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Abstract. In this paper we consider the initial boundary value problem of

the Korteweg-de Vries equation posed on a finite interval

ut + ux + uxxx + uux = 0, u(x, 0) = φ(x), 0 < x < L, t > 0 (0.1)

subject to the nonhomogeneous boundary conditions,

B1u = h1(t), B2u = h2(t), B3u = h3(t) t > 0 (0.2)

where

Biu =

2∑
j=0

(
aij∂

j
xu(0, t) + bij∂

j
xu(L, t)

)
, i = 1, 2, 3,

and aij , bij (j = 0, 1, 2 and i = 1, 2, 3) are real constants. Under some general
assumptions imposed on the coefficients aij , bij , the IBVP (0.1)-(0.2) is shown
to be locally well-posed in the space Hs(0, L) for any s ≥ 0 with φ ∈ Hs(0, L)
and boundary values hj , j = 1, 2, 3, belonging to some appropriate spaces with

optimal regularity.

1. Introduction. In this paper we consider the initial-boundary value problem
(IBVP) of the Korteweg-de Vries (KdV) equation posed on a finite interval (0, L)

ut + ux + uxxx + uux = 0, u(x, 0) = φ(x), 0 < x < L, t > 0 (1.1)
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with general non-homogeneous boundary conditions posed on the two ends of the
interval (0, L),

B1u = h1(t), B2u = h2(t), B3u = h3(t) t > 0, (1.2)

where

Biu =

2∑
j=0

(
aij∂

j
xu(0, t) + bij∂

j
xu(L, t)

)
, i = 1, 2, 3,

and aij , bij , j = 0, 1, 2, i = 1, 2, 3, are real constants.
We are mainly concerned with the following question:

Under what assumptions on the coefficients aij , bij in (1.2) is the IBVP (1.1)-
(1.2) well-posed in the classical Sobolev space Hs(0, L)?

As early as in 1979, Bubnov [12] studied the following IBVP of the KdV equation
on the finite interval (0, 1):

ut + uux + uxxx = f, u(x, 0) = 0, x ∈ (0, 1), t ∈ (0, T ),

α1uxx(0, t) + α2ux(0, t) + α3u(0, t) = 0,

β1uxx(1, t) + β2ux(1, t) + β3u(1, t) = 0,

χ1ux(1, t) + χ2u(1, t) = 0

(1.3)

and obtained the result as described below.

Theorem A [12]. Assume that

if α1β1χ1 6= 0, then F1 > 0, F2 > 0,

if β1 6= 0, χ1 6= 0, α1 = 0, then α2 = 0, F2 > 0, α3 6= 0,

if β1 = 0, χ1 6= 0, α1 6= 0, then F1 > 0, F3 6= 0,

if α1 = β1 = 0, χ1 6= 0, then F3 6= 0, α2 = 0, α3 6= 0,

if β1 = 0, α1 6= 0, χ1 = 0, then F1 > 0, F3 6= 0,

if α1 = β1 = χ1 = 0, then α2 = 0, α3 6= 0, F3 6= 0,

(1.4)

where

F1 =
α3

α1
− α2

2

2α2
1

, F2 =
β2χ2

β1χ1
− β3

β1
− χ2

2

2χ2
1

, F3 = β2χ2 − β1χ1.

For any given
f ∈ H1

loc(0,∞;L2(0, 1)) with f(x, 0) = 0,

there exists a T > 0 such that (1.3) admits a unique solution

u ∈ L2(0, T ;H3(0, 1)) with ut ∈ L∞(0, T ;L2(0, 1)) ∩ L2(0, T ;H1(0, 1)).

The main tool used by Bubnov [12] to prove this theorem is the following Kato
type smoothing property for the solution u of the linear system associated to the
IBVP (1.3), 

ut + uxxx = f, u(x, 0) = 0, x ∈ (0, 1), t ∈ (0, T ),

α1uxx(0, t) + α2ux(0, t) + α3u(0, t) = 0,

β1uxx(1, t) + β2ux(1, t) + β3u(1, t) = 0,

χ1ux(1, t) + χ2u(1, t) = 0.

(1.5)

Under the assumptions (1.4),

f ∈ L2(0, T ;L2(0, 1)) =⇒ u ∈ L2(0, T ;H1(0, 1)) ∩ L∞(0, T ;L2(0, 1)) (1.6)
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and

‖u‖L2(0,T ;H1(0,1)) + ‖u‖L∞(0,T ;L2(0,1)) ≤ C‖f‖L2(0,T ;L2(0,1)),

where C > 0 is a constant independent of f .
In the past thirty years since the work of Bubnov [12], various boundary-value

problems of the KdV equation have been studied. In particular, the following two
special classes of IBVPs of the KdV equation on the finite interval (0, L),{

ut + ux + uux + uxxx = 0, u(x, 0) = φ(x), x ∈ (0, L), t > 0,

u(0, t) = h1(t), u(L, t) = h2(t), ux(L, t) = h3(t)
(1.7)

and {
ut + ux + uux + uxxx = 0, u(x, 0) = φ(x), x ∈ (0, L), t > 0,

u(0, t) = h1(t), u(L, t) = h2(t), uxx(L, t) = h3(t),
(1.8)

as well as the IBVPs of the KdV equation posed on a quarter plane have been
intensively studied in the past twenty years (cf. [5, 8, 14, 15, 16, 18, 19, 21, 31, 32, 33]
and the references therein) following the rapid advances of the study of the pure
initial value problem of the KdV equation posed on the whole line R or on the
periodic domain T (see e.g. [1, 2, 9, 10, 11, 17, 18, 19, 20, 25, 26, 27, 28, 29, 30]).

The nonhomogeneous IBVP (1.7) was first shown by Faminskii in [18, 19] to be
well-posed in the spaces L2(0, L) and H3(0, L) with boundary data

~h = (h1, h2, h3)

belonging to the space

W
1
3 ,1(0, T ) ∩ L6+ε(0, T ) ∩H 1

6 (0, T )×W 5
6 +ε,1(0, T ) ∩H 1

3 (0, T )× L2(0, T ),

and additionally

h′1 ∈W
1
3 ,1(0, T ) ∩ L6+ε(0, T ) ∩H 1

6 (0, T ),

h′2 ∈W
5
6 +ε,1(0, T ) ∩H 1

3 (0, T )

and

h′3 ∈ L2(0, T ),

respectively. Bona et al., in [5], showed that IBVP (1.7) is well-posed in the space
Hs(0, L) for any s ≥ 0 with boundary data

~h = (h1, h2, h3) ∈ H
s+1
3 (0, T )×H

s+1
3 (0, T )×H s

3 (0, T )

possessing optimal boundary regularity. Later on, in [21], Holmer showed that the
IBVP (1.7) is locally well-posed in the space Hs(0, L), for any − 3

4 < s < 1
2 , and

Bona et al., in [8], showed that the IBVP (1.7) is locally well-posed Hs(0, L) for
any s > −1.

The study of IBVP (1.8) began with the work of Colin and Ghidalia in late 1990’s
[14, 15, 16] and is now known to be well-posed in the space Hs(0, L) for s > −1
with boundary data

~h = (h1, h2, h3) ∈ H
s+1
3 (0, T )×H s

3 (0, T )×H
s−1
3 (0, T )

possessing optimal boundary regularity [22, 32, 33].
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As for the general IBVP (1.1)-(1.2), Kramer and Zhang, in [31], studied the
following non-homogeneous boundary value problem,

ut + uux + uxxx = 0, u(x, 0) = φ(x), x ∈ (0, 1), t ∈ (0, T ),

α1uxx(0, t) + α2ux(0, t) + α3u(0, t) = h1(t),

β1uxx(1, t) + β2ux(1, t) + β3u(1, t) = h2(t),

χ1ux(1, t) + χ2u(1, t) = h3(t).

(1.9)

They showed that the IBVP (1.9) is locally well-posed in the space Hs(0, 1), for
any s ≥ 0, under the assumption (1.4).

