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1. Introduction

The goal of this paper is to investigate the decay properties of the initial-value
problem

U+ Uy + Uppr + A3Vzze + 100, + az(uv), + k(u — [u]) =0,

b1v" + 10y + VU + Vpge + D2a3ULLe + baasuuy,

+baar (uv)y + k(v — [v]) =0, (1.1)
u(0, ) = ¢(),
v(0,2) = ¢(x)

with periodic boundary conditions. In (1.1), r, a1, as, as, b1, b2, k are given real con-
stants with b1,be,k > 0, u(t,x),v(t,z) are real-valued functions of the time and
space variables t > 0 and 0 < z < 1, the subscript z and the prime indicate the
partial differentiation with respect to = and t, respectively, and [f] denotes the
mean value of f defined by

= [ ' fla)de.

When k = 0, system was proposed by Gear and Grimshaw [8] as a model to describe
strong interactions of two long internal gravity waves in a stratified fluid, where the
two waves are assumed to correspond to different modes of the linearized equations
of motion. It has the structure of a pair of KdV equations with both linear and
nonlinear coupling terms and has been object of intensive research in recent years.
In what concerns the stabilization problems, most of the works have been focused
on a bounded interval with a localized internal damping (see, for instance, [14] and
the references therein). In particular, we also refer to [1] for an extensive discussion
on the physical relevance of the system and to [3-7] for the results used in this
paper.
We can (formally) check that the energy

1 1
F = —/ bou? + biv?de
2 Jo
associated with the model satisfies the inequality
1
o —k:/ ba(u — [u])? + (v — [o])2dz < 0
0

in (0,00), so that the energy is nonincreasing. Therefore, the following basic ques-
tions arise: are the solutions asymptotically stable for ¢ sufficiently large? And if
yes, is it possible to find a rate of decay? The aim of this paper is to answer these
questions.

More precisely, we will prove that for any fixed integer s > 3, the solutions are
exponentially stable in the Sobolev spaces

H;(0,1) :={u € H*(0,1) : 9;u(0) = 9yu(l),n=0,...,s}
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with periodic boundary conditions. This extends an earlier theorem of Dévila in [5]
for s < 2.

The proposed choice of the feedbacks is perhaps the simplest one to make the
system dissipative. A similar feedback law has been applied before for the scalar
KdV equation in [9] and [10]. The corresponding proof has used the fine structure
of all the conservation laws.

Dévila and Chavez [7] established that, under some assumptions on the coeffi-
cients, the system (1.1) also has an infinite set of conservation laws. However, the
generalization of the method used in [10] would require a deep study of the structure
of these laws, and would lead to very lengthy and complex computations. Instead
of doing this, we apply, following a remark of Bona concerning the scalar KdV
equation, a Lyapunov function approach which uses only the first four conservation
laws.

Before stating the stabilization result mentioned above, we first need to ensure
the well-posedness of the system. This was addressed by Dévila in [3] (see also [4])
under the following conditions on the coefficients:

agbg <1 and r=0,
b2a1a3 — b1a3 + b1a2 — ag = O, (12)
bia1 — a1 — biazas + az = 0,
blag + bQG% —bia; —as = 0.
Indeed, under conditions (1.2), Ddvila and Chaves [7] derived some conservation
laws for the solutions of (1.1). Combined with an approach introduced in [2,17],
improving [18], these conservation laws allow them to establish the global well-
posedness in H, (0,1), for any s > 0. Moreover, the authors also give a simpler
derivation of the conservation laws discovered by Gear and Grimshaw, and Bona
et al. [1]. We also observe that these conservation properties were obtained employ-
ing the techniques developed in [13] for the scalar KAV equation; see also [12].
The well-posedness result reads as follows.

