ) = λj(iρ3) where

Δ = λ1λ2λ3

(
λ1(λ3 − λ2)e−λ1 + λ2(λ1 − λ3)e−λ2 + λ3(λ2 − λ1)e−λ3

)
;

Δ1,1 = e−λ1λ2λ3(λ3 − λ2), Δ2,1 = e−λ2λ1λ3(λ1 − λ3), Δ3,1 = e−λ3λ1λ2(λ2 − λ1);

Δ1,2 = λ2
2λ

2
3(e

λ2 − eλ3), Δ2,2 = λ2
1λ

2
3(e

λ3 − eλ1), Δ3,2 = λ2
1λ

2
2(e

λ1 − eλ2);

Δ1,3 = λ2λ3(λ2eλ3 − λ3eλ2), Δ2,3 = λ1λ3(λ3eλ1 − λ1eλ3), Δ3,3 = λ1λ2(λ1eλ2 − λ2eλ1).

Since

(ũ0, ṽ0) ∈ X , (f̃ , s̃) ∈ L1(0, T ;
(
L2(0, L)

)2
) and

−→̃
h ,

−→̃
g ∈ HT ,



ZAMP Controllability Gear–Grimshaw with critical size restrictions Page 9 of 36  109 

by [3, Propositions 2.2 and 2.5], we obtain the existence of (ũ, ṽ) ∈ ZT , solution of the system (19), such
that

∂k
x ũ, ∂k

x ṽ ∈ L∞
x (0, L;H

1−k
3 (0, T )), k = 0, 1, 2,

and

‖(ũ, ṽ)‖ZT
+

2∑

k=0

‖(∂k
x ũ, ∂k

x ṽ)‖
L∞

x (0,L;(H
1−k
3 (0,T ))2)

≤ C

{

‖(ũ0, ṽ0)‖X + ‖(
−→̃
h ,

−→̃
g )‖HT

+ ‖(f̃ , s̃)‖L1(0,T ;(L2(0,L))2)

}

,

for some constant C > 0. Furthermore, we can write ũ and ṽ in its integral form as follows

ũ(t) = W−
0 (t)ũ0 + W−

bdr(t)
−→̃
h +

t∫

0

W−
0 (t − τ)f̃(τ)dτ,

ṽ(t) = W+
0 (t)ṽ0 + W+

bdr(t)
−→̃
g +

t∫

0

W+
0 (t − τ)s̃(τ)dτ,

where {W±
0 (t)}t≥0 are the C0 semigroup in the space L2(0, L) generated by the linear operators

A± = −α±g′′′,

with domain

D(A±) = {g ∈ H3(0, L) : g′′(0) = g′(L) = g′′(L) = 0},

and {W±
bdr(t)}t≥0 are the operator given in Lemma 2.2 (see also [3, Lemma 2.1] for more details). Then,

by change of variable we can easily verify that
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u(t) = W−
0 (t)u0 + W−

bdr(t)
−→
h +

t∫

0

W−
0 (t − τ)f(τ)dτ,

v(t) = W+
0 (t)v0 + W+

bdr(t)
−→g +

t∫

0

W+
0 (t − τ)s(τ)dτ

and the result follows.
The global well-posedness of the system (16) is obtained using a fixed-point argument.

Proposition 2.3. Let T > 0 be given. Then, for any
(
u0, v0

) ∈ X and
−→
h ,−→g ∈ HT , problem (16) admits

a unique solution (u, v) ∈ ZT with

∂k
xu, ∂k

xv ∈ L∞
x (0, L;H

1−k
3 (0, T )), k = 0, 1, 2.

Moreover, there exist C > 0, such that

‖(u, v)‖ZT
+

2∑

k=0

‖(∂k
xu, ∂k

xv)‖
L∞

x (0,L;(H
1−k
3 (0,T ))2)

≤ C
{

‖ (u0, v0
) ‖X + ‖

(−→
h ,−→g

)
‖HT

+ ‖(f, s)‖L1(0,T ;(L2(0,L))2)

}
.

Proof. Let FT :=
{

(u, v) ∈ ZT : (u, v) ∈ L∞
x (0, L; (H

1−k
3 (0, T ))2), k = 0, 1, 2

}
equipped with the norm

‖(u, v)‖FT
= ‖(u, v)‖ZT

+
2∑

k=0

‖(∂k
xu, ∂k

xv)‖
L∞

x (0,L;(H
1−k
3 (0,T ))2)

.
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Let 0 < β ≤ T to be determined later. For each u, v ∈ Fβ , consider the problem
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ωt + ωxxx + aηxxx = 0, in (0, L) × (0, β),
ηt + ab

c ωxxx + 1
cηxxx = − r

cvx, in (0, L) × (0, β),
ωxx(0, t) = h0(t), ωx(L, t) = h1(t), ωxx(L, t) = h2(t), in (0, β),
ηxx(0, t) = g0(t), ηx(L, t) = g1(t), ηxx(L, t) = g2(t), in (0, β),
ω(x, 0) = u0(x), v(x, 0) = v0(x), in (0, L).

(26)

According to Proposition 2.1, we can define the operator

Γ : Fβ → Fβ , given by Γ (u, v) = (ω, η),

where (ω, η) is the solution of (26). Moreover,

‖Γ (u, v)‖Fβ
≤ C

{
‖ (u0, v0

) ‖X + ‖
(−→

h ,−→g
)

‖Hβ
+ ‖(0, vx)‖L1(0,β;(L2(0,L))2)

}
, (27)

where the positive constant C depends only on T . Since

‖(0, vx)‖L1(0,β;L2(0,L)) ≤ β
1
2 ‖(u, v)‖Fβ

,

we obtain a positive constant C > 0, such that

‖Γ (u, v)‖Fβ
≤ C

{
‖ (u0, v0

) ‖X + ‖
(−→

h ,−→g
)

‖Hβ

}
+ Cβ

1
2 ‖(u, v)‖Fβ

. (28)

Let (u, v) ∈ Br(0) :=
{
(u, v) ∈ Fβ : ‖(u, v)‖Fβ

≤ r
}
, with r = 2C

{
‖ (u0, v0

) ‖X + ‖
(−→

h ,−→g
)

‖Hβ

}
.

Choosing β > 0, satisfying

Cβ
1
2 ≤ 1

2
, (29)

from (28) we obtain

‖Γ (u, v)‖Fβ
≤ r.

The above estimate allows us to conclude that

Γ : Br(0) ⊂ Fβ → Br(0).

On the other hand, note that Γ (u1, v1) − Γ (u2, v2) solves the following system
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ωt + ωxxx + aηxxx = 0, in (0, L) × (0, β),
ηt + ab

c ωxxx + 1
cηxxx = − r

c (v1x − v2x), in (0, L) × (0, β),
ωxx(0, t) = ωx(L, t) = ωxx(L, t) = 0, in (0, β),
ηxx(0, t) = ηx(L, t) = ηxx(L, t) = 0, in (0, β),
ω(x, 0) = 0, v(x, 0) = 0, in (0, L).

Again, from Proposition 2.1 and (29), we have

‖Γ (u1, v1) − Γ (u2, v2)‖Fβ
≤ C‖(0, v1x − v2x)‖L1(0,β;(L2(0,L))2) ≤ Cβ

1
2 ‖(u1, v1) − (u2, v2)‖Fβ

≤ 1
2
‖(u1, v1) − (u2, v2)‖Fβ

.

Hence, Γ : Br(0) → Br(0) is a contraction and, by Banach fixed-point theorem, we obtain a unique
(u, v) ∈ Br(0), such that

Γ (u, v) = (u, v) ∈ Fβ ,

and (27) holds, for all t ∈ (0, β). Since the choice of β is independent of
(
u0, v0

)
, the standard continuation

extension argument yields that the solution (u, v) belongs to FT . The proof is complete. �
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2.1.1. Adjoint system. Consider the following homogeneous initial-value problem associated with (1),
(2): ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut + uxxx + avxxx = 0, in (0, L) × (0, T ),
vt + r

cvx + ab
c uxxx + 1

cvxxx = 0, in (0, L) × (0, T ),
uxx(0, t) = ux(L, t) = uxx(L, t) = 0, in (0, T ),
vxx(0, t) = vx(L, t) = vxx(L, t) = 0, in (0, T ),
u(x, 0) = u0(x), v(x, 0) = v0(x), in (0, L).

(30)

In order to introduce the backward system associated with (30), we multiply the first equation of (30)
by ϕ, the second one by ψ and integrate over (0, L) × (0, T ). Assuming that the functions u, v, ϕ and ψ
are regular enough to justify all the computations, we obtain, after integration by parts, the following
identity:

L∫

0

(u(x, T )ϕ(x, T ) + v(x, T )ψ(x, T )) dx −
L∫

0

(
u0(x)ϕ(x, 0) + v0(x)ψ(x, 0)

)
dx

=

T∫

0

L∫

0

u(x, t)
(

ϕ(x, t) + ϕxxx(x, t) +
ab

c
ψxxx(x, t)

)

dxdt

+

T∫

0

L∫

0

v(x, t)
(

ψ(x, t) +
r

c
ψ(x, t) + aϕxxx(x, t) +

1
c
ψxxx(x, t)

)

dxdt

−
T∫

0

uxx(L, t)
(

ϕ(L, t) +
ab

c
ψ(L, t)

)

dt +

T∫

0

uxx(0, t)
(

ϕ(0, t) +
ab

c
ψ(0, t)

)

dt

+

T∫

0

ux(L, t)
(

ϕx(L, t) +
ab

c
ψx(L, t)

)

dt −
T∫

0

ux(0, t)
(

ϕx(0, t) +
ab

c
ψx(0, t)

)

dt

−
T∫

0

u(L, t)
(

ϕxx(L, t) +
ab

c
ψxx(L, t)

)

dt +

T∫

0

u(0, t)
(

ϕxx(0, t) +
ab

c
ψxx(0, t)

)

dt

−
T∫

0

vxx(L, t)
(

aϕ(L, t) +
1
c
ψ(L, t)

)

dt +

T∫

0

vxx(0, t)
(

aϕ(0, t) +
1
c
ψ(0, t)

)

dt

+

T∫

0

vx(L, t)
(

aϕx(L, t) +
1
c
ψx(L, t)

)

dt −
T∫

0

vx(0, t)
(

aϕx(0, t) +
1
c
ψx(0, t)

)

dt

−
T∫

0

v(L, t)
(

aϕxx(L, t) +
1
c
ψxx(L, t) +

r

c
ψ(L, t)