Theorem B [31]. Let s ≥ 0 with

s 6= 2j − 1

2
, j = 1, 2, 3...,

T > 0 be given and assume (1.4) holds. For any r > 0, there exists a T ∗ ∈ (0, T ]

such that for any s−compatible 1 φ ∈ Hs(0, 1), hj ∈ H
s+1
3 (0, T ), j = 1, 2, 3 with

‖φ‖Hs(0,1) + ‖h1‖
H
s+1
3 (0,T )

+ ‖h2‖
H
s+1
3 (0,T )

+ ‖h3‖
H
s+1
3 (0,T )

≤ r,

the IBVP (1.9) admits a unique solution

u ∈ C([0, T ∗];Hs(0, 1)) ∩ L2(0, T ∗;Hs+1(0, 1)).

Moreover, the solution u depends continuously on its initial data φ and the boundary
values hj , j = 1, 2, 3, in the respective spaces.

In this paper we continue to study the general IBVP (1.1)-(1.2) for its well-
posedness in the space Hs(0, L) and attempt to provide a (partial) answer for the
following question asked earlier:

Under what assumptions on the coefficients aij , bij in (1.2) is the IBVP (1.1)-
(1.2) well-posed in the classical Sobolev space Hs(0, L)?

We propose the following hypotheses on those coefficients aij , bij , j = 0, 1, 2, 3, i
= 1, 2, 3:

(A1) a12 = a11 = 0, a10 6= 0, b12 = b11 = b10 = 0;
(A2) a12 6= 0, b12 = 0;
(B1) a22 = a21 = a20 = 0, b20 6= 0, b22 = b21 = 0;
(B2) b22 6= 0, a22 = 0;
(C) a32 = a31 = 0, b31 6= 0, b32 = 0.

In addition, for any s ≥ 0,

Hs
0(0, T ] := {h(t) ∈ Hs(0, T ) : h(j)(0) = 0},

for j = 0, 1, ..., [s]2. Let us consider
Hs1(0, T ) := H

s+1
3

0 (0, T ]×H
s+1
3

0 (0, T ]×H
s
3
0 (0, T ],

Hs2(0, T ) := H
s+1
3

0 (0, T ]×H
s
3
0 (0, T ]×H

s−1
3

0 (0, T ],

Hs3(0, T ) := H
s−1
3

0 (0, T ]×H
s+1
3

0 (0, T ]×H
s
3
0 (0, T ],

Hs4(0, T ) := H
s−1
3

0 (0, T ]×H
s−1
3

0 (0, T ]×H
s
3
0 (0, T ]

(1.10)

1See [31] for exact definition, in this case, of s−compatibility.
2 For any real number s, [s] stands for its integer part.
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and 
Ws

1(0, T ) := H
s+1
3 (0, T )×H s+1

3 (0, T )×H s
3 (0, T ),

Ws
2(0, T ) := H

s+1
3 (0, T )×H s

3 (0, T )×H s−1
3 (0, T ),

Ws
3(0, T ) := H

s−1
3 (0, T )×H s+1

3 (0, T )×H s
3 (0, T ),

Ws
4(0, T ) := H

s−1
3 (0, T )×H s−1

3 (0, T )×H s
3 (0, T ).

(1.11)

We have the following well-posedness results for the IBVP (1.1)-(1.2).

Theorem 1.1. Let s ≥ 0 with s 6= 2j−1
2 , j = 1, 2, 3..., and T > 0 be given. If one

of the assumptions below are satisfied,

(i) (A1), (B1) and (C) hold,
(ii) (A1), (B2) and (C) hold,

(iii) (A2), (B1) and (C) hold,
(iv) (A2), (B2) and (C) hold,

then, for any r > 0, there exists a T ∗ ∈ (0, T ] such that for any

(φ,~h) ∈ Hs
0(0, L)×Hs1(0, T )

satisfying

‖(φ,~h)‖L2(0,L)×H0
1(0,T ) ≤ r

the IBVP (1.1)-(1.2) admits a solution

u ∈ C([0, T ∗];Hs(0, L)) ∩ L2(0, T ∗;Hs+1(0, L))

possessing the hidden regularities (the sharp Kato smoothing properties)

∂lxu ∈ L∞(0, L;H
s+1−l

3 (0, T ∗)) for l = 0, 1, 2.

Moreover, the corresponding solution map is analytically continuous.

The following remarks are now in order.

(i) The temporal regularity conditions imposed on the boundary values ~h are op-
timal (cf. [3, 6, 7]).

(ii) The assumptions imposed on the boundary conditions in Theorem 1.1 can be
reformulated as follows:

(i) ((A1), (B1), (C))⇔ B1v = ~h,

(ii) ((A1), (C), (B2))⇔ B2v = ~h,

(iii) ((A2), (B1), (C))⇔ B3v = ~h,

(iv) ((A2), (C), (B2))⇔ B4v = ~h.
Here,

B1v := (v(0, t), v(L, t), vx(L, t)) ,

B2v := (v(0, t), vx(L, t)) + b30v(L, t), vxx(L, t) + a21vx(0, t) + b20v(L, t)) ,

B3v := (vxx(0, t) + a10v(0, t) + a11vx(0, t), v(L, t), vx(L, t) + a30v(0, t))

and

B4v :=

vxx(0, t) +

1∑
j=0

a1j∂
j
xv(0, t) + b10v(L, t), vx(L, t) + a30v(0, t) + b30v(L, t),

vxx(L, t) +

1∑
j=0

a2j∂
j
xv(0, t) + b20v(L, t)

 .
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As a comparison, note that the assumptions of Theorem A are satisfied if and only
if one of the following boundary conditions is imposed on the equation in (1.3):

(a) u(0, t) = 0, u(1, t) = 0, ux(1, t) = 0;
(b)

uxx(0, t) + aux(0, t) + bu(0, t) = 0, ux(1, t) = 0, u(1, t) = 0

with

a > b2/2; (1.12)

(c)

u(0, t) = 0, uxx(1, t) + aux(1, t) + bu(1, t) = 0, ux(1, t) + cu(1, t) = 0,

with

ac > b− c2/2; (1.13)

(d) uxx(0, t) + a1ux(0, t) + a2u(0, t) = 0, uxx(1, t) + b1ux(1, t) + b2u(1, t) = 0,

ux(1, t) + cu(1, t) = 0,

with

a2 > a2
1/2, b1c > b2 − c2/2. (1.14)

Then, it follows from our results that the conditions (1.12), (1.13) and (1.14)
for Theorem A can be removed completely.

(iii) In Theorem 1.1, we replace the s−compatibility of (φ,~h) by assuming (φ,~h) ∈
Hs

0(0, L)×H
s+1
3

0 (0, T )×H
s+1
3

0 (0, T )×H
s
3
0 (0, T ) for simplicity.

To prove our theorem, we rewrite the boundary operators Bk, k = 1, 2, 3, 4 as

Bk = Bk,0 + Bk,1
with

B1,0v := (v(0, t), v(L, t), vx(L, t)), B2,0v := (v(0, t), vx(L, t), vxx(L, t)),

B3,0v := (vxx(0, t), v(L, t), vx(L, t)), B4,0v := (vxx(0, t), vx(L, t), vxx(L, t))

and

B1,1v := (0, 0, 0) ,

B2,1v := (0, b30v(L, t), a21vx(0, t) + b20v(L, t)) ,

B3,1v := (a10v(0, t) + a11vx(0, t), 0, a30v(0, t)) ,

B4,1v :=

 1∑
j=0

a1j∂
j
xv(0, t) + b10v(L, t), a30v(0, t) + b30v(L, t) ,

1∑
j=0

a2j∂
j
xv(0, t) + b20v(L, t)

 .

To prove our main result, we will first study the linear IBVP
ut + uxxx + δku = f, x ∈ (0, L), t > 0

u(x, 0) = φ(x),

Bk,0u = ~h,

(1.15)
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for k = 1, 2, 3, 4 to establish all the linear estimates needed later for dealing with
the nonlinear IBVP (1.1)-(1.2). Here δk = 0 for k = 1, 2, 3 and δ4 = 1. Then we
will consider the nonlinear map Γ defined by the following IBVP

ut + uxxx + δku = −vx − vvx + δkv, x ∈ (0, L), t > 0

u(x, 0) = φ(x),

Bk,0u = ~h− Bk,1v

(1.16)

for k = 1, 2, 3, 4 with

Γ(v) = u.