Theorem 1.1. Assume that condition (1.2) holds. If ¢,7 € H;(0,1) for some
integer s > 3, then the system (1.1) has a unique solution satisfying

u,v € C([0,00); H3(0,1)) N C([0,00); H3~%(0,1)).
Moreover, the map (¢,v) — (u,v) is continuous from (H3(0,1))* into
(C([0,00); Hy(0,1)) N C([0, 00); Hy (0, 1)),

For k = 0, the analogous theorem on the whole real line —oco < =z < oo was
proved in [1], for all s > 1.

With the global well-posedness result in hand, we can focus on the stabilization
problem. For simplicity of notation we consider only the case

by =by = 1. (1.3)
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Then the conditions (1.2) take the simplified form

r=0, a?+a3=a;+as, laz] <1, and (a; —1)az = (az —1)az=0.
(1.4)

Hence either a3 = 0 and a? + a3 = a1 + ag, or 0 < |ag| < 1 and a1 = az = 1.
We prove the following theorem.

Theorem 1.2. Assume (1.3) and (1.4). If ¢,¢ € H;(0,1) for some integer s > 3,
then the solution of (1.1) salisfies the estimate

() = ()]l 50,1 + [10E) = L@ 501) = 0o(e™"), ¢ — o0
for each k' < k.

In order to obtain the result, we prove a number of identities and estimates for
the solutions of (1.1). In view of Theorem 1.1 it suffices to establish these estimates
for smooth solutions, i.e. for solutions corresponding to C'*° initial data ¢, with
periodic boundary conditions. For such solutions all formal manipulations in the
sequel will be justified.

For the scalar KdV equation stabilization results are also available by using
localized feedback laws. For example, following Russell and Zhang [15-16], Laurent,
Rosier and Zhang [11] study a model on a periodic domain from a control point of
view with a forcing term f supported in a given open set of the domain. It is shown
that the system is globally exactly controllable and globally exponentially stable.
The stabilization is established with the aid of certain properties of propagation of
compactness and regularity in Bourgain spaces for the solutions of the correspond-
ing linear system. We also refer to [11] for a quite complete review on the subject.
We plan to investigate the system (1.1) with localized feedbacks in the near future
by a similar approach, based on Bourgain spaces.

One of the referees suggested us to change the feedback laws to k(u — v) and
—k(u — v), respectively, as in some two-component fluid systems. These feedbacks
are quite interesting to study; this also will require a different approach.

The paper is organized as follows. In Sec. 2 we introduce the basic notations
and we prove some technical lemmas. Sections 3-6 are devoted to the proof of the
exponential decay in Hy, for s =0,1,2 and s > 3, respectively.

2. Some Technical Lemmas

In the sequel all integrals are taken over the interval (0, 1) so we omit the integration
limits.

As explained in Sec. 1, all integrations by parts will be done for smooth periodic
functions. Therefore, we will regularly use the simplified formulas

/fmgdx:—/fga:dx and /f"fa:dx:O (n=0,1,...)
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without further explanation, and we will also use the simplified notation

arf
fn5:—dxn, n=1,2,...
As an example of the application of these rules we show that the mean values of

the solutions are conserved.

Lemma 2.1. The mean values [u] and [v] of the solutions of (1.1) do not depend
on t.

Proof. We have

[u] = — /uum + Upgr + A3Vzge + a100; + a2(uv)y + k(u — [u])dz

u? v?
[ (5 e e+ s )+ b e

= —k/(u — [u])dz
=0

and

=
I

— /vvz F Vga + A3Uzge + Uty + a1 (uv), + k(v — [v])dx

V2 u?
—/ (5 + Vpz + A3Uze + a2 =+ aluv) + k(v — [v])dx

- —kz/(v ~ [o])de
—0

by a straightforward computation. O

Motivated by this result we set M = [p], N = [¢)] and we rewrite (1.1) by
changing u,v,p and Y tou — [ul =u— M, v—[v]=v—N, ¢ — [p] = ¢ — M and
¥ — [)] = ¢ — N, respectively. Under our assumptions r = 0 and by = by = 1 we
obtain the equivalent system
u' + (u + M)’U,w + Ugzs + A3Vgzr + 1 (’U + N)UI

