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a b s t r a c t

We consider the Kawahara equation, a fifth order Korteweg–de Vries type equation,
posed on a bounded interval. The first result of the article is related to the well-
posedness in weighted Sobolev spaces, which one was shown using a general version
of the Lax–Milgram Theorem. With respect to the control problems, we will prove
two results. First, if the control region is a neighborhood of the right endpoint,
an exact controllability result in weighted Sobolev spaces is established. Lastly, we
show that the Kawahara equation is controllable by regions on L2 Sobolev space,
the so-called regional controllability, that is, the state function is exact controlled
on the left part of the complement of the control region and null controlled on the
right part of the complement of the control region.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Presentation of problem

Fifth order Korteweg–de Vries (KdV) type equation can be written as

ut + ux + βuxxx + αuxxxxx + uux = 0, (1.1)

where u = u(t, x) is a real-valued function of two real variables t and x, α and β are real constants. When
we consider, in (1.1), β = 1 and α = −1, T. Kawahara [32] introduced a dispersive partial differential
equation which describes one-dimensional propagation of small-amplitude long waves in various problems of
fluid dynamics and plasma physics, the so-called Kawahara equation.
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In this article we shall be concerned with the well-posedness and control properties of Kawahara when
the control acting through a forcing term f incorporated in the equation:

ut + ux + uxxx − uxxxxx + uux = f, t ∈ [0, T ], x ∈ [0, L], (1.2)

with appropriate boundary conditions. Our main purpose is to see whether there are solutions in some
appropriate Sobolev spaces and if one can force solutions of (1.2) to have certain desired properties by
choosing an appropriate control input f . We will consider the following controllability issue:

Given an initial state u0 and a terminal state u1 in a certain space, can one find an appropriate control
input f so that Eq. (1.2) admits a solution u which equals u0 at time t = 0 and u1 at time t = T?

If one can always find a control input f to guide the system described by (1.2) from any given initial state
u0 to any given terminal state u1, then the system (1.2) is said to be exactly controllable. If the system can
be driven, by means of a control f , from any state to the origin (i.e. u1 ≡ 0), then one says that system
(1.2) is null controllable.

1.2. Previous results

Kawahara equation is a dispersive partial differential equation (PDE) describing numerous wave phe-
nomena such as magneto-acoustic waves in a cold plasma [31], the propagation of long waves in a shallow
liquid beneath an ice sheet [29], gravity waves on the surface of a heavy liquid [15], etc. In the literature this
equation is also referred to as the fifth-order KdV equation [6], or singularly perturbed KdV equation [39].

There are valuable efforts in the last years that focus on the analytic and numerical methods for solving
(1.1). These methods include the tanh-function method [2], extended tanh-function method [3], sine–cosine
method [45], Jacobi elliptic functions method [28], direct algebraic method [38], decomposition methods [33],
as well as the variational iterations and homotopy perturbations methods [30]. For more details see [7,42–
44,46], among others. These approaches deal, as a rule, with soliton-like solutions obtained while one
considers problems posed on a whole real line. For numerical simulations, however, there appears the question
of cutting-off the spatial domain [4,5]. This motivates the detailed qualitative analysis of problems for (1.1)
in bounded regions [21].

In addition to the aspects mentioned above, the Kawahara equation has been intensively studied from
various other aspects of mathematics, including the well-posedness, the existence and stability of solitary
waves, the integrability, the long-time behavior, the stabilization and control problem, etc. For example,
concerning the Cauchy problem in the real line, we can cite, for instance, [15,21,34,40] and references therein
for a good review of the problem. For what concerns the boundary value problem, the Kawahara equation
with homogeneous boundary conditions was investigated by Doronin and Larkin [16] and also in a half-strip
in [22] for Faminkii and Opritova. Still in relation with results of well-posedness in weighted Sobolev space,
we can mention [35] and the reference therein.

We cannot forget the advances in control theory for the Kawahara equation. Recently, the first author,
in [1], studied the stabilization problem and conjectured a critical set phenomenon for Kawahara equations
as occurs with the KdV equation [8,41] and Boussinesq KdV–KdV system [10], for example. The character-
ization of critical sets for the Kawahara equation is a completely open and interesting problem, we can cite
for a good overview about this topic [18].

It is important to note that the (third-order) Korteweg–de Vries equation has drained much attention (see
in particular [4,5,21,26]). With respect of the internal and boundary controllability problem the equivalent
for the Korteweg–de Vries equation has also known many developments lately, see [9,11,12,14,23,25,41] and
the reference therein.

Let us mention the result proved by Glass and Guerrero, in [24], with respect to boundary controllability of

fifth order KdV equation. In this work the authors treated the exact controllability when two or five controls
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are inputting on the boundary conditions. Still related to the control and stabilization problem we can
cite [1,17,18,27]. By contrast, the mathematical theory pertaining to the study of the internal controllability
in a bounded domain is considerably less advanced for Eq. (1.1).

As far as we know, the control problem was, first, studied in [47,48] when the authors considered a periodic
domain T with a distributed control of the form

f(x, t) = (Gh)(x, t) := g(x)(h(x, t) −
∫
T

g(y)h(y, t)dy),

here g ∈ C∞(T) was such that {g > 0} = ω and
∫
T g(x)dx = 1, and the function h was considered as a

ew control input.
To finish this historical overview, more recently, Chen [13] considered the Kawahara equation posed on a

ounded interval (0, T ) × (0, L), with a distributed control. The author established a Carleman estimate for
he Kawahara equation with an internal observation, as done in [9] for the KdV equation. Then, applying this
arleman estimate, she showed that the Kawahara equation (1.2) is null controllable when f is supported

n a ω ⊂ (0, L).
In this article, we will try to close the possibilities for the internal controllability issues for the Kawahara

quation. We shall consider the system⎧⎪⎨⎪⎩
ut + ux + uux + uxxx − uxxxxx = f in (0, T ) × (0, L),
u(t, 0) = u(t, L) = ux(t, 0) = ux(t, L) = uxx(t, L) = 0 in (0, T ),
u(0, x) = u0(x) in (0, L).

(1.3)

s the smoothing effect is different from those in a periodic domain, the results in this paper turn out to
e very different from those in [47,48]. First, for a controllability result in L2(0, L), the control f has to be

taken in the space L2(0, T, H−2(0, L)). Actually, with any control f ∈ L2(0, T, L2(0, L)), the solution of (1.3)
tarting from u0 = 0 at t = 0 would remain in H2

0 (0, L) (see [24]). On the other hand, as for the boundary
ontrol, the localization of the distributed control plays a role in the results. It is important to point out
hat the results of the article, presented in the next section, remain valid for the fifth order KdV equation
1.1).

.3. Main results

The aim of this paper is to address the controllability issue for the Kawahara equation (1.3) on a bounded
omain with a distributed control. Our first result is the following one:

heorem 1.1. Let T > 0, ω = (l1, l2) = (L − ν, L) where 0 < ν < L. Then, there exists δ > 0 such that
or any u0, u1 ∈ L2

1
L−x dx

with

∥u0∥L2
1

L−x
dx

≤ δ and ∥u1∥L2
1

L−x
dx

≤ δ,

one can find a control input f ∈ L2(0, T ; H−2(0, L)) with supp(f) ⊂ (0, T )×ω such that, the solution of (1.3)

u ∈ C0([0, L], L2(0, L)) ∩ L2(0, T, H2(0, L))

atisfies
u(T, ·) = u1 in (0, L) and u ∈ C0([0, T ], L2

1
L−x dx

).

dditionally, f ∈ L2
(T −t)dt(0, T, L2(0, L)).

Actually, we shall have to investigate the well-posedness of the linearization of (1.3) in the space L2
1

L−x dx

and the well-posedness of the (backward) adjoint system in the “dual space” L2 . The proof of this
(L−x)dx

3
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result relies on a general version of the Lax–Milgram theorem (see, e.g., [36]). The observability inequality
is obtained by multiplier method, compactness–uniqueness arguments and a unique continuation property.

inally, the exact controllability is extended to the nonlinear system by using the contraction mapping
rinciple.

The second result of this work is devoted to prove that it is possible to control the state function on (0, l1),
o that a “regional controllability” can be established:

heorem 1.2. Let T > 0 and ω = (l1, l2) with 0 < l1 < l2 < L. Pick any number l′
1 ∈ (l1, l2). Then there

xists a number δ > 0 such that for any u0, u1 ∈ L2(0, L) satisfying

∥u0∥L2(0,L) ≤ δ, ∥u1∥L2(0,L) ≤ δ,

ne can find a control f ∈ L2(0, T, H−2(0, L)) with supp(f) ⊂ (0, T ) × ω such that the solution of (1.3)

u ∈ C0([0, T ], L2(0, L)) ∩ L2(0, T, H2(0, L))

atisfies

u(T, x) =
{

u1(x) if x ∈ (0, l′
1);

0 if x ∈ (l2, L).