We will show that Γ is a contraction in an appropriate space whose fixed point will
be the desired solution of the nonlinear IBVP (1.1)-(1.2). The key to show that Γ
is a contraction in an appropriate space is the sharp Kato smoothing property of
the solution of the IBVP (1.15) as described below, for example, for s = 0:

For given φ ∈ L2(0, L) and f ∈ L1(0, T ;L2(0, L)) and ~h ∈ H0
k(0, T ), the IBVP

(1.15) admits a unique solution u ∈ C([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L)) with

∂lxu ∈ L∞(0, L;H
1−l
3 (0, T )) for l = 0, 1, 2.

In order to demonstrate this smoothing properties for solutions of the IBVP
(1.15), we need to study the following IBVP

ut + uxxx + δku = 0, x ∈ (0, L), t > 0,

u(x, 0) = 0,

Bk,0u = ~h

(1.17)

for k = 1, 2, 3, 4. The corresponding solution map

~h→ u

will be called the boundary integral operator denoted by W(k)
bdr. An explicit repre-

sentation formula will be given for this boundary integral operator that will play an
important role in showing the solution of the IBVP (1.17) possesses the smoothing
properties. The needed smoothing properties for solutions of the IBVP (1.15) will
then follow from the smoothing properties for solutions of the IBVP (1.17) and the
well-known sharp Kato smoothing properties for solutions of the Cauchy problem

ut + uxxx + δku = 0, u(x, 0) = ψ(x), x, t ∈ R.

The plan of the present paper is as follows.

— In Section 2 we will study the linear IBVP (1.15). The explicit representation

formulas for the boundary integral operators W(k)
bdr, k = 1, 2, 3, 4, will be first pre-

sented. The various linear estimates for solutions of the IBVP (1.15) will be derived
including the sharp Kato smoothing properties.

— Section 3 is devoted to the well-posedness of the nonlinear problem (1.1)-(1.2).

— Finally, in the Section 4, some concluding remarks will be provided together
with a few open problems for further investigation.
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2. Linear problems. This section is devoted to study the linear IBVP (1.15)
which will be divided into two subsections. In subsection 2.1, we will present an

explicit representation for the boundary integral operator W(k)
bdr and then solution

formulas for the solutions of the IBVP (1.15). Various linear estimates for solutions
of the IBVP (1.15) will be derived in subsection 2.2.

2.1. Boundary integral operators and their applications. In this subsection,
we first derive explicit representation formulas for the following four classes of non-
homogeneous boundary-value problems{

vt + vxxx = 0, v(x, 0) = 0, x ∈ (0, L), t ≥ 0,

B1,0v = (h1,1(t), h2,1(t), h3,1(t)), t ≥ 0,
(2.1)

{
vt + vxxx = 0, v(x, 0) = 0, x ∈ (0, L), t ≥ 0,

B2,0v = (h1,2(t), h2,2(t), h3,2(t)), t ≥ 0,
(2.2)

{
vt + vxxx = 0, v(x, 0) = 0, x ∈ (0, L), t ≥ 0,

B3,0v = (h1,3(t), h2,3(t), h3,3(t)), t ≥ 0
(2.3)

and {
vt + vxxx + v = 0, v(x, 0) = 0, x ∈ (0, L), t ≥ 0,

B4,0v = (h1,4(t), h2,4(t), h3,4(t)), t ≥ 0.
(2.4)

Without loss of generality, we assume that L = 1 in this subsection.
Consideration is first given to the IBVP (2.1). Applying the Laplace transform

with respect to t, (2.1) is converted to{
sv̂ + v̂xxx = 0,

v̂(0, s) = ĥ1,1(s), v̂(1, s) = ĥ2,1(s), v̂x(1, s) = ĥ3,1(s),
(2.5)

where

v̂(x, s) =

∫ +∞

0

e−stv(x, t)dt

and

ĥj,1(s) =

∫ +∞

0

e−sthj,1(t)dt, j = 1, 2, 3.

The solution of (2.5) can be written in the form

v̂(x, s) =

3∑
j=1

cj(s)e
λj(s)x,

where λj(s), j = 1, 2, 3 are solutions of the characteristic equation

s+ λ3 = 0

and cj(s), j = 1, 2, 3, solve the linear system 1 1 1
eλ1 eλ2 eλ3

λ1e
λ1 λ2e

λ2 λ3e
λ3


︸ ︷︷ ︸

A1

c1c2
c3

 =

ĥ1,1

ĥ2,1

ĥ3,1


︸ ︷︷ ︸

~̂
h1

.
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By Cramer’s rule,

cj =
∆1
j (s)

∆1(s)
, j = 1, 2, 3,

with ∆1 the determinant of A1 and ∆1
j the determinant of the matrix A1 with the

column j replaced by
~̂
h1. Taking the inverse Laplace transform of v̂ and following

the same arguments as that in [5] yield the representation

v(x, t) =

3∑
m=1

v1
m(x, t)

with

v1
m(x, t) =

3∑
j=1

v1
j,m(x, t)

and
v1
j,m(x, t) = v+,1

j,m(x, t) + v−,1j,m(x, t)

where

v+,1
j,m(x, t) =

1

2πi

∫ +i∞

0

est
∆1
j,m(s)

∆1(s)
ĥm,1(s)eλj(s)xds

and

v−,1j,m(x, t) =
1

2πi

∫ 0

−i∞
est

∆1
j,m(s)

∆1(s)
ĥm,1(s)eλj(s)xds,

for j,m = 1, 2, 3. Here ∆1
j,m(s) is obtained from ∆1

j (s) by letting ĥm,1(s) = 1 and

ĥk,1(s) = 0 for k 6= m, k,m = 1, 2, 3. More precisely,

∆1 = (λ3 − λ2)e−λ1 + (λ1 − λ3)e−λ2 + (λ2 − λ1)e−λ3 ;

∆1
1,1 = (λ3 − λ2)e−λ1 , ∆1

2,1 = (λ1 − λ3)e−λ2 , ∆1
3,1 = (λ2 − λ1)e−λ3 ;

∆1
1,2 = λ2e

λ2 − λ3e
λ3 , ∆1

2,2 = λ3e
λ3 − λ1e

λ1 , ∆1
3,2 = λ1e

λ1 − λ2e
λ2 ;

∆1
1,3 = eλ3 − eλ2 , ∆1

2,3 = eλ1 − eλ3 , ∆1
3,3 = eλ2 − eλ1 .

Making the substitution s = iρ3, with 0 ≤ ρ <∞, in the characteristic equation

s+ λ3 = 0,

the three roots λj = λj(iρ
3) := λ+

j (ρ), j = 1, 2, 3, are

λ+
1 (ρ) = iρ, λ+

2 (ρ) =

√
3− i
2

ρ, λ+
3 (ρ) = −

√
3 + i

2
ρ.

Thus v+,1
j,m(x, t) has the form

v+,1
j,m(x, t) =

1

2π

∫ +∞

0

eiρ
3t

∆+,1
j,m(ρ)

∆+,1(ρ)
ĥ+
m,1(ρ)eλ

+
j (ρ)x3ρ2dρ

and

v−,1j,m(x, t) = v+,1
j,m(x, t),

where ĥ+
m,1(ρ) = ĥm,1(iρ3), ∆+,1(ρ) and ∆+,1

j,m(ρ) are obtained from ∆1(s) and

∆1
j,m(s) by replacing s with iρ3 and λ+

j (ρ) = λj(iρ
3).