)

dt

+

T∫

0

v(0, t)
(

aϕxx(0, t) +
1
c
ψxx(0, t) +

1
c
ψ(0, t)

)

dt.
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Having the previous equality in hands, we consider backward system as follows
{

ϕt + ϕxxx + ab
c ψxxx = 0, in (0, L) × (0, T ),

ψt + r
cψx + aϕxxx + 1

cψxxx = 0, in (0, L) × (0, T )
(31)

satisfying the boundary conditions,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

aϕx(0, t) + 1
cψx(0, t) = 0, in (0, T ),

ϕx(0, t) + ab
c ψx(0, t) = 0, in (0, T ),

ϕxx(L, t) + ab
c ψxx(L, t) = 0, in (0, T ),

ϕxx(0, t) + ab
c ψxx(0, t) = 0, in (0, T ),

aϕxx(L, t) + 1
cψxx(L, t) + r

cψ(L, t) = 0, in (0, T ),
aϕxx(0, t) + 1

cψxx(0, t) + r
cψ(0, t) = 0, in (0, T )

(32)

and the final conditions

ϕ(x, T ) = ϕ1(x), ψ(x, T ) = ψ1(x), in (0, L). (33)

Since the coefficients satisfy 1 − a2b > 0, we can deduce from the first and second equations of (32) that
the above boundary conditions can be written as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ϕx(0, t) = ψx(0, t) = 0, in (0, T ),
ϕxx(L, t) + ab

c ψxx(L, t) = 0, in (0, T ),
ϕxx(0, t) + ab

c ψxx(0, t) = 0, in (0, T ),
aϕxx(L, t) + 1

cψxx(L, t) + r
cψ(L, t) = 0, in (0, T ),

aϕxx(0, t) + 1
cψxx(0, t) + r

cψ(0, t) = 0, in (0, T ).

(34)

The following proposition is the key to prove the controllability of the linear system (16). The result
ensures the hidden regularity for the solution of the adjoint system (31)–(34).

Proposition 2.4. For any (ϕ1, ψ1) ∈ X , the system (31)–(34) admits a unique solution (ϕ,ψ) ∈ ZT , such
that it possess the following sharp trace properties

⎧
⎪⎨

⎪⎩

sup
0<x<L

‖∂k
xϕ(x, ·)‖

H
1−k
3 (0,T )

≤ CT ‖ϕ1‖L2(0,L),

sup
0<x<L

‖∂k
xψ(x, ·)‖

H
1−k
3 (0,T )

≤ CT ‖ψ1‖L2(0,L),
(35)

for k = 0, 1, 2, where CT is a positive constant.

Proof. Proceeding as the proof of Proposition 2.3, we obtain the result. Indeed, first we consider the
change of variable t → T − t and x → L − x, then for any (ϕ,ψ) in ZT , we consider the system

⎧
⎪⎨

⎪⎩

ut + uxxx + ab
c vxxx = 0, in (0, L) × (0, T ),

vt + auxxx + 1
cvxxx = − r

cvx, in (0, L) × (0, T ),
ϕ(x, 0) = ϕ0(x), ψ(x, 0) = ψ0(x), in (0, L),

with boundary conditions
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ux(L, t) = vx(L, t) = 0, in (0, T ),
uxx(L, t) = −ab

c ψxx(L, t), in (0, T ),
uxx(0, t) = −ab

c ψxx(0, t), in (0, T ),
vxx(L, t) = −acϕxx(L, t) − rψ(L, t), in (0, T ),
vxx(0, t) = −acϕxx(0, t) − rψ(0, t), in (0, T ).

By using a fixed-point argument, the result is archived. �
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The adjoint system possesses a relevant estimate as described below.

Proposition 2.5. Any solution (ϕ,ψ) of the adjoint system (31)–(34) satisfies

‖(ϕ1, ψ1)‖2X ≤ 1
T

‖(ϕ,ψ)‖L2(0,T ;X ) +
1
2
‖ϕx(L, ·)‖2L2(0,T ) +

b

2c
‖ψx(L, ·)‖2L2(0,T ) +

br

c2
‖ψ(L, ·)‖2L2(0,T )

+
1
2

∥
∥
∥
∥ϕx(L, ·) +

ab

c
ψx(L, ·)

∥
∥
∥
∥

2

L2(0,T )

+
b

2c

∥
∥
∥
∥aϕx(L, ·) +

1
c
ψx(L, ·)

∥
∥
∥
∥

2

L2(0,T )

, (36)

with initial data (ϕ1, ψ1) ∈ X .

Proof. Multiplying the first equation of (31) by −tϕ, the second one by − b
c tψ and integrating by parts

over (0, T ) × (0, L), we obtain

T

2

L∫

0

ϕ2(x, T )dx =
1
2

T∫

0

L∫

0

ϕ2(x, t)dxdt +
ab

c

T∫

0

L∫

0

tϕxxx(x, t)ψ(x, t)dxdt

−
T∫

0

t

[

ϕxx(x, t)ϕ(x, t) − 1
2
ϕ2

x(x, t) +
ab

c
ψxx(x, t)ϕ(x, t) − ab

c
ψx(x, t)ϕx(x, t)

+
ab

c
ψ(x, t)ϕxx(x, t)

]L

0

dt

and

Tb

2c

L∫

0

ψ2(x, T )dx =
b

2c

T∫

0

L∫

0

ψ2(x, t)dxdt − ab

c

T∫

0

L∫

0

tϕxxx(x, t)ψ(x, t)dxdt

−
T∫

0

t

[
b

c2
ψxx(x, t)ψ(x, t) − b

2c2
ψ2

x(x, t) +
br

2c2
ψ2(x, t)

]L

0

dt.

Adding the above identities, it follows that

T

2
‖(ϕ1, ψ1)‖2X =

1
2
‖(ϕ,ψ)‖2L2(0,T ;X ) −

T∫

0

t

[
b

c
ψ(x, t)

(

aϕxx(x, t) +
1
c
ψxx(x, t) +

r

c
ψ(x, t)

)]L

0

dt

−
T∫

0

t

[
b

2c
ψx(x, t)

(

aϕx(x, t) +
1
c
ψx(x, t)

)

− 1
2
ϕx(x, t)

(

ϕx(x, t) +
ab

c
ψx(x, t)

)]L

0

dt

+

T∫

0

t

[

ϕ(x, t)
(

ϕxx(x, t) +
ab

c
ψxx(x, t)

)

− br

2c2
ψ2(x, t)

]L

0

dt.
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Then, from (34), we obtain

T

2
‖(ϕ1, ψ1)‖2X ≤ 1

2
‖(ϕ,ψ)‖2L2(0,T ;X ) +

bT

2c

T∫

0

ψx(L, t)
(

aϕx(L, t) +
1
c
ψx(L, t)

)

dt

+
T

2

T∫

0

ϕx(L, t)
(

ϕx(L, t) +
ab

c
ψx,t(L, t)

)

dt

+
brT

2c2

T∫

0

ψ2(L, t)dt − brT

2c2

T∫

0

ψ2(0, t)dt.

Finally, (36) is obtained by applying Young inequality in the right-hand side of the above inequality. �

2.2. Nonlinear system

In this subsection, attention will be given to the full nonlinear system (1), (2). The proof of the lemma
below is available in [2, Lemma 3.1], and therefore, we will omit it.

Lemma 2.6. There exists a constant C > 0, such that, for any T > 0 and (u, v) ∈ ZT ,

‖uvx‖L1(0,T ;L2(0,L)) ≤ C(T
1
2 + T

1
3 )‖u‖ZT

‖v‖ZT
.

We first show that system (1), (2) is locally well posed in the space ZT .

Theorem 2.7. For any
(
u0, v0

) ∈ X and
−→
h = (h0, h1, h2),−→g = (g0, g1, g2) ∈ HT , there exists T ∗ > 0,

depending on ‖ (u0, v0
) ‖X , such that the problem (1), (2) admits a unique solution (u, v) ∈ ZT ∗ with

∂k
xu, ∂k

xv ∈ L∞
x (0, L;H

1−k
3 (0, T ∗)), k = 0, 1, 2.

Moreover, the corresponding solution map is Lipschitz continuous.

Proof. Let FT =
{

(u, v) ∈ ZT : (u, v) ∈ L∞
x (0, L; (H

1−k
3 (0, T ))2), k = 0, 1, 2

}
equipped with the norm

‖(u, v)‖FT
= ‖(u, v)‖ZT

+
2∑

k=0

‖(∂k
xu, ∂k

xv)‖
L∞

x (0,L;(H
1−k
3 (0,T ))2)

.

Let 0 < T ∗ ≤ T to be determined later. For each u, v ∈ FT ∗ , consider the problem
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ωt + ωxxx + aηxxx = f(u, v), in (0, L) × (0, T ∗),
ηt + ab

c ωxxx + 1
cηxxx = s(u, v), in (0, L) × (0, T ∗),

ωxx(0, t) = h0(t), ωx(L, t) = h1(t), ωxx(L, t) = h2(t), in (0, T ∗),
ηxx(0, t) = g0(t), ηx(L, t) = g1(t), ηxx(L, t) = g2(t), in (0, T ∗),
ω(x, 0) = u0(x), v(x, 0) = v0(x), in (0, L),

(37)

where

f(u, v) = −a1(vvx) − a2(uv)x

and

s(u, v) = −r

c
vx − a2b

c
(uux) − a1b

c
(uv)x.
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Since ‖vx‖L1(0,T ∗;L2(0,L)) ≤ β
1
2 ‖v‖ZT ∗ , from Lemma 2.6 we deduce that f(u, v) and s(u, v) belong to

L1(0, T ∗;L2(0, L)) and satisfies

‖(f, s)‖L1(0,T ∗;(L2(0,L))2) ≤ C1

(
(T ∗)

1
2 + (T ∗)

1
3

) (‖u‖2ZT ∗ + (‖u‖ZT ∗ + 1)‖v‖ZT ∗ + ‖v‖2ZT ∗
)
, (38)

for some positive constant C1. Then, according to Proposition 2.1, we can define the operator

Γ : FT ∗ → FT ∗ , given by Γ (u, v) = (ω, η),

where (ω, η) is the solution of (37). Moreover,

‖Γ (u, v)‖FT ∗ ≤ C
{

‖ (u0, v0
) ‖X + ‖

(−→
h ,−→g

)
‖HT ∗ + ‖(f, s)‖L1(0,T ∗;(L2(0,L))2)

}
, (39)

where the positive constant C depends only on T ∗. Combining (38) and (39), we obtain

‖Γ (u, v)‖FT ∗ ≤ C
{
‖ (u0, v0

) ‖X + ‖
(−→

h ,−→g
)

‖HT ∗

}

+ CC1

(
(T ∗)

1
2 + (T ∗)

1
3

) (‖u‖2ZT ∗ + (‖u‖ZT ∗ + 1)‖v‖ZT ∗ + ‖v‖2ZT ∗
)
.

