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Abstract

This work deals with the local rapid exponential stabilization for a Boussinesq system of KdV–KdV type 
introduced by J. Bona, M. Chen and J.-C. Saut. This is a model for the motion of small amplitude long 
waves on the surface of an ideal fluid. Here, we will consider the Boussinesq system of KdV–KdV type 
posed on a finite domain, with homogeneous Dirichlet–Neumann boundary controls acting at the right end 
point of the interval. Our goal is to build suitable integral transformations to get a feedback control law that 
leads to the stabilization of the system. More precisely, we will prove that the solution of the closed-loop 
system decays exponentially to zero in the L2(0, L)-norm and the decay rate can be tuned to be as large as 
desired if the initial data is small enough.
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1. Introduction

1.1. Setting of the problem

The classical Boussinesq systems were first derived by Boussinesq in [4], to describe the 
two-way propagation of small amplitude, long wave length gravity waves on the surface of water 
in a canal. These systems and their higher-order generalizations also arise when modeling the 
propagation of long-crested waves on large lakes or on the ocean and in other contexts. Recently, 
in [2], the authors derived a four-parameter family of Boussinesq systems to describe the motion 
of small amplitude long waves on the surface of an ideal fluid under the gravity force and in 
situations where the motion is sensibly two dimensional. More precisely, they studied a family 
of systems of the form

{
ηt + wx + (ηw)x + awxxx − bηxxt = 0,

wt + ηx + wwx + cηxxx − dwxxt = 0.
(1.1)

In (1.1), η is the elevation from the equilibrium position, and w = wθ is the horizontal velocity 
in the flow at height θh, where h is the undisturbed depth of the liquid. The parameters a, b, c, 
d , that one might choose in a given modeling situation, are required to fulfill the relations

a + b = 1

2

(
θ2 − 1

3

)
, c + d = 1

2
(1 − θ2) ≥ 0, θ ∈ [0,1] , (1.2)

where θ ∈ [0,1] specifies which horizontal velocity the variable w represents (cf. [2]). Conse-
quently,

a + b + c + d = 1

3
.

As it has been proved in [2], the initial value problem for the linear system associated with (1.1)
is well-posed on R if either C1 or C2 is satisfied, where

(C1) b, d ≥ 0, a ≤ 0, c ≤ 0;
(C2) b, d ≥ 0, a = c > 0.

When b = d = 0 and (C2) is satisfied, then necessarily a = c = 1/6. Nevertheless, the scaling 
x → x/

√
6, t → t/

√
6 gives an system equivalent to (1.1) for which a = c = 1, namely

⎧⎪⎪⎨
⎪⎪⎩

ηt + wx + wxxx + (ηw)x = 0, in (0,L) × (0,+∞),

wt + ηx + ηxxx + wwx = 0, in (0,L) × (0,+∞),

η(x,0) = η0(x), w(x,0) = w0(x), in (0,L),

(1.3)

which is the so-called Boussinesq system of Korteweg–de Vries–Korteweg–de Vries type.
Therefore, the interest of this work is to give a positive answer for the following stabilization 

problem:
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Problem A. Can one find a linear feedback control law

(f (t), g(t)) = F [(η(·, t),w(·, t))], t ∈ (0,∞),

such that the closed-loop system (1.3) with boundary condition

{
η(0, t) = 0, η(L, t) = 0, ηx(0, t) = f (t), t ∈ (0,∞),

w(0, t) = 0, w(L, t) = 0, wx(L, t) = g(t), t ∈ (0,∞)
(1.4)

is exponentially stable?

As we know, there are some natural methods that may give us a positive answers of the Prob-
lem A, e.g., the so-called “Gramian approach” (see [16,20,22] and the reference therein for more 
details), the Lyapunov function method (see, for instance, [7]), and, finally, the backstepping 
method, that is now a standard method for finite dimensional control systems (see, e.g., [7,14,
15,21]). The first adaptations of the backstepping method to control systems modeled by partial 
differential equations were given in [8] and [13], by using a Volterra transformation [3].

1.2. State of art

In this paper, we will try to apply the backstepping method (see [15] for a systematic intro-
duction of this method) to design the feedback control law. This method was successfully applied 
by Coron et al. in [9,10] to study the rapid stabilization of the Korteweg–de Vries (KdV) and the 
Kuramoto–Sivashinsky (K–S) equations, respectively.

More precisely, which concerning of KdV equation, in [9], the authors studied the KdV equa-
tion on a bounded domain (0, L)

⎧⎪⎪⎨
⎪⎪⎩

ut + uux + ux + uxxx = 0 in (0,L) × (0,+∞),

u(0, t) = u(L, t) = 0 on (0,+∞),

ux(L, t) = h(t) on (0,+∞),

(1.5)

where the function h(t) = Fλ(u(t)) is the feedback law designed to ensure the exponential stabil-
ity of the system with a decay rate equal to λ. This decay rate can be chosen as large as desired, 
which is called a rapid stabilization result. They consider the following problem:

Problem B. Let λ > 0. Does there exist a linear feedback control Fλ : L2(0, L) → R such that, 
for some δ > 0, every solution u of (1.5) with h(t) = Fλ(u(·, t)) satisfies

||u(·, t)||L2(0,L) ≤ Ce−λt ||u(·,0)||L2(0,L),

for some C > 0, provided that ||u(·, 0)||L2(0,L) ≤ δ?

A positive answer to this question was given in [9] (see also [10] for K–S equation) using a 
modified backstepping method and the following result was obtained.
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Theorem A (Coron et al. [9]). For every λ > 0, there exist a continuous linear feedback control 
law F : L2(0, L) → R, and positive constants r > 0 and C > 0 such that, for every u0 ∈ L2(0, L)

satisfying ||u0||L2(0,L) ≤ r , the solution v of (1.5), with h(t) := F(u(·, t)) satisfying the initial 
condition u(·, 0) = u0(·), is defined on [0, +∞) and satisfies

||u(·, t)||L2(0,L) ≤ Ce− λ
2 t ||u(·,0)||L2(0,L), for every t ≥ 0.

The main difficulty to establish Theorem A is the fact that the linear system is known to be 
non-controllable (and consequently non-stabilizable) if the length of the interval L belongs to a 
set of critical values N (see for instance [19]). The authors looked for an integral transform

w(x, t) = u(x, t) −
L∫

0

k(x, y)u(y, t)dy (1.6)

with k = k(x, y) chosen such that u = u(x, t) is a solution of (1.5) if and only if w = w(x, t) is 
a solution of

{
wt + wx + wxxx + λw = −uux − 1

2

∫ L

0 ky(x, y)u2(y, t)dy,

w(0, t) = w(L, t) = wx(L, t) = 0.
(1.7)

Thus, they proved that the system (1.7) is locally exponentially stable with a decay rate equal 
to λ. This result follows for (1.5) if the integral transform (1.6) exists and is invertible and if 
the kernel function k = k(x, y) satisfies a partial differential equation with a Dirac measure as a 
source term. Is important to see that this result holds if the length L is not critical.

Now, we will come back to the stabilization properties of the system (1.3) on a bounded 
domain. As far we know, the KdV–KdV system is expected to admit global solutions on R, 
and it also possesses good control properties on the torus [17]. However, there are few results 
concerning to the bounded domains. The unique result in the literature is due to Pazoto and 
Rosier in [18]. They investigated the asymptotic behavior of the solutions of the system (1.3)
satisfying the boundary conditions

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(0, t) = wxx(0, t) = 0 on (0, T ),

wx(0, t) = α0ηx(0, t) on (0, T ),

w(L, t) = α2η(L, t) on (0, T ),

wx(L, t) = −α1ηx(L, t) on (0, T ),

wxx(L, t) = −α2ηxx(L, t) on (0, T )

(1.8)

and initial conditions

η(x,0) = η0(x), w(x,0) = w0(x) on (0,L). (1.9)

In (1.8), α0, α1 and α2 denote some nonnegative real constants.
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Under the above boundary conditions, they observed that the derivative of the energy associ-
ated to the system (1.3), with boundary conditions (1.8)–(1.9), satisfies

dE

dt
= −α2 |η(L, t)|2 − α1 |ηx(L, t)|2 − α0 |ηx(0, t)|2 − 1

3
w3(L, t) −

L∫
0

(ηw)xηdx,

where

E(t) = 1

2

L∫
0

(η2 + w2)dx.

This indicates that the boundary conditions play the role of a feedback damping mechanism, 
at least for the linearized system. Therefore, the following questions arise:

Problem C. Does E(t) → 0, as t → +∞? If it is the case, can we give the decay rate?

The problem might be easy to solve when the underlying model has a intrinsic dissipative 
nature. Moreover, in the context of coupled systems, in order to achieve the desired decay prop-
erty, the damping mechanism has to be designed in an appropriate way in order to capture all the 
components of the system. The main result of [18] provides a positive answer to those questions.

Theorem B (Pazoto et al. [18]). Assume that α0 ≥ 0, α1 > 0 and α2 = 1. Then there exist some 
numbers ρ > 0, C > 0 and μ > 0 such that for any (η0, w0) ∈ (L2(I ))2 with

‖(η0,w0)‖(L2(I ))2 ≤ ρ,

the system (1.3)–(1.9) admits a unique solution

(η,w) ∈ C(R+; (L2(I ))2) ∩ C(R+∗; (H 1(I ))2) ∩ L2(0,1; (H 1(I ))2),

which fulfills

‖(η,w)(t)‖(L2(I ))2 ≤ Ce−μt ‖(η0,w0)‖(L2(I ))2 , ∀t ≥ 0,

‖(η,w)(t)‖(H 1(I ))2 ≤ C
e−μt

√
t

‖(η0,w0)‖(L2(I ))2 , ∀t > 0.