For given m, j = 1, 2, 3, let W 1
j,m be an operator on Hs

0(R+) defined as follows:

for any h ∈ Hs
0(R+),

[W 1
j,mh](x, t) := [U1

j,mh](x, t) + [U1
j,mh](x, t) (2.6)
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with

[U1
j,mh](x, t) :=

1

2π

∫ +∞

0

eiρ
3teλ

+
j (ρ)x3ρ2[Q+,1

j,mh](ρ)dρ (2.7)

for j = 1, 3, m = 1, 2, 3 and

[U1
2,mh](x, t) :=

1

2π

∫ +∞

0

eiρ
3te−λ

+
2 (ρ)(1−x)3ρ2[Q+,1

2,mh](ρ)dρ (2.8)

for m = 1, 2, 3. Here

[Q+,1
j,mh](ρ) :=

∆+,1
j,m(ρ)

∆+,1(ρ)
ĥ+(ρ), [Q+,1

2,mh](ρ) :=
∆+,1

2,m(ρ)

∆+,1(ρ)
eλ

+
2 (ρ)ĥ+(ρ) (2.9)

for j = 1, 3 and m = 1, 2, 3, ĥ+(ρ) = ĥ(iρ3). Then the solution of the IBVP (2.1)
has the following representation.

Lemma 2.1. Given ~h1 = (h1,1, h2,1, h3,1), the solution v of the IBVP (2.1) can be
written in the form

v(x, t) = [W 1
bdr
~h1](x, t) :=

3∑
j,m=1

[W 1
j,mhm,1](x, t).

Next we consider the IBVP (2.2). A similar argument shows the solution of the
IBVP (2.2) has the following representation.

Lemma 2.2. The solution v of the IBVP (2.2) can be written in the form

v(x, t) = [W 2
bdr
~h2](x, t) :=

3∑
j,m=1

[W 2
j,mhm,2](x, t),

where

[W 2
j,mh](x, t) := [U2

j,mh](x, t) + [U2
j,mh](x, t) (2.10)

with

[U2
j,mh](x, t) :=

1

2π

∫ +∞

0

eiρ
3teλ

+
j (ρ)x3ρ2[Q+,2

j,mh](ρ)dρ (2.11)

for j = 1, 3, m = 1, 2, 3 and

[U2
2,mh](x, t) :=

1

2π

∫ +∞

0

eiρ
3te−λ

+
2 (ρ)(1−x)3ρ2[Q+,2

2,mh](ρ)dρ (2.12)

for m = 1, 2, 3. Here

[Q+,2
j,mh](ρ) :=

∆+,2
j,m(ρ)

∆+,2(ρ)
ĥ+(ρ), [Q+,2

2,mh](ρ) :=
∆+,2

2,m(ρ)

∆+,2(ρ)
eλ

+
2 (ρ)ĥ+(ρ) (2.13)

for j = 1, 3 and m = 1, 2, 3. Here ĥ+(ρ) = ĥ(iρ3), ∆+,2(ρ) and ∆+,2
j,m(ρ) are obtained

from ∆2(s) and ∆2
j,m(s) by replacing s with iρ3 and λ+

j (ρ) = λj(iρ
3) where

∆2 = λ2λ3(λ3 − λ2)e−λ1 + λ1λ3(λ1 − λ3)e−λ2 + λ2λ1(λ2 − λ1)e−λ3 ;

∆2
1,1 = e−λ1λ2λ3(λ3 − λ2), ∆2

2,1 = e−λ2λ1λ3(λ3 − λ1), ∆2
3,1 = e−λ3λ1λ2(λ2 − λ1);

∆2
1,2 = λ2

2e
λ2 − λ2

3e
λ3 , ∆2

2,2 = λ2
3e
λ3 − λ2

1e
λ1 , ∆2

3,2 = λ2
1e
λ1 − λ2

2e
λ2 ;

∆2
1,3 = λ3e

λ3 − λ2e
λ2 , ∆2

2,3 = λ1e
λ1 − λ3e

λ3 , ∆2
3,3 = λ2e

λ2 − λ1e
λ1 .

For solutions of (2.3), we have the following lemma.
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Lemma 2.3. The solution v of the IBVP (2.3) can be written in the form

v(x, t) = [W 3
bdr
~h3](x, t) :=

3∑
j,m=1

[W 3
j,mhm,3](x, t),

where
[W 3

j,mh](x, t) := [U3
j,mh](x, t) + [U3

j,mh](x, t) (2.14)

with

[U3
j,mh](x, t) :=

1

2π

∫ +∞

0

eiρ
3teλ

+
j (ρ)x3ρ2[Q+,3

j,mh](ρ)dρ (2.15)

for j = 1, 3, m = 1, 2, 3 and

[U3
2,mh](x, t) :=

1

2π

∫ +∞

0

eiρ
3te−λ

+
2 (ρ)(1−x)3ρ2[Q+,3

2,mh](ρ)dρ (2.16)

for m = 1, 2, 3. Here

[Q+,3
j,mh](ρ) :=

∆+,3
j,m(ρ)

∆+,3(ρ)
ĥ+(ρ), [Q+,3

2,mh](ρ) :=
∆+,3

2,m(ρ)

∆+,3(ρ)
eλ

+
2 (ρ)ĥ+(ρ) (2.17)

for j = 1, 3 and m = 1, 2, 3. Here ĥ+(ρ) = ĥ(iρ3), ∆+,1(ρ) and ∆+,3
j,m(ρ) are obtained

from ∆3(s) and ∆3
j,m(s) by replacing s with iρ3 and λ+

j (ρ) = λj(iρ
3) where

∆3 = λ2
1(λ3 − λ2)e−λ1 + λ2

2(λ1 − λ3)e−λ2 + λ2
3(λ2 − λ1)e−λ3 ;

∆3
1,1 = e−λ1(λ3 − λ2), ∆3

2,1 = e−λ2(λ1 − λ3), ∆3
3,1 = e−λ3(λ2 − λ1);

∆3
1,2 = λ2λ3(λ3e

λ2 − λ2e
λ3), ∆3

2,2 = λ1λ3(λ1e
λ3 − λ3e

λ1),

∆3
3,2 = λ1λ2(λ2e

λ1 − λ1e
λ2);

∆3
1,3 = λ2

2e
λ3 − λ2

3e
λ2 , ∆3

2,3 = λ2
3e
λ1 − λ2

1e
λ3 , ∆3

3,3 = λ2
1e
λ2 − λ2

2e
λ1 .

For solutions of (2.4), we have

Lemma 2.4. The solution v of the IBVP (2.4) can be written in the form

v(x, t) = [W 4
bdr
~h4](x, t) :=

3∑
j,m=1

[W 4
j,mhm,4](x, t),

where
[W 4

j,mh](x, t) := [U4
j,mh](x, t) + [U4

j,mh](x, t) (2.18)

with

[U4
j,mh](x, t) :=

1

2π

∫ +∞

0

eiρ
3teλ

+
j (ρ)x3ρ2[Q+,4

j,mh](ρ)dρ (2.19)

for j = 1, 3, m = 1, 2, 3 and

[U4
2,mh](x, t) :=

1

2π

∫ +∞

0

eiρ
3te−λ

+
2 (ρ)(1−x)3ρ2[Q+,4

2,mh](ρ)dρ (2.20)

for m = 1, 2, 3. Here

[Q+,4
j,mh](ρ) :=

∆+,4
j,m(ρ)

∆+,4(ρ)
ĥ+(ρ), [Q+,4

2,mh](ρ) :=
∆+,4

2,m(ρ)

∆+,4(ρ)
eλ

+
2 (ρ)ĥ+(ρ) (2.21)

for j = 1, 3 and m = 1, 2, 3. Here ĥ+(ρ) = ĥ(iρ3), ∆+,4(ρ) and ∆+,4
j,m(ρ) are obtained

from ∆4(s) and ∆4
j,m(s) by replacing s with iρ3 and λ+

j (ρ) = λj(iρ
3) where

∆4 = λ1λ2λ3

(
λ1(λ3 − λ2)e−λ1 + λ2(λ1 − λ3)e−λ2 + λ3(λ2 − λ1)e−λ3

)
;
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∆4
1,1 = e−λ1λ2λ3(λ3 − λ2), ∆4

2,1 = e−λ2λ1λ3(λ1 − λ3), ∆4
3,1 = e−λ3λ1λ2(λ2 − λ1);

∆4
1,2 = λ2

2λ
2
3(eλ2 − eλ3), ∆4

2,2 = λ2
1λ

2
3(eλ3 − eλ1), ∆4

3,2 = λ2
1λ

2
2(eλ1 − eλ2);

∆4
1,3 = λ2λ3(λ2e

λ3 − λ3e
λ2), ∆4

2,3 = λ1λ3(λ3e
λ1 − λ1e

λ3),

∆4
3,3 = λ1λ2(λ1e

λ2 − λ2e
λ1),

and λj(s), j = 1, 2, 3 are solutions of the characteristic equation

s+ 1 + λ3 = 0.