+az((u+ M)(v+ N))z + ku =0,
V' 4 (v 4+ N)vg + Vppe + a3Uzzr + a2(u + M)u,

(2.1)
a1 ((u+ M)(v+ N)), + kv =0,
u(0,z) = é(x),
v(0,2) =(z)

with periodic boundary conditions, corresponding to initial data ¢, with zero
mean values. Theorem 1.2 will thus follow from the following proposition.
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Proposition 2.2. Under the assumptions of Theorem 1.2 the smooth solutions
of (2.1) satisfy the identity

/u(t)2 +vu(t)?de = e 2k / ¢ +idx, t>0, (2.2)
and the estimates
2kt /(8;Lu(t))2 + (0™v(t))*dr — 0 ast — oo
for all positive integers n and for all k' < k.

Remark. For n = 1 the proposition and its proof remain valid under the weaker
assumption that |as| < 1. We can also add the term rv, to the equation by changing
g to g — rv? in Lemma 4.1.

Proposition 2.2 is proved by using the Lyapunov method. More precisely, we
shall use the following lemma.

Lemma 2.3. Let f: (0,00) — R be a non-negative function, and write hy & ho if
hi —he =o(f) ast — oo.

If there exists a function g : (0,00) — R such that g = 0, f + g is continuously
differentiable, and (f + g)' =~ —2kf for some positive number k, then

e%/tf(t) —0 ast— oo

for each k' < k.

Proof. Fix k” > 0 such that ¥’ < k" < k, and then fix € > 0 such that
l—e K
1+ Kk

Finally, choose a sufficiently large ¢ > 0 such that

(AI=a)f(t) <(f+9)(t) < (1 +e)f(t)

and

2k(1 —e)f(t) < —(f +9)(t) < 2k(1+¢)f(t)
for all £ > t/. Then for ¢t > t' we have
1—¢
1+¢

—(f+9)(t) = 2k(1 — ) f(t) > 2k (f +9)(t) = 2E"(f + 9)(8),

whence

L (7 + g <0.

It follows that
A (f+g) (1) < (f+ g)(t)
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for all ¢ > t/, and hence

2k//
0< er'tf(t) < € if +g)(t/)e—2(k”fk’)t
— &

—2(k" —K')t

for all ¢ > t'. We conclude by observing that e — 0 ast— oo. |

For the proof of the next result, we shall use the Holder and Poincaré-Wirtinger
inequalities in the following form. The second estimate will be used only for func-
tions with mean value zero: [u] = 0.

Lemma 2.4. If p,q € [0,00), then
lullp < llullq  for allw € LY0,1) and 1 <p < q < o0 (2.3)
u— [u]lly < Juzlly for alluw € HY(0,1) and 1< p, q < oo. (2.4)
We shall frequently use Lemma 2.3 together with the following result:

Lemma 2.5. Let n > 1 and let oy, B, m = 0,...,n, be non-negative integers
satisfying the two conditions

2(an + ﬁn) + Op—1 + ﬂn—l S 4

and

= (o + Bm) >
m=0

Then

d—2

< </ ui —|—v,2Ldac> (/ui_l —|—v,2l_1dx)

/ui_1 +v2_dr — 0,

n
/ H uﬁ{"vf{"dm =0 (/ qu + vidw)
m=0

n
/ H uﬁ{”v,ﬁnmdx
m=0

If, moreover, d > 3 and

then it follows that

as t — oo.