Let (u, v) ∈ Br(0) := {(u, v) ∈ FT ∗ : ‖(u, v)‖FT ∗ ≤ r}, where r = 2C
{

‖ (u0, v0
) ‖X + ‖

(−→
h ,−→g

)
‖HT

}
.

From the estimate above, it follows that

‖Γ (u, v)‖FT ∗ ≤ r

2
+ CC1

(
(T ∗)

1
2 + (T ∗)

1
3

)
(3r + 1) r. (40)

Then, by choosing T ∗ > 0, such that

CC1

(
(T ∗)

1
2 + (T ∗)

1
3

)
(3r + 1) ≤ 1

2
, (41)

from (40), we have

‖Γ (u, v)‖FT ∗ ≤ r.

Thus, we conclude that

Γ : Br(0) ⊂ FT ∗ → Br(0).

On the other hand, Γ (u1, v1) − Γ (u2, v2) solve the system
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ωt + ωxxx + aηxxx = f(u1, v1) − f(u2, v2), in (0, L) × (0, T ∗),
ηt + ab

c ωxxx + 1
cηxxx = s(u1, v1) − s(u2, v2), in (0, L) × (0, T ∗),

ωxx(0, t) = ωx(L, t) = ωxx(L, t) = 0, in (0, T ∗),
ηxx(0, t) = ηx(L, t) = ηxx(L, t) = 0, in (0, T ∗),
ω(x, 0) = 0, v(x, 0) = 0, in (0, L),

where f(u, v) and s(u, v) were defined in (37). Note that

|f(u1, v1) − f(u2, v2)| ≤ C2| ((v2 − v1)v2,x + v1(v2 − v1)x + (u2(v2 − v1))x + ((u2 − u1)v1)x) |
and

|s(u1, v1) − s(u2, v2)| ≤ C2| ((v2 − v1)x + (u2 − u1)u2,x + u1(u2 − u1)x

+ (u2(v2 − v1))x + ((u2 − u1)v1)x) |,
for some positive constant C2. Then, Proposition 2.1 and Lemma 2.6, give us the following estimate

‖Γ (u1, v1) − Γ (u2, v2)‖FT ∗ ≤ C‖(f(u1, v1) − f(u2, v2), s(u1, v1) − s(u2, v2))‖L1(0,T ∗;(L2(0,L))2)

≤ C3((T ∗)
1
2 + (T ∗)

1
3 )(8r + 1)‖(u1 − u2, v1 − v2)‖FT ∗ ,
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for some positive constant C3. Choosing T ∗, satisfying (41) and such that

C3((T ∗)
1
2 + (T ∗)

1
3 )(8r + 1) ≤ 1

2
,

we obtain

‖Γ (u1, v1) − Γ (u2, v2)‖FT ∗ ≤ 1
2
‖(u1 − u2, v1 − v2)‖FT ∗ .

Hence, Γ : Br(0) → Br(0) is a contraction and, by Banach fixed-point theorem, we obtain a unique
(u, v) ∈ Br(0), such that Γ (u, v) = (u, v) ∈ FT ∗ , and therefore, the proof is complete. �

Remark 2.8. From the proof of Proposition 2.1, we deduce that solution of the system (1), (2) can be
written as

(
u(t)
v(t)

)

=W0(t)
(

u0(x)
v0(x)

)

+ Wbdr(t)
(−→

h−→g
)

−
t∫

0

W0(t − τ)

(
a1(vvx)(τ) + a2(uv)x(τ)

r
cvx(τ) + a2b

c (uux)(τ) + a1b
c (uv)x(τ)

)

dτ,

with

W0(t) =
(

W−
0 (t) 0
0 W+

0 (t)

)

and Wbdr(t) =
(

W−
bdr(t) 0
0 W+

bdr(t)

)

,

where {W±
0 (t)}t≥0 are the C0 semigroup in the space L2(0, L) generated by the linear operators

A± = −α±g′′′,

where

α± = −1
2

⎛

⎝

(
1
c

− 1
)

±
√
(

1
c

− 1
)2

+
4a2b

c

⎞

⎠ ,

with domain

D(A±) = {g ∈ H3(0, L) : g′′(0) = g′(L) = g′′(L) = 0},

and {W±
bdr(x)}t≥0 is the operator defined in Lemma 2.2.

3. Exact boundary controllability for the linear system

In this section, we study the existence of controls
−→
h := (h0, h1, h2) and −→g := (g0, g1, g2) ∈ HT , such that

the solution (u, v) of the system
⎧
⎨

⎩

ut + uxxx + avxxx = 0 in (0, L) × (0, T ),
vt + r

cvx + ab
c uxxx + 1

cvxxx = 0 in (0, L) × (0, T ),
u(x, 0) = u0(x), v(x, 0) = v0(x), in (0, L),

(42)

satisfying the boundary conditions
{

uxx(0, t) = h0(t), ux(L, t) = h1(t), uxx(L, t) = h2(t) in (0, T ),
vxx(0, t) = g0(t), vx(L, t) = g1(t), vxx(L, t) = g2(t) in (0, T ), (43)

satisfies
u(·, T ) = u1(·), and v(·, T ) = v1(·). (44)

More precisely, we have the following definition:
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Definition 3.1. Let T > 0. System (42), (43) is exactly controllable in time T if for any initial and final
data

(
u0, v0

)
and

(
u1, v1

)
in X , there exist control functions

−→
h = (h0, h1, h2) and −→g = (g0, g1, g2) in HT ,

such that the solution of (42), (43) satisfies (44).

Remark 3.1. Without any loss of generality, we shall consider only the case u0 = v0 = 0. Indeed, let
(
u0, v0

)
,
(
u1, v1

)
in X and

−→
h , −→g in HT be controls which lead the solution (ũ, ṽ) of (42) from the zero

initial data to the final state
(
u1, v1

) − (u(T ), v(T )), where (u, v) is the mild solution corresponding to
(42), (43) with initial data

(
u0, v0

)
. It follows immediately that these controls also lead to the solution

(ũ, ṽ) + (u, v) of (42), (43) from
(
u0, v0

)
to the final state

(
u1, v1

)
.

In the following pages, we will analyze the exact controllability of the system (42), (43) for different
combinations of four controls and one control.

3.1. Four controls

3.1.1. Case 1. Consider the following boundary conditions:
{

uxx(0, t) = h0(t), ux(L, t) = h1(t), uxx(L, t) = 0 in (0, T ),
vxx(0, t) = g0(t), vx(L, t) = g1(t), vxx(L, t) = 0 in (0, T ). (45)

We first give an equivalent condition for the exact controllability property.

Lemma 3.2. For any
(
u1, v1

)
in X , there exist four controls

−→
h = (h0, h1, 0) and −→g = (g0, g1, 0) in HT ,

such that the solution (u, v) of (42)–(45) satisfies (44) if and only if

L∫

0

(
u1(x)ϕ1(x) + v1(x)ψ1(x)

)
dx =

T∫

0

h0(t)
(

ϕ(0, t) +
ab

c
ψ(0, t)

)

dt

+

T∫

0

h1(t)
(

ϕx(L, t) +
ab

c
ψx(L, t)

)

dt

+

T∫

0

g0(t)
(

aϕ(0, t) +
1
c
ψ(0, t)

)

dt (46)

+

T∫

0

g1(t)
(

aϕx(L, t) +
1
c
ψx(L, t)

)

dt,

for any (ϕ1, ψ1) in X , where (ϕ,ψ) is the solution of the backward system (31)–(34) with initial data
(ϕ1, ψ1).

Proof. The relation (46) is obtained by multiplying the equations in (42) by the solution (ϕ,ψ) of (31)–
(34), integrating by parts and using the boundary conditions (45). �

The following observability inequality plays a fundamental role for the study of the controllability
properties.
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Proposition 3.3. For T > 0 and L > 0, there exists a constant C := C(T,L) > 0, such that

‖(ϕ1, ψ1)‖2X ≤ C

{∥
∥
∥
∥(−Δt)

1
6

(

ϕ(0, ·) +
ab

c
ψ(0, ·)

)∥
∥
∥
∥

2

L2(0,T )

+
∥
∥
∥
∥ϕx(L, ·) +

ab

c
ψx(L, ·)

∥
∥
∥
∥

2

L2(0,T )

+
∥
∥
∥
∥(−Δt)

1
6

(

aϕ(0, ·) +
1
c
ψ(0, ·)

)∥
∥
∥
∥

2

L2(0,T )

+
∥
∥
∥
∥aϕx(L, ·) +

1
c
ψx(L, ·)

∥
∥
∥
∥

2

L2(0,T )

}

, (47)

for any (ϕ1, ψ1) ∈ X , where (ϕ,ψ) is a solution of (31)–(34) with initial data (ϕ1, ψ1), where Δt := ∂2
t .

Proof. We argue by contradiction, as in [10, Proposition 3.3], and suppose that (47) does not hold. In
this case, we obtain a sequence {(ϕ1

n, ψ1
n)}n∈N, satisfying

1 = ‖(ϕ1
n, ψ1

n)‖2X ≥ n

{∥
∥
∥
∥(−Δt)

1
6

(

ϕn(0, ·) +
ab

c
ψn(0, ·)

)∥
∥
∥
∥

2

L2(0,T )

+
∥
∥
∥
∥ϕn,x(L, ·) +

ab

c
ψn,x(L, ·)

∥
∥
∥
∥

2

L2(0,T )

+
∥
∥
∥
∥(−Δt)

1
6

(

aϕn(0, ·) +
1
c
ψn(0, ·)

)∥
∥
∥
∥

2

L2(0,L)

+
∥
∥
∥
∥aϕn,x(L, ·) +

1
c
ψn,x(L, ·)

∥
∥
∥
∥

2

L2(0,T )

}

.