Remark 2.5. From sv̂+ v̂xxx = 0 with boundary conditions Bj v̂ = 0 for j = 1, 2, 3
or sv̂ + v̂ + v̂xxx = 0 with boundary conditions B4v̂ = 0, it can be easily shown
that there are no nontrivial solutions v̂ for any s with Re s ≥ 0. Therefore, ∆j(s) 6=
0, j = 1, 2, 3, 4 for any s with Re s ≥ 0.

The following lemma is helpful in deriving various linear estimates for solutions
of the IBVP (1.15) in the next subsection.

Lemma 2.6. For m = 1, 2, 3 , k = 1, 2, 3, 4 and j = 1, 3, set

ĥ∗j,m,k(ρ) := 3ρ2[Q+,k
j,mhm,k](ρ) = 3ρ2

∆+,k
j,m(ρ)

∆+,k(ρ)
ĥ+
m,k(ρ)

and

ĥ∗2,m,k(ρ) := 3ρ2[Q+,k
2,mhm,k](ρ) = 3ρ2

∆+,k
2,m(ρ)

∆+,k(ρ)
eλ

+
2 (ρ)ĥ+

m,k(ρ)

and view h∗j,m,k as the inverse Fourier transform of ĥ∗j,m,k. Then for any s ∈ R,

h1,1 ∈ H(s+1)/3
0 (R+) ⇒ h∗j,1,1 ∈ Hs(R), j = 1, 2, 3,

h2,1 ∈ H(s+1)/3
0 (R+) ⇒ h∗j,2,1 ∈ Hs(R), j = 1, 2, 3,

h3,1 ∈ Hs/3
0 (R+) ⇒ h∗j,3,1 ∈ Hs(R), j = 1, 2, 3.

(2.22)



h1,2 ∈ H(s+1)/3
0 (R+) ⇒ h∗j,1,2 ∈ Hs(R), j = 1, 2, 3,

h2,2 ∈ Hs/3
0 (R+) ⇒ h∗j,2,2 ∈ Hs(R), j = 1, 2, 3,

h3,2 ∈ H(s−1)/3
0 (R+) ⇒ h∗j,3,2 ∈ Hs(R), j = 1, 2, 3.

(2.23)



h1,3 ∈ H(s−1)/3
0 (R+) ⇒ h∗j,1,3 ∈ Hs(R), j = 1, 2, 3,

h2,3 ∈ H(s+1)/3
0 (R+) ⇒ h∗j,2,3 ∈ Hs(R), j = 1, 2, 3,

h3,3 ∈ Hs/3
0 (R+) ⇒ h∗j,3,3 ∈ Hs(R), j = 1, 2, 3.

(2.24)



h1,4 ∈ H(s−1)/3
0 (R+) ⇒ h∗j,1,4 ∈ Hs(R), j = 1, 2, 3,

h2,4 ∈ Hs/3
0 (R+) ⇒ h∗j,2,4 ∈ Hs(R), j = 1, 2, 3,

h3,4 ∈ H(s−1)/3
0 (R+) ⇒ h∗j,3,4 ∈ Hs(R), j = 1, 2, 3.

(2.25)
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Proof. Recall that for k = 1, 2, 3, we have

λ+
1 (ρ) = iρ, λ+

2 (ρ) =

√
3− i
2

ρ, λ+
3 (ρ) = −

√
3 + i

2
ρ

for ρ ≥ 0, and for k = 4,

λ+
1 (ρ) ∼ iρ, λ+

2 (ρ) ∼
√

3− i
2

ρ, λ+
3 (ρ) ∼ −

√
3 + i

2
ρ

as ρ → +∞. Thus, the following asymptotic estimates of
∆+,k
n,m(ρ)

∆+,k(ρ)
, for m,n =

1, 2, 3, k = 1, 2, 3, 4, as ρ→ +∞, hold:

∆+,1
1,1 (ρ)

∆+,1(ρ) ∼ e
−
√

3
2 ρ ∆+,1

2,1 (ρ)

∆+,1(ρ) ∼ e
−
√

3ρ ∆+,1
3,1 (ρ)

∆+,1(ρ) ∼ 1

∆+,1
1,2 (ρ)

∆+,1(ρ) ∼ 1
∆+,1

2,2 (ρ)

∆+,1(ρ) ∼ e
−
√

3
2 ρ ∆+,1

3,2 (ρ)

∆+,1(ρ) ∼ 1

∆+,1
1,3 (ρ)

∆+,1(ρ) ∼ ρ
−1 ∆+,1

2,3 (ρ)

∆+,1(ρ) ∼ ρ
−1e−

√
3

2 ρ ∆+,1
3,3 (ρ)

∆+,1(ρ) ∼ ρ
−1

∆+,2
1,1 (ρ)

∆+,2(ρ) ∼ e
−
√

3
2 ρ ∆+,2

2,1 (ρ)

∆+,2(ρ) ∼ e
−
√

3ρ ∆+,2
3,1 (ρ)

∆+,2(ρ) ∼ 1

∆+,2
1,2 (ρ)

∆+,2(ρ) ∼ ρ
−1 ∆+,2

2,2 (ρ)

∆+,2(ρ) ∼ ρ
−1e−

√
3

2 ρ ∆+,2
3,2 (ρ)

∆+,2(ρ) ∼ ρ
−1

∆+,2
1,3 (ρ)

∆+,2(ρ) ∼ ρ
−2 ∆+,2

2,3 (ρ)

∆+,2(ρ) ∼ ρ
−2e−

√
3

2 ρ ∆+,2
3,3 (ρ)

∆+,2(ρ) ∼ ρ
−2

∆+,3
1,1 (ρ)

∆+,3(ρ) ∼ ρ
−2e−

√
3

2 ρ ∆+,3
2,1 (ρ)

∆+,3(ρ) ∼ ρ
−2e−

√
3ρ ∆+,3

3,1 (ρ)

∆+,3(ρ) ∼ ρ
−2

∆+,3
1,2 (ρ)

∆+,3(ρ) ∼ e
−
√

3
2 ρ ∆+,3

2,2 (ρ)

∆+,3(ρ) ∼ e
−
√

3
2 ρ ∆+,3

3,2 (ρ)

∆+,3(ρ) ∼ 1

∆+,3
1,3 (ρ)

∆+,3(ρ) ∼ ρ
−1 ∆+,3

2,3 (ρ)

∆+,3(ρ) ∼ ρ
−1e−

√
3

2 ρ ∆+,3
3,3 (ρ)

∆+,3(ρ) ∼ ρ
−1

∆+,4
1,1 (ρ)

∆+,4(ρ) ∼ ρ
−2e−

√
3

2 ρ ∆+,4
2,1 (ρ)

∆+,4(ρ) ∼ ρ
−2e−

√
3ρ ∆+,4

3,1 (ρ)

∆+,4(ρ) ∼ ρ
−2

∆+,4
1,2 (ρ)

∆+,4(ρ) ∼ ρ
−1 ∆+,4

2,2 (ρ)

∆+,4(ρ) ∼ ρ
−1e−

√
3

2 ρ ∆+,4
3,2 (ρ)

∆+,4(ρ) ∼ ρ
−1

∆+,4
1,3 (ρ)

∆+,4(ρ) ∼ ρ
−2 ∆+,4

2,3 (ρ)

∆+,4(ρ) ∼ ρ
−2e−

√
3

2 ρ ∆+,4
3,3 (ρ)

∆+,4(ρ) ∼ ρ
−2

Then (2.22)-(2.25) follow consequently.