Proof. Setting

zm:Z\/u%l—FU,Qn and  Ym 1= am + Bm, m=0,...,n

we have
n
‘/ H ulmpBm dy </H zymde.
m=0
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We are going to majorize the right side by using the Holder and Poincaré-
Wirtinger inequalities (2.3)—(2.4). We distinguish five cases according to the value

of Yp 4+ Vn—1: since 2y, +yn—1 < 4 by our assumption, v, + Vn_1 < 4.
If v, + vn—1 = 0, then we have

‘ / ﬁ zymdx
m=0

If v, + vn—1 = 1, then

n n—2
m m d—
/ I =zrde| < lzalh [T 12mllZ < Nzall3liza-alls >
m=0 m=0

If v, + -1 = 2, then

n n—2
/ IT zmda| < onl T] Izmll2z < l2nll3ll 201 ]E2
m=0 m=0

If v, + vn—1 = 3, then we have necessarily v, = 1 and 7,1 = 2, so that

/ ﬁ z)mdx
m=0

n—2
< [T HzmliZ < llzal3llzn-1ll5 >
m=0

n—2
< lznll2llzn-1llooll2n-1ll2 H 2m |2
m=0

d—
< lzall3lzn-1ll3~2
Finally, if v,, +v,—1 = 4, then we have necessarily v,, = 0 and 7,_1 = 4, so that

‘/ﬁmm

n—2
< lzn-1lZllza-ll3 T llmliZ
m=0 m=0

d—
< [lznll3llzn-1llz™> O

3. Proof of Proposition 2.2 for n = 0
Our proof is based on the following identity.

Lemma 3.1. The solutions of (2.1) satisfy the following identity for all n =

0,1,...:
/
(/ui—kvidw) = —Qk/ui—kvidx

— 2/un(u1u)n + v (V10)dx
—2ay /un(vvl)n + U (u0) 1 dx

— 2a9 /vn(uul)n + Up (uV) pp1de. (3.1)
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Proof. We have

!
(/ u? + vidx) = /2unu;l + 2u, v, dx

= / —2uy, ((u + M)uy + ug + azvs + a1 (v + N)vy
+ax((u+ M)(v+ N))1 + ku)pdz
+ / —2v, (v + N)v1 + vs + asus + az(u + M)uq

+ai((u+ M)(v+ N)) + kv),dz.
This yields the stated identity because

/—2unun+3 — 2up vy 3dx = /2un+1un+2 + 2Up41Vpq2dx
— [+ (o =0,
as / —2UpUpt3 — 20,Up+3dT = ag / —2UpVnt3 + 204 3updr = 0,
—2M/unun+1 + A2UnVp+1 + A2V Un+1 + A1V, U 1dT
= —M/(ui + 2a0t, Uy + alvi)ldx =0,
—2N/a1unvn+1 + a2UnUn+1 + VpUpt1 + A1V U1 dT

= —N/(Qalunvn + agu% + vi)ldx =0
and (MN); = 0. O

Proof of the proposition for n = 0. In this case the last three integrals of the
identity (3.1) vanish because

1
/uulu + vvivde = 3 /(u3 +v3)1dz = 0,

/uvm + v(uv)1de = /(uvv)ldac =0
and
/vum + u(uv)1de = /(vuu)ldx =0. 0O
Proceeding by induction on n, let n > 1 and assume that the estimates

/ufn +02,dz = o(e” ) ast — oo (3.2)
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hold for all integers m = 0,...,n—1 and for all ¥’ < k. For n = 1 this follows from
the stronger identity (2.2).

4. Proof of Proposition 2.2 for n = 1

For the proof of the case n = 1 we shall use an identity suggested by a conservation
law discovered by Bona et al. [1].

Lemma 4.1. Setting
fim [u 4o+ 2asuronde
and
g:= _% /(u3 +0%) + 3(aruv® + au®v)dz,

we have the following identity:
(f+9) =—2kf — 3kg. (4.1)

Proof. The equality (4.1) will follow by combining the following four identities:
/
</ u? + vfdx) = —2k/u% + v2dx
— /u‘;’ +v3dx
—3a1/u1v%dx
—3a2/u%v1dx; (4.2)
/
(/ulvldx) = —Qk/ulvldx+/uu1v2 + vviusdr
a1 2 3
-3 / 2uauiu + 3viu] + vide
a2 2 3
-5 / 2uau1v + 3uqv] + ujdz; (4.3)
/
(/u3+v3dx) = —3k/u3+v3dx—3/u?+vfdx
—aq /3u2vvl + 203u dx
—as / 3vuug 4 2uvrde.