(48)

Consequently, (48) imply that
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϕn(0, ·) + ab
c ψn(0, ·) → 0 in H

1
3 (0, T ),

aϕn(0, ·) + 1
cψn(0, ·) → 0 in H

1
3 (0, T ),

ϕn,x(L, ·) + ab
c ψn,x(L, ·) → 0 in L2(0, T ),

aϕn,x(L, ·) + 1
cψn,x(L, ·) → 0 in L2(0, T ),

(49)

as n → ∞. Since 1 − a2b > 0, (49) guarantees that the following converge hold
{

ϕn(0, ·) → 0, ψn(0, ·) → 0 in H
1
3 (0, T ),

ϕn,x(L, ·) → 0, ψn,x(L, ·) → 0 in L2(0, T ),
(50)

as n → ∞. The next steps are devoted to pass the strong limit in the left-hand side of (48). First, observe
that from Proposition 2.4 we deduce that {(ϕn, ψn)}n∈N is bounded in L2(0, T ; (H1(0, L))2). Then, (31)
implies that {(ϕt,n, ψt,n)}n∈N is bounded in L2(0, T ; (H−2(0, L))2) and the compact embedding

H1(0, L) ↪→ L2(0, L) ↪→ H−2(0, L)

allows us to conclude that {(ϕn, ψn)}n∈N is relatively compact in L2(0, T ;X ). Consequently, we obtain a
subsequence, still denoted by the same index n, satisfying

(ϕn, ψn) → (ϕ,ψ) in L2(0, T ;X ), as n → ∞. (51)

On the other hand, (35) and (48) imply that the sequences

{ϕn(0, ·)}n∈N and {ψn(0, ·)}n∈N are bounded in H
1
3 (0, T ).

Then, the following compact embedding

H
1
3 (0, T ) ↪→ L2(0, T ) (52)

guarantees that the above sequences are relatively compact in L2(0, T ), that is, we obtain a subsequence,
still denoted by the same index n, satisfying



ZAMP Controllability Gear–Grimshaw with critical size restrictions Page 19 of 36  109 

{
ϕn(0, ·) → ϕ(0, ·) in L2(0, T ),
ψn(0, ·) → ψ(0, ·) in L2(0, T ),

(53)

as n → ∞. Then, from (50) and (53) we deduce that

ϕ(0, ·) = ψ(0, ·) = 0.

Moreover, (35), (48) and (52) imply that {ϕn(L, t)}n∈N and {ψn(L, t)}n∈N are relatively compact in
L2(0, T ). Hence, we obtain a subsequence, still denoted by the same index, satisfying

{
ϕn(L, ·) → ϕ(L, ·) in L2(0, T ),
ψn(L, ·) → ψ(L, ·) in L2(0, T ),

(54)

as n → ∞. In addition, according to Proposition 2.5, we have

‖(ϕ1
n, ψ1

n)‖2X ≤ 1
T

‖(ϕn, ψn)‖L2(0,T ;X ) +
1
2
‖ϕn,x(L, ·)‖2L2(0,T )

+
b

2c
‖ψn,x(L, ·)‖2L2(0,T ) +

br

c2
‖ψn(L, ·)‖2L2(0,T )

+
1
2

∥
∥
∥
∥ϕn,x(L, ·) +

ab

c
ψn,x(L, ·)

∥
∥
∥
∥

2

L2(0,T )

+
b

2c

∥
∥
∥
∥aϕn,x(L, ·) +

1
c
ψn,x(L, ·)

∥
∥
∥
∥

2

L2(0,T )

.

Then, from (49), (50), (51) and (54) we conclude that {(ϕ1
n, ψ1

n)}n∈N is a Cauchy sequence in X , and
therefore, we get

(ϕ1
n, ψ1

n) → (ϕ1, ψ1) in X , as n → ∞. (55)

Thus, Proposition 2.4 together with (55) imply that
{

ϕn,x(L, ·) → ϕx(L, ·) in L2(0, T ),
ψn,x(L, ·) → ψx(L, ·) in L2(0, T )

(56)

and
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϕn,xx(L, ·) + ab
c ψn,xx(L, ·) → ϕxx(L, ·) + ab

c ψxx(L, ·) in L2(0, T ),
ϕn,xx(0, ·) + ab

c ψn,xx(0, ·) → ϕxx(0, ·) + ab
c ψxx(0, ·) in L2(0, T ),

aϕn,xx(L, ·) + 1
cψn,xx(L, ·) + r

cψn(L, ·) → aϕxx(L, ·) + 1
cψxx(L, ·) + r

cψ(L, ·) in L2(0, T ),
aϕn,xx(0, ·) + 1

cψn,xx(0, ·) + r
cψn(0, ·) → aϕxx(0, ·) + 1

cψxx(0, ·) + r
cψ(0, ·) in L2(0, T ),

as n → ∞. Since (ϕn, ψn) is a solution of the adjoint system, we obtain that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϕxx(L, ·) + ab
c ψxx(L, ·) = 0,

ϕxx(0, ·) + ab
c ψxx(0, ·) = 0,

aϕxx(L, ·) + 1
cψxx(L, ·) + r

cψ(L, ·) = 0,
aϕxx(0, ·) + 1

cψxx(0, ·) + r
cψ(L, ·) = 0.

On the other hand, from (50) and (56), we have

ϕx(L, ·) = ψx(L, ·) = 0.



 109 Page 20 of 36 R. A. Capistrano-Filho, F. A. Gallego and A. F. Pazoto ZAMP

Finally, we obtain that (ϕ,ψ) is a solution of
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕt + ϕxxx + aab
c ψxxx = 0, in (0, L) × (0, T ),

ψt + r
cψx + aϕxxx + 1

cψxxx = 0, in (0, L) × (0, T ),
aϕxx(L, t) + 1

cψxx(L, t) + r
cψ(L, t) = 0, in (0, T ),

aϕxx(0, t) + 1
cψxx(0, t) + r

cψ(0, t) = 0, in (0, T ),
ϕxx(L, t) + ab

c ψxx(L, t) = 0, in (0, T ),
ϕxx(0, t) + ab

c ψxx(0, t) = 0, in (0, T ),
ϕx(0, t) = ψx(0, t) = 0, in (0, T ),
ϕ(x, T ) = ϕ1(x), ψ(x, T ) = ψ1(x), in (0, L),

(57)

satisfying the additional boundary conditions

ϕ(0, t) = ψ(0, t) = ϕx(L, t) = ψx(L, t) = 0 in (0, T ) (58)

and
‖(ϕ1, ψ1)‖X = 1. (59)

Observe that (59) implies that the solutions of (57), (58) cannot be identically zero. However, by
Lemma 3.4, one can conclude that (ϕ,ψ) = (0, 0), which drive us to a contradiction. �

Lemma 3.4. For any T > 0, let NT denote the space of the initial states (ϕ1, ψ1) ∈ X , such that the
solution of (57) satisfies (58). Then, NT = {0}.
Proof. The proof uses the same arguments as those given in [10].

If NT �= {0}, the map (ϕ1, ψ1) ∈ NT → A(NT ) ⊂ CNT (where CNT denote the complexification of
NT ) has (at least) one eigenvalue. Hence, there exist λ ∈ C and ϕ0, ψ0 ∈ H3(0, L) \ {0}, such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λϕ0 + ϕ′′′
0 + ab

c ψ′′′
0 = 0, in (0, L),

λψ0 + r
cψ′

0 + aϕ′′′
0 + 1

cψ′′′
0 = 0, in (0, L),

ϕ′
0(x) = ψ′

0(x) = 0, in {0, L},

aϕ′′
0(x) + 1

cψ′′
0 (x) + r

cψ0(x) = 0, in {0, L},

ϕ′′
0(x) + ab

c ψ′′
0 (x) = 0, in {0, L},

ϕ0(0) = ψ0(0) = 0.

The notation {0, L}, used above, mean that the expression is applied in 0 and L.
Since 1 − a2b > 0, the above system becomes

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λϕ0 + ϕ′′′
0 + ab

c ψ′′′
0 = 0, in (0, L),

λψ0 + r
cψ′

0 + aϕ′′′
0 + 1

cψ′′′
0 = 0, in (0, L),

ϕ0(0) = ϕ′
0(0) = ϕ′′

0(0) = 0,

ψ0(0) = ψ′
0(0) = ψ′′

0 (0) = 0.

(60)

By straightforward computations, we see that (ϕ0, ψ0) = (0, 0) is the unique solution of (60) for all L > 0,
which concludes the proof of Lemma 3.4 and Proposition 3.3. �

The following theorem gives a positive answer for the control problem:

Theorem 3.5. Let T > 0 and L > 0. Then, the system (42)–(45) is exactly controllable in time T .
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Proof. Let us denote by Γ the linear and bounded map defined by

Γ : L2(0, L) × L2(0, L) −→ L2(0, L) × L2(0, L)
(ϕ1(·), ψ1(·)) �−→ Γ (ϕ1(·), ψ1(·)) = (u(·, T ), v(·, T )),

where (u, v) is the solution of (42)–(45), with
{

h0(t) = (−Δt)
1
3
(
ϕ(0, t) + ab

c ψ(0, t)
)
, h1(t) = ϕx(L, t) + ab

c ψx(L, t),
g0(t) = (−Δt)

1
3
(
aϕ(0, t) + 1

cψ(0, t)
)
, g1(t) = aϕx(L, t) + 1

cψx(L, t),
(61)

and (ϕ,ψ) the solution of the system (31)–(34) with Δt = ∂2
t and initial data (ϕ1, ψ1). According to

Lemma 3.2 and Proposition 3.3, we obtain

(
Γ (ϕ1, ψ1), (ϕ1, ψ1)

)

(L2(0,L))2
=
∥
∥
∥
∥ϕx(L, ·) +

ab

c
ψx(L, ·)

∥
∥
∥
∥

2

L2(0,T )

+
∥
∥
∥
∥aϕx(L, ·) +

1
c
ψx(L, ·)

∥
∥
∥
∥

2

L2(0,T )

+
(

(−Δt)
1
3

(

ϕ(0, ·) +
ab

c
ψ(0, ·)

)

, ϕ(0, ·) +
ab

c
ψ(0, ·)

)

L2(0,T )

+
(

(−Δt)
1
3

(

aϕ(0, ·) +
1
c
ψ(0, ·)

)

, aϕ(0, ·) +
1
c
ψ(0, ·)

)

L2(0,T )

=
∥
∥
∥
∥ϕx(L, ·) +

ab

c
ψx(L, ·)

∥
∥
∥
∥

2

L2(0,T )

+
∥
∥
∥
∥aϕx(L, ·) +

1
c
ψx(L, ·)

∥
∥
∥
∥

2

L2(0,T )

+
∥
∥
∥
∥(−Δt)

1
6

(

aϕ(0, ·) +
1
c
ψ(0, ·)

)∥
∥
∥
∥

2

L2(0,T )

+
∥
∥
∥
∥(−Δt)

1
6

(

ϕ(0, ·) +
ab

c
ψ(0, ·)

)∥
∥
∥
∥

2

L2(0,T )

≥C−1‖(ϕ1, ψ1)‖2X .