We consider next the linear IBVP with homogeneous boundary conditions
zt + zxxx + δkz = f(x, t), x ∈ (0, L), t > 0,

z(x, 0) = φ(x),

Bk,0z = 0

(2.26)

for k = 1, 2, 3, 4. By the standard semigroup theory, for any φ ∈ L2(0, L), f ∈
L1
loc(R+;L2(0, L)), the IBVP (2.26) admits a unique solution z ∈ C(R+;L2(0, L))

which can be written as

z(x, t) = W0,k(t)φ+

∫ t

0

W0,k(t− τ)f(·, τ)dτ
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where W0,k(t) is the C0-semigroup associated with the IBVP (2.26) with f := 0.
Recall the solution of the Cauchy problem of the linear KdV equation,{

wt + wxxx + δkw = 0, x ∈ R, t ≥ 0,

w(x, 0) = ψ(x), x ∈ R,
(2.27)

has the explicit representation

v(x, t) = [WR,k(t)]ψ(x) = c

∫
R
eiξ

3t−δkteixξψ̂(ξ)dξ. (2.28)

Here ψ̂ denotes the Fourier transform of φ. In terms of the C0-group WR,k(t) and

the boundary integral operator W(k)
bdr , we can have a more explicit representation

of solutions of the IBVP (2.26).
Let s ≥ 0 be given and Bs : Hs(0, L) → Hs(R) be the standard extension

operator from Hs(0, L) to Hs(R). For any φ ∈ Hs(0, L) and f ∈ L1
loc(R+;Hs(0, L))

let
φ∗ = Bsφ

and
f∗ = Bsf.

Lemma 2.7. For given φ ∈ L2(0, L) and f ∈ L1
loc(R+;L2(0, L)), let

qk(x, t) = WR,k(t)φ∗ +

∫ t

0

WR,k(t− τ)f∗(τ)dτ

and
~hk := Bk,0q, k = 1, 2, 3, 4.

Then the solution of the IBVP (2.26) can be written as

z(x, t) = WR,k(t)φ∗ +

∫ t

0

WR,k(t− τ)f∗(τ)dτ −W(k)
bdr
~hk.

2.2. Linear estimates. In this subsection we consider the following IBVP of the
linear equations:{

vt + vxxx + δkv = f, v(x, 0) = φ(x), x ∈ (0, L), t ≥ 0,

Bk,0v = ~h(t), t ≥ 0
(2.29)

and present various linear estimates for its solutions. For given s ≥ 0 and T > 0,
let us consider:

Zs,T := C([0, T ];Hs(0, L)) ∩ L2(0, T ;Hs+1(0, L))

and
Xk
s,T := Hs

0(0, L)×Hsk(0, T ), for k = 1, 2, 3, 4.

Recall that when f = 0 and φ = 0, the solution v of the IBVP (2.29) can be written
in the form

v(x, t) = [W
(k)
bdr
~h](x, t) :=

3∑
j,m=1

[W
(k)
j,mhm](x, t),

where

[W
(k)
j,mh](x, t) := [U

(k)
j,mh](x, t) + [U

(k)
j,mh](x, t)

with

[U
(k)
j,mh](x, t) :=

1

2π

∫ +∞

0

eiρ
3teλ

+
j (ρ)xĥ∗j,m,k(ρ)dρ
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for k = 1, 2, 3, 4, j = 1, 3, m = 1, 2, 3 and

[U
(k)
2,mh](x, t) :=

1

2π

∫ +∞

0

eiρ
3te−λ

+
2 (ρ)(1−x)ĥ∗2,m,k(ρ)dρ

for k = 1, 2, 3, 4 and m = 1, 2, 3. Here

ĥ∗j,m,k(ρ) = 3ρ2
∆+,k
j,m(ρ)

∆+,k(ρ)
ĥ+(ρ), ĥ∗2,m,k(ρ) = 3ρ2

∆+,k
2,m(ρ)

∆+,k(ρ)
eλ

+
2 (ρ)ĥ+(ρ)

for k = 1, 2, 3, 4, j = 1, 3 and m = 1, 2, 3.

Proposition 2.8. Let 0 ≤ s ≤ 3 with s 6= 2j−1
2 , j = 1, 2, 3, and T > 0 be given.

There exists a constant C > 0 such that for any ~h ∈ Hsk(0, T ) ,

zk =W(k)
bdr
~h

satisfies

‖zk‖Zs,T +

2∑
j=0

‖∂jxzk‖L∞(0,L;H
s+1−j

3 (0,T ))
≤ C‖~h‖Hsk(0,T )

for k = 1, 2, 3, 4.

Proof. We only consider the case that ~h = (h1, 0, 0) and k = 4; the proofs for the
other cases are similar. Note that, the solution z4 can be written as

z4(x, t) = w1(x, t) + w2(x, t) + w3(x, t)

with

wj(x, t) := [W
(4)
j,1 h1](x, t) = [U

(4)
j,1 h1](x, t) + [U

(4)
j,1 h1](x, t), j = 1, 2, 3.

Let us prove Proposition 2.8 for w1. It suffices to only consider

w+
1 (x, t) := [U

(4)
1,1h1](x, t) =

1

2π

∫ +∞

0

eiρ
3teλ

+
1 (ρ)xĥ∗1,1,4(ρ)dρ.

Applying [5, Lemma 2.5] yields

sup
t∈[0,T ]

‖w+
1 (·, t)‖2L2(0,L) ≤ C

∫ +∞

0

∣∣∣ĥ∗1,1,4(ρ)
∣∣∣2 dρ

≤ C‖h1‖2
H−

1
3 (R+)

and

sup
t∈[0,T ]

‖∂3
xw

+
1 (·, t)‖2L2(0,L) ≤ C

∫ +∞

0

∣∣λ+
1 (ρ)

∣∣6 ∣∣∣ĥ∗1,1,4(ρ)
∣∣∣2 dρ

≤ C‖h1‖2
H

2
3 (R+)

.

By interpolation,

sup
t∈[0,T ]

‖w+
1 (·, t)‖2Hs(0,L) ≤ C‖h1‖2

H
s−1
3 (R+)

for 0 ≤ s ≤ 3. Furthermore, for l = 0, 1, 2, let µ = ρ3, ρ ≥ 0, then

∂lxw1(x, t) =
1

2π

∫ +∞

0

(
λ+

1 (ρ)
)l
eiρ

3teλ
+
1 (ρ)xĥ∗1,1,4(ρ)dρ

=
1

2π

∫ +∞

0

(
λ+

1 (µ
1
3 )
)l
eiµteλ

+
1 (µ

1
3 )xĥ∗1,1,4(µ

1
3 )µ−

2
3 dµ.
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Applying Plancherel theorem, in time t, yields that, for all x ∈ (0, L),

‖∂lxw1(x, ·)‖2
H
s+1−l

3 (0,T )
≤ C

∫ +∞

0

µ
2(s+1−l)

3

∣∣∣∣(λ+
1 (µ

1
3 )
)l
eλ

+
1 (µ

1
3 )xĥ∗1,1,4(µ

1
3 )µ−

2
3

∣∣∣∣2 dµ
≤ C

∫ +∞

0

∣∣∣(λ+
1 (ρ))l)ĥ∗1,1,4(ρ)

∣∣∣2 ρ2s−2ldρ

≤ C
∫ +∞

0

ρ2s
∣∣∣ĥ∗1,1,4(ρ)

∣∣∣2 dρ
≤ C‖h1‖2

H
s−1
3 (R+)

,

for l = 0, 1, 2. Consequently, for 0 ≤ s ≤ 3 and l = 0, 1, 2, we have

sup
x∈(0,L)

‖∂lxw1(x, ·)‖
H
s+1−l

3 (0,T )
≤ C‖h1‖

H
s−1
3 (R+)

,

which ends the proof of Proposition 2.8 for w1. The proof for wj , j = 2, 3, are
similar, and therefore will be omitted.

Next we consider the following initial boundary-value problem:{
vt + vxxx + δkv = f, v(x, 0) = φ(x), x ∈ (0, L), t ≥ 0,

Bk,0v = 0, t ≥ 0,
(2.30)

for k = 1, 2, 3, 4. Recall that for any s ∈ R, ψ ∈ Hs(R) and g ∈ L1
loc(R+;Hs(R)),

the Cauchy problem of the following linear KdV equation posed on R,{
wt + wxxx + δkw = g, x ∈ R, t ≥ 0,

w(x, 0) = ψ(x), x ∈ R
(2.31)

admits a unique solution v ∈ C(R+;Hs(R)) and possesses the well-known sharp
Kato smoothing properties.