+ 6a3/uu1v2 + vvyusdr; (4.4)

1450047-10
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—3k/a1u112—|—a2u2vdac
2 3 2 2
+ aq §U u1 + u“vvy — 3viurde
2 3 2 2
+ as gu v1 + viuu; — 3ujvide
—a1a3/2v2u1u+301u%+v§’dx

— asas / 201V + 3ulv% + u‘z’dac. (4.5)

Proof of (4.2). We transform the identity (3.1) for n =1 as follows. We have

/ul(ulu)l + v1(v1v)1de

/ul(vvl)l + vy (uv)odx

and by symmetry

/v1 (uuq)1 + uq (uv)ode =

Using them (3.1) implies (4.2).
Proof of (4.3). We have

= /uzulu + u‘Z’ + vovv + vfdx

1
3 /u:{’ + v3d,

/ulvf + u1vve — vo(uv)1dx

1 1
ud + S+ §(u%)1u + 5(1}%)11/033:

= /ulvf — vouvidx

1
= /ulvf - §u(vf)1dx

3
/ulvfdx,

2

DO W

/u?vldx.

/
(/ulvldx) = /u'lvl + uyvyde

/ —(uuq + us + agvs + a1vvy + az(uv)1 + ku)jvide

+ / —uq(vvy + v3 + agus + aguuy + ai(uv)y + kv)rde
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= —2kz/u1v1dac + /(uu1 + uz)vg + (vv1 + v3)uade
—ay /(vvl)lvl + up(uv)edx — as /(uv)gvl + up(uuq )1 dx
—as /v4v1 + uguqrde
= —2k/u1v1dx + /uulvg + vviusdr

+ a1 /vvva + ug(uv)1de + as /(uv)lvg + uguurdx
because
/UgUQ + v3usdr = /U3U2 — vouszdr =0
and
/1)41)1 + uguidr = —/v3vg + ugusdr = —% /(v% + ug)ldx =0.
Since

1 1
/vvwz + ug(uv)rde = / 51}(1}%)1 + 5(1@)11} + uguvrdx

1 1
= /—ivi’ — §u%v1 — u%vl — uguvedr

1
= ) / 2uauit + 3v1u% + vfdx,
and by symmetry
1
/uu1U2 + va(uv)rde = -3 /2UQU]_’U + 3ulv% + u‘i’dﬁm

Eq. (4.3) follows from the previous identity.
Proof of (4.4). We have

!
(/u3dx) = /3u2u'dx

— /—3u2(uu1 + us + asvs + a1vvy + as(uv)y + ku)dz

= /—Z(u4)1 + 3u(u?); — 3kuddx

—3a3/u2v3dx — 3a1/u2vv1dx

1
—3a2/u3v1 + g(u?’)lvdx
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= —S/u:{’ + kuldx — 3a; /u2vvldac — 2a2/u31}1dx

+6a3/uu1v2dx.

We have an analogous identity for [ v3dz by symmetry; adding them we get (4.4).
Proof of (4.5). We have

(/ u2vdac>/ = /u'(2uv) + u?v'dx
= /—2uv(uu1 + us + azvs + a1vvy + as(uv)y + ku)dx
+ / —u?(vvy + v3 + azusz + aguuy + ay(uwv)y + kv)dz
= /—2u2ulv + 2ug(uv); — u?vvy + 2vpuuydr — 3k/u2vdx
—ay /quvvl + u2(uv)1dx — a2/2uv(uv)1 + wduydx

—as / 2uvvs + vusde.