In our case, we propose to use the ideas contained in [9] to obtain a positive answer for the 
Problem A. However, first, we need to know a answer for the following exact controllability 
problem.

Problem D. Given T > 0 and (η0, w0), (ηT , wT ) in certain space, can one find appropriate f (t)

and g(t), in a certain space, such that the corresponding solution (η, w) of the linearized system
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{
ηt + wx + wxxx = 0 in (0,L) × (0, T ),

wt + ηx + ηxxx = 0 in (0,L) × (0, T ),
(1.10)

with the boundary conditions

{
η(0, t) = η(L, t) = 0, ηx(0, t) = f (t) on (0, T ),

w(0, t) = w(L, t) = 0, wx(L, t) = g(t) on (0, T )
(1.11)

and the initial conditions

η(x,0) = η0(x), w(x,0) = w0(x) in (0,L), (1.12)

satisfies η(·, T ) = ηT and w(·, T ) = wT ?

More recently, in [6] (see also [5]), the exact boundary controllability of the linear system 
Boussinesq of KdV–KdV type was studied. It was discovered that whether the associated linear 
system is exactly controllable or not depends on the length of the spatial domain. In the context of 
equations that possess a hyperbolic structure, recent results deals with systems of two wave-type 
equations, only one of them being directly damped. More precisely, the following result was 
obtained for the system (1.10)–(1.12).

Theorem C (Capistrano-Filho et al. [6]). Let

N :=
{

2π√
3

√
k2 + kl + l2 : k, l ∈ N

∗
}

. (1.13)

For any T > 0, L ∈ (0, +∞)\N , (η0, w0) ∈ [H−1(0, L)]2 and (ηT , wT ) ∈ [H−1(0, L)]2, there 
exist controls (f (t), g(t)) ∈ [L2(0, T )]2 such that the solution (η, w) ∈ C0([0, T ], [H−1(0, L)]2)

of (1.10)–(1.12), satisfies η(·, T ) = ηT and w(·, T ) = wT .

As in the case of the KdV equation [19, Lemma 3.5] when L ∈ N , the linear system 
(1.10)–(1.12) is not controllable.1 To prove Theorem C, the authors used the classical duality 
approach based upon the Hilbert Uniqueness Method (H.U.M.) due to J.-L. Lions [11], which 
reduces the exact controllability of the system to some observability inequality to be proved 
for the adjoint system. Then, to establish the required observability inequality, was used the 
compactness-uniqueness argument due to J.-L. Lions [12] and some multipliers, which reduces 
the analysis to study a spectral problem. The spectral problem is finally solved by using a method 
introduced in [19], based on the use of complex analysis, namely, the Paley–Wiener theorem.

1 There exists a finite-dimensional subspace of L2(0, L), denoted by M = M(L), which is unreachable from 0 for 
the linear system.
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1.3. Main result and notations

With all of these results in hands, we are now in position to present our main result. In this 
paper, considerations about the local rapid stabilization of the following system

⎧⎪⎪⎨
⎪⎪⎩

ηt + wx + wxxx + (ηw)x = 0, in (0,L) × (0,+∞),

wt + ηx + ηxxx + wwx = 0, in (0,L) × (0,+∞),

η(x,0) = η0(x), w(x,0) = w0(x), in (0,L),

(1.14)

with the boundary conditions

{
η(0, t) = 0, η(L, t) = 0, ηx(0, t) = f (t) on (0, T ),

w(0, t) = 0, w(L, t) = 0, wx(L, t) = g(t) on (0, T )
(1.15)

are given. However, before to present our main result, we remark that some restriction on the 
length L, of the domain are needed. In this paper, unless otherwise specified, we always keep the 
assumption that L ∈ (0, +∞)\N , where N is defined by (1.13).

Let us define the following Hilbert space

Xs := [Hs(0,L)]2, for s ∈R

and

X0 := X0,

X3 :=
{
(η,w) ∈ [H 3(0,L) ∩ H 1

0 (0,L)]2 : ηx(0) = wx(L) = 0
}

,

X3θ := [X0,X3][θ], for 0 < θ < 1,

where [X0, D(A)][θ] denote the Banach space obtained by the complex interpolation method 
(see e.g. [1]). It is easily seen that

X1 := H 1
0 (0,L) × H 1

0 (0,L),

X2 :=
{
(η,w) ∈ [H 2(0,L) ∩ H 1

0 (0,L)]2 : ηx(0) = wx(L) = 0
}

.

In addition, the space X−s = (Xs)
′ is defined as the dual of Xs with respect to the pivot space. 

We also introduce the following integrals transforms K and S defined in L2(0, L) given by

(Kv)(x) :=
L∫

0

k(x, y)v(y)dy and (Sv)(x) :=
L∫

0

s(x, y)v(y)dy, for all v ∈ L2(0,L),

(1.16)

where (k, s) is the solution of stationary problem
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{
kyyy + ky + kxxx + kx + λs = 0, in (0,L) × (0,L),

syyy + sy + sxxx + sx + λk = λδ(x − y), in (0,L) × (0,L),
(1.17)

with boundary condition

{
k(x,0) = k(x,L) = k(0, y) = k(L,y) = ky(x,0) = ky(x,L) = 0, on (0,L),

s(x,0) = s(x,L) = s(0, y) = s(L,y) = sy(x,0) = sy(x,L) = 0, on (0,L),
(1.18)

where λ ∈R \ {0} and δ(x − y) denotes the Dirac measure on the diagonal of the square [0, L] ×
[0, L]. The definition of a solution to (1.17)–(1.18) is given in Section 3.1. With this system in 
hands, we are able to prove the following assertions:

a. System (1.17)–(1.18) has a unique solution;
b. The operators (I − (K + S))−1 and (I − (K − S))−1 exist and it is a continuous operator in 

L2(0, L), that is, (I − (K + S))−1 and (I − (K − S))−1 belongs to L(L2(0, L); R);
c. Assuming that L ∈ (0, +∞)\N , if we define the feedback law F(·) = (F1(·), F2(·)) by

f (t) := F1(η(·, t),w(·, t)) =
L∫

0

[kx(0, y)η(y, t) + sx(0, y)w(y, t)]dy on (0, T )

and

g(t) := F2(η(·, t),w(·, t)) =
L∫

0

[kx(L,y)w(y, t) + sx(L,y)η(y, t)]dy on (0, T )

then, for the solution (η, w) ∈ C(R+; X2) of (1.14)–(1.15), one has

||(η(t),w(t))||X0 ≤ C
(||(I − K)η(t) − Sw(t)||L2(0,L) + ||(I − K)w(t) − Sη(t)||L2(0,L)

)
,

for some C := C(K, S) > 0 depending on the operators K and S.

Thus, in order to prove the local exponential stability of (1.14)–(1.15) and since the critical 
set of the Boussinesq system of KdV–KdV type is defined by (1.13), the above statements are 
the key to prove the main result of this paper, which can be stated as follows.

Theorem 1.1. Let T > 0 and L ∈ (0, +∞)\N . For every λ > 0, there exist a continuous linear 
feedback control law

F := (F1,F2) : L2(0,L) × L2(0,L) →R×R,

and positive constants ρ ∈ (0, +∞) and C := C(K, S) > 0, depending on the operators K and 
S, defined by (1.16), such that, for every (η0, w0) ∈ X2 with

‖(η0,w0)‖ < ρ,
X2
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the solution (η, w) of (1.14)–(1.15) belongs to space C([0, T ]; X2) and satisfies

‖(η(t),w(t))‖X0 ≤ Ce− λ
2 t‖(η0,w0)‖X0, 0 ≤ t ≤ T .

Remarks 1.2. The following remarks are now in order.

(i.) In general to propose some stabilization result using standard methods is necessary that the 
derivative of the energy be negative, see for instance [18]. However, using this approach, 
namely, backstepping method, the mechanism of damping does not give us any signal of 
the energy even for the linear system.

(ii.) Backstepping method is interesting due of the fact that we can deal directly with nonlinear 
problem instead of first to prove a result for the linear problem and after, using the fixed 
point argument, to extend for the nonlinear one.

(iii.) In this work, we can not able to deal with the problem with only one control acting on the 
boundary conditions, that is, f (t) = 0 or g(t) = 0 in (1.15). Its looks a interesting problem 
and we detail the difficulties at the end of this work (see Section 5).

Thus, the plan of the present paper is as follows.

– Section 2 is devoted to study the well-posedness of the system (1.3).
– In the Section 3, we will prove the existence and uniqueness of solution of the stationary 

problem (1.17)–(1.18).
– The proof of our main result, Theorem 1.1, is made in the Section 4.
– Section 5 is devoted to some remarks and related problems.

2. Well-posedness

In this section, we explain what we mean by a solution of (1.3) and we prove that the non-
homogeneous linear system is well-posed.

2.1. Well-posedness: linear homogeneous system

The result below is related with the existence of solutions of the following linear system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηt + wx + wxxx = 0, in (0,L) × (0, T ),

wt + ηx + ηxxx = 0, in (0,L) × (0, T ),

η(0, t) = η(L, t) = ηx(0, t) = 0, on (0, T ),

w(0, t) = w(L, t) = wx(L, t) = 0, on dg (0, T ),

η(x,0) = η0(x), w(x,0) = w0(x), on (0,L),

(2.1)

and can be found in [6, Proposition 2.1], thus we will omit the proof.