Lemma 2.9. Let T > 0 be given. For any ψ ∈ L2(R) and g ∈ L1(0, T ;L2(R)), the
system (2.31) admits a unique solution w ∈ Z0,T with

∂lxw ∈ L∞x (R;H
1−l
3 (0, T )) for l = 0, 1, 2

and

‖w‖Z0,T
+

2∑
l=0

‖∂lxw(x, ·)‖
L∞x (R;H

1−l
3 (0,T ))

≤ C
(
‖ψ‖Hs(R) + ‖g‖L1(0,T ;L2(R))

)
where C > 0 is a constant depending only on T .

Corollary 2.10. Let T > 0 be given. For any φ ∈ L2(0, L) and g ∈ L1(0, T ;L2(R)),
let ψ ∈ L2(R) be zero extension of φ from (0, L) to R. If

~qk := Bk,0w, k = 1, 2, 3, 4,

then

~qk ∈ H0
k(0, T ).

Moreover, for k = 1, 2, 3, 4,

‖~qk‖H0
k(0,T ) ≤ C

(
‖φ‖L2(0,L) + ‖g‖L1(0,T ;L2(R))

)
.

The following two propositions follow from Proposition 2.8 and Lemma 2.9.



GENERAL BOUNDARY VALUE PROBLEMS OF THE KDV EQUATION 599

Proposition 2.11. Let T > 0 be given. There exists a constant C > 0 such that

for any (φ,~h) ∈ Xk
0,T and f ∈ L1(0, T ;L2(0, L)), the IBVP (2.29) admits a unique

solution v ∈ Z0,T satisfying

‖v‖Z0,T
≤ C

(
‖(φ,~h)‖Xk0,T + ‖f‖L1(0,T ;L2(0,L))

)
.

Proposition 2.12. Let T > 0 be given. For any φ ∈ L2(0, L), ~h ∈ Hk0,T and

f ∈ L1(0, T ;L2(0, L)) the solution v of the system (2.29) satisfies

sup
x∈(0,L)

‖∂rxv(x, ·)‖
H

1−r
3 (0,T )

≤ C
(
‖(φ,~h)‖Xk0,T + ‖f‖L1(0,T ;L2(0,L))

)
(2.32)

for r = 0, 1, 2.

3. Nonlinear problems. In this section, we will consider the IBVP of the non-
linear KdV equation on (0, L) with the general boundary conditions

ut + uxxx + ux + uux = 0, x ∈ (0, L), t > 0

u(x, 0) = φ(x), x ∈ (0, L),

Bku = ~h(t), t ≥ 0,

(3.1)

where the boundary operators Bk, k = 1, 2, 3, 4, are introduced in the introduction.
For given s ≥ 0 and T > 0, let

Ys,T :=

{
w ∈ Zs,T ;

2∑
l=0

‖∂lxw(x, ·)‖
L∞x (R;H

s+1−l
3 (0,T ))

< +∞

}
and

‖w‖Ys,T :=

(
‖w‖2Zs,T +

2∑
l=0

‖∂lxw(x, ·)‖2
L∞x (R;H

s+1−l
3 (0,T ))

) 1
2

.

The next lemma is helpful in establishing the well-posedness of (3.1) whose proof
can be found in [5, 31].

Lemma 3.1. There exists a C > 0 and µ > 0 such that for any T > 0 and
u, v ∈ Y0,T ,

T∫
0

‖uvx‖L2(0,L) dτ ≤ C(T
1
2 + T

1
3 )‖u‖Y0,T

‖v‖Y0,T
(3.2)

and

‖Bk,1v‖H0
k(0,T ) ≤ CTµ‖v‖Y0,T

,

for k = 1, 2, 3, 4.

Consider the following linear IBVPs
vt + vxxx + δkv = f, x ∈ (0, L), t > 0

v(x, 0) = φ(x), x ∈ (0, L),

Bk,0v = ~h, t ≥ 0,

(3.3)

for k = 1, 2, 3, 4. The following lemma follows from the discussion in the Section 2,
and therefore proof will be omitted.
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Lemma 3.2. Let T > 0 be given. There exists a constant C > 0 such that for any

(φ,~h) ∈ Xk
0,T and f ∈ L1(0, T ;L2(0, L)), the IBVP (3.3) admits a unique solution

v ∈ Y0,T satisfying

‖v‖Y0,T
≤ C

(
‖(φ,~h)‖Xk0,T + ‖f‖L1(0,T ;L2(0,L))

)
,

for k = 1, 2, 3, 4.

Next, we consider the following linearized IBVPs associated to (3.1)
vt + vx + vxxx + (a(x, t)v)x = f, x ∈ (0, L), t > 0

v(x, 0) = φ(x), x ∈ (0, L),

Bkv = ~h(t), t ≥ 0,

(3.4)

for k = 1, 2, 3, 4 and a(x, t) is a given function.

Proposition 3.3. Let T > 0 be given. Assume that a ∈ Y0,T . Then for any

(φ,~h) ∈ Xk
0,T and f ∈ L1(0, T ;L2(0, L)), the IBVP (3.4) admits unique solution

v ∈ Y0,T .

Moreover, there exists a constant C > 0 depending only on T and ‖a‖Y0,T
such that

‖v‖Y0,T
≤ C

(
‖(φ,~h)‖Xk0,T + ‖f‖L1(0,T ;L2(0,L))

)
.

Proof. Let r > 0 and 0 < θ ≤ T be a constant to be determined. Set

Sθ,r := {u ∈ Y0,θ : ‖u‖Y0,θ
≤ r},

which is a bounded closed convex subset of Y0,θ. For given (φ,~h) ∈ Xk
0,T , a ∈ Y0,T

and f ∈ L1(0, T ;L2(0, L)), define a map Γ on Sθ,r by

v = Γ(u)

for any u ∈ Sθ,r where v is the unique solution of
vt + vxxx + δkv = −ux − (a(x, t)u)x + δku x ∈ (0, L), t ≥ 0,

v(x, 0) = φ(x), x ∈ (0, L),

Bk,0v = ~h(t)− Bk,1u, t ≥ 0.

(3.5)

By Lemma 3.2 (see also Propositions 2.11 and 2.12), for any u,w ∈ Sθ,r,

‖Γ(u)‖Y0,θ
≤ C1

(
‖(φ,~h)‖X0

k,T
+ ‖f‖L1(0,T ;L2(0,L))

)
+C2‖Bk,1v‖H0

k(0,θ) + C3‖(av)x‖L1(0,θ;L2(0,L))

≤ C1

(
‖(φ,~h)‖X0

k,T
+ ‖f‖L1(0,T ;L2(0,L))

)
+
(
C2θ

µ +
[
θ

1
2 + θ

1
3

]
‖a‖Y0,T

)
‖v‖Y0,θ

and

‖Γ(w)− Γ(u)‖Y0,θ
≤
(
C2θ

µ +
[
θ

1
2 + θ

1
3

]
‖a‖Y0,T

)
‖w − u‖Y0,θ

.

Thus Γ is a contraction mapping from Sr,θ to Sr,θ if one chooses r and θ by

r = 2C0

(
‖(φ,~h)‖Xk0,T + ‖f‖L1(0,T ;L2(0,L))

)
and (

C2θ
µ +

[
θ

1
2 + θ

1
3

]
‖a‖Y0,T

)
≤ 1

2
.
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Its fixed point v = Γ(u) is desired solution of (3.5) in the time interval [0, θ]. Note
that θ only depends on ‖a‖Y0,T

and thus by standard extension argument, the
solution v can be extended to the time interval [0, T ]. The proof is completed.

Now, we turn to consider the well-posedness problem of the nonlinear IBVP (3.1).

Theorem 3.4. Let s ≥ 0 with s 6= 2j−1
2 , j = 1, 2, 3..., T > 0 and r > 0 be given.

There exists a T ∗ ∈ (0, T ] such that for any (φ,~h) ∈ X0
k(0, T ) with

‖(φ,~h)‖Xsk(0,T ) ≤ r,

the IBVP (3.1) admits a unique solution u ∈ Ys,T∗ . Moreover, the corresponding
solution map is real analytic.