2 2
/—2u2u1vdac = _ /(u3)1vdac = - /ugvl,
3 3
2 1 2,2 1 2y 2
—u“vvrdr = 5[ u (v )1dx = 3 (u)1v°dx

= /1}21m1cigc7

/2uz(uv)1 + 2upuuide = /(2u2ulv + 2uguwy) — (201Ut + 2vyuus)dx

Here

= /(u%)w — 2vlu§dx

-3 / uivyde,

2 1
/2uvvvl + u?(w)dx = /gu(v?’)l +udvy + g(u?’)wdw

2 3 3
— _ d ,
/ V1 v uiar

1
/2uv(uv)1 +uluydr = / ((uv)2 + Zu4) dr =0
1
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and
/2uvv3 + wlusde = /—2(ulv + uvy vy — 2uugusdr
= /2(uzv +ugvy)vr — u(vf)l — u(uf)ldx
= /2(uzv +ugvr)vr + ulvf + u‘;’dx
= /2uzvlv + 3ulv% + u:{’da:,
so that

/
2
(/ u%dm) = /gu?’m + v2uuy — 3u%v1dx — 3k/u2vdx

2
— §a1 /u?’vl — vdurde — as / 2usv1v + 3u1vf + uzfdx.

By symmetry, we also have

I
2
</ v2uda:> = /§U3U1 + wPvvy — 3U%U1dl‘ — Sk/vzuda:

2
— gag / v3uy — vl de — as / 2uauiu + 31}1U% + vi’da:.
Combining the last two identities (4.5) follows (some terms annihilate each
other). m|

Proof of the proposition for n = 1. It suffices to show that the functions f
and ¢ of Lemma 4.1 satisfy the conditions of Lemma 2.3. Since |az| < 1, we have
f = 0. The other conditions follow from the already proven case n = 0 and from
the second part of Lemma 2.5. We conclude by applying the lemma and then by
observing that

1
/u% +v?de < li‘l/u% + v? + 2azuq vy d. 0O
—las

5. Proof of Proposition 2.2 for n = 2

Lemma 5.1. Setting

= /u% + U% + 2azusvodr,

5
9=-3 /(u%u +020) + a1 (2u1v1v + viu) 4+ as(2uiviu 4+ ulv)de
and

2
h:= §a3 /(1 — a1)(2ugvau + ugvauy) + (1 — a2)(2vsugv + ugvavy )dx,

1450047-14
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we have

(f+9) ~—=2kf +h.

(5.1)

Proof. The relationship (5.1) will follow by combining the following relations:

/
(/ u3 + v%dm)

—2k/u§ + vidx — 5/u§u1 + v3vyde
—bay /2u21/2v1 + vguldac
— 5a2/2ugvgu1 + u%vldx;
/
(/uzvgdac> = —2]§/U2U2d$
— / Uz + v3ugv + ugva(u1 + v1)dx

5
—ay / §(u§ + vg)m + 2ugvou — ugvoudx

2

/
</ utu + vadac) ~ —3/u%u1 + vividr

—2a3 / uzvoU + v3u2v + 2ugve (ug + vy )d;

5
— a2 / —(u% + v%)ul + 2uov9v1 — v3usVd;

/
(/ 2uiviv + vfudx) ~ —3/21@1}21}1 + v%uldx

+as / —3(u2 + v3)v + 2uszvou — 2unvauy da;

/
Quiviu 4+ wivdr | ~ —3 | 2uqvouq + uivide
1 2

+ as / —3(u2 + v3)u1 + 2u3u2v — 2ugvavyda.

(5.6)

Proof of (5.2). We transform the last three integrals of the identity (3.1) in the

following way:

—2/u2(u1u)2 + va(v1v)2dx = —2/3u§u1 + usuzu + 31}%1}1 + vovzvdx

1 1
- —2/3u§u1 + = (ud)1u + 3v3v; + 5(03)106196

2

= —5/u§u1 + v%vldx,
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—2a, /ug(vvl)g + v (uv)sdr = —2a; /Sugvlvz + ugvvg — v3(uv)adx

= —2a71 | 3ugvive — 203UV — V3UVdL

2

1
= —2ay | 3uguivy + 2va(uivy)1 — §u(v2)1dac

5
Susv1vo + §u1 v%dx

= —2(11

= —bay | 2usvovy + v%uldx,

— S — —

and by symmetry
—2a2/v2(uu1)2 + ug(uv)gde = —5a2/2u2v2u1 + u%vldx.