The proof of Theorem 1.2 combines [13, Theorem 1.1], a boundary controllability result from [24] and
he use of a cut-off function. Note that, as for the boundary control, the internal control gives a control of
yperbolic type in the left direction and a control of parabolic type in the right direction.

Thus, our work is outlined in the following way: Section 2 is devoted to prove that fifth order KdV equation
s well-posed in the weighted spaces L2

xdx and L2
(L−x)−1dx

. In Section 3, our goal is to prove Theorem 1.1.
ection 4 we will give the proof of Theorem 1.2. Finally, in the last section, Section 5, we will present some
dditional comments and some open issues.

. A fifth order KdV equation in weighted Sobolev spaces

.1. The linear system

For any measurable function w : (0, L) → (0, +∞) (not necessarily in L1(0, L)), we introduce the weighted
2-space

L2
w(x)dx = {u ∈ L1

loc(0, L);
∫ L

0
u(x)2w(x)dx < ∞}.

t is a Hilbert space when endowed with the scalar product

(u, v)L2
w(x)dx

=
∫ L

0
u(x)v(x)w(x)dx.

e first prove the well-posedness of the following linear system⎧⎪⎨⎪⎩
ut + ux + βuxxx + αuxxxxx = 0 in (0, T ) × (0, L),
u(t, 0) = u(t, L) = ux(t, 0) = ux(t, L) = uxx(t, L) = 0 in (0, T ),
u(0, x) = u0(x) in (0, L),

(2.1)

n both spaces L2
xdx and L2

1
L−x dx

, where α and β are real constants. We need the following general version
f the Lax–Milgram Theorem (see, e.g., [36]).
4
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Theorem 2.1. Let W ⊂ V ⊂ H be three Hilbert spaces with continuous and dense embeddings. Let a(v, w)
e a bilinear form defined on V × W that satisfies the following properties:
i) (Continuity)

a(v, w) ≤ M∥v∥V ∥w∥W , ∀v ∈ V, ∀w ∈ W ;

ii) (Coercivity)
a(w, w) ≥ m∥w∥2

V , ∀w ∈ W ;

hen for all f ∈ V ′ (the dual space of V ), there exists v ∈ V such that

a(v, w) = f(w), ∀w ∈ W. (2.2)

f, in addition to (i) and (ii), a(v, w) satisfies
iii) (Regularity) for all g ∈ H, any solution v ∈ V of (2.2) with f(w) := (g, w)H belongs to W , then (2.2)
as a unique solution v ∈ W .

emark 1. In the sense of semigroup theory, Theorem 2.1 gives us the following: Let D(A) denote the set
f those v ∈ W when g ranges over H, and set Av = −g. Then A is a maximal dissipative operator, and

hence it generates a continuous semigroup of contractions (etA)t≥0 in H.

.2. Well-posedness on L2
xdx

This subsection is dedicated to give an answer for the well-posedness of (2.1) on L2
xdx. More precisely,

or sake of simplicity, let us consider the operator A1u = −uxxxxx − uxxx, thus, the following result can be
roved.

roposition 2.2. Let A1u = −uxxxxx − uxxx with domain

D(A1) = {u ∈ H4(0, L) ∩ H2
0 (0, L); uxxxxx ∈ L2

xdx, uxx(L) = 0} ⊂ L2
xdx.

hen A1 generates a strongly continuous semigroup in L2
xdx.

roof. Let
H = L2

xdx, V = H2
0 (0, L), W = {w ∈ H2

0 (0, L), wxxx ∈ L2
x2dx},

e endowed with the respective norms

∥u∥H := ∥
√

xu∥L2(0,L), ∥v∥V := ∥vxx∥L2(0,L), ∥w∥W := ∥xwxxx∥L2(0,L).

learly, V ⊂ H with a continuous (dense) embedding between two Hilbert spaces. On the other hand, we
ave that

∥wxx∥L2 ≤ C∥xwxxx∥L2 ∀w ∈ W. (2.3)

n fact, first, we note that we have for w ∈ T := C∞([0, L]) ∩ H2
0 (0, L) and p ∈ R, the following

0 ≤
∫ L

0
(xwxxx + pwxx)2dx =

∫ L

0
(x2w2

xxx + 2pxwxxwxxx + p2w2
xx)dx

=
∫ L

0
x2w2

xxxdx + (p2 − p)
∫ L

0
w2

xxdx + pLw2
xx(L).

Taking p = 1/2 results in ∫ L

w2
xxdx ≤ 4

∫ L

x2w2
xxxdx + 2L|wxx(L)|2. (2.4)
0 0
5
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The estimate (2.4) is also true for any w ∈ W , since T is dense in W . Let us prove (2.3) by contradiction.
f (2.3) is false, then there exists a sequence {wn}n≥0 in W such that

1 = ∥wn
xx∥L2 ≥ n∥xwn

xxx∥L2 ∀n ≥ 0.

xtracting subsequences, we may assume that

wn → w in H2
0 (0, L) weakly

xwn
xxx → 0 in L2(0, L) strongly

nd hence xwxxx = 0, which gives w(x) = c1x2 + c2x + c3. Since w ∈ H2
0 (0, L), we infer that w ≡ 0. Since

n is bounded in H3(L/2, L), extracting subsequences we may also assume that wn
xx(L) converges in R. We

nfer then from (2.4) that wn is a Cauchy sequence in H2
0 (0, L), so that

wn → w in H2
0 (0, L) strongly,

nd hence
∥wxx∥L2 = lim

n→∞
∥wn

xx∥L2 = 1.

his contradicts the fact that w ≡ 0. The proof of (2.3) is achieved. Thus ∥ · ∥W is a norm in W , which is
learly a Hilbert space, and W ⊂ V with continuous (dense) embedding.

Define the following bilinear form on V × W

a(v, w) :=
∫ L

0
vxx[(xw)xxx + (xw)x]dx, v ∈ V, w ∈ W.

et us check that (i), (ii), and (iii) in Theorem 2.1 hold. For v ∈ V and w ∈ W , follows that

|a(v, w)| ≤ ∥vxx∥L2∥xwxxx + 3wxx + (xw)x∥L2

≤ ∥vxx∥L2
(
∥xwxxx∥L2 + C∥wxx∥L2

)
≤ C∥v∥V ∥w∥W

where we used Poincaré inequality and (2.3). This proves that the bilinear form a is well defined and
continuous on V × W and, therefore (i) is proved.

For (ii), we first pick any w ∈ T to obtain

a(w, w) =
∫ L

0
wxx(3wxx + xwxxx)dx +

∫ L

0
wxx(xw)xdx

= 5
2

∫ L

0
w2

xxdx +
[
x

w2
xx

2

]L

0
− 3

2

∫ L

0
w2

xdx

≥ 5
2

∫ L

0
w2

xxdx − 3
2

∫ L

0
w2

xdx.

y Poincaré inequality ∫ L

0
w2

x(x)dx ≤
(

L

π

)2 ∫ L

0
w2

xx(x)dx,

nd hence
a(w, w) ≥

(
5
2 − 3L2

2π2

)∫ L

0
w2

xxdx.

his shows the coercivity when L < π
√

5
3 . When L ≥ π

√
5
3 , we have to consider, instead of a, the bilinear

orm a (v, w) := a(v, w) + λ(v, w) for λ ≫ 1. Indeed, we have by Cauchy–Schwarz inequality and Hardy
λ H

6
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∥w∥2
L2 ≤ ∥x

1
2 w∥L2∥x− 1

2 w∥L2

≤
√

L∥w∥H∥x−1w∥L2

≤ ε∥wxx∥2
L2 + Cε∥w∥2

H

nd hence, by using twice Poincaré inequality

aλ(w, w) ≥
(

5
2 − ε

2

)
∥w∥2

V +
(

λ − Cε

2

)
∥w∥2

H .

herefore, if ε < 5 and λ > Cε/2, then aλ is a continuous bilinear form which is coercive.
To prove the regularity issue, for given g ∈ H, let us consider v ∈ V be such that

aλ(v, w) = (g, w)H ∀w ∈ W,

ore precisely, ∫ L

0
vxx((xw)xxx + (xw)x)dx + λ

∫ L

0
v(x)w(x)xdx =

∫ L

0
g(x)w(x)xdx. (2.5)

icking any w ∈ D(0, L) we have

⟨x(−vxxxxx − vxxx + λv), w⟩D′,D = ⟨xg, w⟩D′,D ∀w ∈ D(0, L),

and hence
− vxxxxx − vxxx + λv = g in D′(0, L). (2.6)

Since v ∈ H2
0 (0, L) and g ∈ L2

xdx, we have that v ∈ H5(ε, L) for all ε ∈ (0, L) and vxxxxx ∈ L2
xdx. Taking

any w ∈ T and ε ∈ (0, L), and scaling in (2.6) by xw yields∫ L

ε

vxx((xw)xxx + (xw)x)dx + [−vxxxx(xw) − vxx(xw)]Lε

+ [vxxx(xw)x − vxx(xw)xx]Lε =
∫ L

ε

(g − λv)xwdx.