Proof. We only prove the theorem in the case of 0 ≤ s ≤ 3. When s > 3 it follows
from a standard procedure developed in [3]. First we consider the case of s = 0.
As in the proof of Proposition 3.3, let r > 0 and 0 < θ ≤ T be a constant to be
determined. Set

Sθ,r := {u ∈ Ys,θ : ‖u‖Ys,θ ≤ r}.

For given (φ,~h) ∈ X0
k,T , define a map Γ on Sθ,r by

v = Γ(u) for u ∈ Y0,θ

where v is the unique solution of
vt + vxxx + δkv = −ux − uux + δku, x ∈ (0, L), t ≥ 0

v(x, 0) = φ(x), x ∈ (0, L),

Bk~v(t) = ~h(t), t ≥ 0.

(3.6)

By Proposition 3.3, for any u, w ∈ Sθ,r,

‖Γ(u)‖Y0,θ
≤ C0‖(φ,~h)‖Xk0,T + C1θ‖u‖Y0,θ

+ C2

(
θ1/3 + θ1/2

)
‖u‖2Y0,θ

and

‖Γ(u)− Γ(w)‖Y0,θ
≤ C1θ‖u− w‖Y0,θ

+
C2

2

(
θ1/3 + θ1/2

)
‖u+ w‖Y0,θ

‖u− w‖Y0,θ
.

Choosing r and θ with

r = 2C0‖(φ,~h)‖Xk0,T , C1θ + C2

(
θ1/3 + θ1/2

)
r ≤ 1

2
,

Γ is a contraction whose critical point is the desired solution.
Next we consider the case of s = 3. Let v = ut we have v solves

vt + vx + vxxx + (a(x, t)v)x = 0, x ∈ (0, L), t > 0

v(x, 0) = φ∗(x), x ∈ (0, L),

Bkv = ~h′(t), t ≥ 0,

(3.7)

where φ∗(x) = −φ′(x) − φ′′′(x) and a(x, t) = 1
2u(x, t). Applying Proposition 3.3

implies that v = ut ∈ Y0,T∗ . Then it follows from the equation

ut + ux + uux + uxxx = 0

that uxxx ∈ Y0,T∗ and u ∈ Y3,T∗ . The case of 0 < s < 3 follows using Tartar’s
nonlinear interpolation theory [34] and the proof is achived.
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4. Concluding remarks. In this paper we have studied the nonhomogeneous
boundary value problem of the KdV equation on the finite interval (0,L) with gen-
eral boundary conditions,

ut + ux + uxxx + uux = 0, 0 < x < L, t > 0

u(x, 0) = φ(x)

Bku = ~h

(4.1)

and have shown that the IBVP (4.1) is locally well-posed in the space Hs(0, L) for

any s ≥ 0 with s 6= 2j−1
2 , j = 1, 2, 3..., and (φ,~h) ∈ Xs

k,T . Two important tools
have played indispensable roles in approach; one is the explicit representation of

the boundary integral operators W(k)
bdr associated to the IBVP (4.1) and the other

one is the sharp Kato smoothing property. We have obtained our results by first
investigating the associated linear IBVP

ut + uxxx + δku = f, 0 < x < L, t > 0,

u(x, 0) = φ(x),

Bk,0u = ~h.

(4.2)

The local well-posedness of the nonlinear IBVP (4.1) follows via contraction mapping
principle.

While the results reported in this paper have significantly improved the earlier
works on general boundary value problems of the KdV equation on a finite interval,
there are still many questions to be addressed regarding the IBVP (4.1). Here we
list a few of them which are most interesting to us.

(1) Is the IBVP (4.1) globally well-posed in the space Hs(0, L) for some s ≥ 0 or
equivalently, does any solution of the IBVP (4.1) blow up in the some space
Hs(0, L) in finite time?

It is not clear if the IBVP (4.1) is globally well-posed or not even in the

case of ~h := 0. It follows from our results that a solution u of the IBVP (4.1)
blows up in the space Hs(0, L) for some s ≥ 0 at a finite time T > 0 if and
only if

lim
t→T−

‖u(·, t)‖L2(0,L) = +∞.

Consequently, it suffices to establish a global a priori L2(0, L) estimate

sup
0≤t<∞

‖u(·, t)‖L2(0,L) < +∞, (4.3)

for solutions of the IBVP (4.1) in order to obtain the global well-posedness of
the IBVP (4.1) in the space Hs(0, L) for any s ≥ 0. However, estimate (4.3)
is known to be held only in one case

ut + ux + uux + uxxx = f, 0 < x < L, t > 0

u(x, 0) = φ(x)

u(0, t) = h1(t), u(L, t) = h2(t), ux(L, t) = h3(t).

(2) Is the IBVP well-posed in the space Hs(0, L) for some s ≤ −1?

We have shown that the IBVP (4.1) is locally well-posed in the space
Hs(0, L) for any s ≥ 0. Our results can also be extended to the case of
−1 < s ≤ 0 using the same approach developed in [8]. For the pure initial
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value problem (IVP) of the KdV equation posed on the whole line R or on
torus T,

ut + uux + uxxx = 0, u(x, 0) = φ(x), x, t ∈ R (4.4)

and

ut + uux + uxxx = 0, u(x, 0) = φ(x), x ∈ T, t ∈ R, (4.5)

it is well-known that the IVP (4.4) is well-posed in the space Hs(R) for any
s ≥ − 3

4 and is (conditionally) ill-posed in the space Hs(R) for any s < − 3
4

in the sense the corresponding solution map cannot be uniformly continuous.
As for the IVP (4.5), it is well-posed in the space Hs(T) for any s ≥ −1. The
solution map corresponding to the IVP (4.5) is real analytic when s > − 1

2 , but

only continuous (not even locally uniformly continuous) when −1 ≤ s < − 1
2 .

Whether the IVP (4.4) is well-posed in the space Hs(R) for any s < − 3
4 or

the IVP (4.5) is well-posed in the space Hs(T) for any s < −1 is still an
open question. On the other hand, by contrast, the IVP of the KdV-Burgers
equation

ut + uux + uxxx − uxx = 0, u(x, 0) = φ(x), x ∈ R, t > 0

is known to be well-posed in the space Hs(R) for any s ≥ −1, but is known
to be ill-posed for any s < −1. We conjecture that the IBVP (4.1) is ill-posed
in the space Hs(0, L) for any s < −1.

(3) While the approach developed in this paper can be used to study the non-
homogeneous boundary value problems of the KdV equation on (0, L) with
quite general boundary conditions, there are still some boundary value prob-
lems of the KdV equation that our approach does not work. Among them the
following two boundary value problems of the KdV equation on (0, L) stand
out: 

ut + uux + uxxx = 0, x ∈ (0, L)

u(x, 0) = φ(x),

u(0, t) = u(L, t), ux(0, t) = ux(L, t), uxx(0, t) = uxx(L, t)

(4.6)

and 
ut + uux + uxxx = 0, x ∈ (0, L),

u(x, 0) = φ(x),

u(0, t) = 0, u(L, t) = 0, ux(0, t) = ux(L, t).

(4.7)

A common feature for these two boundary value problems is that the L2−norm
of their solutions are conserved:∫ L

0

u2(x, t)dx =

∫ L

0

φ2(x)dx for any t ∈ R.

The IBVP (4.6) is equivalent to the IVP (4.5) which was shown by Kato
[23, 24] to be well-posed in the space Hs(T) when s > 3

2 as early as in the

late 1970s. Its well-posedness in the space Hs(T) when s ≤ 3
2 , however, was

established 24 years later in the celebrated work of Bourgain [9, 10] in 1993.
For the IBVP (4.7), its associated linear problem

ut + uxxx = 0, x ∈ (0, L),

u(x, 0) = φ(x), u(0, t) = 0,

u(L, t) = 0, ux(0, t) = ux(L, t)

(4.8)
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has been shown by Cerpa (see, for instance, [13]) to be well-posed in the space
Hs(0, L) forward and backward in time. However, whether the nonlinear
IBVP (4.7) is well-posed in the space Hs(0, L) for some s is still unknown.
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