Thus, by the Lax–Milgram theorem, Γ is invertible. Consequently, for given
(
u1, v1

) ∈ (L2(0, L))2, we
can define (ϕ1, ψ1) := Γ−1(u1, v1) to solve the system (31)–(34) and get (ϕ,ψ) ∈ ZT . Then, if h0(t),
h1(t), g0(t) and g1(t) are given by (61), the corresponding solution (u, v) of the system (42)–(45), satisfies

(u(·, 0), v(·, 0)) = (0, 0) and (u(·, T ), v(·, T )) = (u1(·),= v1(·)).
�

Remark 3.6. An important question is whether the exact controllability holds, in time T > 0, when we
consider the boundary condition with another configuration, for example,

{
uxx(0, t) = 0 ux(L, t) = h1(t) uxx(L, t) = h2(t), in (0, T ),
vxx(0, t) = 0, vx(L, t) = g1(t), vxx(L, t) = g2(t), in (0, T ). (62)

Observe that, in this case it would be necessary to prove that the following observability inequality

‖(ϕ1, ψ1)‖2X ≤ C

{∥
∥
∥
∥(−Δt)

1
6

(

ϕ(L, ·) +
ab

c
ψ(L, ·)

)∥
∥
∥
∥

2

L2(0,T )

+
∥
∥
∥
∥ϕx(L, ·) +

ab

c
ψx(L, ·)

∥
∥
∥
∥

2

L2(0,T )

+
∥
∥
∥
∥(−Δt)

1
6

(

aϕ(L, ·) +
1
c
ψ(L, ·)

)∥
∥
∥
∥

2

L2(0,T )

+
∥
∥
∥
∥aϕx(L, ·) +

1
c
ψx(L, ·)

∥
∥
∥
∥

2

L2(0,T )

}

,

holds for any (ϕ1, ψ1) in X , where (ϕ,ψ) is solution of (31)–(34) with initial data (ϕ1, ψ1). It can be
done using Proposition 2.4 together with the contradiction argument used in the proof of Proposition 3.3.
Thus, the next result about the exact controllability of the system (42)–(62) also holds:
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Theorem 3.7. Let T > 0 and L > 0. Then, the system (42)–(62) is exactly controllable in time T .

3.1.2. Case 2. We consider the following boundary conditions:
{

uxx(0, t) = 0 ux(L, t) = h1(t) uxx(L, t) = 0, in (0, T ),
vxx(0, t) = g0(t), vx(L, t) = g1(t), vxx(L, t) = g2(t), in (0, T ). (63)

First, as in subsection above, we give an equivalent condition for the exact controllability property. It
can be done using the same idea of the proof of Lemma 3.2.

Lemma 3.8. For any
(
u1, v1

)
in X , there exist four controls

−→
h = (0, h1, 0) and −→g = (g0, g1, g2) in HT ,

such that the solution (u, v) of (42)–(63) satisfies (44) if and only if

L∫

0

(u1(x)ϕ1(x) + v1(x)ψ1(x))dx =

T∫

0

g0(t)
(

aϕ(0, t) +
1
c
ψ(0, t)

)

dt

+

t∫

0

g1(t)
(

aϕx(L, t) +
1
c
ψx(L, t)

)

dt

−
T∫

0

g2(t)
(

aϕ(L, t) +
1
c
ψ(L, t)

)

dt (64)

+

T∫

0

h1(t)
(

ϕx(L, t) +
ab

c
ψx(L, t)

)

dt,

for any (ϕ1, ψ1) in X , where (ϕ,ψ) is the solution of the backward system (31)–(34).

To prove the exact controllability property, it suffices to prove the following observability inequality:

Proposition 3.9. Let T > 0 and L ∈ (0,∞) \ Fr, where Fr is given by (15). Then, there exists a constant
C(T,L) > 0, such that

‖(ϕ1, ψ1)‖2X ≤ C

{∥
∥
∥
∥(−Δt)

1
6

(

aϕ(0, ·) +
1
c
ψ(0, ·)

)∥
∥
∥
∥

2

L2(0,T )

+
∥
∥
∥
∥ϕx(L, ·) +

ab

c
ψx(L, ·)

∥
∥
∥
∥

2

L2(0,T )

+
∥
∥
∥
∥(−Δt)

1
6

(

aϕ(L, ·) +
1
c
ψ(L, ·)

)∥
∥
∥
∥

2

L2(0,T )

+
∥
∥
∥
∥aϕx(L, ·) +

1
c
ψx(L, ·)

∥
∥
∥
∥

2

L2(0,T )

}

,

for any (ϕ1, ψ1) in X , where (ϕ,ψ) is solution of (31)–(34) with initial data (ϕ1, ψ1), where Δt := ∂2
t .

Proof. We proceed as in the proof of Proposition 3.3 using the contradiction argument. Therefore, we
will summarize it. Firstly, we show that the sequences {(ϕ1

n, ψ1
n)}n∈N,

{aϕn(0, ·) +
1
c
ψn(0, ·)}n∈N,

{aϕn(L, ·) +
1
c
ψn(L, ·)}n∈N,

{aϕn,x(L, ·) +
1
c
ψn,x(L, ·)}n∈N,

and

{ϕn,x(L, ·) +
ab

c
ψn,x(L, ·)}n∈N,
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are relatively compact in X and L2(0, T ;X ), respectively. Next, we proceed as in the proof of Proposi-
tion 3.3 to get that

aϕn(0, ·) +
1
c
ψn(0, ·) → 0,

aϕn(L, ·) +
1
c
ψn(L, ·) → 0,

ϕn,x(L, ·) → 0, ψx(L, ·) → 0,

as n → ∞, and

||(ϕ,ψ)||(L2(0,L))2 = 1.

Finally, combining the hidden regularity of the solutions of the adjoint system (35) and the compact
embedding H

1
3 (0, T ) ↪→ L2(0, T ), we conclude that (ϕ,ψ) satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕt + ϕxxx + ab
c ψxxx = 0 in (0, L) × (0, T ),

ψt + r
cψx + aϕxxx + 1

cψxxx = 0 in (0, L) × (0, T ),
ϕxx(L, t) + ab

c ψxx(L, t) = 0 in (0, T ),
ϕxx(0, t) + ab

c ψxx(0, t) = 0 in (0, T ),
aϕxx(L, t) + 1

cψxx(L, t) + r
cψ(L, t) = 0 in (0, T ),

aϕxx(0, t) + 1
cψxx(0, t) + r

cψ(0, t) = 0 in (0, T ),
ϕx(0, t) = ψx(0, t) = 0 in (0, T ),
ϕ(x, T ) = ϕ1(x), ψ(x, T ) = ψ1(x) in (0, L)

(65)

and
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

aϕ(L, t) + 1
cψ(L, t) = 0 in (0, T ),

aϕ(0, t) + 1
cψ(0, t) = 0 in (0, T ),

ϕx(L, t) = ψx(L, t) = 0 in (0, T ),
‖(ϕ,ψ)‖X = 1.

(66)

Notice that the solutions of (65), (66) cannot be identically zero. Therefore, from Lemma 3.10, one
can conclude that (ϕ,ψ) = (0, 0), which drive us to a contradiction. �

Lemma 3.10. For any T > 0, let NT denote the space of the initial states (ϕ1, ψ1) ∈ X , such that the
solution of (65) satisfies (66). Then, for L ∈ (0,∞) \ Fr, NT = {0}.
Proof. By the same arguments given in [10], if NT �= {0}, the map (ϕ1, ψ1) ∈ NT → A(NT ) ⊂ CNT has
(at least) one eigenvalue. Hence, there exist λ ∈ C and ϕ0, ψ0 ∈ H3(0, L) \ {0}, such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

λϕ0 + ϕ′′′
0 + ab

c ψ′′′
0 = 0, in (0, L),

λψ0 + r
cψ′

0 + aϕ′′′
0 + 1

cψ′′′
0 = 0, in (0, L),

aϕ0(x) + 1
cψ0(x) = 0, in {0, L},

ϕ′
0(x) = ψ′

0(x) = 0, in {0, L},

ϕ′′
0(x) + ab

c ψ′′
0 (x) = 0, in {0, L},

aϕ′′
0(x) + 1

cψ′′
0 (x) + r

cψ0(x) = 0, in {0, L}.

(67)

�

To conclude the proof of the Lemma 3.10, we prove that this does not hold if L ∈ (0,∞) \ Fr. To
simplify the notation, henceforth we denote (ϕ0, ψ0) := (ϕ,ψ).
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Lemma 3.11. Let L > 0. Consider the assertion

(N ) : ∃λ ∈ C,∃ϕ,ψ ∈ H3(0, L) \ (0, 0), such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

λϕ + ϕ′′′ + ab
c ψ′′′ = 0, in (0, L),

λψ + r
cψ′ + aϕ′′′ + 1

cψ′′′ = 0, in (0, L),
aϕ(x) + 1

cψ(x) = 0, in {0, L},

ϕ′(x) = ψ′(x) = 0, in {0, L},

ϕ′′(x) + ab
c ψ′′(x) = 0, in {0, L},

aϕ′′(x) + 1
cψ′′(x) + r

cψ(x) = 0, in {0, L}.

Then, (N ) holds if and only if L ∈ Fr.

Proof. We use an argument similar to the one used in [10, Lemma 3,5]. Let us introduce the notation
ϕ̂(ξ) =

∫ L

0
e−ixξϕ(x)dx and ψ̂(ξ) =

∫ L

0
e−ixξψ(x)dx. Then, multiplying the first and the second equations

in (N ) by e−ixξ and integrating by part in (0, L), it follows that

(
(iξ)3 + λ

)
ϕ̂(ξ) +

ab

c
(iξ)3ψ̂(ξ)

+
[((

ϕ′′(x) +
ab

c
ψ′′(x)

)

+ (iξ)
(

ϕ′(x) +
ab

c
ψ′(x)

)

+ (iξ)2
(

ϕ(x) +
ab

c
ψ(x)

))

e−ixξ

]L

0

= 0

and
(

1
c
(iξ)3 +

r

c
(iξ) + λ

)

ψ̂(ξ) + a(iξ)3ϕ̂(ξ) +
[((

aϕ′′(x) +
1
c
ψ′′(x) +

r

c
ψ(ξ)

)

+ (iξ)
(

aϕ′(x) +
1
c
ψ′(x)

)

+ (iξ)2
(

aϕ(x) +
1
c
ψ(x)

))

e−ixξ

]L

0

= 0.