Theorem 2.1. Let (η0, w0) ∈ X0. Let A(ϕ, ψ) = (−ψ ′ − ψ ′′′, −ϕ′ − ϕ′′′) with domain D(A) =
X3. Then, there exists a unique mild solution of (2.1) such that
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(η,w) = S(·)(η0,w0) ∈ C(R+;X0),

where S(·) is a group of isometries in X0 generated by operator A. Moreover, if (η0, w0) ∈ D(A), 
then (2.1) has a unique (classical) solution (η, w) belongs to C(R+; D(A)) ∩ C1(R+; X0).

Using Theorem 2.1 combined with some interpolation argument between X0 and X3, we infer 
for any s ∈ [0, 3], there exists a constant Cs > 0 such that for any (η0, w0) ∈ Xs , the solution 
(η, w) of (2.1) satisfies (η, w) ∈ C(R; Xs) and

‖(η(t),w(t))‖Xs
≤ Cs‖(η0,w0)‖Xs

, ∀t ∈ R, (2.2)

for instance, see [6] for more details.

2.2. Well-posedness: nonlinear system

We are now in position to prove the well-posedness for the nonlinear system (1.14)–(1.15), 
where f (t) := F1(η(t), w(t)) and g(t) := F2(η(t), w(t)), with Fi belongs to L(X0; R), i = 1, 2. 
The following theorem can be proved.

Theorem 2.2. Let Fi : X0 −→ R be a continuous linear map for i = 1, 2 and T > 0. Then, there 
exists ρ > 0 such that, for every (η0, w0) ∈ X2 satisfying

‖(η0,w0)‖X2
< ρ,

there exists a unique solution (η, w) ∈ C([0, T ]; X2) of (1.14)–(1.15) with f (t) := F1(η(t), w(t))

and g(t) := F2(η(t), w(t)). Moreover

‖(η,w)‖C([0,T ];X2)
≤ C‖(η0,w0)‖X2

for some positive constant C = C(T ).

Before to present the proof of the Theorem 2.2, it is necessary to establish some definition to 
recall how the solution of the problem (1.14)–(1.15) can be defined.

Definition 2.1. Given T > 0, (η0, w0) ∈ X2, (h1, h2) ∈ L2(0, T ; X−1) and (f, g) ∈ [L2(0, T )]2. 
Consider the non-homogeneous system

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ηt + wx + wxxx = h1, in (0,L) × (0, T ),

wt + ηx + ηxxx = h2, in (0,L) × (0, T ),

η(0, t) = 0, η(L, t) = 0, ηx(0, t) = f (t), on (0, T ),

w(0, t) = 0, w(L, t) = 0, wx(L, t) = g(t), on (0, T ),

η(x,0) = η0(x), w(x,0) = w0(x), on (0,L).

(2.3)

A solution of the problem (2.3) is a function (η, w) in C([0, T ], X2) such that, for any τ ∈ [0, T ]
and (ϕτ , ψτ ) ∈ X2, the following identity holds
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((η(τ ),w(τ)), (ϕτ ,ψτ ))X2
= ((η0,w0), (ϕ(0),ψ(0)))X2

−
τ∫

0

f (t)ψx(0, t)dt

+
τ∫

0

g(t)ϕx(L, t)dt +
τ∫

0

〈ϕ(t), h1(t)〉H 1
0 ×H−1 dt +

τ∫
0

〈ψ(t), h2(t)〉H 1
0 ×H−1 dt, (2.4)

where (·, ·)X2
is the inner product of X2, 〈·, ·〉 is the duality of two spaces and (ϕ, ψ) is the 

solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ϕt + ψx + ψxxx = 0, in (0,L) × (0, τ ),

ψt + ϕx + ϕxxx = 0 in (0,L) × (0, τ ),

ϕ(0, t) = ϕ(L, t) = ϕx(0, t) = 0, on (0, τ ),

ψ(0, t) = ψ(L, t) = ψx(L, t) = 0, on (0, τ ),

ϕ(x, τ ) = ϕτ , ψ(x, τ ) = ψτ , on (0,L).

(2.5)

The following result ensures the existence and uniqueness of the solution for the system (2.3).

Lemma 2.3. Let T > 0, (η0, w0) ∈ X2, (h1, h2) ∈ L2(0, T ; X−1) and (f, g) ∈ [L2(0, T )]2. 
There exists a unique solution (η, w) ∈ C([0, T ]; X2) of the system (2.3). Moreover, there ex-
ists a positive constant CT , such that

‖(η(τ ),w(τ))‖X2
≤ CT

(
‖(η0,w0)‖X2

+ ‖(f, g)‖[L2(0,T )]2 + ‖(h1, h2)‖L2(0,T ;X−1)

)
, (2.6)

for all τ ∈ [0, T ].

Proof. Let T > 0 and τ ∈ [0, T ]. Note that making the change of variable (x, t) �→ (ϕ(x, τ − t),

ψ(x, τ − t)), from (2.2) and the fact that the operator A is skew adjoint, we have that the solution 
of (2.5) is given by

(ϕ,ψ) = S∗(τ − t)(ϕτ ,ψτ ) = −S(τ − t)(ϕτ ,ψτ ).

Moreover,

(ϕ,ψ) ∈ C(R;X2),

where {S(t)}t≥0 is a C0-group generated by A. In particular, there exists CT > 0, such that

‖(ϕ(t),ψ(t))‖X2
= ‖S∗(τ − t)(ϕτ ,ψτ )‖X2

≤ CT ‖(ϕτ ,ψτ )‖X2
, ∀t ∈ [0, τ ]. (2.7)

Let us define L as a linear functional given by the right hand side of (2.4), that is,
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L(ϕτ ,ψτ ) = ((η0,w0), S
∗(τ )(ϕτ ,ψτ )

)
X2

+
τ∫

0

(
(g(t), f (t)),

d

dx
(S∗(τ − t)(ϕτ ,ψτ ))

∣∣∣L
0

)
dt

+
τ∫

0

〈
(h1(t), h2(t)), S

∗(τ − t)(ϕτ ,ψτ )
〉
(H−1×H 1

0 )2 dt.

Claim. L belongs to L(X2; R).

Indeed,

|L(ϕτ ,ψτ )| ≤ CT ‖(η0,w0)‖X2
‖(ϕτ ,ψτ ))‖X2

+ CT ‖(ϕτ ,ψτ )‖X2
‖(h1, h2)‖L1(0,T ;X−1)

+ ‖(f, g)‖[L2(0,T )]2

(‖ψx(0, ·)‖L2(0,T ) + ‖ϕx(L, ·)‖L2(0,T )

)
≤ CT

(
‖(η0,w0)‖X2

+ ‖(h1, h2)‖L2(0,T ;X−1)

)
‖(ϕτ ,ψτ ))‖X2

+ ‖(f, g)‖[L2(0,T )]2‖(ϕx,ψx)‖L2(0,T ;[L∞(0,L)]2)

≤ CT

(
‖(η0,w0)‖X2

+ ‖(h1, h2)‖L2(0,T ;X−1)

)
‖(ϕτ ,ψτ ))‖X2

+ ‖(f, g)‖X0‖(ϕ,ψ)‖C([0,T ];X2)

≤ CT

(
‖(η0,w0)‖X2

+ ‖(f, g)‖X0 + ‖(h1, h2)‖L2(0,T ;X−1)

)
‖(ϕτ ,ψτ ))‖X2

,

where in the last inequality we use (2.7). Then, from the Riesz representation Theorem, there 
exist one and only one (ητ , wτ ) ∈ X2 such that

((ητ ,wτ ), (ϕτ ,ψτ ))X2
= L(ϕτ ,ψτ ), with ‖(ητ ,wτ )‖X2

= ‖L‖L(X2;R) (2.8)

and the uniqueness of the solution to the problem (2.3) holds.
We prove now that the solution of the system (2.3) satisfies (2.6). Let (η, w) : [0, T ] −→ X2

be defined by

(η(τ ),w(τ)) := (ητ ,wτ ), ∀τ ∈ [0, T ]. (2.9)

From (2.8) and (2.9), (2.4) follows and

‖(η(τ ),w(τ))‖X2
= ‖L‖L(X2;R)

≤ CT

(
‖(η0,w0)‖X2

+ ‖(f, g)‖[L2(0,T )]2 + ‖(h1, h2)‖L2(0,T ;X−1)

)
.

In order to prove that the solution (η, w) belongs to C([0, T ], X2), let τ ∈ [0, T ] and {τn}n∈N be 
a sequence such that

τn −→ τ, as n → ∞. (2.10)

Consider (ϕτ , ψτ ) ∈ X2 and {(ϕτn, ψτn)}n∈N be a sequence in X2 such that
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(ϕτn,ψτn) → (ϕτ ,ψτ ) strong in X2, as n → ∞. (2.11)

Moreover, note that

lim
n→∞

(
(η0,w0), S

∗(τn)(ϕτn,ψτn)
)
X2

= ((η0,w0), S
∗(τ )(ϕτ ,ψτ )

)
X2

. (2.12)

Indeed,

lim
n→∞

(
(η0,w0), S

∗(τn)(ϕτn,ψτn)
)
X2

= lim
n→∞

(
(η0,w0), S

∗(τn)
(
(ϕτn,ψτn) − (ϕτ ,ψτ )

))
X2

+ lim
n→∞

(
(η0,w0), S

∗(τn)(ϕτ ,ψτ )
)
X2

.