Letting ε → 0 and comparing with (2.5), we obtain

Lvxx(L)wxx(L) =
lim
ε→0

(
εvxxxx(ε)w(ε) + εvxx(ε)w(ε) − vxxx(ε)(εwx(ε) + w(ε)) + vxx(ε)(2wx(ε) + εwxx(ε))

)
.

(2.7)

Since vxxxxx ∈ L2
xdx, we obtain successively for some constant C > 0 and all ε ∈ (0, L) that

|vxxxx(ε) − vxxxx(L)| ≤

(∫ L

ε

x|vxxxxx|2dx

) 1
2
(∫ L

ε

x−1dx

) 1
2

≤ C| log ε|, (2.8)

|vxx(ε)| ≤ C (2.9)

nd

|vxxx(ε)| ≤ C. (2.10)

e infer from (2.8) that v ∈ H4(0, L), and hence v ∈ W . Furthermore, letting ε → 0 in (2.7) and using (2.8),
2.9) and (2.10) yields vxx(L) = 0, since wxx(L) was arbitrary. We conclude that v ∈ D(A1). Conversely, it
s clear that the operator A1 − λ maps D(A1) into H, and actually onto H from the above computations.
ence A − λ generates a strongly semigroup of contractions in H. □
1

7
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Remark 2. Note that we can use the same approach to get Proposition 2.2 for the Kawahara operator,
hat is, Au = uxxxxx − uxxx − ux. In fact, to do it just consider the following bilinear form in V × W defined
y

a(v, w) :=
∫ L

0
vxx(−(wx)x + (xw)xxx)dx −

∫ L

0
vx(xw)dx, v ∈ V, w ∈ W.

.3. Well-posedness on L2
(L−x)−1dx

In this subsection we are interested to investigate the well-posedness of (2.1) on L2
(L−x)−1dx

. More
recisely, for sake of simplicity, let us consider the operator A2u = −uxxxxx + βuxxx, with β ∈ R. Thus, the

following optimal result can be proved.

Proposition 2.3. Let A2u = −uxxxxx + βuxxx with domain

D(A2) = {u ∈ H5(0, L) ∩ H2
0 (0, L); uxxxxx ∈ L2

1
L−x dx

and uxx(L) = 0} ⊂ L2
1

L−x dx
.

Then A2 generates a strongly continuous semigroup in L2
1

L−x dx
, for β > −3/80.

roof. We will use Hille–Yosida Theorem, and (partially) Theorem 2.1. Let us consider

H = L2
1

L−x dx
, V = {u ∈ H2

0 (0, L), uxx ∈ L2
1

(L−x)2 dx
}, W = H3

0 (0, L), (2.11)

e endowed respectively with the norms

∥u∥H = ∥(L − x)− 1
2 u∥L2 , ∥u∥V = ∥(L − x)−1uxx∥L2 , ∥u∥W = ∥uxxx∥L2 . (2.12)

sing the estimates proved in [35, Lemma 2.1], we know that V endowed with ∥ · ∥V is a Hilbert space, and
hat the following inequalities holds∫ L

0

u2

(L − x)6 dx ⩽
4
25

∫ L

0

u2
x

(L − x)4 dx ∀u ∈ V, (2.13)

and ∫ L

0

u2
x

(L − x)4 dx ⩽
4
9

∫ L

0

u2
xx

(L − x)2 dx ∀u ∈ V. (2.14)

dditionally, the following estimate is provided in [35, Lemma 2.1]:

r2
∫ L

0

u2
xx

(L − x)2 dx −
(
2r + 3qr − q2) ∫ L

0

u2
x

(L − x)4 dx + (1 − 5q + 20r)
∫ L

0

u2

(L − x)6 dx ⩾ 0, (2.15)

or any real number r and q.
Using the previous inequality, we get

∥u∥H ≤ L
5
2 ∥(L − x)−3u∥H ≤ 16

225L
5
2 ∥u∥V ∀u ∈ V. (2.16)

hus V ⊂ H with continuous embedding. From Poincaré inequality, we have that ∥ · ∥W is a norm on W

equivalent to the H3-norm. On the other hand, again from Hardy type inequality∫ L

0

v2
xx

(L − x)2 dx ≤ C

∫ L

0
v2

xxxdx, (2.17)

for all v ∈ H2(0, L), with vxx(L) = 0. Thus, we have that

∥v∥ ≤ C∥v∥ ∀v ∈ W, (2.18)
V W

8
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L

C

T

which implies W ⊂ V with continuous embedding. It is easily seen that D(0, L) is dense in H, V and W .
Define, for β ∈ R, the following bilinear form on V × W :

a(v, w) =
∫ L

0

[
vxx

(
w

L − x

)
xxx

− βvxx

(
w

L − x

)
x

]
dx (v, w) ∈ V × W.

Then,

|a(v, w)| ≤

⏐⏐⏐⏐⏐
∫ L

0
vxx

(
wxxx

L − x
+ 3 wxx

(L − x)2

)
dx

⏐⏐⏐⏐⏐
+

⏐⏐⏐⏐⏐
∫ L

0
vxx

(
6 wx

(L − x)3 + 6 w

(L − x)4 − β
wx

L − x
− β

w

(L − x)2

)
dx

⏐⏐⏐⏐⏐
≤ ∥wxxx∥L2

⏐⏐⏐⏐⏐⏐⏐⏐ vxx

L − x

⏐⏐⏐⏐⏐⏐⏐⏐
L2

+ 3
⏐⏐⏐⏐⏐⏐⏐⏐ wxx

L − x

⏐⏐⏐⏐⏐⏐⏐⏐
L2

⏐⏐⏐⏐⏐⏐⏐⏐ vxx

L − x

⏐⏐⏐⏐⏐⏐⏐⏐
L2

+
⏐⏐⏐⏐⏐⏐⏐⏐ vxx

L − x

⏐⏐⏐⏐⏐⏐⏐⏐
L2

(
6
⏐⏐⏐⏐⏐⏐⏐⏐ wx

(L − x)2

⏐⏐⏐⏐⏐⏐⏐⏐
L2

+ 6
⏐⏐⏐⏐⏐⏐⏐⏐ w

(L − x)3

⏐⏐⏐⏐⏐⏐⏐⏐
L2

+ β

⏐⏐⏐⏐⏐⏐⏐⏐ w

(L − x)2

⏐⏐⏐⏐⏐⏐⏐⏐
L2

+ ∥wx∥L2

)
≤ C∥v∥V ∥w∥W

y (2.13), (2.14), (2.16) and (2.18). This shows that a is well defined and continuous.
Let us prove the coercivity of a. To do this, we rewrite a as follows:

a(v, w) =
∫ L

0
vxx

(
wxxx

L − x
+ 3 wxx

(L − x)2 + 6 wx

(L − x)3

)
dx

+
∫ L

0
vxx

(
6 w

(L − x)4 − β
wx

L − x
− β

w

(L − x)2

)
dx,

or β ∈ R and (v, w) ∈ V × W . Thus, for any w ∈ D(0, L), yields that

a(w, w) =
∫ L

0
wxx

(
wxxx

L − x
+ 3 wxx

(L − x)2 + 6 wx

(L − x)3

)
dx

+
∫ L

0
wxx

(
6 w

(L − x)4 − β
wx

L − x
− β

w

(L − x)2

)
dx

= 5
2

∫ L

0

w2
xx

(L − x)2 dx − 15
∫ L

0

w2
x

(L − x)4 dx + 60
∫ L

0

w2

(L − x)6 dx

+ 3
2β

∫ L

0

w2
x

(L − x)2 dx − 3β

∫ L

0

w2

(L − x)4 dx.