The boundary conditions allow us to conclude that
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[(iξ)3 + λ]ϕ̂(ξ) +
ab

c
(iξ)3ψ̂(ξ) = (iξ)2

(

ϕ(0) +
ab

c
ψ(0) −

(

ϕ(L) +
ab

c
ψ(L)

)

e−iLξ

)

,

1
c
[(iξ)3 + r(iξ) + cλ]ψ̂(ξ) + a(iξ)3ϕ̂(ξ) = 0.

(68)

Then, from the first equation in (68), we obtain

ϕ̂(ξ) =
(iξ)2

(
α + βe−iLξ

)

(iξ)3 + λ
− ab(iξ)3ψ̂(ξ)

c ((iξ)3 + λ)
, (69)

where α = ϕ(0)+ ab
c ψ(0) and β = −ϕ(L)− ab

c ψ(L). Replacing the above expression in the second equation
in (68) it follows that

1
c

[

(iξ)3 + r(iξ) + cλ − a2b(iξ)6

(iξ)3 + λ

]

ψ̂(ξ) = −a(iξ)5
(
α + βe−iLξ

)

(iξ)3 + λ
.

Thus,

ψ̂(ξ) = − ac(iξ)5
(
α + βe−iLξ

)

(1 − a2b)(iξ)6 + r(iξ)4 + (c + 1)λ(iξ)3 + rλ(iξ) + cλ2
. (70)

Replacing (70) in (69), we obtain

ϕ̂(ξ) =
(iξ)2

(
(iξ)3 + r(iξ) + cλ

) (
α + βe−iLξ

)

(1 − a2b)(iξ)6 + r(iξ)4 + (c + 1)λ(iξ)3 + rλ(iξ) + cλ2
.
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Setting λ = ip, p ∈ C, from the previous identities we can write ψ̂(ξ) = −i [acf(ξ)] and ϕ̂(ξ) = −ig(ξ),
where

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f(ξ) =
ξ5
(
α + βe−iLξ

)

P (ξ)
,

g(ξ) =
ξ2
(
ξ3 − rξ − cp

) (
α + βe−iLξ

)

P (ξ)
,

with
P (ξ) := (1 − a2b)ξ6 − rξ4 − (c + 1)pξ3 + rpξ + cp2.

Using Paley–Wiener theorem (see [15, Section 4, p. 161]) and the usual characterization of H2(R) functions
by means of their Fourier transforms, we see that (N ) is equivalent to the existence of p ∈ C and
(α, β) ∈ C

2 \ (0, 0), such that

(i) f and g are entire functions in C,

(ii)
∫

R

|f(ξ)|2(1 + |ξ|2)2dξ < ∞ and
∫

R
|g(ξ)|2(1 + |ξ|2)2dξ < ∞,

(iii) ∀ξ ∈ C, we have that |f(ξ)| ≤ c1(1 + |ξ|)keL|Imξ| and |g(ξ)| ≤ c1(1 + |ξ|)keL|Imξ|, for some positive
constants c1 and k.

Notice that if (i) holds true, then (ii) and (iii) are satisfied. Recall that f and g are entire functions
if and only if the roots ξ0, ξ1, ξ2, ξ3, ξ4 and ξ5 of P (ξ) are roots of ξ5

(
α + βe−iLξ

)
and ξ2(ξ3 − rξ −

cp)
(
α + βe−iLξ

)
.

Let us first assume that ξ = 0 is not a root of P (ξ). Thus, it is sufficient to consider the case when
α + βe−iLξ and P (ξ) share the same roots. Observe that the roots of α + βe−iLξ are simple, unless
α = β = 0 (indeed, in this case ϕ(0) + ab

c ψ(0) = 0 and ϕ(L) + ab
c ψ(L) = 0 and using the system (67) we

conclude that (ϕ,ψ) = (0, 0), which is a contradiction). Then, (i) holds provided that the roots of P (ξ)
are simple. Therefore, it follows that (N ) is equivalent to the existence of complex numbers p and ξ0 and
positive integers k, l,m, n and s, such that, if we set

ξ1 = ξ0 +
2π

L
k, ξ2 = ξ1 +

2π

L
l, ξ3 = ξ2 +

2π

L
m, ξ4 = ξ3 +

2π

L
n and ξ5 = ξ4 +

2π

L
s, (71)

P (ξ) can be written as follows

P (ξ) = (ξ − ξ0)(ξ − ξ1)(ξ − ξ2)(ξ − ξ3)(ξ − ξ4)(ξ − ξ5).

In particular, we obtain the following relations:

ξ0 + ξ1 + ξ2 + ξ3 + ξ4 + ξ5 = 0, (72)
ξ0(ξ1 + ξ2 + ξ3 + ξ4 + ξ5) + ξ1(ξ2 + ξ3 + ξ4 + ξ5) + ξ2(ξ3 + ξ4 + ξ5)

+ ξ3(ξ4 + ξ5) + ξ4ξ5 = − r

1 − a2b
(73)

and

ξ0ξ1ξ2ξ3ξ4ξ5 =
(

c

1 − a2b

)

p2.

(71) and (72) imply that

ξ0 +
(

ξ0 +
2π

L
k

)

+
(

ξ0 +
2π

L
(k + l)

)

+
(

ξ0 +
2π

L
(k + l + m)

)

+
(

ξ0 +
2π

L
(k + l + m + n)

)

+
(

ξ0 +
2π

L
(k + l + m + n + s)

)

= 0.



 109 Page 26 of 36 R. A. Capistrano-Filho, F. A. Gallego and A. F. Pazoto ZAMP

Straightforward computations lead to

ξ0 = − π

3L
(5k + 4l + 3m + 2n + s). (74)

On the other hand, from (73), we obtain

ξ0

(

5ξ0 +
2π

L
(5k + 4l + 3m + 2n + s)

)

+
(

ξ0 +
2π

L
k

)(

4ξ0 +
2π

L
(4k + 4l + 3m + 2n + s)

)

+
(

ξ0 +
2π

L
(k + l)

)(

3ξ0 +
2π

L
(3k + 3l + 3m + 2n + s)

)

+
(

ξ0 +
2π

L
(k + l + m)

)(

2ξ0 +
2π

L
(2k + 2l + 2m + 2n + s)

)

+
(

ξ0 +
2π

L
(k + l + m + n)

)(

ξ0 +
2π

L
(k + l + m + n + s)

)

= − r

1 − a2b
.

Thus, we have

15ξ20 +
2π

L
(25k + 20 + 15m + 10n + 5s)ξ0 +

4π2

L2
η = − r

1 − a2b
, (75)

where

η = k(10k + 10l + 9m + 7n + 4s) + l(6k + 6l + 6m + 5n + 3s)
+m(3k + 3l + 3m + 3n + 2s) + n(k + l + m + n + s).

Replacing (74) in (75), we obtain

3rL2

1 − a2b
= π2

(
5(5k + 4l + 3m + 2n + s)2 − 12η

)
.

From the discussion above, we can conclude that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L = π

√
(1 − a2b)α(k, l,m, n, s)

3r
,

ξ0 = −π

3
(5k + 4l + 3m + 2n + s),

p =

√
(1 − a2b)ξ0ξ1ξ2ξ3ξ4ξ5

c
,

(76)

where

α(k, l,m, n, s) :=5k2 + 8l2 + 9m2 + 8n2 + 5s2 + 8kl + 6km + 4kn + 2ks + 12ml

+ 8ln + 3ls + 12mn + 6ms + 8ns.

Now, we assume that ξ0 = 0 is a root of P (ξ). Then, it follows that p = 0 and
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f(ξ) =
ξ5
(
α + βe−iLξ

)

(1 − a2b)ξ6 − rξ4
=

ξ
(
α + βe−iLξ

)

(1 − a2b)ξ2 − r
,

g(ξ) =
ξ2
(
ξ3 − rξ

) (
α + βe−iLξ

)

(1 − a2b)ξ6 − rξ4
=

(
ξ2 − r

) (
α + βe−iLξ

)

ξ ((1 − a2b)ξ2 − r)
.

In this case, (N ) holds if and only if f and g satisfy (i), (ii) and (iii). Thus, (i) holds provided that

ξ0 = 0, ξ1 =
√

r

1 − a2b
and ξ2 = −

√
r

1 − a2b
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are roots of α + βe−iLξ. Therefore, we can write ξ1 = ξ0 + 2π
L k, for k ∈ Z. Consequently, it follows that

L = 2πk

√
1 − a2b

r
. (77)

Finally, from (76) and (77), we deduce that (N ) holds if and only if L ∈ Fr, where Fr is given by (15).
This completes the proof of Lemma 3.11, Lemma 3.10 and, consequently, the proof of Proposition 3.9.

�

The next result gives a positive answer for the control problem, and can be proved using the same
ideas presented in Theorem 3.5, and thus, we will omit the proof.

Theorem 3.12. Let T > 0 and L ∈ (0,∞)\Fr, where Fr is given by (15). Then, the system (42)–(63) is
exactly controllable in time T .

Remark 3.13. As in the previous subsection, the question here is whether system (42)–(78) is exactly
controllable with another configuration of the boundary condition, for example,

{
uxx(0, t) = h0(t), ux(L, t) = h1(t), uxx(L, t) = h2(t) in (0, T ),
vxx(0, t) = 0, vx(L, t) = g1(t), vxx(L, t) = 0 in (0, T ). (78)

The answer for this question is positive if we prove that the following observability inequality

‖(ϕ1, ψ1)‖2X ≤ C

{∥
∥
∥
∥(−Δ)

1
6

(

ϕ(0, ·) +
ab

c
ψ(0, ·)

)∥
∥
∥
∥

2

L2(0,T )

+
∥
∥
∥
∥ϕx(L, ·) +

ab

c
ψx(L, ·)

∥
∥
∥
∥

2

L2(0,T )

+
∥
∥
∥
∥(−Δ)

1
6

(

ϕ(L, ·) +
ab

c
ψ(L, ·)

)∥
∥
∥
∥

L2(0,T )

+
∥
∥
∥
∥aϕx(L, ·) +

1
c
ψx(L, ·)

∥
∥
∥
∥

2

L2(0,T )

}

,

holds, for any (ϕ1, ψ1) in X , where (ϕ,ψ) is solution of (31)–(34) with initial data (ϕ1, ψ1). Note that
it can be proved using Proposition 2.4 together with the contradiction argument as in the proof of
Proposition 3.9.

Thus, the exact controllability result is also true in this case.