From (2.11) and since {S(t)}t≥0 is a strongly continuous group of continuous linear operators on 
X0, we have

lim
n→∞

(
(η0,w0), S

∗(τn)
(
(ϕτn,ψτn) − (ϕτ ,ψτ )

))
X2

= 0

and consequently,

lim
n→∞

(
(η0,w0), S

∗(τn)(ϕτ ,ψτ )
)
X2

= ((η0,w0), S
∗(τ )(ϕτ ,ψτ )

)
X2

.

Thus, (2.12) follows. Now, extending by zero the functions f , g and hi , for i = 1, 2, to obtain 
elements of L2(−T , T ) and L2(−T , T ; X−1), that is,

f ≡ g ≡ 0 on (−T ,0) and hi ≡ 0 a.e in (−T ,0) × (0,L)

and setting s = τn − t , we have that

τn∫
0

(
(g(t), f (t)),

d

dx
(S∗(τn − t)(ϕτn,ψτn))

∣∣∣L
0

)
dt

=
T∫

0

χn(s)

(
(g(τn − s), f (τn − s)),

d

dx
(S∗(s)(ϕτn ,ψτn))

∣∣∣L
0

)
dt (2.13)

and

τn∫
0

〈
(h1(t), h2(t)), S

∗(τn − t)(ϕτn,ψτn)
〉
(H−1×H 1

0 )2 dt

=
T∫

0

χn(s)
〈
(h1(τn − s), h2(τn − s)), S∗(s)(ϕτn,ψτn)

〉
(H−1×H 1

0 )2 dt (2.14)
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where χn is the characteristic functions of [0, τn]. Similarly, doing s = τ − t , we get

τ∫
0

(
(g(t), f (t)),

d

dx
(S∗(τ − t)(ϕτ ,ψτ ))

∣∣∣L
0

)
dt

=
T∫

0

χ(s)

(
(g(τ − s), f (τ − s)),

d

dx
(S∗(s)(ϕτ ,ψτ ))

∣∣∣L
0

)
dt (2.15)

and

τ∫
0

〈
(h1(t), h2(t)), S

∗(τ − t)(ϕτ ,ψτ )
〉
(H−1×H 1

0 )2 dt

=
T∫

0

χ(s)
〈
(h1(τ − s), h2(τ − s)), S∗(s)(ϕτ ,ψτ )

〉
(H−1×H 1

0 )2 dt, (2.16)

where χ is the characteristic functions of [0, τ ]. Thus, by using the convergence dominated 
Theorem, one gets that

χn(·)(g(τn − ·), f (τn − ·)) −→ χ(·)(g(τ − ·), f (τ − ·)) in L2((0, T );R2) as n → ∞. (2.17)

Moreover, since the translation in time is continuous in L2(0, T , X−1) and using again conver-
gence dominated theorem, we obtain

χn(·)(h1(τn − ·, ·), h2(τn − ·, ·)) −→ χ(·)(h1(τ − ·, ·), h2(τ − ·, ·))
in L2(0, T ,X−1) as n → ∞. (2.18)

Observe that, by the group properties of S∗, we have that

T∫
0

∣∣∣∣ d

dx
(S∗(t)(ϕτ ,ψτ ))

∣∣∣L
0

∣∣∣∣
2

dt =
T∫

0

(
|ϕx(L, τ − t)|2 + |ψx(0, τ − t)|2

)
dt

≤ ‖(ϕx,ψx)‖L2(−T ,T ,[L∞(0,L)]2)

≤ C‖(ϕ,ψ)‖2
C([−T ,T ];X2)

≤ C‖(ϕτ ,ψτ )‖2
X2

, ∀(ϕτ ,ψτ ) ∈ X2.

Thus, the linear map (ϕτ , ψτ ) ∈ X2 �→ d
dx

(S∗(·)(ψτ , ϕτ ))

∣∣∣L
0

belongs to L2(0, T ; R2) and it is 

continuous. Since a continuous linear map between two Hilbert spaces is weakly continuous, 
(2.11) implies that
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d

dx
(S∗(·)(ϕτn,ψτn))

∣∣∣L
0

⇀
d

dx
(S∗(·)(ϕτ ,ψτ ))

∣∣∣L
0

weakly in L2([−T ,T ];R2) as n → ∞.

(2.19)

Similarly, by the strong continuity of the group, it follows that

S∗(·)(ϕτn,ψτn) ⇀ S∗(·)(ϕτ ,ψτ ) weakly in L2(−T ,T ,X0) as n → ∞, (2.20)

in particular, we obtain that

S∗(·)(ϕτn,ψτn) ⇀ S∗(·)(ϕτ ,ψτ ) weakly in L2(−T ,T ,X1) as n → ∞. (2.21)

Thus, (2.13)–(2.21) yields that

lim
n→∞

τn∫
0

(
(g(t), f (t)),

d

dx
(S∗(τn − t)(ϕτn,ψτn))

∣∣∣L
0

)
dt

=
τ∫

0

(
(g(t), f (t)),

d

dx
(S∗(τ − t)(ϕτ ,ψτ ))

∣∣∣L
0

)
dt (2.22)

and

lim
n→∞

τn∫
0

〈
(h1(t), h2(t)), S

∗(τn − t)(ϕτn,ψτn)
〉
H−1×H 1

0
dt

=
τ∫

0

〈
(h1(t), h2(t)), S

∗(τ − t)(ϕτ ,ψτ )
〉
H−1×H 1

0
dt. (2.23)

Finally, from (2.8), (2.9), (2.12), (2.22) and (2.23), one gets

(
(η(τn),w(τn)), (ϕτn,ψτn)

)
X2

−→ ((η(τ ),w(τ)), (ϕτ ,ψτ )))X2
as n → ∞,

which implies that

(η(τn),w(τn)) −→ (η(τ ),w(τ)) in X2, as n → ∞.

This concludes the proof. �
The next result establish the well-posedness of the non-homogeneous feedback linear system 

associated to (2.3).
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Lemma 2.4. Let T > 0 and Fi : X0 −→ R be a continuous bilinear map, for i = 1, 2. Then, for 
every (η0, w0) in X2 and (h1, h2) ∈ L2(0, T ; X−1), there exists a unique solution (η, w) of the 
system (2.3) such that

(η,w) ∈ C([0, T ];X2),

with f (t) := F1(η(t), w(t)) and g(t) := F2(η(t), w(t)). Moreover, for some positive constant 
C = C(T ), we have

‖(η(t),w(t))‖X2
≤ C

(
‖(η0,w0)‖X2

+ ‖(h1, h2)‖L2(0,T ;X−1)

)
, ∀t ∈ [0, T ].

Proof. Firstly, note that if (η, w) ∈ C([0, T ]; X2), we have that

‖Fi(η,w)‖2
L2(0,T )

=
T∫

0

|Fi(η(·, t),w(·, t))|2dt ≤ CT ‖Fi‖2
L(X0;R)‖(η,w)‖2

C([0,T ];X2)
,

then Fi(η(·, t), w(·, t)) ∈ L2(0, T ), for i = 1, 2.
Let 0 < β ≤ T that will be determinate later. For each (η0, w0) ∈ X2, consider the map

� : C([0, β];X2) −→ C([0, β];X2)

(η,w) �−→ �(η,w) = (u, v)

where, (u, v) is the solution of the system (2.3) with f (t) = F1(η(t), w(t)) and g(t) =
F2(η(t), w(t)). By Lemma 2.3, the linear map � is well defined. Furthermore, there exists a 
positive constant C, such that

‖�(η,w)‖C([0,β];X2)
≤ Cβ(‖(η0,w0)‖X2

+ ‖(F1(η,w),F2(η,w))‖[L2(0,β)]2

+ ‖(h1, h2)‖L2(0,T ;X−1)
).

Then,

‖�(η,w)‖C([0,β];X2)
≤ CT

(
‖(η0,w0)‖X2

+ ‖(h1, h2)‖L2(0,T ;X−1)

)
+ CT β

1
2

(
‖F1‖2

L(X0;R) + ‖F2‖2
L(X0;R)

)
‖(η,w)‖C([0,β];X2)

.

Let us define

BR(0) := {(η,w) ∈ C([0, β];X2); ‖(η,w)‖C([0,β];X2)
≤ R},

with

R = 2CT

(
‖(η0,w0)‖X2

+ ‖(h1, h2)‖L2(0,T ;X−1)

)
.

Choosing β such that
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CT β
1
2

{
‖F1‖2

L(X0;R) + ‖F2‖2
L(X0;R)

}
≤ 1

2
,

it implies that ‖�(η, w)‖C([0,β];X2)
≤ R, for all (η, w) ∈ BR(0), i.e., � maps BR(0) into BR(0). 

Furthermore, note that

‖�(η1,w1) − �(η2,w2)‖C([0,β];X2)

≤ CT β
1
2

(
‖F1‖2

L(X0;R) + ‖F2‖2
L(X0;R)

)
‖(η1 − η2,w1 − w2)‖C([0,β];X2)

≤ 1

2
‖(η1 − η2,w1 − w2)‖C([0,β];X2)

.

Hence, � : BR(0) −→ BR(0) is a contraction and, by Banach fixed point theorem, we obtain a 
unique (η, w) ∈ BR(0), such that �(η, w) = (η, w) and

‖(η,w)‖C([0,β];X2)
≤ 2CT

(
‖(η0,w0)‖X2

+ ‖(h1, h2)‖L2(0,T ;X−1)

)
.

Since the choice of β is independent of (η0, w0), the standard continuation extension argument 
yields that the solution (η, w) belongs to C([0, β]; X2), thus, the proof is complete. �

Now, we are able to prove the main result of this subsection.

Proof of Theorem 2.2. Let T > 0 and ‖(η0, w0)‖X2
< ρ, where ρ > 0 will be determined later. 