et us split the proof of coercivity in two cases.

ase 1: β ≥ 0.
In this case, we apply (2.13) and (2.14), to obtain

3
2β

∫ L

0

w2
x

(L − x)2 dx − 3β

∫ L

0

w2

(L − x)4 dx ≥ 3
2β

∫ L

0

w2
x

(L − x)2 dx − 4
3β

∫ L

0

w2
x

(L − x)2 dx

= β

6

∫ L

0

w2
x

(L − x)2 dx.

hus,

a(w, w) ≥ β
∫ L w2

x
2 dx + 5 ∫ L w2

xx
2 dx − 15

∫ L w2
x

4 dx + 60
∫ L w2

6 dx,
6 0 (L − x) 2 0 (L − x) 0 (L − x) 0 (L − x)
9
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or equivalently,

2a(w, w) ≥ β

3

∫ L

0

w2
x

(L − x)2 dx + 5
∫ L

0

w2
xx

(L − x)2 dx − 30
∫ L

0

w2
x

(L − x)4 dx + 120
∫ L

0

w2

(L − x)6 dx.

ow, ignoring the first term and applying (2.15), with r = 0.4 and q = 1, we get

a(w, w) ≥ 0.2
∫ L

0

w2
xx

(L − x)2 dx.

he result is also true for any w ∈ W , by density, showing thus that the continuous bilinear form a(v, w) is
oercive for β ≥ 0, proving thus the case 1.

ase 2: β < 0.
Again, applying (2.13) and (2.14), we have

3
2β

∫ L

0

w2
x

(L − x)2 dx − 3β

∫ L

0

w2

(L − x)4 dx ≥ 3
2β

∫ L

0

w2
x

(L − x)2 dx ≥ 6β

∫ L

0

w2
x

(L − x)4 dx

≥ 8
3β

∫ L

0

w2
xx

(L − x)2 dx.

hus, for β < 0,

a(w, w) ≥
(

5
2 + 8

3β

)∫ L

0

w2
xx

(L − x)2 dx − 15
∫ L

0

w2
x

(L − x)4 dx + 60
∫ L

0

w2

(L − x)6 dx,

quivalently,

2a(w, w) ≥
(

5 + 16
3 β

)∫ L

0

w2
xx

(L − x)2 dx − 30
∫ L

0

w2
x

(L − x)4 dx + 120
∫ L

0

w2

(L − x)6 dx.

pplying (2.15) with q and r satisfying

1 − 5q + 20r = 4(2r + 3qr − q2) > 0,

ields that

2a(w, w) ≥
(

5 + 16
3 β − 30r2

2r + 3qr − q2

)∫ L

0

w2
xx

(L − x)2 dx.

n order for a to be coercive, β has to satisfy

β >
15
16

(
6r2

2r + 3qr − q2 − 1
)

.

inally, considering r = 1/10 and q = 11/20, we have the optimal range of β, that is,

β > − 3
80 .

herefore,

a(w, w) ≥
(

1
5 + 16

3 β

)∫ L

0

w2
xx

(L − x)2 dx ≥ γ∥w∥2
V , (2.19)

here
γ = 1

10 + 8
3β, (2.20)

eaching the case 2, which is also true for any w ∈ W , by density. Thus, cases 1 and 2 proves that the
ontinuous bilinear form a(v, w) is coercive for β > − 3 .
80

10
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Now, to finish the proof, let us show that −A2 is maximal dissipative. First, consider g ∈ H be given. By
Theorem 2.1, there is at least one solution v ∈ V of

a(v, w) = (g, w)H ∀w ∈ W. (2.21)

onsider v ∈ V a solution, let us prove that v ∈ D(A2). Taking any w ∈ D(0, L) in (2.21) yields

− vxxxxx + βvxxx = g in D′(0, L). (2.22)

s g ∈ L2(0, L) and v ∈ H2(0, L), we have that vxxxxx ∈ L2(0, L), and v ∈ H5(0, L). Let us take, finally, w

f the form
w(x) = x3(L − x)3w(x),

here w ∈ C∞([0, L]) is arbitrarily chosen. Note that w ∈ W and that

w

(L − x) ∈ H2
0 (0, L) ∩ C∞([0, L]).

By simplicity, consider β = 1 in (2.22). Multiplying (2.22) by w/(L − x) and integrating over (0, L), we
obtain after comparing with (2.21) that

0 = vxx

(
w

L − x

)
xx

⏐⏐⏐⏐L
0

= −vxx

(
6x(L − x)w(L + x) + 2x2(L − x)wx(3L − 5x) + x3(2w + (L − x)2wxx)

)
|L0

.e.,
0 = 2L3vxx(L)w(L).

s w(L) can be chosen arbitrarily, we conclude that vxx(L) = 0. Using (2.17) we infer that vxxx ∈ H, and
hence vxxxxx = −g + βvxxx ∈ H. Therefore v ∈ D(A2). Thus, we have that A2 : D(A2) → H is onto.

Lastly, let us check that −A2 is also dissipative in H. Pick any w ∈ D(A2). Then we obtain after some
integration by parts that

(−A2w, w)H = (wxxxxx − βwxxx, w)H

= −5
2

∫ L

0

w2
xx

(L − x)2 dx + 15
∫ L

0

w2
x

(L − x)4 dx − 3
2β

∫ L

0

w2
x

(L − x)2 dx

− 60
∫ L

0

w2

(L − x)6 dx + 3β

∫ L

0

w2

(L − x)4 dx − w2
xx(0)
2L

.

herefore, if β ≥ 0, thanks to the case 1, we get

(−A2w, w)H ≤ −0.1∥w∥2
W − w2

xx(0)
2L

≤ 0.

y other hand, if β < 0, using the case 2, yields that

(−A2w, w)H ≤ −γ∥w∥2
W − w2

xx(0)
2L

≤ 0,

or γ defined by (2.20). Therefore, we conclude that −A2 is maximal dissipative for β > −3/80, and thus
t generates a strongly continuous semigroup of contractions in H by Hille–Yosida Theorem, achieving the
roof of the proposition. □
11
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The following result, ensure a global Kato smoothing effect, as is well-known for Kawahara equation [1,35].

Proposition 2.4. Let H and V be as in (2.11)–(2.12), and let T > 0 be given. Then there exists some
onstant C = C(L, T ) such that for any u0 ∈ H, the solution u(t) = etA2u0 of (2.1) satisfies

∥u∥L∞(0,T,H) + ∥u∥L2(0,T,V ) ≤ C∥u0∥H .

roof. First, we notice that D(A2) is dense in H, so that it is sufficient to prove the result when u0 ∈ D(A2).
ote that the estimate ∥u∥L∞(0,T,H) ≤ C∥u0∥H is a consequence of classical semigroup theory. Assume
0 ∈ D(A2), so that ut = −A2u in the classical sense. Taking the inner product in H with u yields

(ut, u)H = −a(u, u) ≤ −C∥u∥2
V

s done in (2.19). Finally, an integration over (0, T ) completes the proof of the estimate of ∥u∥L2(0,T,V ). □

emark 3. Note that we can use the same approach to get Propositions 2.3 and 2.4 for the Kawahara
perator, that is, Au = uxxxxx − uxxx − ux. In fact, the results follow considering the following bilinear form
n V × W

a(v, w) :=
∫ L

0
vxx

(
−
(

w

L − x

)
x

+
(

w

L − x

)
xxx

)
dx −

∫ L

0
vx

(
w

L − x

)
dx, (2.23)

for v ∈ V and w ∈ W .

2.4. Non-homogeneous system

We will consider in this subsection the well-posedness of the Kawahara nonhomogeneous system, namely⎧⎪⎨⎪⎩
ut + ux + uxxx − uxxxxx = f(x, t) in (0, T ) × (0, L),
u(t, 0) = u(t, L) = ux(t, 0) = ux(t, L) = uxx(t, L) = 0 in (0, T ),
u(0, x) = u0(x) in (0, L).

(2.24)

More precisely, we are interested to prove the existence of a “reasonable” solution when f ∈ L2(0, T, H−2

(0, L)).