Theorem 3.14. Let T > 0 and L ∈ (0,∞) \Fr. Then, the system (42)–(78) is exactly controllable in time
T .

3.2. One control

In this subsection, we intend to prove the exact controllability of the system by using only one boundary
control h1 or g1 and fixing h0 = h2 = g0 = g2 = 0, namely

{
uxx(0, t) = 0 ux(L, t) = h1(t), uxx(L, t) = 0, in (0, T ),
vxx(0, t) = 0, vx(L, t) = 0, vxx(L, t) = 0, in (0, T ). (79)

or
{

uxx(0, t) = 0 ux(L, t) = 0 uxx(L, t) = 0, in (0, T ),
vxx(0, t) = 0, vx(L, t) = g1(t), vxx(L, t) = 0, in (0, T ). (80)

The result below give us an equivalent condition for the exact controllability and the proof is analogous
to the proof of the Lemma 3.2.
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Lemma 3.15. For any
(
u1, v1

)
in X , there exist one control

−→
h = (0, h1, 0) and −→g = (0, 0, 0) (resp.−→

h = (0, 0, 0) and −→g = (0, g1, 0)) in HT , such that the solution (u, v) of (42)–(79) (resp. (42)–(80))
satisfies (44) if and only if

L∫

0

(u1(x)ϕ1(x) + v1(x)ψ1(x))dx =

T∫

0

h1(t)
[

ϕx(L, t) +
ab

c
ψx(L, t)

]

dt

⎛

⎝resp.

L∫

0

(u1(x)ϕ1(x) + v1(x)ψ1(x))dx =

T∫

0

g1(t)
[

aϕx(L, t) +
1
c
ψx(L, t)

]

dt

⎞

⎠

for any (ϕ1, ψ1) in X , where (ϕ,ψ) is the solution of the backward system (31)–(34).

Note that using the change of variable x′ = L − x and t′ = T − t, the system (31)–(34) is equivalent
to the following forward system

⎧
⎪⎨

⎪⎩

ϕt + ϕxxx + ab
c ψxxx = 0, in (0, L) × (0, T ),

ψt + r
cψx + aϕxxx + 1

cψxxx = 0, in (0, L) × (0, T ),
ϕ(x, 0) = ϕ0(x), ψ(x, 0) = ψ0(x), in (0, L),

(81)

with boundary conditions
⎧
⎪⎨

⎪⎩

ϕxx(x, t) + ab
c ψxx(x, t) = 0, in {0, L} × (0, T ),

aϕxx(x, t) + 1
cψxx(x, t) + r

cψ(x, t) = 0, in {0, L} × (0, T ),
ϕx(L, t) = ψx(L, t) = 0, in (0, T ).

(82)

It is well known (according to the previous sections) that the observability inequality

‖(ϕ0, ψ0)‖2X ≤ C

∥
∥
∥
∥ϕx(0, ·) +

ab

c
ψx(0, ·)

∥
∥
∥
∥

2

L2(0,T )

(83)

or

‖(ϕ0, ψ0)‖2X ≤ C

∥
∥
∥
∥aϕx(0, ·) +

1
c
ψx(0, ·)

∥
∥
∥
∥

2

L2(0,T )

(84)

plays a fundamental role for the study of the controllability. To prove (83) (resp. (84)), we use a direct
approach based on the multiplier technique that gives us the observability inequality for small values of
the length L and large time of control T .

Proposition 3.16. Let us suppose that T > 0 and L > 0 satisfy

1 >
βCT

T

[
L +

r

c

]
, (85)

where CT is the constant in (35) and β is the constant given by the embedding H
1
3 (0, T ) ⊂ L2(0, T ).

Then, there exists a constant C(T,L) > 0, such that for any (ϕ0, ψ0) in X the observability inequality
(83) (resp. (84)) holds, where (ϕ,ψ) is solution of (81), (82) with initial data (ϕ0, ψ0).

Proof. We multiply the first equation in (81) by (T − t)ϕ, the second one by b
c (T − t)ψ and integrate over

(0, T ) × (0, L), to give us:
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T

2

L∫

0

(

ϕ2
0(x) +

b

c
ψ2
0(x)

)

dx =
1
2

T∫

0

L∫

0

(

ϕ2(x, t) +
b

c
ψ2(x, t)

)

dxdt

+

T∫

0

(T − t)
[

ϕ(L, t)
(

ϕxx(L, t) +
ab

c
ψxx(L, t)

)]

dt

−
T∫

0

(T − t)
[

ϕ(0, t)
(

ϕxx(0, t) +
ab

c
ψxx(0, t)

)]

dt

+

T∫

0

(T − t)
[
b

c
ψ(L, t)

(

aϕxx(L, t) +
ψxx(L, t)

c
+

r

2c
ψ(L, t)

)]

dt

+

T∫

0

(T − t)
[

−b

c
ψ(0, t)

(

aϕxx(0, t) +
ψxx(0, t)

c
+

r

2c
ψ(0, t)

)]

dt

+
1
2

T∫

0

(T − t)
[

ϕ2
x(0, t) +

2ab

c
ψx(0, t)ϕx(0, t) +

b

c2
ψ2

x(0, t)
]

dt.

From the boundary conditions (82), we have that

‖(ϕ0, ψ0)‖2X ≤ 1
T

‖(ϕ,ψ)‖2L2(0,T ;X ) +
br

c2T
‖ψ(0, ·)‖2L2(0,T ) − br

c2

T∫

0

T − t

T
ψ(L, t)2dt

+

T∫

0

[

ϕ2
x(0, t) +

2ab

c
ψx(0, t)ϕx(0, t) +

b

c2
ψ2

x(0, t)
]

dt,

≤ 1
T

‖(ϕ,ψ)‖2L2(0,T ;X ) +
βbr

c2T
‖ψ(0, ·)‖2

H
1
3 (0,T )

+
1

a2b

∥
∥
∥
∥ϕx(0, ·) +

ab

c
ψx(0, ·)

∥
∥
∥
∥

2

L2(0,T )

,

(

resp. ‖(ϕ0, ψ0)‖2X ≤ 1
T

‖(ϕ,ψ)‖2L2(0,T ;X ) +
βbr

c2T
‖ψ(0, ·)‖2

H
1
3 (0,T )

+
1
a2

∥
∥
∥
∥aϕx(0, ·) +

1
c
ψx(0, ·)

∥
∥
∥
∥

2

L2(0,T )

)

where β is the constant given by the compact embedding H
1
3 (0, T ) ⊂ L2(0, T ). On the other hand, note

that L∞(0, L) ⊂ L2(0, L); thus,

‖ϕ(·, t)‖2L2(0,L) ≤ L‖ϕ(·, t)‖2L∞(0,L), and ‖ψ(·, t)‖2L2(0,L) ≤ L‖ψ(·, t)‖2L∞(0,L), (86)

Hence,

‖(ϕ,ψ)‖2L2(0,T ;X ) =

T∫

0

{

‖ϕ(·, t)‖2L2(0,L) +
b

c
‖ψ(·, t)‖2L2(0,L)

}

dt

≤ L

T∫

0

{

‖ϕ(·, t)‖2L∞(0,L) +
b

c
‖ψ(·, t)‖2L∞(0,L)

}

dt
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≤ Lβ‖ϕ‖2
H

1
3 (0,T ;L∞(0,L))

+
bLβ

c
‖ψ‖2

H
1
3 (0,T ;L∞(0,L))

.

Thanks to Proposition 2.4, we obtain

‖(ϕ0, ψ0)‖2X ≤ LβCT

T
‖ϕ0‖2L2(0,L) +

bLβCT

cT
‖ψ0‖2L2(0,L) +

βCT br

c2T
‖ψ0‖2L2(0,L)

+
1

a2b

∥
∥
∥
∥ϕx(0, ·) +

ab

c
ψx(0, ·)

∥
∥
∥
∥

2

L2(0,T )

≤ LβCT

T
‖(ϕ0, ψ0)‖2X +

βCT r

cT
‖(ϕ0, ψ0)‖2X +

1
a2b

∥
∥
∥
∥ϕx(0, ·) +

ab

c
ψx(0, ·)

∥
∥
∥
∥

2

L2(0,T )

.

Finally, it follows that

‖(ϕ0, ψ0)‖2X ≤K

∥
∥
∥
∥ϕx(0, ·) +

ab

c
ψx(0, ·)

∥
∥
∥
∥

2

L2(0,T )

under the condition

K =
1

a2b

(

1 − βCT

T

[
L +

r

c

])−1

> 0. (87)

�

From the observability inequality (83), the following result holds.

Theorem 3.17. Let T > 0 and L > 0 satisfying (85). Then, the system (42)–(79) (resp. (42)–(80)) is
exactly controllable in time T .

Proof. Consider the map

Γ : L2(0, L) × L2(0, L) −→ L2(0, L) × L2(0, L)
(ϕ1(·), ψ1(·)) �−→ Γ (ϕ1(·), ψ1(·)) = (u(·, T ), v(·, T ))

where (u, v) is the solution of (42)–(63), with
{

h1(t) = ϕx(L, t) + ab
c ψx(L, t),

g1(t) = aϕx(L, t) + 1
cψx(L, t),

and (ϕ,ψ) is the solution of the system (31)–(34) with initial data (ϕ1, ψ1). By (83) (resp. (84)) and the
Lax–Milgram theorem, the proof is achieved. �

4. The nonlinear control system

We are now in a position to prove our main result considering several configurations of the control in the
boundary conditions. Let T > 0, from Theorems 3.5, 3.7, 3.12, 3.14 and 3.17, we can define the bounded
linear operators

Λi : X × X −→ HT × HT (i = 1, 2, 3, 4, 5, 6),
such that, for any

(
u0, v0

) ∈ X and
(
u1, v1

) ∈ X ,

Λi

((
u0

v0

)

,

(
u1

v1

))

:=
(

�hi

�gi

)

,

where �hi and �gi were defined in the Introduction.
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Proof of Theorem 1.1. We treat the nonlinear problem (1), (2) using a classical fixed-point argument.
According to Remark 2.8, the solution can be written as

(
u(t)
v(t)

)

= W0(t)
(

u0

v0

)

+ Wbdr(t)
(

�hi

�gi

)

−
t∫

0

W0(t − τ)
(

a1(vvx)(τ) + a2(uv)x(τ)
r
cvx(τ) + a2b

c (uux)(τ) + a1b
c (uv)x(τ)

)

dτ,

for i = 1, 2, 3, 4, 5, 6, where {W0(t)}t≥0 and {Wbdr(t)}t≥0 are the operators defined in Proposition 2.1.
We only analyze the case i = 1, since the other cases are analogous we will omit them.