Note that for (η, w) ∈ C([0, T ]; X2), there exists a positive constant C1 such that

‖ηwx‖2
L2(0,T ;L2(0,L))

≤
T∫

0

‖η(t)‖2
L∞(0,L)‖wx(t)‖2

L2(0,L)
dt

≤ C′
1

T∫
0

‖η(t)‖2
H 2(0,L)

‖w(t)‖2
H 2(0,L)

dt (2.24)

≤ C1T ‖(η,w)‖4
C([0,T ];X2)

.

This implies that for any (η, w) ∈ C([0, T ]; X2), we have that

((ηw)x,wwx) ∈ L2(0, T ;X0) ⊂ L2(0, T ;X−1).

Consider the following linear map

� : C([0, T ];X2) −→ C([0, T ];X2)

(η,w) �−→ �(η,w) = (η,w),

where (η, w) is the solution of the system (2.3) with (h1, h2) := (−(ηw)x, −wwx) in
L2(0, T ; X−1), f (t) = F1(η(t), w(t)) and g(t) = F2(η(t), w(t)).
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Claim. The map � is well-defined, maps BR(0) into it self and is a contraction in a ball.

Indeed, firstly note that Lemma 2.4 ensures that � is well-defined, moreover using Lemma 2.3, 
there exists a positive constant CT , such that

‖�(η,w)‖C([0,T ];X2
≤ CT (‖(η0,w0)‖X2

+ ‖(ηw)x‖L2(0,T ;L2(0,L)) + ‖wwx‖L2(0,T ;L2(0,L))).

Then, (2.24) yields that

‖�(η,w)‖C([0,T ];X2
≤ CT ‖(η0,w0)‖X2

+ 3T 1/2CT C1‖(η,w)‖2
C([0,T ];X2)

. (2.25)

Consider the ball BR(0) =
{
(η,w) ∈ C([0, T ];X2) : ‖(η,w)‖C([0,T ];X2)

≤ R
}

, where

R = 2CT ‖(η0,w0)‖X2
.

From the estimate (2.25) we get that

‖�(η,w)‖C([0,T ];X2)
≤ R

2
+ 3T 1/2CT C1R

2 <
R

2
+ 6T 1/2C2

T C1ρR, ∀(η,w) ∈ BR(0).

Consequently, if we choose ρ > 0 such that 24T 1/2C2
T C1ρ < 1, � maps the ball BR(0) into 

itself. Finally, note that

‖�(η1,w1) − �(η2,w2)‖C([0,T ];X2)
≤ CT ‖ ((η1w1)x − (η2w2)x,w1w1,x − w2w2,x

)‖L1(0,T ;X0)

≤ T 1/2CT C1(‖w1‖C([0,T ];H 2(0,L)) + ‖w2‖C([0,T ];H 2(0,L)))‖η1 − η2‖C([0,T ];H 2(0,L))

+ T 1/2CT C1(‖η1‖C([0,T ];H 2(0,L)) + ‖η2‖C([0,T ];H 2(0,L)) + ‖w1‖C([0,T ];H 2(0,L))

+ ‖w2‖C([0,T ];H 2(0,L)))‖w1 − w2‖C([0,T ];H 2(0,L))

≤ 12T 1/2C2
T C1ρ‖(η1 − η2,w1 − w2)‖C([0,T ];X2)

.

Therefore,

‖�(η1,w1) − �(η2,w2)‖C([0,T ];X2)
≤ 1

2
‖(η1 − η2,w1 − w2)‖C([0,T ];X2)

, ∀(η,w) ∈ BT (0).

Hence, � : BR(0) −→ BR(0) is a contraction and the claim is archived.
Thanks to Banach fixed point theorem, we obtain a unique (η, w) ∈ BR , such that �(η, w) =

(η, w) and

‖(η,w)‖C([0,T ];X2)
≤ 2CT ‖(η0,w0)‖X2

.

Thus, the proof is complete. �
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3. Well-posedness for the stationary system

In this section we are interested to show the well-posedness of the stationary system 
(1.17)–(1.18). For a better understanding, we recall the definitions of the operators K and S:

(Kv)(x) :=
L∫

0

k(x, y)v(y)dy and (Sv)(x) :=
L∫

0

s(x, y)v(y)dy, for all v ∈ L2(0,L),

(3.1)

where (k, s) is the solution of stationary problem

{
kyyy + ky + kxxx + kx + λs = 0, in (0,L) × (0,L),

syyy + sy + sxxx + sx + λk = λδ(x − y), in (0,L) × (0,L),
(3.2)

with boundary condition

{
k(x,0) = k(x,L) = k(0, y) = k(L,y) = ky(x,0) = ky(x,L) = 0, on (0,L),

s(x,0) = s(x,L) = s(0, y) = s(L,y) = sy(x,0) = sy(x,L) = 0, on (0,L),
(3.3)

where λ ∈R \ {0} and δ(x − y) denotes the Dirac measure on the diagonal of the square [0, L] ×
[0, L].

3.1. Well-posedness: stationary system

In this subsection we study the well-posedness of the system (3.2)–(3.3). In this direction, we 
will define the solution by transposition.

Let us consider the set

E := {ρ ∈ C∞([0,L] × [0,L]) : ρ(0, y) = ρ(L,y) = ρ(x,0) = ρ(x,L) = ρx(0, y)

= ρx(L,y) = 0
}

and G be the set given by

G :=

⎧⎪⎨
⎪⎩k ∈ H 1

0 ((0,L) × (0,L)) :
(x ∈ (0,L) �→ kx(x, ·) ∈ L2(0,L)) ∈ C([0,L];L2(0,L)),

(y ∈ (0,L) �→ ky(·, y) ∈ L2(0,L)) ∈ C([0,L];L2(0,L)),

ky(·,0) = ky(·,L) = 0.

⎫⎪⎬
⎪⎭ .
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We call (k, s) ∈ G × G a solution to (3.2)–(3.3) if

L∫
0

L∫
0

[
ρyyy(x, y) + ρy(x, y) + ρxxx(x, y) + ρx(x, y)

]
k(x, y)dxdy

− λ

L∫
0

L∫
0

ρ(x, y)s(x, y)dxdy = 0, for every ρ ∈ E (3.4)

and

L∫
0

L∫
0

[
ρyyy(x, y) + ρy(x, y) + ρxxx(x, y) + ρx(x, y)

]
s(x, y)dxdy

− λ

L∫
0

L∫
0

ρ(x, y)k(x, y)dxdy + λ

L∫
0

ρ(x, x)dx = 0 for every ρ ∈ E . (3.5)

We can enunciate the well-posedness result as follows.

Theorem 3.1. For any λ ∈R \ {0}, system (3.2)–(3.3) has a unique solution in G × G.

Proof. Consider v ∈ G solution of the equation

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

kyyy + ky + kxxx + kx + λk = λδ(x − y) in (0,L) × (0,L),

k(x,0) = k(x,L) = 0, on (0,L),

ky(x,0) = ky(x,L) = 0, on (0,L),

k(0, y) = k(L,y) = 0, on (0,L)

(3.6)

and u ∈ G solution of the equation

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

kyyy + ky + kxxx + kx − λk = −λδ(x − y) in (0,L) × (0,L),

k(x,0) = k(x,L) = 0, on (0,L),

ky(x,0) = ky(x,L) = 0, on (0,L),

k(0, y) = k(L,y) = 0, on (0,L).

(3.7)

The existence of such v and u in G is provided by [9, Lemma 2.1]. Then, in this case, we easily 
see that, if we define

k := v + u

2
∈ G and s := v − u

2
∈ G,

then k and s satisfies the boundary conditions (3.3).
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Now we prove that (k, s) ∈ G × G is solution of the system (3.2)–(3.3) in the sense given 
in the beginning of this subsection. Let ρ ∈ E . Since v and u are solutions of (3.6) and (3.7), 
respectively, it follows that

L∫
0

L∫
0

[
ρyyy(x, y) + ρy(x, y) + ρxxx(x, y) + ρx(x, y) − λρ(x, y)

]
v(x, y)dxdy

+ λ

L∫
0

ρ(x, x)dx = 0

and

L∫
0

L∫
0

[
ρyyy(x, y) + ρy(x, y) + ρxxx(x, y) + ρx(x, y) + λρ(x, y)

]
u(x, y)dxdy

− λ

L∫
0

ρ(x, x)dx = 0.

Thus, integrating by parts, we obtain

L∫
0

L∫
0

{[
ρyyy(x, y) + ρy(x, y) + ρxxx(x, y) + ρx(x, y)

]
k(x, y) − λρ(x, y)s(x, y)

}
dxdy

= 1

2

L∫
0

L∫
0

[
ρyyy(x, y) + ρy(x, y) + ρxxx(x, y) + ρx(x, y)

]
(v(x, y) + u(x, y))dxdy

− 1

2
λ

L∫
0

L∫
0

ρ(x, y)(v(x, y) − u(x, y))dxdy

= 1

2

L∫
0

L∫
0

[
ρyyy(x, y) + ρy(x, y) + ρxxx(x, y) + ρx(x, y) − λρ(x, x)

]
v(x, y)dxdy

+ 1

2

L∫
0

L∫
0

[
ρyyy(x, y) + ρy(x, y) + ρxxx(x, y) + ρx(x, y) + λρ(x, x)

]
u(x, y)dxdy

= 0

and
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L∫
0

L∫
0

{[
ρyyy(x, y) + ρy(x, y) + ρxxx(x, y) + ρx(x, y)

]
s(x, y) − λρ(x, y)k(x, y)

}
dxdy

= 1

2

L∫
0

L∫
0

[
ρyyy(x, y) + ρy(x, y) + ρxxx(x, y) + ρx(x, y)

]
(v(x, y) − u(x, y))dxdy

− λ

2

L∫
0

L∫
0

ρ(x, y)(v(x, y) + u(x, y))dxdy

= 1

2

L∫
0

L∫
0

[
ρyyy(x, y) + ρy(x, y) + ρxxx(x, y) + ρx(x, y) − λρ(x, y)

]
v(x, y)dxdy

− 1

2

L∫
0

L∫
0

[
ρyyy(x, y) + ρy(x, y) + ρxxx(x, y) + ρx(x, y) + λρ(x, x)

]
u(x, y)dxdy

= −λ

L∫
0

ρ(x, x)dx.