Proposition 2.5. Let u0 ∈ L2
xdx and f ∈ L2(0, T ; H−2(0, L)). Then there exists a unique solution

u ∈ C([0, T ], L2
xdx) ∩ L2(0, T, H2(0, L)) to (2.24). Furthermore, there is a constant C > 0 such that

∥u∥L∞(0,T,L2
xdx

) + ∥u∥L2(0,T,H2(0,L)) ≤ C
(
∥u0∥L2

xdx
+ ∥f∥L2(0,T,H−2(0,L))

)
. (2.25)

Proof. Assume first that u0 ∈ D(A1) and f ∈ C0([0, T ], D(A1)). Multiplying (2.24) by xu and integrating
over (0, τ) × (0, L) where 0 < τ < T yields

1
2

∫ L

0
x|u(τ, x)|2dx − 1

2

∫ L

0
x|u0(x)|2dx + 5

2

∫ τ

0

∫ L

0
|uxx|2dxdt

+ 3
2

∫ τ

0

∫ L

0
|ux|2dxdt − 1

2

∫ τ

0

∫ L

0
|u|2dxdt =

∫ τ

0

∫ L

0
xufdxdt.

(2.26)

e denote ⟨., .⟩H−2,H2
0

the duality pairing between H−2(0, L) and H2
0 (0, L). Thus, for all ε > 0, we have

hat ∫ τ∫ L

xufdxdt =
∫ τ

⟨f, xu⟩H−2,H2 ≤ ε
∫ τ∫ L

u2
xdxdt + Cε

∫ τ

∥f∥2
H−2dt.
0 0 0 0 2 0 0 0
12
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The last term in the left hand side of (2.26) is decomposed as follows

1
2

∫ τ

0

∫ L

0
|u|2dxdt = 1

2

∫ τ

0

∫ √
ε

0
|u|2dxdt + 1

2

∫ τ

0

∫ L

√
ε

|u|2dxdt =: I1 + I2.

he following inequalities are verified

I1 ≤ ε

2

∫ τ

0

∫ L

0
|ux|2dxdt (2.27)

nd
I2 ≤ 1

2
√

ε

∫ τ

0

∫ L

0
x|u|2dxdt. (2.28)

ndeed, as (2.28) is obvious, we prove (2.27). Note that u(0, t) = 0, thus

|u(x, t)| ≤
∫ √

ε

0
|ux|dx ≤ ε

1
4
(∫ √

ε

0
|ux|2dx

) 1
2 ,

or (t, x) ∈ (0, T ) × (0,
√

ε). Hence ∫ √
ε

0
|u|2dx ≤ ε

∫ √
ε

0
|ux|2dx,

hich gives (2.27) after integrating over t ∈ (0, τ).
Putting (2.27) and (2.28) in (2.26), we obtain that

1
2

∫ L

0
x|u(τ, x)|2dx + 5

2

∫ τ

0

∫ L

0
|uxx|2dxdt + (3

2 − ε)
∫ τ

0

∫ L

0
|ux|2dxdt

≤ 1
2

∫ L

0
x|u0(x)|2dx + 1

2
√

ε

∫ τ

0

∫ L

0
x|u|2dxdt + Cε

∫ τ

0
∥f∥2

H−2dt,

for 0 < ε < L2. Taking ε ∈ (L2, min{0, 3/2}) and applying Gronwall’s Lemma, yields that

∥u∥2
L∞(0,T,L2

xdx
) + ∥uxx∥2

L2(0,T,L2(0,L)) ≤ C(T )
(
∥u0∥2

L2
xdx

+ ∥f∥2
L2(0,T,H−2(0,L))

)
which proves the inequality (2.25) for u0 ∈ D(A1) and f ∈ C0([0, T ], D(A1)). A density argument allows us
to construct a solution u ∈ C([0, T ], L2

xdx) ∩ L2(0, T, H2(0, L)) of (2.24) satisfying (2.25) for u0 ∈ L2
xdx and

f ∈ L2(0, T, H−2(0, L)). Finally, with respect to uniqueness, this follows from classical semigroup theory. □

Our aim in the next proposition is to obtain a similar result in the spaces H and V defined by (2.11)–
(2.12). To do that, we limit ourselves to the situation when f = (ρ(x)h)xx with h ∈ L2(0, T, L2(0, L)).
Consider Au = uxxxxx − uxxx − ux with domain

D(A) = {u ∈ H5(0, L) ∩ H2
0 (0, L); uxxxxx ∈ L2

1
L−x dx

and uxx(L) = 0} ⊂ L2
1

L−x dx
.

roposition 2.6. Let u0 ∈ H, h ∈ L2(0, T, L2(0, L)) and set f := (ρ(x)h)xx. Then there exists a unique
olution

u ∈ C([0, T ], H) ∩ L2(0, T, V )

o (2.24). Furthermore, there is some constant C > 0 such that

∥u∥L∞(0,T,H) + ∥u∥L2(0,T,V ) ≤ C
(
∥u0∥H + ∥h∥L2(0,T,L2(0,L))

)
. (2.29)
13
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Proof. Assume that u0 ∈ D(A) and h ∈ C∞
0 ((0, T ) × (0, L)), so that f ∈ C1([0, T ], H). Taking the inner

product of ut − Au − f = 0 with u in H yields

(ut, u)H = −a(u, u) + (f, u)H ≤ 15
∫ L

0

u2
x

(L − x)4 dx + 3
2

∫ L

0

u2
x

(L − x)2 dx + (f, u)H , (2.30)

here a(v, w) is defined by (2.23). Then

|(f, u)H | = |
∫ L

0
(ρ(x)h)x

u

L − x
dx|

= |
∫ L

0
ρ(x)h

( ux

L − x
+ u

(L − x)2

)
dx|

≤ C∥h∥L2(∥ ux

L − x
∥L2 + ∥ u

(L − x)2 ∥L2)

≤ C∥h∥L2(∥u∥V + ∥u∥H),

here we used (2.14) in the last line. Thus, we have that

|(f, u)H | ≤ C

2 ∥u∥2
V + C

2 ∥u∥2
H + C ′∥h∥2

L2 .

dditionally, Hardy type inequality gives

15
∫ L

0

u2
x

(L − x)4 dx + 3
2

∫ L

0

u2
x

(L − x)2 dx ≤ C(L)
∫ L

0

u2
x

(L − x)4 dx

≤ C(L)
(∫ L

0

u2
xx

(L − x)4 dx +
∫ L

0

u2

(L − x)6 dx

)
≤ C∥u∥H + C∥u∥V ,

hen combined with (2.30), gives after integration over (0, τ) for 0 < τ < T

∥u(τ)∥2
H + C

∫ τ

0
(∥u∥2

V + ∥u∥2
H)dt ≤ ∥u0∥2

H + C ′′(∫ τ

0
(∥u∥2

H + ∥u∥2
V )dt +

∫ τ

0

∫ L

0
|h|2dxdt

)
.

n application of Gronwall’s Lemma yields (2.29) for u0 ∈ D(A) and h ∈ C∞
0 ((0, T ) × (0, L)). A density

rgument allows us to construct a solution u ∈ C([0, T ], H)∩L2(0, T, V ) of (2.24) satisfying (2.29) for u0 ∈ H

nd h ∈ L2(0, T, L2(0, L)). The uniqueness follows from classical semigroup theory. □

. Exact controllability for Kawahara equation

Pick any function ρ ∈ C∞(0, L) with

ρ(x) =
{

0 if 0 < x < L − ν,

1 if L − ν
2 < x < L,

(3.1)

for some ν ∈ (0, L). This section is devoted to the investigation of the exact controllability problem for the
system ⎧⎪⎨⎪⎩

ut + ux + uux + uxxx − uxxxxx = f, in (0, T ) × (0, L),
u(t, 0) = u(t, L) = ux(t, 0) = ux(t, L) = uxx(t, L) = 0 in (0, T ),
u(0, x) = u0(x) in (0, L),

(3.2)

here f = (ρ(x)h)xx. We aim to find a control input h ∈ L2(0, T ; L2(0, L)). Actually, with (ρ(x)h(t, x))xx in
ome space of functions, to guide the system described by (3.2) in the time interval [0, T ] from any (small)
iven initial state u0 in L2

1
L−x dx

to any (small) given terminal state uT in the same space. We first consider
he linearized system, and next proceed to the nonlinear one. To prove the main theorem we will need the

esults involving some weighted Sobolev spaces which was proved in Section 2.

14
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3.1. Exact controllability: Linearized system

Our attention in this section is related to the control properties of the linear system⎧⎪⎨⎪⎩
ut + ux + uxxx − uxxxxx = (ρ(x)h)xx in (0, T ) × (0, L),
u(t, 0) = u(t, L) = ux(t, 0) = ux(t, L) = uxx(t, L) = 0 in (0, T ),
u(0, x) = u0(x) in (0, L).