For u, v ∈ ZT , let us define

(
υ

ν(T, u, v)

)

:=

T∫

0

W0(T − τ)
(

a1(vvx)(τ) + a2(uv)x(τ)
a2b
c (uux)(τ) + a2b

c (uv)x(τ)

)

dτ

and consider the map

Γ

(
u
v

)

= W0(t)
(

u0

v0

)

+ Wbdr(x)Λ1

((
u0

v0

)

,

(
u1

v1

)

+
(

v
ν(T, u, v)

))

−
t∫

0

W0(t − τ)
(

a1(vvx)(τ) + a2(uv)x(τ)
r
cvx(τ) + a2b

c (uux)(τ) + a1b
c (uv)x(τ)

)

dτ.

If we choose (
�h1

�g1

)

= Λ1

((
u0

v0

)

,

(
u1

v1

)

+
(

v
ν(T, u, v)

))

, (88)

from Theorem 3.12, we get

Γ

(
u
v

) ∣
∣
∣
t=0

=
(

u0

v0

)

and

Γ

(
u
v

) ∣
∣
∣
t=T

=
(

u1

v1

)

+
(

v
ν(T, u, v)

)

−
(

v
ν(T, u, v)

)

=
(

u1

v1

)

.

Now we prove that the map Γ is a contraction in an appropriate metric space, then its fixed point (u, v)
is the solution of (1), (2) with �h1 and �g1 defined by (88), satisfying (3). In order to prove the existence
of the fixed point, we apply the Banach fixed-point theorem to the restriction of Γ on the closed ball

Br =
{
(u, v) ∈ ZT : ‖(u, v)‖ZT

≤ r
}

,

for some r > 0.

(i) Γ maps Br into itself.

Using Proposition 2.3 there exists a constant C1 > 0, such that
∥
∥
∥
∥Γ

(
u
v

)∥
∥
∥
∥

ZT

≤ C1

{∥
∥
∥
∥

(
u0

v0

)∥
∥
∥
∥

X
+
∥
∥
∥
∥Λ1

((
u0

v0

)

,

(
u1

v1

)

+
(

v
ν(T, u, v)

))∥
∥
∥
∥

HT

}

+ C1

⎧
⎨

⎩

t∫

0

∥
∥
∥
∥

(
a1(vvx)(τ) + a2(uv)x(τ)

r
cvx(τ) + a2b

c (uux)(τ) + a1b
c (uv)x(τ)

)∥
∥
∥
∥

X
dτ

⎫
⎬

⎭
.
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Moreover, since
∥
∥
∥
∥Λ1

((
u0

v0

)

,

(
u1

v1

)

+
(

v
ν(T, u, v)

))∥
∥
∥
∥

HT

≤ C2

{∥
∥
∥
∥

(
u0

v0

)∥
∥
∥
∥

X
+
∥
∥
∥
∥

(
u1

v1

)∥
∥
∥
∥

X

+
∥
∥
∥
∥

(
v

ν(T, u, v)

)∥
∥
∥
∥

X

}

,

applying Lemma 2.6, we can deduce that
∥
∥
∥
∥Γ

(
u
v

)∥
∥
∥
∥

ZT

≤ C3δ + C4(r + 1)r,

where C4 is a constant depending only T . Thus, choosing r and δ such that

r = 2C3δ

and

2C3C4δ + C4 ≤ 1
2
,

the operator Γ maps Br into itself for any (u, v) ∈ ZT .

(ii) Γ is contractive.

Proceeding as the proof of Theorem 2.7, we obtain
∥
∥
∥
∥Γ

(
u
v

)

− Γ

(
ũ
ṽ

)∥
∥
∥
∥

ZT

≤ C5(r + 1)r
∥
∥
∥
∥

(
u − ũ
v − ṽ

)∥
∥
∥
∥

ZT

,

for any (u, v), (ũ, ṽ) ∈ Br and a constant C5 depending only on T . Thus, taking δ > 0, such that

γ = 2C3C5δ + C5 < 1,

we obtain ∥
∥
∥
∥Γ

(
u
v

)

− Γ

(
ũ
ṽ

)∥
∥
∥
∥

ZT

≤ γ

∥
∥
∥
∥

(
u − ũ
v − ṽ

)∥
∥
∥
∥

ZT

.

Therefore, the map Γ is a contraction. Thus, from (i), (ii) and the Banach fixed-point theorem, Γ
has a fixed point in Br and its fixed point is the desired solution. The proof of Theorem 1.1 is, thus,
complete. �
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Appendix A. Proof of lemma 2.2

In this appendix, we prove the Lemma 2.2 used in the proof of Proposition 2.1. Without loss of generality
we can consider the following linear nonhomogeneous boundary value problem,

{
wt + wxxx = 0, w(x, 0) = 0 x ∈ (0, L), t > 0,
wxx(0, t) = h1(t), wx(L, t) = h2(t), wxx(L, t) = h3(t) t > 0.

(89)
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Proof of Lemma 2.2. Applying the Laplace transform with respect to t, (89) is converted to
{

sŵ + ŵxxx = 0,

ŵxx(0, s) = ĥ1(s), ŵx(L, s) = ĥ2(s), ŵxx(L, s) = ĥ3(s),
(90)

where

ŵ(x, s) =

+∞∫

0

e−stw(x, t)dt

and

ĥj(s) =

+∞∫

0

e−sth(t)dt, j = 1, 2, 3.

The solution ŵ(x, s) can be written in the form

ŵ(x, s) =
3∑

j=1

cj(s)eλj(s)x,

where λj(s), j = 1, 2, 3, are the solutions of the characteristic equation

s + λ3 = 0

and cj(s), j = 1, 2, 3, solve the linear system
⎛

⎝
λ2
1 λ2

2 λ2
3

λ1eλ1L λ2eλ2L λ3eλ3L

λ2
1e

λ1L λ2
2e

λ2L λ2
3e

λ3L

⎞

⎠

︸ ︷︷ ︸
A

⎛

⎝
c1
c2
c3

⎞

⎠ =

⎛

⎝
ĥ1

ĥ2

ĥ3

⎞

⎠ .

︸ ︷︷ ︸
�h

(91)

Let Δ(s) be the determinant of the coefficient matriz A and Δj(s), j = 1, 2, 3, the determinant of the
matrix A with the jth column replaced by �h. By Cramer’s rule,

cj =
Δj(s)
Δ(s)

, j = 1, 2, 3,

provided that Δ(s) �= 0.
Claim: Δ(s) �= 0, for any Re(s) ≥ 0.

Indeed, if otherwise, suppose Δ(s) = 0, for some s with Re(s) ≥ 0. Then, there exists a nontrivial
f ∈ H3(0, L) satisfying

{
sf(x) + f ′′′(x) = 0, x ∈ (0, L),
f ′′(0) = 0, f ′(L) = 0, f ′′(L) = 0.

(92)

Consider now the conjugate of (92), that is, the following system
{

sf(x) + f ′′′(x) = 0, x ∈ (0, L),
f ′′(0) = 0, f ′(L) = 0, f ′′(L) = 0.

(93)

Multiplying both sides of (92) by f and integrating over (0, L), we get

L∫

0

sffdx +

L∫

0

f ′′′fdx = 0. (94)



 109 Page 34 of 36 R. A. Capistrano-Filho, F. A. Gallego and A. F. Pazoto ZAMP

Then, if we multiply both sides of (93) by f and integrate over (0, L), it follows that
L∫

0

sffdx +

L∫

0

f ′′′fdx = 0. (95)

Integrating by parts (94) and (95) and adding the two resulting identities together yields that

2Re(s)

L∫

0

|f(x)|2dx = −|f ′(0)|2.

Consequently, we must have Re(s) < 0, as ||f ||L2(0,L) �= 0 by the assumption. This is a contradiction.
Thus, we conclude that Δ(s) �= 0, for any Re(s) ≥ 0.

Note that the solution w(x, t) for (89) can be written in the form

w(x, t) =
3∑

m=1

wm(x, t), (96)

where wm(x, t) solves (89) with hj ≡ 0 when j �= m, j,m = 1, 2, 3. Using the inverse Laplace transform
yields

w(x, t) =
1

2πi

r+i∞∫

r−i∞
estŵ(x, s)ds =

3∑

j=1

1
2πi

r+i∞∫

r−i∞

Δj(s)
Δ(s)

eλj(s)xds,

for r > 0. Combining this formula and (96) we can write the values of wm as follows, for m = 1, 2, 3,

wm(x, t) =
3∑

j=1

1
2πi

r+i∞∫

r−i∞

Δj,m(s)
Δ(s)

eλj(s)xĥm(s)ds ≡ [Wm,j(t)hm](x).

In the last two formulas, the right-hand sides are continuous with respect to r for r ≥ 0. As the left-hand
sides do not depend on r, we can take r = 0 in these formulas. Moreover,

wj,m(x, t) = w+
j,m(x, t) + w−

j.m(x, t)

where

w+
j,m(x, t) =

1
2πi

+i∞∫

0

est
Δj,m(s)
Δ(s)

ĥm(s)eλj(s)xds

and

w−
j,m(x, t) =

1
2πi

0∫

−i∞
est

Δj,m(s)
Δ(s)

ĥm(s)eλj(s)xds,

for j,m = 1, 2, 3. Here, Δj,m(s) is obtained from Δj(s) by letting ĥm(s) = 1 and ĥk(s) = 0 for k �= m,
k,m = 1, 2, 3. Making the substitution s = iρ3 with ρ ≥ 0 in the characteristic equation

s + λ3 = 0,

the three roots are given in terms of ρ by

λ1(ρ) = iρ, λ2(ρ) = −iρ

(
1 + i

√
3

2

)

, λ3(ρ) = −iρ

(
1 − i

√
3

2

)

, (97)
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thus w+
j,m has the following form

w+
j,m(x, t) =

1
2πi

+∞∫

0

eiρ3t
Δ+

j,m(ρ)
Δ+(ρ)

ĥ+
m(ρ)eλ+

j (ρ)x3iρ2dρ

and

w−
j,m(x, t) = w+

j,m(x, t),

where ĥ+
m(ρ) = ĥm(iρ3), Δ+(ρ) = Δ(iρ3), Δ+

j,m(ρ) = Δj,m(iρ3) and λ+
j (ρ) = λj(iρ3).

Therefore, we have that the solution of the IBVP (89) has the representation in the form (22)–(25) as
required. Thus, the proof is finished. �
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