Consequently (3.4) and (3.5) are satisfied.
Now, we prove that there exists only one solution for the system (3.2)–(3.3). In fact, suppose 

that (k1, s1) and (k2, s2) are solutions of the system (3.2)–(3.3) and consider k := k1 − k2 and 
s := s1 − s2. Then, (k, s) is solution of

{
kyyy + ky + kxxx + kx + λs = 0, in (0,L) × (0,L),

syyy + sy + sxxx + sx + λk = 0, in (0,L) × (0,L),

satisfying the boundary condition (3.3). Note that k + s solves the problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

k̂yyy + k̂y + k̂xxx + k̂x + λk̂ = 0 in (0,L) × (0,L),

k̂(x,0) = k̂(x,L) = 0, on (0,L),

k̂y(x,0) = k̂y(x,L) = 0, on (0,L),

k̂(0, y) = k̂(L, y) = 0, on (0,L)

and k − s solves

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

k̂yyy + k̂y + k̂xxx + k̂x − λk̂ = 0 in (0,L) × (0,L),

k̂(x,0) = k̂(x,L) = 0, on (0,L),

k̂y(x,0) = k̂y(x,L) = 0, on (0,L),

k̂(0, y) = k̂(L, y) = 0, on (0,L).
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By uniqueness given in [9, Lemma 2.1], we have that k + s = k − s = 0. Then, k1 = k2 and 
s1 = s2, and the proof is archived. �
Remark 3.2. Let (k, s) be solution of the system (3.2)–(3.3). Thus, it is clear that k+s is solution 
of the system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

kyyy + ky + kxxx + kx + λk = λδ(x − y) in (0,L) × (0,L),

k(x,0) = k(x,L) = 0, on (0,L),

ky(x,0) = ky(x,L) = 0, on (0,L),

k(0, y) = k(L,y) = 0, on (0,L).

Then, from [9, Lemma 3.1], we have that (I − (K + S))−1 exists and it is a continuous operator 
in L2(0, L). Similarly, we obtain that (I − (K − S))−1 also belongs to L(L2(0, L)), since k − s

is solution of the following system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

kyyy + ky + kxxx + k − λk = −λδ(x − y) in (0,L) × (0,L),

k(x,0) = k(x,L) = 0, on (0,L),

ky(x,0) = ky(x,L) = 0, on (0,L),

k(0, y) = k(L,y) = 0, on (0,L).

4. Rapid stabilization for the nonlinear system

In this section we will establish the local rapid exponential stabilization for the system 
(1.14)–(1.15) with the feedback laws f (t) := F1(η(·, t), w(·, t)) and g(t) := F2(η(·, t), w(·, t)), 
with Fi belongs to L(X0; R), i = 1, 2, defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1(u, v) =
L∫

0

[kx(0, y)u(y) + sx(0, y)v(y)]dy, ∀(u, v) ∈ X0,

F2(u, v) =
L∫

0

[kx(L,y)v(y) + sx(L,y)u(y)]dy, ∀(u, v) ∈ X0

(4.1)

in the energy space via the backstepping modified method.

Proof of Theorem 1.1. Let T > 0 and ρ := ρ1 > 0 such that ‖(η0, w0)‖X2
< ρ1, which will be 

given later. Consider the following system
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηt + wx + wxxx + (ηw)x = 0, in (0,L) × (0, T ),

wt + ηx + ηxxx + wwx = 0, in (0,L) × (0, T ),

η(0, t) = η(L, t) = 0, on (0, T ),

ηx(0, t) =
L∫

0

[kx(0, y)η(y, t) + sx(0, y)w(y, t)]dy, on (0, T ),

w(0, t) = w(L, t) = 0, on (0, T ),

wx(L, t) =
L∫

0

[kx(L,y)w(y, t) + sx(L,y)η(y, t)]dy on (0, T ),

η(x,0) = η0(x), w(x,0) = w0(x), on (0,L).

(4.2)

By Theorem 2.2, there exist ρT such that the system (4.2) admits a unique solution (η, w) ∈
C([0, T ]; X2) provided that ‖(η0, w0)‖X2

< ρT . Moreover, there is a positive constant CT such 
that

‖(η,w)‖C([0,T ];X2)
≤ CT ‖(η0,w0)‖X2

. (4.3)

On the other hand, consider the transformations

u := (I − K)η − Sw and v := (I − K)w − Sη, (4.4)

where the operators K and S are given by (3.1). From the boundary conditions of (3.3) and (4.2), 
we have that

ut (x, t) = ηt (x, t) −
L∫

0

k(x, y)ηt (y, t)dy −
L∫

0

s(x, y)wt (y, t)dy

= ηt (x, t) +
L∫

0

k(x, y)[wy(y, t) + wyyy(y, t) + (ηw)y]dy

+
L∫

0

s(x, y)[ηy(y, t) + ηyyy(y, t) + wwy]dy

= ηt (x, t) −
L∫

0

w(y, t)[ky(x, y) + kyyy(x, y)]dy −
L∫

0

η(x, y)[sy(x, y) + syyy(x, y)]dy

−
L∫

0

ky(x, y)η(y, t)w(y, t)dy − 1

2

L∫
0

sy(x, y)w2(y, t)dy,
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ux(x, t) = ux(x, t) = ηx(x, t) −
L∫

0

kx(x, y)η(y, t)dy −
L∫

0

sx(x, y)w(y, t)dy

and

uxxx(x, t) = ηxxx(x, t) −
L∫

0

kxxx(x, y)η(y, t)dy −
L∫

0

sxxx(x, y)w(y, t)dy.

Similarly, we obtain

vt (x, t) = wt(x, t) −
L∫

0

η(y, t)[ky(x, y) + kyyy(x, y)]dy −
L∫

0

w(x,y)[sy(x, y) + syyy(x, y)]dy

−
L∫

0

sy(x, y)η(y, t)w(y, t)dy − 1

2

L∫
0

ky(x, y)w2(y, t)dy,

vx(x, t) = wx(x, t) −
L∫

0

kx(x, y)w(y, t)dy −
L∫

0

sx(x, y)η(y, t)dy,

and

vxxx(x, t) = wxxx(x, t) −
L∫

0

kxxx(x, y)w(y, t)dy −
L∫

0

sxxx(x, y)η(y, t)dy.

Thus, for a given λ ∈R \ {0}, it follows that

ut (x, t) + vx(x, t) + vxxx(x, t) + λu(x, t) = [ηt (x, t) + wx(x, t) + wxxx(x, t)]

−
L∫

0

w(y, t)[ky(x, y) + kyyy(x, y) + kx(x, y) + kxxx(x, y) + λs(x, y)]dy

−
L∫

0

η(y, t)[sy(x, y) + syyy(x, y) + sx(x, y) + sxxx(x, y) + λk(x, y) − λδ(x − y)]dy

−
L∫

0

ky(x, y)η(y, t)w(y, t)dy − 1

2

L∫
0

sy(x, y)w2(y, t)dy

= −(ηw)x −
L∫

0

ky(x, y)η(y, t)w(y, t)dy − 1

2

L∫
0

sy(x, y)w2(y, t)dy
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and

vt (x, t) + ux(x, t) + uxxx(x, t) + λv(x, t) = [wt(x, t) + ηx(x, t) + ηxxx(x, t)]

−
L∫

0

η(y, t)[ky(x, y) + kyyy(x, y) + kx(x, y) + kxxx(x, y) + λs(x, y)]dy

−
L∫

0

w(y, t)[sy(x, y) + syyy(x, y) + sx(x, y) + sxxx(x, y) + λk(x, y) − λδ(x − y)]dy

−
L∫

0

sy(x, y)η(y, t)w(y, t)dy − 1

2

L∫
0

ky(x, y)w2(y, t)dy

= −wwx −
L∫

0

sy(x, y)η(y, t)w(y, t)dy − 1

2

L∫
0

ky(x, y)w2(y, t)dy.

Hence, by using the system (3.2) and the boundary conditions (3.3), we deduce that (u, v) solves 
the system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut (x, t) + vx(x, t) + vxxx(x, t) + λu(x, t) =∑3
i=1 �i(x, t), in (0,L) × [0, T ],

vt (x, t) + ux(x, t) + uxxx(x, t) + λv(x, t) =∑3
i=1 �i(x, t), in (0,L) × [0, T ],

u(0, t) = u(L, t) = ux(0, t) = 0, on [0, T ],
v(0, t) = v(L, t) = vx(L, t) = 0, on [0, T ],

(4.5)

where

�1(x, t) = −(η(x, t)w(x, t))x,

�2(x, t) = −
L∫

0

ky(x, y)η(y, t)w(y, t)dy,

�3(x, t) = −1

2

L∫
0

sy(x, y)w2(y, t)dy

and

�1(x, t) = −w(x, t)wx(x, t),

�2(x, t) = −
L∫
sy(x, y)η(y, t)w(y, t)dy,
0
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�3(x, t) = −1

2

L∫
0

ky(x, y)w2(y, t)dy.