(3.3)

Theorem 3.1. Let T > 0, ν ∈ (0, L) and ρ(x) as in (3.1). Then there exists a continuous linear operator

Γ : L2
1

L−x dx
→ L2(0, T, L2(0, L)) ∩ L2

(T −t)dt(0, T, H2(0, L))

uch that for any u1 ∈ L2
1

L−x dx
, the solution u of (3.3) with u0 = 0 and h = Γ (u1) satisfies u(T, x) = u1(x)

n (0, L).

roof. We will use the Hilbert Uniqueness Method (see e.g. [37]). Consider the following adjoint system
ssociated to (3.3):⎧⎪⎨⎪⎩

−vt + vxxxxx − vxxx − vx = 0, in (0, T ) × (0, L),
v(t, 0) = v(t, L) = vx(t, 0) = vx(t, L) = vxx(t, 0) = 0 in (0, T ),
v(T, x) = vT (x). in (0, L).

(3.4)

f u0 ≡ 0, vT ∈ D(0, L), and h ∈ D((0, T )×(0, L)), multiplying (3.3) by v and integrating over (0, T )×(0, L),
ields that ∫ L

0
u(T, x)vT (x)dx =

∫ T

0

∫ L

0
(ρ(x)h)xxvdxdt =

∫ T

0

∫ L

0
ρ(x)hvxxdxdt.

onsidering the usual change of variables x → L − x, t → T − t and using Proposition 2.5, gives

∥v∥L∞(0,T,L2
(L−x)dx

) + ∥v∥L2(0,T,H2(0,L)) ≤ C∥vT ∥L2
(L−x)dx

.

y a density argument, we obtain that for all h ∈ L2(0, T, L2(0, L)) and all vT ∈ L2
(L−x)dx,

⟨u(T, ·), vT ⟩L2
1

L−x
dx

,L2
(L−x)dx

=
∫ T

0
(h, ρ(x)vxx)L2dt,

here u and v denote the solutions of (3.3) and (3.4), respectively, and ⟨·, ·⟩L2
1

L−x
dx

,L2
(L−x)dx

denotes the

uality pairing between L2
1

L−x dx
and L2

(L−x)dx. We have to prove the following observability inequality

∥vT ∥2
L2

(L−x)dx
≤ C

∫ T

0

∫ L

0
|ρ(x)vxx|2dxdt (3.5)

or, equivalently, letting w(t, x) = v(T − t, L − x),

∥w0∥2
L2

xdx
≤ C

∫ T

0

∫ L

0
|ρ(L − x)wxx|2dxdt, (3.6)

here w solves ⎧⎪⎨⎪⎩
wt − wxxxxx + wxxx + wx = 0,

w(t, 0) = w(t, L) = wx(t, 0) = wx(t, L) = wxx(t, L) = 0, (3.7)

w(0, x) = w0(x).

15
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Multiplying (3.7) by wq, for q(t, x) = (T − t)b(x) ∈ C∞([0, T ]× [0, L]) where b ∈ C∞([0, L]) is nondecreasing
defined by

b(x) =
{

x if 0 < x < ν/4,

1 if ν/2 < x < L,

ith ν ∈ (0, L), after integrating by parts we have

−
∫ T

0

∫ L

0
(qt + qx + qxxx − qxxxxx)w2

2 dxdt +
∫ L

0
(q w2

2 )(T, x)dx −
∫ L

0
(q w2

2 )(0, x)dx

+ 3
2

∫ T

0

∫ L

0
qxw2

xdxdt + 5
2

∫ T

0

∫ L

0
qxw2

xxdxdt +
∫ T

0

(
q

w2
xx

2

)
(t, 0)dt = 0.

ue to the choice of q(t, x) and b(x), this yields

∥w0∥2
L2

xdx
≤ C(L, ν)

∫ L

0
b(x)w2

0(x)dx

≤ C(T, L, ν)
(∫ T

0

∫ ν
2

0
w2

xdxdt +
∫ T

0

∫ ν
2

0
w2

xxdxdt +
∫ T

0

∫ L

0
w2dxdt

)

≤ C(T, L, ν)
(∫ T

0

∫ ν
2

0
w2

xxdxdt +
∫ T

0

∫ L

0
w2dxdt

)
,

(3.8)

sing Poincaré inequality. We claim that

∥w0∥2
L2

xdx
≤ C

∫ T

0

∫ ν
2

0
w2

xxdxdt, (3.9)

olds. In fact, if the estimate (3.9) does not occur, then one can find a sequence {wn
0 } ⊂ L2

xdx such that

1 = ∥wn
0 ∥2

L2
xdx

> n

∫ T

0

∫ ν
2

0
|wn

xx|2dxdt, (3.10)

here wn denotes the solution of (3.7) with w0 replaced by wn
0 . By (2.25) and (3.10), {wn} is bounded

n L2(0, T, H2(0, L)), hence also in H1(0, T, H−3(0, L)) thanks to Eq. (3.7). Extracting a subsequence if
ecessary, Aubin–Lions’ Lemma ensures that

wn → w in L2(0, T, H2(0, L)).

hus, using (3.8) and (3.10), we see that wn
0 is a Cauchy sequence in L2

xdx, and hence it converges strongly
n this space. Let w0 denote its limit in L2

xdx, and let w denote the corresponding solution of (3.7). Then

∥w0∥L2
xdx

= 1

nd
wn → w in L2(0, T, H2(0, L)).

ut wn
xx → 0 in L2(0, T, L2(0, ν/2)) by (3.10). Thus wxx ≡ 0 in (0, T )×(0, ν/2), and hence w(t, x) = xg(t)+

(t) (for some functions g and c) in (0, T )×(0, ν/2). Since w satisfies (3.7), we infer from w(t, 0) = wx(t, 0) = 0
hat w ≡ 0 in (0, T ) × (0, ν/2). By Holmgren’s theorem we have that w ≡ 0 in (0, T ) × (0, L), implying that
(0, x) = 0, which is a contradiction with ∥w0∥L2

xdx
= 1. Therefore (3.9) is proved, and (3.6) follows.

Let us now apply the Hilbert Uniqueness Method. Consider the following operator

2 2
Λ : L(L−x)dx → L(L−x)dx

16
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defined by
Λ(vT ) = (L − x)−1u(T, ·) ∈ L2

(L−x)dx,

here u solves (3.3) with h = ρ(x)vxx. Then operator Λ is clearly continuous. On the other hand, from (3.5)(
Λ(vT ), vT

)
L2

(L−x)dx

= ⟨u(T, ·), vT ⟩L2
1

L−x
dx

,L2
(L−x)dx

=
∫ T

0
∥ρ(x)vxx∥2

L2dt ≥ C∥vT ∥2
L2

(L−x)dx
,

nd it follows that the map vT → Λ(vT ) is invertible in L2
(L−x)dx.

Define the map
Γ : L2

1
L−x dx

→ L2(0, T, L2(0, L))

by Γ (u) = h := ρ(x)vxx, where v is the solution of (3.4) with vT = Λ−1(L − x)−1
u(T, ·).

Firstly, Γ is continuous, and the solution u of (3.3) with u0 = 0 and h = Γ (u) satisfies u(T, ·) = u1.
o prove that Γ is also continuous from L2

1
L−x dx

into L2
(T −t)dt(0, T, H2(0, L)), it is sufficient to show the

following estimate ∫ T

0
∥v(t)∥2

H3(T − t)dt ≤ C∥vT ∥2
L2

(L−x)dx
,

or the solutions of (3.4) or, equivalently,∫ T

0
∥w∥2

H3 tdt ≤ C∥w0∥2
L2

xdx
, (3.11)

or the solutions of (3.7). Thanks to Proposition 2.5, we have∫ T

0
∥w∥2

H2
0 (0,L)dt ≤ C∥w0∥2

L2
xdx

, (3.12)

hich yields, for w0 ∈ L2(0, L), that ∫ T

0
∥w∥2

H2
0 (0,L)dt ≤ C∥w0∥2

L2 .

ssume now that w0 ∈ D(A) and let u0 = Aw0 = w0,xxxxx − w0,xxx − w0,x. Denote by w (resp. u) the
olution of (3.7) with initial data w0 (resp. u0). Then

Aw = wxxxxx − wxxx − wx = u ∈ L2(0, T, H2
0 (0, L)),

nd we infer that w ∈ L2(0, T, H7(0, L)). By interpolation, this gives that

w ∈ L2(0, T, H3(0, L))

if w0 ∈ H2
0 (0, L), with an estimate of the form∫ T

0
∥w∥2

H3(0,L)dt ≤ C∥w0∥2
H2

0 (0,L). (3.13)

The different constants C in (3.12)–(3.13) may be taken independent of T for 0 < T < T0. Thus, finally, due
to Fubini’s Theorem we get∫ T

0
s∥w(s)∥2

H3ds =
∫ T

0

(∫ T

t

∥w(s)∥2
H3ds

)
dt ≤ C

∫ T

0
∥w(t)∥2

H2
0 (0,L)dt ≤ C∥w0∥2

L2
xdx

.