Combining these identities with (3.1) we obtain (5.2).
Proof of (5.3). We have

/
(/uzvgdx) = /ugvg +uzv/2dx

= /(ulu + us + ku + azvs + a1v1v + az(uv)q)ovede
— /uz(vlv + vz + kv + asus + asuiu + a1 (uv)q)2dx

= —2k/ugvgdx — ag/v5vg + ususdr — /u5v2 + usvsdx
— /(uul)gvg + ug(vvy)odx
—ay /(vvl)zvg + ug(uv)sdx

—as /(’U/U)g,’l)g + us(uuq )odz.
Here

/v5vz + ususdr = — /v4v3 + usugdr
1 2 2
=-3 (v5 + u3)1de = 0,
/u5vg + ugvsdr = /u5vg — usvodx = 0,

/(UU1)2U2 + ug(vvy )ode = /3u1uQv2 + uvoug + vuovy + vy vausdr,
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VU1 )oUs + U (uv)3dr = 3v2vy + V3V20 + UzU2V + 3ulv;
2 2
+ 3ugvoty + v3usudr
1 1
= /31}%1}1 + 5(03)10 + 5(“3)11’ + 3uzur

+ 3ugvouy + vusudr

5
= /§(u§ + v%)vl + 3usvoty + v3usudx

5
= / §(u§ + v2)vy + BugUaty — VauzU — VoUaUy dT

5
= / 5(”% + U%)Ul + 2ugv2u1 — uzvoudx.

By symmetry, we also have

5
/(UU1)2U2 + vg(uv)gdr = / §(u§ + v%)ul 4 2u9v9v1 — V3UsVAL.

This proves (5.3).

Henceforth in all computations we integrate by parts and we apply Lemma 2.5

several times.

Proof of (5.4). We have
/
(/ u%udx) = /2u1u'1u + udu'dx
- /—u’(2u2u +ud)dx
= /(Zugu + u%)(ulu +us + ku + agv1v + as(uv)1 + aszvs)dx
=k / 2uou? 4 utudr + / uru(2uou + ut)dr + /u3(2uQu +u?)dx
+ a3 /vlv(2u2u +ud)dz + as /(uv)1(2u2u + u?)dx

+as / v3(2ugu + u?)dz.

Here all integrals are equivalent to zero by Lemma 2.5, except those containing wus

or vs. Since

/u3(2uQu +u?)dr = /(ug)lu + uzuidx
= — /u%ul + 2u§u1dac = —S/uguldx
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and

/U3(2U2U +ul)dr = 2/U3U2U — Vouguydx

= 2/—1)2’LL3’LL — Vgl — VaUsU1dL

—2/u3vgu + 2ugvouqde,

we conclude that

I
</ u%uda:) == —S/uguldx — 2a3/U3v2u + 2uovouida.

Adding this to the analogous relationship for [vivdz we get (5.4).
Proof of (5.5) and (5.6). We have

</ ulvlvdac>/ = /u'lvlv + uvjv + w10’ de
- / —u' (vav + v) — v'uguda
= /(vgv + vf)(ulu + us + ku + aqv1v + az(uv)1 + asvs)dx
+ / ugv(v1v + v3 + kv + asuiu + a1 (uv)1 + azug)dx

~ /vgvu:; + v?ug + ugvvzdr + az /(vgv + v3)vg + ugvuzde

= /(ugvg)lv — ug(vf)ldx + as /(vgv + U%)U:}, + ugvusdw

= —3/u2v2v1dx + as /(vgv + vf)vg + usvusdz.
Since
2 L o 2 L o
(vav + v )vs + ugvusdr = 5(112)11/ — 2u5v1 + §v(u2)1dac
1 1
= /—511%@1 — 20301 — §u§vldac
5 1
= /—51)%1)1 — §u§v1dx7
it follows that

/
</ 2u1v1vdx> ~ —6/u2v2v1dx —as /(51}% + ud)vide,
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and then by symmetry

!
(/ 2u1v1uda:> =~ —6/u2v2u1dx — ag/(5u§ + v%)uldx.