Multiplying first equation of (4.5) by u, the second one by v and integrating by parts on (0, L), 
we get

1

2

d

dt

L∫
0

(u2(x, t) + v2(x, t))dx ≤ −λ

L∫
0

(u2(x, t) + v2(x, t))dx

+
3∑

i=1

⎧⎨
⎩

L∫
0

�i(x, t)u(x, t)dx +
L∫

0

�i(x, t)v(x, t)dx

⎫⎬
⎭ . (4.6)

Now we will estimate the sum on the right hand side of (4.6). First, note that,

L∫
0

�1(x)u(x)dx = −
L∫

0

(η(x)w(x))xη(x)dx +
L∫

0

(η(x)w(x))x

⎛
⎝ L∫

0

k(x, y)η1(y)dy

⎞
⎠dx

+
L∫

0

(η(x)w(x))x

⎛
⎝ L∫

0

s(x, y)w(y)dy

⎞
⎠dx

=
L∫

0

η(x)w(x)ηx(x)dx −
L∫

0

(η(x)w(x))

⎛
⎝ L∫

0

kx(x, y)η(y)dy

⎞
⎠dx

−
L∫

0

(η(x)w(x))

⎛
⎝ L∫

0

sx(x, y)w(y)dy

⎞
⎠dx

≤ −1

2

L∫
0

η2(x)wx(x)dx + ‖η(t)‖L2(0,L)

L∫
0

|η(x)||w(x)|‖kx(x)‖L2(0,L)dx

+ ‖w(t)‖L2(0,L)

L∫
0

|η(x)||w(x)|‖sx(x)‖L2(0,L)dx

≤ 1

2
‖wx(t)‖L∞(0,L)‖η(t)‖2

L2(0,L)

+ sup
x∈(0,L)

‖kx(x)‖L2(0,L)‖η(t)‖2
L2(0,L)

‖w(t)‖L2(0,L)

+ sup
x∈(0,L)

‖sx(x)‖L2(0,L)‖w(t)‖2
L2(0,L)

‖η(t)‖L2(0,L).

Therefore,
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L∫
0

�1(x, t)u(x, t)dx ≤ K0‖(η(t),w(t))‖X2
‖(η(t),w(t))‖2

X0
+ K1‖(η(t),w(t))‖3

X0
, (4.7)

where K0 is the constant of the embedding H 1(0, L) ⊂ L∞(0, L) and

K1 = sup
x∈(0,L)

‖kx(x)‖L2(0,L) + sup
x∈(0,L)

‖sx(x)‖L2(0,L).

In the same way, we have,

L∫
0

�2(x)u(x)dx = −
L∫

0

⎛
⎝ L∫

0

ky(x, y)η(y)w(y)dy

⎞
⎠η(x)dx

+
L∫

0

⎛
⎝ L∫

0

ky(x, y)η(y)w(y)dy

⎞
⎠
⎡
⎣ L∫

0

k(x, z)η(z)dz +
L∫

0

s(x, z)w(z)dz

⎤
⎦dx

= −
L∫

0

η(y)w(y)

⎛
⎝ L∫

0

ky(x, y)η(x)dx

⎞
⎠dy

+
L∫

0

η(y)w(y)

⎛
⎝ L∫

0

ky(x, y)

⎡
⎣ L∫

0

k(x, z)η(z)dz +
L∫

0

s(x, z)w(z)dz

⎤
⎦dx

⎞
⎠dy

≤ ‖η(t)‖L2(0,L)

L∫
0

|η(y)||w(y)|‖ky(y)‖L2(0,L)dy

+ sup
y∈(0,L)

‖ky(y)‖L2(0,L)‖k‖L2([0,L]×[0,L])‖η(t)‖2
L2(0,L)

‖w(t)‖L2(0,L)

+ sup
y∈(0,L)

‖ky(y)‖L2(0,L)‖s‖L2([0,L]×[0,L])‖η(t)‖L2(0,L)‖w(t)‖2
L2(0,L)

.

Thus,

L∫
0

�2(x, t)u(x, t)dx ≤ K2‖(η(t),w(t))‖3
X0

, (4.8)

where

K2 = sup
y∈(0,L)

‖ky(y)‖L2(0,L)

(
1 + ‖k‖L2([0,L]×[0,L]) + ‖s‖L2([0,L]×[0,L])

)
.

Finally,
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L∫
0

�3(x)u(x)dx = −1

2

L∫
0

⎛
⎝ L∫

0

sy(x, y)w2(y)dy

⎞
⎠η(x)dx

+ 1

2

L∫
0

⎛
⎝ L∫

0

sy(x, y)w2(y)dy

⎞
⎠
⎡
⎣ L∫

0

k(x, z)η(z)dz +
L∫

0

s(x, z)w(z)dz

⎤
⎦dx

= −1

2

L∫
0

w2(y)

⎛
⎝ L∫

0

sy(x, y)η(x)dx

⎞
⎠dy

+ 1

2

L∫
0

w2(y)

⎛
⎝ L∫

0

sy(x, y)

⎡
⎣ L∫

0

k(x, z)η(z)dz +
L∫

0

s(x, z)w(z)dz

⎤
⎦dx

⎞
⎠dy

≤ 1

2
‖η(t)‖L2(0,L)

L∫
0

w2(y)‖sy(y)‖L2(0,L)dy

+ 1

2
‖η(t)‖L2(0,L)

L∫
0

w2(y)

⎛
⎝ L∫

0

|sy(x, y)|‖k(x)‖L2(0,L)dx

⎞
⎠dy

+ 1

2
sup

y∈(0,L)

‖sy(y)‖L2(0,L)‖k‖L2([0,L]×[0,L])‖η(t)‖L2(0,L)‖w(t)‖2
L2(0,L)

+ 1

2
sup

y∈(0,L)

‖sy(y)‖L2(0,L)‖s‖L2([0,L]×[0,L])‖w(t)‖3
L2(0,L)

.

Then,

L∫
0

�3(x, t)u(x, t)dx ≤ K3‖(η(t),w(t))‖3
X0

, (4.9)

where

K3 = 1

2
sup

y∈(0,L)

‖sy(y)‖L2(0,L)

(
1 + ‖k‖L2([0,L]×[0,L]) + ‖s‖L2([0,L]×[0,L])

)
.

Similarly, we can estimate the others three remaining terms on the right hand side of (4.6):

3∑
i=1

L∫
0

�i(x, t)v(x, t)dx ≤
(

1

2
K1 + 1

2
K2 + 2K3

)
‖(η(t),w(t))‖3

X0
. (4.10)

Thus, by using (4.7), (4.8), (4.9) and (4.10) in (4.6), there exists a constant K such that
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1

2

d

dt
‖(u(t), v(t))‖2

X0
≤ −λ‖(u(t), v(t))‖2

X0
+ K‖(η(t),w(t))‖X2

‖(η(t),w(t))‖2
X0

. (4.11)

On the other hand, note that (4.4) can be rewrite as

u = (I − (K + S))η + S(η − w)

v1 = (I − (K + S))w − S(η − w),

then, u + v = (I − (K + S))(η + w) and u − v = (I − (K − S))(η − w). Furthermore, due to 
Remark 3.2, (I − (K +S))−1 and (I − (K −S))−1 belong to L(L2(0, L)). Thus, we can get that

‖η(t)‖2
L2(0,L)

≤ 1

2

{
‖η(t) + w(t)‖2

L2(0,L)
+ ‖η(t) − w(t)‖2

L2(0,L)

}
≤ C1‖(u(t), v(t))‖2

X0
,

where C1 is a positive constant given by

C1 = 1

2

{
‖(I − (K + S))−1‖2

L(L2(0,L))
+ ‖(I − (K − S))−1‖2

L(L2(0,L))

}
.

Analogously, we obtain

‖w(t)‖2
L2(0,L)

≤ C1‖(u(t), v(t))‖2
X0

.

Hence, there exists C1 = C1(K, S) > 0 satisfying

‖(η(t),w(t))‖2
X0

≤ C1‖(u(t), v(t))‖2
X0

. (4.12)

By (4.11)–(4.12), it follows that

1

2

d

dt
‖(u(t), v(t))‖2

X0
≤ −

(
λ − KC1‖(η(t),w(t))‖X2

)
‖(u(t), v(t))‖2

X0
.

For a given λ > 0, we know that there is δ1 > 0 such that, if ‖(η(0), w(0))‖X2
< δ1, we have

KC1‖(η(t),w(t))‖X2
<

λ

2
, ∀t ∈ [0, T ].

Thus, we have

d

dt
‖(u(t), v(t))‖2

X0
≤ −λ‖(u(t), v(t))‖2

X0
, ∀t ∈ [0, T ],

which implies that

‖(u(t), v(t))‖X0 ≤ e− λ
2 t‖(u(0), v(0))‖X0 , ∀t ∈ [0, T ].