This completes the proof of (3.11) and, consequently, Theorem 3.1 is shown. □

Remark 4. It is important to note that the forcing term f = (ρ(x)h)xx ∈ L2
(T −t)dt(0, T, L2(0, L)) is in fact

supported in (0, T ) × (L − ν, L).
17
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3.2. Exact controllability: Nonlinear system

Let us prove the local exact controllability in L2
1

L−x dx
of the system (3.2). Note that the solutions of (3.2)

can be written as
u = uL + u1 + u2,

where uL is the solution of (2.1) with initial data u0 ∈ L2
1

L−x dx
, u1 is solution of⎧⎪⎨⎪⎩

u1,t + u1,x + u1,xxx − u1,xxxxx = f = (ρ(x)h)xx in (0, T ) × (0, L),
u1(t, 0) = u1(t, L) = u1,x(t, 0) = u1,x(t, L) = u1,xx(t, L) = 0 in (0, T ),
u1(0, x) = 0 in (0, L)

(3.14)

ith h = h(t, x) ∈ L2(0, T ; L2(0, L)), and u2 is solution of⎧⎪⎨⎪⎩
u2,t + u2,x + u2,xxx − u2,xxxxx = g(t, x) in (0, T ) × (0, L),
u2(t, 0) = u2(t, L) = u2,x(t, 0) = u2,x(t, L) = u2,xx(t, L) = 0 in (0, T ),
u2(0, x) = 0 in (0, L),

(3.15)

ith g = g(t, x) = −uux.
The following result is concerned with the solutions of the non-homogeneous system (3.15).

roposition 3.2. Consider H and V defined as in (2.11)–(2.12).

(i) If u, v ∈ L2(0, T ; V ), then uvx ∈ L1(0, T ; H). Furthermore, the map

(u, v) ∈ L2(0, T ; V )2 → uvx ∈ L1(0, T ; H)

is continuous and there exists a constant c > 0 such that

∥uvx∥L1(0,T ;H) ≤ c ∥u∥L2(0,T ;V ) ∥v∥L2(0,T ;V ) . (3.16)

ii) For g ∈ L1(0, T ; H), the mild solution u of (3.15) given by Duhamel formula satisfies

u2 ∈ C([0, T ] ; H) ∩ L2(0, T ; V ) =: G

and we have the estimate

∥u2∥L∞(0,T,H) + ∥u2∥L2(0,T,V ) ≤ C∥g∥L1(0,T,H). (3.17)

roof. For u, v ∈ V , we have

∥uvx∥L2
1

L−x
dx

≤ ∥u∥L∞∥ vx√
L − x

∥L2 ≤ C∥u∥V ∥v∥V ,

nd (i) holds. For (ii), we first assume that g ∈ C1([0, T ], H), so that u2 ∈ C1([0, T ], H) ∩ C0([0, T ], D(A2)).
Taking the inner product of u2,t = A2u2 + g with u2 in H yields

(u2,t, u2)H ≤ −C∥u2∥2
V + C ′∥u2∥2

H + (g, u2)H

here C, C ′ denote some positive constants. Integrating over (0, T ) and using the classical estimate

∥u2∥L∞(0,T,H) ≤ C∥g∥L1(0,T,H)

oming from semigroup theory, we obtain (ii) when g ∈ C1([0, T ], H). The general case (g ∈ L1(0, T, H))
ollows by density. □
18
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Let Θ1(h) := u1 and Θ2(g) := u2, where u1 (resp. u2) denotes the solution of (3.14) (resp. (3.15)). Then

Θ1 : L2(0, T ; L2(0, L)) → G

nd
Θ2 : L1(0, T ; L2

1
L−x dx

) → G

re well-defined continuous operators, due to Propositions 2.6 and 3.2.
Using Proposition 3.2 and the contraction mapping principle, one can prove as in [1,24,35] the existence

nd uniqueness of a solution u ∈ G of (3.2) when the initial data u0 and the forcing term h are small enough.
As the proof is similar to those of Theorem 3.3, we will omit it.

We are in position to prove the main result of Section 4, namely the (local) exact controllability of system
(3.2).

Theorem 3.3. Let T > 0. Then there exists δ > 0 such that for any u0, u1 ∈ L2
1

L−x dx
satisfying

∥u0∥L2
1

L−x
dx

≤ δ and ∥u1∥L2
1

L−x
dx

≤ δ,

ne can find a control function h ∈ L2(0, T ; L2(0, L)) such that the solution u ∈ G of (3.2) satisfies u(T, ·) = u1
n (0, L).

roof. To show the result, we will apply the contraction mapping principle. Let F denote the nonlinear
ap

F : L2(0, T ; V ) → G,

efined by
F(u) = uL + Θ1 ◦ Γ (uT − uL(T, ·) + Θ2(uux)(T, ·)) − Θ2(uux),

here uL is the solution of (2.1) with initial data u0 ∈ L2
1

L−x dx
, Θ1 and Θ2 are defined as above and Γ is

efined in Theorem 3.1.
Observe that if u is a fixed point of F , then u is a solution of (3.2) with the control

h = Γ (uT − uL(T, ·) + Θ2(uux)(T, ·)),

nd satisfies
u(T, ·) = uT ,

s desired. In order to prove the existence of a fixed point of F , we apply the Banach fixed-point Theorem
o the restriction of F to some closed ball B(0, R) in L2(0, T ; V ).
i) F is contractive.

Pick any u, ũ ∈ B(0, R). Using (2.29), (3.16) and (3.17), we have

∥F(u) − F(ũ)∥L2(0,T ;V ) ≤ 2CR ∥u − ũ∥L2(0,T ;V ) , (3.18)

or some constant C > 0, independent of u, ũ and R. Hence, F is contractive if R satisfies

R <
1

4C
, (3.19)

where C is the constant in (3.18).
(ii) F maps B(0, R) into itself.

Using Proposition 2.4 and the continuity of the operators Γ , Θ1 and Θ2, we infer the existence of a
onstant C ′ > 0 such that for any u ∈ B(0, R), we have

∥F(u)∥L2(0,T ;V ) ≤ C ′(∥u0∥L2
1 dx

+ ∥uT ∥L2
1 dx

+ R2).

L−x L−x

19
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Thus, taking R satisfying (3.19),
R < 1/(2C ′)

nd assuming that ∥u0∥L2
1

L−x
dx

and ∥uT ∥L2
1

L−x
dx

are small enough, we obtain that the operator F maps

B(0, R) into itself. Therefore the map F has a fixed point in B(0, R) by the Banach fixed-point Theorem.
he proof of Theorem 3.3 is complete. □

emark 5. As in the linear case, the forcing term f = (ρ(x)h)xx indeed is a function in

L2
(T −t)dt(0, T, L2(0, L))

upported in (0, T ) × (L − ν, L).

. Regional controllability for Kawahara equation

In this section we prove a regional controllability of the following system⎧⎪⎨⎪⎩
ut + ux + uux + uxxx − uxxxxx = f in (0, T ) × (0, L),
u(t, 0) = u(t, L) = ux(t, 0) = ux(t, L) = uxx(t, L) = 0 in (0, T ),
u(0, x) = u0(x) in (0, L).

(4.1)

n detail, we prove that internal control of the Kawahara equation gives a control of hyperbolic type in the
eft direction and a control of parabolic type in the right direction. Before presenting the proof of the result
e remark that the existence of a solution for the system (4.1) in the Sobolev space was shown in [23] (see
lso [13]).

Now, let us state and prove the main result of this section.

heorem 4.1. Let T > 0 and ω = (l1, l2) with 0 < l1 < l2 < L. Pick any number l′
1 ∈ (l1, l2). Then there

xists a number δ > 0 such that for any u0, u1 ∈ L2(0, L) satisfying

∥u0∥L2(0,L) ≤ δ and ∥u1∥L2(0,L) ≤ δ,

ne can find a control f ∈ L2(0, T, H−2(0, L)) with supp(f) ⊂ (0, T ) × ω such that the solution u ∈
0([0, T ], L2(0, L)) ∩ L2(0, T, H2(0, L)) of (4.1) satisfies

u(T, x) =
{

u1(x) if x ∈ (0, l′
1);

0 if x ∈ (l2, L).
(4.2)

roof. By [13, Theorem 1.1], if δ is small enough one can find a control input f ∈ L2(0, T/2, L2(0, L)) with
upp(f) ⊂ (0, T ) × ω such that the solution of (4.1) satisfies u(T/2, .) ≡ 0 in (0, L), where ω is a subset of
0, L).