Next we have

/
(/u%vdw) = /2u1uav+u%v’da§

= / —(2ugv + 2uqvy v’ + udv'dx
= /(2u2v + 2ugv)(uru + ug + ku + a1v1v + az(uv)r + azvs)dx
+ / —u?(v1v 4 v3 + kv + aguiu + ay (w); + azuz)de
~ /2u3uzv + 2uyviuz — uivzde + az /(2u2v + 2uyv1 vz — uiugde
= /—ugvl — 2ua(ugv1)1 + 2uguguede
+as /(21@1} + 2uqv1)vs — u%wdw

= —S/ugvldac + as /(2U2U + 2uqvy v — U%Ugdl‘.
Since

/(2u2v + 2uqv1 )vs — u%u;),dx = / —2v9 (usv + 2usv7 + urve) + 2u§u1dx
= /—2’LL3’I)21) — 4dugvovy — 2v§u1 + 2u§u1dx

= 2/U3U2U — Ugovy + (u3 — v3)urdz,
it follows that
!
</ u%vdw) = — /u%vldx + 2ag /v;;uzv — UV + (u% — v%)uldx,

and then by symmetry

!
(/ vfudx) = — /v%uldx + 2a3/ugvgu — UgVaU1 + (v% — ug)vldx.
Combining the four relations we get (5.5) and (5.6). m|

Proof of the proposition for n = 2. We consider the functions f,g,h of
Lemma 5.1. If ag = 0 or if a1 = ag = 1, then h = 0. If |as| < 1, then

1
2 2
+vpdr <
/un v, axr 1 | 3|

/ui + vi + 2a3un,vpdr.
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Since by Lemma 2.5 and the induction hypothesis f and g satisfy the assumptions
of Lemma 2.3, we may conclude as in case n = 1 above. O

6. Proof of the Proposition for n > 3

We proceed by induction on n, so we assume that the proposition holds for smaller
values of n.
By Lemma 3.1 we have

/
</ u? + vfldx) = —Zk/ufl + v2da

— 2/un(u1u)n + v (V10) dx
—2ay /un(vvl)n + U (U0 1 dx

—2a9 /vn(uul)n + Up (uV) pp1de. (6.1)

If we differentiate the products in the last three integrals by using Leibniz’s rule and
the binomial formula, we obtain a sum of three-term products. Using the inequality
n > 3, it follows from Lemma 2.5 that all terms are equivalent to zero, except those
containing the factor wu,+1 or v,4+1.

Indeed, the orders of differentiation of the three factors are n, j and n+1 —j
with 1 < 7 < n. Since the sum 2n + 1 of the differentiations satisfies the inequality
2n+1 < 2n+ (n— 1), we have

Q(QTL + ﬁn) + (O‘nl + ﬁn—l) S 4,

and Lemma 2.5 applies.
Using again that 1 < n — 2, it follows that

/un(ulu)n + v (V10)pda & /unun+1u + UpUpp1vde

= %/(u%)lu—f— (vi)lvdx

1
_i/uiul +v2vyda

~ 0,

/un(vvl)n + U (u0) 1 de & /unvvn_H + VpUp1vV + Vpuvy 1 de

1
= /unvvn+1 — Up (V)1 + §u(vi)1dx

/ —UpUp U1 — —ulv 2 dx
0,

Q

1450047-20



Stabilization of the Gear—Grimshaw system

and by symmetry

/Un(uul)n + Up (uv)pp1dz = 0.

Using these relations we infer from (6.1) that

/
</ u? + vidm) ~ —Zk/ui + v2dz,

and we conclude as usual.
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