Consequently, using the expression of u and v, defined by (4.4), in (4.12), we get that
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‖(η(t),w(t))‖X0 ≤ Ce− λ
2 t‖(η0,w0)‖X0, ∀t ∈ [0, T ],

for some positive constant C = C(K, S). Therefore, the proof of the theorem is finished. �
5. Further comments and open problems

• One control on the right end-point

If we consider homogeneous Dirichlet condition and one control inputs at the Neumann 
boundary condition, then we are not able to prove the rapid stabilization via the backstepping. 
For instance, if we take g = 0, the boundary condition (1.4) becomes

{
η(0, t) = 0, η(L, t) = 0, ηx(0, t) = f (t), t ∈ (0,∞),

w(0, t) = 0, w(L, t) = 0, wx(L, t) = 0, t ∈ (0,∞).
(5.1)

As we did before, a natural idea is to use the transformation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(x, t) = η(x, t) −
L∫

0

k(x, y)η(y, t)dt −
L∫

0

s(x, y)w(y, t)dy

v(x, t) = w(x, t) −
L∫

0

k(x, y)w(y, t)dy −
L∫

0

s(x, y)η(y, t)dy,

(5.2)

where (k(·, ·), s(·, ·)) is a solution of an appropriate stationary system. However, it is not clear if 
that approach, used in this paper, works in this case. Indeed, (5.2) implies that the feedback law 
will be given by

f (t) := F(η,w) =
L∫

0

kx(0, y)η(y, t)dt +
L∫

0

sx(0, y)w(y, t), (5.3)

where (k(·, ·), s(·, ·)) should solves the stationary system (3.2) with boundary condition (3.3) and 
a additional restriction

kx(L, ·) = sx(L, ·) = 0.

As in Theorem 3.1, is not difficult to see that the well-posedness of the above stationary problem 
is equivalent to the well-posedness of the following problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

kyyy + ky + kxxx + kx ± λk = ±λδ(x − y) in (0,L) × (0,L),

k(x,0) = k(x,L) = 0, on (0,L),

ky(x,0) = ky(x,L) = 0, on (0,L),

k(0, y) = k(L,y) = 0, on (0,L),

k (L,y) = 0, on (0,L),

(5.4)
x
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for any λ ∈ R \ {0}. However, with these boundary restrictions the third order system (5.4) be-
comes over-determined. Therefore, is not clear if such function k(·, ·) exists. Thus, the natural 
open problem appears:

Question A. Can we prove that the nonlinear system (1.14)–(5.1), with f (t) defined by (5.3), is 
exponential stable, by using the backstepping method?

• Less regularity of the initial data

Consider the following linear KdV–KdV system

⎧⎪⎪⎨
⎪⎪⎩

ηt + wx + wxxx = 0, in (0,L) × (0,+∞),

wt + ηx + ηxxx = 0, in (0,L) × (0,+∞),

η(x,0) = η0(x), w(x,0) = w0(x), in (0,L),

(5.5)

with following boundary conditions

{
η(0, t) = 0, η(L, t) = 0, ηx(0, t) = f (t), on (0, T ),

w(0, t) = 0, w(L, t) = 0, wx(L, t) = g(t). on (0, T ),
(5.6)

where f (t) := F1(η(t), w(t)) and g(t) := F2(η(t), w(t)), with Fi in L(X0; R), i = 1, 2, defined 
by (4.1).

When we required less regularity of the initial data, the following result of the well-posedness 
for the system (5.5)–(5.6) is true:

For every (η0, w0) ∈ X−1 and (f, g) ∈ [L2(0, T )]2, there exists a unique solution

(η,w) ∈ C([0, T ];X−1)

of system (5.5)–(5.6), such that

‖(η,w)‖L∞(0,T ;X−1) ≤ C
(‖(η0,w0)‖X−1 + ‖(f, g)‖[L2(0,T )]2

)
,

for some positive constant C = C(T ).

To prove it, we use the classical approach given by the Riesz representation Theorem to obtain 
a solution by transposition, see [5,6] for more details. Our analysis on the case of regular data 
(Theorem 1.1) suggests that is possible to obtain the rapid exponential stabilization for the linear 
system (5.5) for less regularity of the initial data whenever the linear system is well-posedness in 
some sense on X0. Thus, another natural question arises here is the following one:

Question B. Is the linear system (5.5)–(5.6), with f (t) := F1(η(t), w(t)) and g(t) := F2(η(t),

w(t)) defined by (4.1), well-posedness in X0 for less regular initial data (η0, w0)?

Due to a lack of a priori X0-estimate, the issue of the rapid stabilization for the nonlinear 
problem is difficult to address. Only when the initial data is regular we can get a positive answer 
to this question, as was proved in Theorem 1.1. Indeed, in order to obtain a appropriate bound 
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for (4.7), we have to estimate the term − 1
2

∫ L

0 η2(x)wx(x)dx. This explain why the estimation 
in the X2-norm it is necessary in our approach. Therefore, for initial data in X0, the following 
question remains open:

Question C. Is the nonlinear system (1.14)–(5.6), with f (t) := F1(η(t), w(t)) and g(t) :=
F2(η(t), w(t)) defined by (4.1), exponential stable for initial data (η0, w0) ∈ X0?

• Global well-posedness in time

Adapting the proof of Theorem 2.2, one can also prove that, without any restriction over the 
initial data (η0, w0), there exist T ∗ > 0 and a solution (η, w) of (1.14)–(1.15), with the feed-
back law f (t) = F1(η(·, t), w(·, t)) and g(t) = F1(η(·, t), w(·, t)) satisfying the initial condition 
η(·, 0) = u0(·) and w(·, 0) = w0(·). More precisely,

Theorem 5.1. Let Fi : X0 −→ R be a continuous linear map for i = 1, 2 and the initial data 
(η0, w0) ∈ X2. Then, there exists T ∗ > 0 such that, there exists a unique solution (η, w) ∈
C([0, T ∗]; X2) of (1.14)–(1.15) with f (t) := F1(η(t), w(t)), g(t) := F2(η(t), w(t)). Moreover

‖(η,w)‖C([0,T ];X2)
≤ C‖(η0,w0)‖X2

,

for some positive constant C = C(T ∗).

Observe that if (η1, w1) ∈ C([0, T1], X2) and (η2, w2) ∈ C([0, T2], X2) are the solutions given 
by the Theorem 2.2 with initial data (η0, w0) and (η1(T1), w1(T1)), respectively, the function 
(η, w) : [0, T1 + T2] → X2 defined by

(η(t),w(t)) =
{

(η1(t),w1(t)) if t ∈ [0, T1],
(η2(t − T1),w2(t − T2)) if t ∈ [T1, T1 + T2],

is the solution of the feedback system on interval [0, T1 +T2] with initial data (η0, w0). This argu-
ment allows us extend a local solution until a maximal interval, that is, for all 0 < T < Tmax ≤ ∞
there exist a function (η, w) ∈ C([0, T ], X2) solution of the feedback system (1.14)–(1.15). The 
following proposition, easily holds:

Proposition 5.2. Let (η0, w0) ∈ X2 and (η, w) ∈ C([0, T ], X2) solution of the feedback system, 
for all 0 < T < Tmax, with initial data (η0, w0). Then, only one of the following assertions hold:

(i) Tmax = ∞;
(ii) If Tmax < ∞, then, limt→Tmax ‖(η(t), w(t))‖X2

= ∞.

Thus, the following questions related to the global well-posedness in time are also important:

Question D. Let Fi : X0 −→R be a continuous linear map for i = 1, 2. Is the nonlinear system 
(1.14)–(1.15), with f (t) := F1(η(t), w(t)) and g(t) := F2(η(t), w(t)), global well-posedness in 
time, i.e., Tmax is infinity?

Question E . If the question D has positive answer, do have expect some restriction on the initial 
data?



2374 R.A. Capistrano-Filho, F.A. Gallego / J. Differential Equations 265 (2018) 2341–2374
Acknowledgments

This work was carried out during the visit of the second author to the Federal University of 
Pernambuco. F.A. Gallego would like to thank the Mathematics Department at Federal University 
of Pernambuco, in Recife, for its hospitality.

References

[1] J. Bergh, J. Lofstrom, Interpolation Spaces: An Introduction, Springer-Verlag, 1976.
[2] J.J. Bona, M. Chen, J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear 

dispersive media. I. Derivation and linear theory, J. Nonlinear Sci. 12 (2002) 283–318.
[3] D.M. Boskovic, M. Krstic, W. Liu, Boundary control of an unstable heat equation via measurement of domain-

averaged temperature, IEEE Trans. Automat. Control 46 (12) (2001) 2022–2028.
[4] J.V. Boussinesq, Théorie générale des mouvements qui sont propagés dans un canal rectangulaire horizontal, C. R. 

Acad. Sci. Paris 72 (1871) 755–759.
[5] R.A. Capistrano-Filho, Control of Dispersive Equations for Surface Waves, PhD Thesis, Universidade Federal do 

Rio de Janeiro and Université de Lorraine, 2014.
[6] R.A. Capistrano-Filho, A.F. Pazoto, L. Rosier, Control of Boussinesq system of KdV–KdV type on a bounded 

domain, arXiv :1709 .09924 [math .AP].
[7] J.M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, vol. 136, American Mathematical 

Society, Providence, RI, 2007.
[8] J.M. Coron, B. d’Andrea-Novel, Stabilization of a rotating body beam without damping, IEEE Trans. Automat. 

Control 43 (5) (1998) 608–618.
[9] J.M. Coron, Q. Lü, Local rapid stabilization for a Korteweg–de Vries equation with a Neumann boundary control 

on the right, J. Math. Pures Appl. 102 (6) (2014) 1080–1120.
[10] J.M. Coron, Q. Lü, Fredholm transform and local rapid stabilization for a Kuramoto–Sivashinsky equation, J. Dif-

ferential Equations 259 (8) (2015) 3683–3729.
[11] J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, Tome 1, Recherches en 

Mathématiques Appliquées (Research in Applied Mathematics), vol. 8, Masson, Paris, 1988.
[12] J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Rev. 30 (1) (1988) 

1–68.
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