Let us consider any number l′
2 ∈ (l′

1, l2) ⊂ (0, L). By [24, Theorem 1], if δ is small enough one can pick a
unction g, h ∈ L2(T/2, T ) such that the solution

y ∈ C0([T/2, T ], L2(0, l′
2)) ∩ L2(T/2, T, H2(0, l′

2))

f the system⎧⎪⎨⎪⎩
yt − yxxxxx + yxxx + yx + yyx = 0 in (T/2, T ) × (0, l′

2),
y(t, 0) = yx(t, 0) = yxx(t, l′

2) = 0, y(t, l′
2) = g(t), yx(t, l′

2) = h(t) in (T/2, T ),
′
y(T/2, x) = 0 in (0, l2)

20
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N

satisfies y(T, x) = u1(x) for 0 < x < l′
2. Define a function µ ∈ C∞([0, L]) as

µ(x) :=
{

1 if x < l′
1,

0 if x >
l′1+l′2

2 ,

nd set for T/2 < t ≤ T

u(t, x) =
{

µ(x)y(t, x) if x < l′
2,

0 if x > l′
2.

ote that, for T/2 < t < T , ut − uxxxxx + uxxx + ux + uux = f with

f = −(µ′′′′′y + 5µ′′′′yx + 10µ′′′yxx + 10µ′′yxxx + 5µ′yxxxx)
+ (µ′′′y + 3µ′′yx + 3µ′yxx + µ′y) + µµ′y2 + µ(µ − 1)yyx.

Since ∥y∥4
L4(0,T,L4(0,l′2)) ≤ C∥y∥2

L∞(0,T,L2(0,L))∥y∥2
L2(0,T,H2(0,L)), it is clear that

f ∈ L2(0, T, H−2(0, L))

with supp(f) ⊂ (0, T ) × (l1, l2). Furthermore, u ∈ C([0, T ], L2(0, L)) ∩ L2(0, T, H2(0, L)) solves (4.1) and
satisfies (4.2), proving the result. □

5. Further comments and open issues

In this work we treated the well-posedness and controllability of the Kawahara equation, a fifth order
KdV type equation, in a bounded domain. Here, we were able to give an almost complete picture of the
internal controllability for the Kawahara system started by [13]. Thus, the following remarks are now in
order.

i. A result of the controllability to the trajectories remains valid for the system (1.3). Precisely, the result
can be read as follows

Theorem 5.1. Let ω = (l1, l2) with 0 < l1 < l2 < L, and let T > 0. For ū0 ∈ L2(0, L), let
ū ∈ C0 ([0, T ]; L2(0, L)

)
∩ L2 (0, T ; H2(0, L)

)
denote the solution of⎧⎪⎨⎪⎩

ūt + ūx + ūūx + ūxxx − ūxxxxx = 0, in (0, T ) × (0, L),
ū(t, 0) = ū(t, L) = ūx(t, 0) = ūx(t, L) = ūxx(t, L) = 0, in (0, T ),
ū(0, x) = ū0(x), in (0, L).

(5.1)

Then, there exists δ > 0 such that for any u0 ∈ L2(0, L) satisfying ∥u0 − ū0∥L2(0,L) ≤ δ, there exists
f ∈ L2((0, T ) × ω) such that the solution

u ∈ C0 ([0, T ]; L2(0, L)
)

∩ L2 (0, T, H2(0, L)
)

of (1.3) satisfies u(T, ·) = ū(T, ·) in (0, L).
ii. The proof of Theorem 5.1. is a direct consequence of the Carleman estimate shown by Chen [13], being

precise: [13, Theorem 1.1] is equivalent to the previous result. In fact, consider u and ū fulfilling the
system (1.3) and (5.1), respectively. Then q = u − ū satisfies⎧⎪⎪⎨⎪⎪⎩

qt + qx +
(

q2

2 + ūq
)

x
+ qxxx − qxxxxx = 1ωf(t, x), in (0, T ) × (0, L),

q(t, 0) = q(t, L) = qx(t, 0) = qx(t, L) = qxx(t, L) = 0, in (0, T ), (5.2)
q(0, x) = q0(x) := u0(x) − ū0(x), in (0, L).
21
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So, the objective is to find f such that the solution q of (5.2) satisfies

q(T, ·) = 0.

However, this is exactly what has been proven in [13, Theorem 1.1], this means that the null con-
trollability for the Kawahara equation is equivalent to the controllability to the trajectories for this
equation.

Observe that with Theorems 1.1, 1.2, 5.1 and [13, Theorem 1.1] we have almost completed the answers
regarding internal controllability for Eq. (1.3). However, it is important to note that due to the techniques
used here the issue whether u may also be controlled in the interval (l′

1, l2) ⊂ (0, L) is open, missing a final
tep to give a complete answer on Kawahara’s internal controllability. This open problem can be presented
s follows:

roblem A: Is it possible to control the Kawahara equation in the interval (l′
1, l2)?

Anyway, other problems about internal controllability can be attacked using new techniques and argu-
ents. In this way, below, our plan is to present some problems that seem interesting from a mathematical
oint of view. More precisely, we present open issues about internal controllability of the Kawahara equation
ith an integral condition in unbounded and bounded domains.

.1. Controllability of Kawahara equation: Unbounded domain

In the context of control on unbounded domains, Faminskii [19], in a recent work, considered the initial–
oundary value problems, posed on infinite domains for the Korteweg–de Vries equation. Precisely, he elected
function f0 on the right-hand side of the equation as an unknown function, regarded as a control. Thus,

he author proved that this function must be chosen such that the corresponding solution should satisfy
ertain additional integral conditions.

Thus, we believe that these techniques can be applied for the Kawahara equation posed on the right/left
alf-lines: ⎧⎪⎨⎪⎩

ut + ux + uxxx − uxxxxx + uux = f0(t)v(x, t), (t, x) ∈ (0, T ) × (0, ∞),
u(0, x) = u0(x), x ∈ (0, ∞),
u(t, 0) = h(t), ux(t, 0) = g(t), t ∈ (0, T ),

(5.3)

nd ⎧⎪⎨⎪⎩
ut + ux + uxxx − uxxxxx + uux = f0(t)v(x, t), (t, x) ∈ (0, T ) × (−∞, 0),
u(0, x) = u0(x), x ∈ (−∞, 0),
u(t, 0) = h(t), ux(t, 0) = g(t), uxx(t, 0) = k(t) t ∈ (0, T ).

(5.4)

ere v is a given function and f0 is an unknown control function. Therefore, the following open issue naturally
ppears.

roblem B: Can we find a pair {f0, u}, satisfying∫
R+

u(t, x)w(x)dx = φ(t), or
∫
R−

u(t, x)w(x)dx = φ(t),

uch that the functions w and φ are given and u is the solution of (5.3) or (5.4)?

.2. Controllability of Kawahara equation: Bounded domain

With respect to the control issues in a bounded domain a new approach, different from the one used in
his article, was recently introduced by Faminskii [20]. Faminskii established results for the Korteweg–de
ries equation in a bounded domain under an integral overdetermination condition. More precisely, with
mallness conditions on either the input data or the time interval, the author showed the controllability
hen the control has a special form.
22
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In this spirit, we believe that the following problem seems very interesting. Consider the Kawahara
equation as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ut + ux + uxxx − uxxxxx + uux = f0(t)v(x, t), (t, x) ∈ (0, T ) × (0, L),
u(0, x) = u0(x), x ∈ (0, L),
u(t, 0) = h1(t), u(t, L) = h2(t), t ∈ (0, T ),
ux(t, 0) = h3(t), ux(t, L) = h4(t), t ∈ (0, T ),
uxx(t, L) = h5(t) t ∈ (0, T ).

(5.5)

roblem C: For given functions u0 and hi, i = 1, 2, 3, 4, 5, can we find a function f0 such that the solution
of system (5.5) satisfies the overdetermination condition∫ L

0
u(t, x)w(x)dx = φ(x), t ∈ (0, T )

here w and φ are known functions?
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